当前位置:文档之家› 第二章 放大电路分析基础

第二章 放大电路分析基础

第二章 放大电路分析基础
第二章 放大电路分析基础

第二章 放大电路分析基础

〖本章主要内容〗

本章重点讲述基本放大电路的组成原理和分析方法,三种组态基本放大电路的特点和应用场合。多级放大电路的耦合方式和分析方法,差动放大器的分析方法。

首先介绍基本放大电路的组成原则。三极管的低频小信号模型。固定偏置共射放大电路的图解法和等效电路法静态和动态分析,最大不失真输出电压和波形失真分析。分压式偏置共射放大电路的分析以及稳定静态工作点的方法。共集和共基放大电路的分析,由BJT 构成的三种组态放大电路的特点和应用场合。然后介绍多级放大电路的两种耦合方式、直接耦合多级放大电路的静态偏置以及多级放大电路的静态和动态分析,差动放大器的分析方法。通过习题课掌握放大电路的静态偏置方法和性能指标的分析计算方法。

〖学时分配〗

本章有6讲,每讲两个学时。 第四讲 放大电路的工作原理

一、主要内容

1、放大的概念

在电子电路中,放大的对象是变化量,常用的测试信号是正弦波。放大电路放大的本质是在输入信号的作用下,通过有源元件(BJT 或FET )对直流电源的能量进行控制和转换,使负载从电源中获得输出信号的能量,比信号源向放大电路提供的能量大的多。因此,电子电路放大的基本特征是功率放大,表现为输出电压大于输入电压,输出电流大于输入电流,或者二者兼而有之。

在放大电路中必须存在能够控制能量的元件,即有源元件,如BJT 和FET 等。放大的前提是不失真,只有在不失真的情况下放大才有意义。

2、电路的主要性能指标

1) 输入电阻

i R :从输入端看进去的等效电阻,反映放大电路从信号源索取电流的大

小。 2) 输出电阻o R :从输出端看进去的等效输出信号源的内阻,说明放大电路带负载的

能力。

3) 放大倍数(或增益):输出变化量幅值与输入变化量幅值之比。或二者的正弦交流

值之比,用以衡量电路的放大能力。根据放大电路输入量和输出量为电压或电流的不同,有四种不同的放大倍数:电压放大倍数、电流放大倍数、互阻放大倍数和互导放大倍数。

电压放大倍数定义为:

i o u uu U U A A ????=

= 电流放大倍数定义为: i o

i ii I I A A ????==

互阻放大倍数定义为:

i o ui I U A ???= 互导放大倍数定义为:??

?=i o

iu U I A 注意:放大倍数、输入电阻、输出电阻通常都是在正弦信号下的交流参数,只有在放大电路处于放大状态且输出不失真的条件下才有意义。

4)最大不失真输出电压:未产生截止失真和饱和失真时,最大输出信号的正弦有效值或峰值。一般用有效值U OM 表示;也可以用峰—峰值U OPP 表示。

5)上限频率、下限频率和通频带:由于放大电路中存在电感、电容及半导体器件结电容,在输入信号频率较低或较高时,放大倍数的幅值会下降并产生相移。一般,放大电路只适合于放大某一特定频率范围内的信号。如P75图2.1.4所示。

上限频率f H (或称为上限截止频率):在信号频率下降到一定程度时,放大倍数的数值等于中频段的0.707倍时的频率值即为上限频率。

下限频率f L (或称为下限截止频率):在信号频率上升到一定程度时,放大倍数的数值等于中频段的0.707倍时的频率值即为上限频率。

通频带f BW :f BW = f H - f L 通频带越宽,表明放大电路对不同频率信号的适应能力越强。

6)最大输出功率P OM 与效率η:

P OM 是在输出信号基本不失真的情况下,负载能够从放大电路获得的最大功率,是负载从直流电源获得的信号功率。此时,输出电压达到最大不失真输出电压。

η为直流电源能量的利用率。V OM P P =η 式中v p 为电源消耗的功率

7)非线性失真系数D :在某一正弦信号输入下,输出波形因放大器件的非线性特性而产生失真,其谐波分量的总有效值与基波分量之比。即

%

10012322?++=A A A D Λ,式中:1A 为基波幅值,2A 、3A …为各次谐波幅值;

3、两种常见的共射放大电路组成及各部分作用1)直接耦合共射放大电路:信号源与放大电路、放大电路与负载之间均直接相连。适合于放大直流信号和变化缓慢的交流信号。2)阻容耦合共射放大电路:信号源与放大电路、放大电路与负载之间均通过耦合电容相连。不能放大直流信号和变化缓慢的交流信号;只能放大某一频段范围的信号。如P72图2.7所示。

3)放大电路中元件及作用

(1)三极管T ——起放大作用。

(2)集电极负载电阻R C ——将变化的集电极电流转换为电压输出。

(3)偏置电路V CC ,R b ——使三极管工作在放大区,V CC 还为输出提供能量。

(4)耦合电容C 1,C 2——输入电容C 1保证信号加到发射结,不影响发射结偏置。输出电容C 2保证信号输送到负载,不影响集电结偏置。

4、静态工作点设置的必要性

对放大电路的基本要求一是不失真,二是能放大。只有保证在交流信号的整个周期内三极管均处于放大状态,输出信号才不会产生失真。故需要设置合适的静态工作点。Q 点不仅电路是否会产生失真,而且影响放大电路几乎所有的动态参数。

5、基本共射放大电路的工作原理及波形分析

对于基本放大电路,只有设置合适的静态工作点,使交流信号驮载在直流分量之上,以保证晶体管在输入信号的整个周期内始终工作在放大状态,输出电压波形才不会产生非线性

失真。波形分析见P74图2.8所示。

基本共射放大电路的电压放大作用是利用晶体管的电流放大作用,并依靠将电流的变化转化为电压的变化来实现的。

6、放大电路的组成原则

1)为了使BJT工作于放大区、FET工作于恒流区,必须给放大电路设置合适的静态工作点,以保证放大电路不失真。

2)在输入回路加入u i应能引起u BE的变化,从而引起i B和i C的变化。

3)输出回路的接法应当使i C尽可能多地流到负载R L中去,或者说应将集电极电流的变化转化为电压的变化送到输出端。

二、本讲重点

1、放大的本质;

2、放大电路工作原理及静态工作点的作用;

3、利用放大电路的组成原则判断放大电路能否正常工作;

三、本讲难点

1、放大电路静态工作点的设置方法;

2、利用放大电路的组成原则判断放大电路能否正常工作;

四、教学组织过程

本讲以教师讲授为主。用多媒体演示放大电路的组成原理、信号传输过程和设置合适Q 点的必要性等,便于学生理解和掌握。判断放大电路能否正常工作举例可以启发讨论。五、课后习题

见相应章节的“习题指导”。

第五讲放大电路的基本分析方法

一、主要内容

1、直流通路、交流通路及其画法

(1)直流通路:在直流电源的作用下,直流电流流经的通路,用于求解静态工作点Q 的值。

(2)直流通路的画法:电容视为开路、电感视为短路;信号源视为短路,但应保留内阻。

(3)交流通路:在输入信号作用下,交流信号流经的通路,用于研究和求解动态参数。

(4)交流通路的画法:耦合电容视为短路;无内阻直流电源视为短路;

2、放大电路的静态分析和动态分析

(1)静态分析:就是求解静态工作点Q,在输入信号为零时,BJT或FET各电极间的电流和电压就是Q点。可用估算法或图解法求解。

(2)动态分析就是求解各动态参数和分析输出波形。通常,利用三极管h参数等效模型画出放大电路在小信号作用下的微变等效电路,并进而计算输入电阻、输出电阻与电压放大倍数。或利用图解法确定最大不失真输出电压的幅值、分析非线性失真等情况。

放大电路的分析应遵循“先静态,后动态”。的原则,只有静态工作点合适,动态分析才有意义;Q点不但影响电路输出信号是否失真,而且与动态参数密切相关。

3、图解法确定Q点和最大不失真输出电压

(1)用图解法确定Q点的步骤:已知晶体管的输出特性曲线族→由直流通路求得I BQ →列直流通路的输出回路电压方程得直流负载线→在输出特性曲线平面上作出直流负载线→由I BQ所确定的输出特性曲线与直流负载线的交点即为Q点。

(2)输出波形的非线性失真

非线性失真包括饱和失真和截止失真。饱和失真是由于放大电路中三极管工作在饱和区而引起的非线性失真。截止失真是由于放大电路中三极管工作在截止区而引起的非线性失真。

放大电路要想获得大的不失真输出,需要满足两个条件:一是Q点要设置在输出特性曲线放大区的中间部位;二是要有合适的交流负载线。

(3)直流负载线和交流负载线

由放大电路输出回路电压方程所确定的直线称为负载线。由直流通路确定的负载线为直流负载线;由交流通路确定的负载线为交流负载线,可通过Q 、

B []

0),//(L c CQ CEQ R R I U +两点作出。对于放大电路与负载直接耦合的情况,直流负载线与交流负载线是同一条直线;而对于阻容耦合放大电路,只有在空载情况下,两条直线才合二为一。 (4)最大不失真输出电压有效值OM U {}'?-=L CQ CES CEQ OM R I U U Min U ,21

式中:L c L R R R //='

说明:当放大电路带上负载后,在输入信号不变的情况下,输出信号的幅度变小。 举例:如P83例2.2图2.17所示,放大电路静态工作点和动态范围的确定。

4、等效电路法求解静态工作点

即利用直流通路估算静态工作点

BEQ U 、BQ I 、CQ I 和CEQ U 。其中硅管的v U BEQ 7.0=; 锗管的v U BEQ 5.0=,无须求解;其余三个参数的求解方法为:

(1)列放大电路输入回路电压方程可求得

BQ I ; (2)根据放大区三极管电流方程BQ CQ I I β=可求得

CQ I ; (3)列放大电路输出回路电压方程可求得CEQ

U ; 5、BJT 的h 参数等效模型

(1)BJT 等效模型的建立:三极管可以用一个二端口模型来代替;对于低频模型可以不考虑结电容的影响;小信号意味着三极管近似在线性条件下工作,微变也具有线性同样的含义。

(2)BJT 的h 参数方程及等效模型

ce

e b e c ce

e b e be U h I h I U h I h U ??????+=+=22211211

ce ce b c b be be U r I I I r U ?????+==1β BJT 的h 参数等效模型如P31图1.31所示。 (3)h 参数的物理意义1

e h 11即r be

:三极管的交流输入电阻,对于小功率三极管可用近似公式计算如下: ()mA I mv I U r r EQ EQ T bb be 26)1(3001ββ++Ω≈++'= 2e h 12电压反馈系数:反映三极管内部的电压反馈,因数值很小,一般可以忽略。

3e h 21:在小信号作用时,表示晶体管在Q 点附近的的电流放大系数β 。 4e h 22:三极管输出电导,反映输出特性上翘的程度。常称1/

e h 22为c-e 间动态电阻ce r 。通常e h 22的值小于10-5S ,当其与电流源并联时,因分流极小,可作开路处理。

注意:h 参数都是小信号参数,即微变参数或交流参数。h 参数与工作点有关,在放大区基本不变。h 参数都是微变参数,所以只适合对交流小信号的分析

6、等效电路法求解放大电路的动态参数

将BJT 的h 参数等效模型代入放大电路的交流通路,即为放大电路的微变等效电路。放大电路的动态分析就是利用放大电路的微变等效电路计算输入电阻、输出电阻与电压放大倍数。

举例:如P86例2.3图2.20所示放大电路静态工作点的求解和性能指标计算。

二、本讲重点

1、基本放大电路静态工作点的估算;

2、BJT 的h 参数等效模型及放大电路输入电阻、输出电阻与电压放大倍数的计算;

三、本讲难点

1、 放大电路的微变等效电路的画法;

2、放大电路输入电阻、输出电阻与电压放大倍数的计算;

四、教学组织过程

本讲以教师讲授为主。用多媒体演示图解法求Q 点、OM U

及分析非线形失真;用直流通路估算Q 点;BJT 的h 参数模型建立、微变等效电路的画法及动态参数计算等,便于学生理解和掌握。 五、课后习题

见相应章节的“习题指导”。

第六讲 放大电路静态工作点的稳定

一、主要内容

1、静态工作点稳定的必要性

静态工作点不但决定了电路是否产生失真,而且还影响着电压放大倍数和输入电阻等动态参数。实际上,电源电压的波动、元件老化以及因温度变化所引起的晶体管参数变化,都会造成静态工作点的不稳定,从而使动态参数不稳定,有时甚至造成电路无法正常工作。在引起Q 点不稳定的诸多因素中,温度对晶体管的影响是最主要的。

2、温度变化对静态工作点产生的影响

温度变化对静态工作点的影响主要表现为,温度变化影响晶体管的三个主要参数:CBO I 、β和BE U 。这三者随温度升高产生变化,其结果都使CQ I 值增大。

硅管的CBO I 小,受温度影响小,故其β和BE U 受温度影响是主要的;

锗管的CBO I 大,受温度影响是主要的。

3、稳定静态工作点的原则和措施

为了保证输出信号不失真,对放大电路必须设置合适的静态工作点,并保证工作点的稳定。(1)采用不同偏置电路稳定静态工作点的原则是:

当温度升高使C I 增大时,B I 要自动减小以牵制C I

的增大。

(2)稳定静态工作点可以归纳为三种方法:P89图2.21所示。

(1)温度补偿;

(2)直流负反馈;

(3)集成电路中采用恒流源偏置技术;

4、典型静态工作点稳定电路——分压式偏置电路的分析

1)Q 点稳定原理

分压偏置电路如P90图2.22所示。

稳定静态工作点的条件为:I 1>>I B 和V B >>U BE ;此时, CC b b b BQ V R R R U ?+≈211 ,即当温度变化时,BQ U 基本不变。

静态工作点的稳定过程为:

当温度降低时,各物理量向相反方向变化。这种将输出量(

C )通过一定的方式(利用e 将C I 的变化转化为电压E U 的变化)引回到输入回路来影响输入量BE U 的措施称为反馈。

可见,在Q 点稳定过程中,

e R 作为负反馈电阻起着重要的作用。典型静态工作点稳定电路

利用直流负反馈来稳定Q 点。

2)分压式偏置电路的静态分析

分压式偏置电路的静态分析有两种方法:一是戴维南等效电路法;二是估算法,这种方

法的使用条件为I 1>>I BE ,或者

b e R

R >>+)1(β。 3)分压式偏置电路的动态分析

动态分析时,射极旁路电容应看成短路。画放大电路的微变等效电路时,要特别注意射极电阻有无被射极旁路电容旁路,正确画出“交流地”的位置,根据实际电路进行计算即可。 二、本讲重点

1、放大电路稳定静态工作点的原理和常用方法;

2、 分压式偏置电路Q 的估算;

3、 分压式偏置电路动态性能指标的计算;

三、本讲难点

1、稳定静态工作点的原理和措施;

2、分压式偏置电路微变等效电路画法及动态性能指标的计算;

四、教学组织过程

本讲以教师讲授为主。用多媒体演示稳定静态工作点的原理和常用方法、分压式偏置电路Q 的估算、动态性能指标的计算等,便于学生理解和掌握。

五、课后习题

见相应章节的“习题指导”。

第七讲 共集放大电路和共基放大电路

一、主要内容

1、三极管放大电路的基本接法

三极管放大电路的基本接法亦称为基本组态,有共射(包括工作点稳定电路)、共基和共集三种。共射放大电路以发射极为公共端,通过i B 对i c 的控制作用实现功率放大。共集放大电路以集电极为公共端,通过i B 对i E 的控制作用实现功率放大。共基放大电路以基极为公共端,通过i E 对i B 的控制作用实现功率放大。

2、共集放大电路的组成及静态和动态分析

1) 共集放大电路的组成

共集放大电路亦称为射极输出器如P92图2.23(a )所示,为了保证晶体管工作在放大

区,在晶体管的输入回路,

b R 、e R 与V CC

共同确定合适的静态基极电流;晶体管输出回路中,电源 V CC ,提供集电极电流和输出电流,并与e R 配合提供合适的管压降U CE 。 2)共集放大电路的静态分析

与共射电路静态分析方法基本相同。

(1)列放大电路输入方程可求得

BQ I ;(2)根据放大区三极管电流方程BQ EQ I I )1(β+=可求得EQ I ;(3)列放大电路输出方程可求得CEQ U ;

3)共集放大电路的动态分析

共集放大电路的动态分析方法与共射电路基本相同,只是由于共集放大电路的“交流地”是集电极,一般习惯将“地”画在下方,所以微变等效电路的画法略有不同,如P92图2.23(d )所示。

3、共基放大电路的静态和动态分析

1)共基放大电路的静态分析

与共射电路静态分析方法基本相同。

(1)列放大电路输入回路电压方程可求得EQ I ;

(2)根据放大区三极管电流方程β+=

1EQ BQ I I 可求得BQ I ;

(3)列放大电路输出回路电压方程可求得CEQ U ;

2)共基放大电路的动态分析

共基放大电路的动态分析方法与共射电路基本相同,只是由于共基放大电路的“交流地”是基极,一般习惯将“地”画在下方,所以微变等效电路的画法略有不同。如P94图2.24所示。

4、三种接法的比较

共射放大电路既有电压放大作用又有电流放大作用,输入电阻居三种电路之中,输出电阻较大,适用于一般放大。共集放大电路只有电流放大作用而没有电压放大作用,因其输入电阻高而常做为多级放大电路的输入级,因其输出电阻低而常做为多级放大电路的输出级,因其放大倍数接近于1而用于信号的跟随。共基放大电路只有电压放大作用而没有电流放大作用,输入电阻小,高频特性好,适用于宽频带放大电路。

二、本讲重点

1、共集和共基放大电路的性能指标计算;

2、三种接法放大电路的特点及应用场合;

三、本讲难点

1、共集和共基放大电路微变等效电路的画法;

2、共集和共基放大电路微变等效电路的输入、输出电阻计算;;

四、教学组织过程

本讲以教师讲授为主。用多媒体演示三种接法电路的构成方法,便于学生理解和掌握。启发讨论三种不同接法电路各自特点及应用场合。

五、课后习题

见相应章节的“习题指导”。

第八讲 多级放大电路

一、主要内容

1、单管放大电路的局限性和多级放大电路的提出

在实际应用中,一般对放大电路的性能有多方面的要求:如输入电阻大于2M Ω、电压放大倍数大于2000、输出电阻小于100Ω等,依靠单管放大电路的任何一种,都不可能同时满足要求。这时,就可以选择多个基本放大电路,并将它们合理连接,从而构成多级放大电路。

组成多级放大电路的每一个基本单管放大电路称为一级,级与级之间的连接称为级间耦合。

2、多级放大电路的基本耦合方式及其特点

1)直接耦合:耦合电路采用直接连接或电阻连接,不采用电抗性元件。直接耦合放大电路存在温度漂移问题,但因其低频特性好,能够放大变化缓慢的信号且便于集成,而得到越来越广泛的应用。但直接耦合电路各级静态工作点之间会相互影响,应注意静态工作点的稳定问题。

2)阻容耦合:将放大电路前一级的输出端通过电容接到后一级的输入端。阻容耦合放大电路利用耦合电容隔离直流,较好地解决了温漂问题,但其低频特性差,不便于集成,因此仅在分立元件电路中采用。

3)变压器耦合:将放大电路前一级的输出端通过变压器接到后一级的输入端或负载电阻上。采用变压器耦合也可以隔除直流,传递一定频率的交流信号,各放大级的Q 互相独立。但低频特性差,不便于集成。变压器耦合的优点是可以实现输出级与负载的阻抗匹配,以获得有效的功率传输。常用作调谐放大电路或输出功率很大的功率放大电路。4)光电耦合:以光信号为媒介来实现电信号的耦合与传递。光电 耦合放大电路利用光电耦合器将信号源与输出回路隔离,两部分可采用独立电源且分别接不同的“地”,因而,即使是远距离传输,也可以避免各种电干扰。3、直接耦合多级放大电路静态工作点的设置

直接耦合或电阻耦合使各放大级的工作点互相影响,这是构成直接耦合多级放大电路时首先要加以解决的问题。

(1)电位移动直接耦合放大电路

如果将基本放大电路去掉耦合电容,前后级直接连接,则V C1=V B2 ,V C2 = V B2+ V CB2>V B2(V C1)这样,集电极电位就要逐级提高,为此后面的放大级要加入较大的发射极电阻或在后级的发射极加稳压管,如P108图2.32所示。由于集电极电位逐级升高,以至于接近电源电压,从而使后级无法设置正确的工作点。这种方式只适用于级数较少的电路。

(2)NPN+PNP 组合电平移动直接耦合放大电路

级间采用NPN 管和PNP 管搭配的方式,由于NPN 管集电极电位高于基极电位,PNP 管集电极电位低于基极电位,它们的组合使用可避免集电极电位的逐级升高,如P109图2.33所示。

(3)电流源电平移动放大电路

在模拟集成电路中常采用一种电流源电平移动电路,电流源在电路中的作用实际上是个有源负载,其上的直流压降小,通过R 1上的压降可实现直流电平移动。但电流源交流电阻大,在R 1上的信号损失相对较小,从而保证信号的有效传递。同时,输出端的直流电平并不高,实现了直流电平的合理移动。如图2.34所示。

4、直接耦合多级放大电路的零点漂移问题

1)零点漂移:当放大器的输入信号0=i u 时,其输出电压o u 往往不为常数,或者三极管的工作点随时间而逐渐偏离原有静态值的现象。

2)产生零点漂移的原因:电路中参数变化,如电源电压波动、元件老化、半导体元件参数随温度而变化。其中主要原因是温度的影响,所以有时也用温度漂移或时间漂移来表示。工作点参数的变化往往由相应的指标来衡量。

一般将在一定时间内,或一定温度变化范围内的输出级工作点的变化值除以放大倍数,即将输出级的漂移值归算到输入级来表示的。例如 μV/?C 或 μV/min 。

5、多级放大电路的静态分析

1)直接耦合放大电路的静态分析

直接耦合放大电路各级之间的直流通路相连,静态工作点相互影响,因而在求解Q 点时,应写出直流通路中各个回路的方程,然后求解。使用各种计算机辅助分析软件可使电路设计和Q 点的求解过程大大简化。

2)阻容耦合多级放大电路的静态分析

阻容耦合多级放大电路中,由于级间耦合电容的隔直作用,所以,每一级Q 点都可以按单管放大电路求解。

6、多级放大电路的动态分析

多级放大电路的总电压放大倍数等于组成它的各级放大电路电压放大倍数的乘积,即un u u u A A A A &K &&&21=,其输入电阻是第一级的输入电阻,输出电阻是末级的输出电阻。在求解某一级电压放大倍数时,有两种处理方法:一是将后一级的输入电阻作为前一级的负载考

虑(后级的Ri 就是前级的L R ),简称输入电阻法;二是将后一级与前一级之间开路,计算前一级的开路电压和输出电阻,作为后一级的信号源和内阻,简称开路电压法。

举例:两级放大电路的分析,如P110图2.35所示。

二、本讲重点

1、多级放大电路的耦合方式及其特点、直接耦合放大电路静态工作点的设置;

2、两级阻容耦合电路的动态分析;

三、本讲难点

1、 直接耦合放大电路静态工作点的设置;

2、 多级放大电路的动态分析方法;

四、教学组织过程

本讲以教师讲授为主。用多媒体演示直接耦合放大电路静态工作点的设置、两级阻容耦合电路的动态分析方法等,便于学生理解和掌握。启发讨论多级放大电路的耦合方式及其特点。

五、课后习题

见相应章节的“习题指导”。

第九讲 差动放大器

一、主要内容

1、直接耦合放大电路的零点漂移

直接耦合放大电路的零点漂移主要是晶体管的温漂造成的。在基本差动放大电路中,利用参数的对称性进行补偿来抑制温漂。在长尾电路和具有恒流源的差动放大电路中,还利用共模负反馈或恒流源抑制每只放大管的温漂。

2、差动放大电路组成及特点

1)电路组成

差分放大器是由对称的两个基本放大电路通过射极公共电阻耦合构成的。“对称”的含义是两个三极管的特性一致,电路参数对应相等,即R c1=R c2,R b1=R b2,β1=β2,V BE1=V BE2,r be1= r be2, I CBO1=I CBO2。

2)电路特性

(1)差动放大电路对零漂在内的共模信号有抑制作用;

(2)差动放大电路对差模信号有放大作用;

(3)共模负反馈电阻Re 的作用:①稳定静态工作点。②对差模信号无影响。③对共模信号有负反馈作用:Re 越大对共模信号的抑制作用越强;也可能使电路的放大能力变差。 3、差动放大电路的输入和输出方式

1)差动放大电路可以有两个输入端:同相输入端和反相输入端。根据规定的正方向,在某输入端加上一定极性的信号,如果输出信号的极性与其相同,则该输入端称为同相输入端。反之,如果输出信号的极性与其相反,则该输入端称为反相输入端。

2)信号的输入方式:若信号同时加到同相输入端和反相输入端,称为双端输入;若信号仅从一个输入端加入,称为单端输入。

3)信号的输出方式:差动放大电路可以有两个输出端:集电极C 1和C 2。从C 1和C 2输出称为双端输出;仅从集电极C 1或C 2对地输出称为单端输出。

按照信号的输入、输出方式,或输入端与输出端接地情况的不同,差动放大电路有四种接法:双端输入/双端输出;双端输入/单端输出;单端输入/双端输出;单端输入/单端输出;

4、差模信号和共模信号

1)差模信号:幅度相等、极性相反的一对输入信号。通常为有用信号。

2)共模信号:幅度相等、极性相同的一对输入信号。通常为温漂和干扰信号。

3)比较输入:1i u 和2u u 可以分解为一对差模信号id u ±和一对共模信号ic u 的叠加作用。

差模信号为: 21i i id u u u -=;共模信号为:22

1i i ic u u u +=

1i u 和2u u 均接地,故信号的输入方式无关,可分两种情况进行:双端输出和单端输出。 1)双端输出双端输出

21CQ CQ u u =,所以,与电路有无接负载无关。1列输入回路电压方程,并根据放大区

CQ BQ EQ I I I ≈+=)1(β即可求得BQ I 和CQ I ;2列输出回路电压方程可求得CEQ U ;

2)单端输出

21BQ BQ I I =;在放大区有2

1CQ CQ I I =;但是,21CQ CQ U U ≠,21CEQ CEQ U U ≠。所以,应该采用戴维南等效定理将原电路的1CQ U 和2CQ U 或1CEQ U 和2CEQ U

6、差动放大电路的动态性能指标

(1)差模电压放大倍数Ad :描述电路放大差模信号的能力;

(2)差模输入电阻Rid :差模信号作用下的输入电阻。

(3)差模输出电阻Rod :差模信号作用下的输出电阻。

(4)共模电压放大倍数Ac :描述电路抑制共模信号的能力; (5)共模抑制比

c d CMR A A K =

;理想情况下,共模放大倍数为0,共模抑制比为∞。

7、差动放大电路的动态分析

求解动态参数的关键是针对差模参数和共模参数,应分别画出微变等效电路进行计算。差模和共模微变等效电路的主要区别是对R e 的处理不同:在差模等效电路中,双端输入时R e 视为短路;单端输入时R e 视为开路。在共模信号作用下对单边电路而言,发射极等效电阻为2Re 。虽然差动放大电路有四种接法,且有三种不同的输入信号。由于单端输入可以转换为双端输入;比较输入可以看成是差模输入和共模输入的叠加。实际分析计算时,只须考虑两种情况:差模信号作用下的双入—双出、双入—单出;共模信号作用下的双入—双出、双入—单出。

8、改进型为了既能采用较低的电源电压又能有很大的Re 等效电阻,可采用恒流源电路来替代Re ,这样可以大大增加电路抑制共模信号的能力。

二、本讲重点

典型差动放大电路——长尾电路的特点,静态和动态计算。

三、本讲难点

1、差动放大电路中共模负反馈电阻R e 的作用,及其对差模信号和共模信号的不同处理方法;

2、差动放大电路动态参数计算;

四、教学组织过程

本讲以教师讲授为主。用多媒体演示典型差动放大电路——长尾电路的特点、静态和动态计算等,便于学生理解和掌握。

五、课后习题

见相应章节的“习题指导”。

〖本章小结〗

本章是学习后面各章的基础,因此是学习的重点之一。主要内容如下:

1、放大的概念

在电子电路中,放大的对象是变化量,常用的测试信号是正弦波。放大的本质是在输入信号的作用下,通过有源元件(晶体管或场效应管)对直流电源的能量进行控制和转换,使负载从电源中获得的输出信号能量,比信号源向放大电路提供的能量大得多,因此放大的特征是功率放大。放大的前提是不失真,换言之,如果电路输出波形产生失真便谈不上放大。

2、放大电路的组成原则

①放大电路的核心元件是有源元件,即晶体管或场效应管;②正确的直流电源电压数值、极性与其它电路参数应保证晶体管工作在放大区、场效应管工作在恒流区,即建立起合适的静态工作点,保证电路不失真;③输入信号应能够有效地作用于有源元件的输入回路,即晶体管的b-e 回路,场效应管的g-s 回路;输出信号能够作用于负载之上。

3、放大电路的主要性能指标

放大倍数A

&、输入电阻i R 、输出电阻o R 、最大不失输出电压om U 、下限、上限截止频率L f 和H f 、通频带W f 、最大输出功率om P 、效率η。

4、放大电路的分析方法

1)静态分析就是求解静态工作点Q ,在输入信号为零时,晶体管和场效应管各电极间的电流与电压就是Q 点。可用估算法或图解法求解。

2)动态分析就是求解各动态参数和分析输出波形。通常,利用h 参数等效电路计算小信号作用时的u A &

、i R 和o R 。利用图解法分析om U 和失真情况。放大电路的分析应遵循“先静态、后动态”的原则,Q 点不但影响电路输出是否失真,而且与动态参数密切相关。

5、晶体管和场效应管基本放大电路

1)晶体管基本放大电路有共射、共集、共基三种接法。共射放大电路即有电流放大作用又有电压放大作用,输入电阻居三种电路之中,输出电阻较大,适用于一般放大。共集放大电路只放大电流不放大电压,因输入电阻高而常做为多级放大电路的输入级,因输出电阻低而常做为多级放大电路的输出级,因电压放大倍数接近1而用于信号的跟随。共基电路只放大电压不放大电流,输入电阻小,高频特性好,适用于宽频带放大电路。

2)场效应管放大电路的共源接法、共漏接法与晶体管放大电路的共射、共集接法相对应,但比晶体管电路输入电阻高、噪声系数低、电压放大倍数小,适用于做电压放大电路的输入级。

6、多级放大电路的耦合方式

直接耦合放大电路存在温度漂移问题,但因其低频特性好,能够放大变化缓慢的信号,便于集成化,而得到越来越广泛的应用。

阻容耦合放大电路利用耦合电容隔离直流,较好地解决了温漂问题,但其低频特性差,不便于集成化,因此仅在分立元件电路情况下采用。

7、多级放大电路的动态参数

多级放大电路的电压放大倍数等于组成它的各级电路电压放大倍数之积。其输入电阻是第一级的输入电阻,输出电阻是末级的输出电阻。在求解某一级的电压放大倍数时,应将后级输入电阻做为负载。

多级放大电路输出波形失真时,应首先判断从哪一级开始产生失真,然后再判断失真的性质。在前级所有电路均无失真的情况下,末级的最大不失真输出电压就是整个电路的最大不失真输出电压。

《电路分析基础》作业参考解答

《电路分析基础》作业参考解答 第一章(P26-31) 1-5 试求题1-5图中各电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。 (a )解:标注电压如图(a )所示。 由KVL 有 故电压源的功率为 W P 302151-=?-=(发出) 电流源的功率为 W U P 105222=?=?=(吸收) 电阻的功率为 W P 20452523=?=?=(吸收) (b )解:标注电流如图(b )所示。 由欧姆定律及KCL 有 A I 35 152==,A I I 123221=-=-= 故电压源的功率为 W I P 151151511-=?-=?-=(发出) 电流源的功率为 W P 302152-=?-=(发出) 电阻的功率为 W I P 459535522 23=?=?=?=(吸收) 1-8 试求题1-8图中各电路的电压U ,并分别讨论其功率平衡。 (b )解:标注电流如图(b )所示。 由KCL 有 故 由于电流源的功率为 电阻的功率为 外电路的功率为 且 所以电路的功率是平衡的,及电路发出的功率之和等于吸收功率之和。 1-10 电路如题1-10图所示,试求: (1)图(a )中,1i 与ab u ; 解:如下图(a )所示。 因为 所以 1-19 试求题1-19图所示电路中控制量1I 及电压0U 。 解:如图题1-19图所示。 由KVL 及KCL 有 整理得 解得mA A I 510531=?=-,V U 150=。

题1-19图 补充题: 1. 如图1所示电路,已知 , ,求电阻R 。 图1 解:由题得 因为 所以 2. 如图2所示电路,求电路中的I 、R 和s U 。 图2 解:用KCL 标注各支路电流且标注回路绕行方向如图2所示。 由KVL 有 解得A I 5.0=,Ω=34R 。 故 第二章(P47-51) 2-4 求题2-4图所示各电路的等效电阻ab R ,其中Ω==121R R ,Ω==243R R ,Ω=45R ,S G G 121==, Ω=2R 。 解:如图(a )所示。显然,4R 被短路,1R 、2R 和3R 形成并联,再与5R 串联。 如图(c )所示。 将原电路改画成右边的电桥电路。由于Ω==23241R R R R ,所以该电路是一个平衡电桥,不管开关S 是否闭合,其所在支路均无电流流过,该支路既可开路也可短路。 故 或 如图(f )所示。 将原电路中上边和中间的两个Y 形电路变换为?形电路,其结果如下图所示。 由此可得 2-8 求题2-8图所示各电路中对角线电压U 及总电压ab U 。 题2-8图 解:方法1。将原电路中左边的?形电路变换成Y 形电路,如下图所示: 由并联电路的分流公式可得 A I 14 12441=+?=,A I I 314412=-=-= 故 方法2。将原电路中右边的?形电路变换成Y 形电路,如下图所示: 由并联电路的分流公式可得 A I 2.16 14461=+?=,A I I 8.22.14412=-=-= 故 2-11 利用电源的等效变换,求题2-11图所示各电路的电流i 。 题2-11图 解:电源等效变换的结果如上图所示。 由此可得 V U AB 16=A I 3 2=

《电路分析基础》第一章~第四章同步练习题

《电路分析基础》第一章~第四章练习题 一、基本概念和基本定律 1、将电器设备和电器元件根据功能要求按一定方式连接起来而构成的集合体称为。 2、仅具有某一种确定的电磁性能的元件,称为。 3、由理想电路元件按一定方式相互连接而构成的电路,称为。 4、电路分析的对象是。 5、仅能够表现为一种物理现象且能够精确定义的元件,称为。 6、集总假设条件:电路的??电路工作时的电磁波的波长。 7、电路变量是的一组变量。 8、基本电路变量有四个。 9、电流的实际方向规定为运动的方向。 10、引入后,电流有正、负之分。 11、电场中a、b两点的称为a、b两点之间的电压。 12、关联参考方向是指:。 13、电场力在单位时间内所做的功称为电功率,即。 p=,当0?p时,说明电路元件实际 14、若电压u与电流i为关联参考方向,则电路元件的功率为ui 是;当0?p时,说明电路元件实际是。 15、规定的方向为功率的方向。 16、电流、电压的参考方向可。 17、功率的参考方向也可以。 18、流过同一电流的路径称为。 19、支路两端的电压称为。 20、流过支路电流称为。 21、三条或三条以上支路的连接点称为。 22、电路中的任何一闭合路径称为。 23、内部不再含有其它回路或支路的回路称为。 24、习惯上称元件较多的电路为。 25、只取决于电路的连接方式。 26、只取决于电路元件本身电流与电压的关系。 27、电路中的两类约束是指和。

28、KCL指出:对于任一集总电路中的任一节点,在任一时刻,流出(或流进)该节点的所有支路电 流的为零。 29、KCL只与有关,而与元件的性质无关。 30、KVL指出:对于任一集总电路中的任一回路,在任一时刻,沿着该回路的代 数和为零。 31、求电路中两点之间的电压与无关。 32、由欧姆定律定义的电阻元件,称为电阻元件。 33、线性电阻元件的伏安特性曲线是通过坐标的一条直线。 34、电阻元件也可以另一个参数来表征。 35、电阻元件可分为和两类。 36、在电压和电流取关联参考方向时,电阻的功率为。 37、产生电能或储存电能的设备称为。 38、理想电压源的输出电压为恒定值,而输出电流的大小则由决定。 39、理想电流源的输出电流为恒定值,而两端的电压则由决定。 40、实际电压源等效为理想电压源与一个电阻的。 41、实际电流源等效为理想电流源与一个电阻的。 42、串联电阻电路可起作用。 43、并联电阻电路可起作用。 44、受控源是一种双口元件,它含有两条支路:一条是支路,另一条为支路。 45、受控源不能独立存在,若为零,则受控量也为零。 46、若某网络有b条支路,n个节点,则可以列个KCL方程、个KVL方程。 47、由线性元件及独立电源组成的电路称为。 48、叠加定理只适用于电路。 49、独立电路变量具有和两个特性。 50、网孔电流是在网孔中流动的电流。 51、以网孔电流为待求变量,对各网孔列写KVL方程的方法,称为。 52、网孔方程本质上回路的方程。 53、列写节点方程时,独立方程的个数等于的个数。 54、对外只有两个端纽的网络称为。 55、单口网络的描述方法有电路模型、和三种。 56、求单口网络VAR关系的方法有外接元件法、和。

第二章放大电路分析基础

第二章放大电路分析基础 1、放大电路工作原理 2、 2、放大电路的直流工作状态2、 3、放大电路的动态分析2、 4、静态工作点的稳定及其偏置电路2、 5、多级放大电路本章要点: 1、放大电路直流状态的解析法和图解法 2、放大电路交流状态的图解法和微变等效电路法 3、三种基本组态放大电路的分析方法 4、多级放大电路的耦合方式及其分析方法电子课件二:放大电路分析基础课时授课教案一授课计划批准人:批准日期:课序:4 授课日期: 授课班次:课题: 第二章 第2、1节: 放大电路工作原理目的要求: 1、掌握基本放大电路的组成原则 2、掌握放大电路的直流通路和交流通路

3、理解放大电路的工作原理重点:放大电路的工作原理难点:放大电路的交流通路教学方法手段:结合电子课件讲解教具:电子课件、计算机、投影屏幕复习提问: 1、三极管的类型及外部工作条件? 2、三级管的特性曲线有何规律?课堂讨论: 1、如何画放大电路的直流通路和交流通路? 2、放大电路中三极管各极电流和极间电压如何变化?布置作业:课时分配:课堂教学环节复习提问新课讲解课堂讨论每课小结布置作业时间分配(分钟)8751052 二、授课内容引言放大电路的任务是不失真地把微小信号放大到所需要的程度。本节首先分析放大电路的组成原则及工作原理。2、 1、放大电路工作原理 2、2、 1、放大电路的组成 一、电路组成基本共发射极放大电路如图2一1所示。V──放大三级管VCC──主电源、能源VBB──发射结偏置电源RC──直流负载电阻,用来确定直流工作点RB──发射结偏置电阻 RL──负载电阻RS、us──信号源的电压和内阻C 1、C2──耦合电容 二、工作条件 1、三极管应处于放大状态。即发射结正偏,集电结反偏。 2、能够输入和输出信号。

最新电路分析基础(周围主编)第二章答案资料

2-2(1).求图示电路在开关K 断开和闭合两种状态下的等效电阻ab R 。 解:先求开关K 断开后的等效电阻: ()()Ω=++=9612//126ab R 再求开关K 闭合后的等效电阻: ()()Ω=+=86//1212//6ab R 2-2(2).求图示电路在开关K 断开和闭合两种状态下的等效电阻ab R 。 解:先求开关K 断开后的等效电阻: ()Ω=+=384//4ab R 再求开关K 闭合后的等效电阻: Ω==24//4ab R 2-3.试求题图2-3所示电路的等效电阻ab R 。 (a ) 解: 题图2-3(a ) a Ω Ωa Ω Ω a 题图2-2(1) 题图2-2(2) a b Ω 4Ω 8

240//360144ab R =ΩΩ=Ω (b ) 解: 40ab R =Ω 题图2-3(b ) a b a b 20Ω60 Ω a 40 Ω a b 20 Ω60 Ω a 20ΩΩ a Ω Ω a a a a Ω

2-25(1). 求图示电路a 、b 两点间的等效电阻ab R 。 解:在图中画一条垂线,使左右两边对称,参见图中虚线所示。显然虚线为等位线,没有电流流过,故图中电阻0R 可去掉,其等效电阻为: ()()[]Ω=++=48//88//88ab R 2-25(2). 求图示电路a 、b 两点间的等效电阻ab R 。 解:此题与上题相同,只是其中电阻的阻值不同,但仍保持其对称性。采用同样的方法处理,有: ()()[]Ω=++=7 12 4//22//66ab R 2-25(3). 求图示电路a 、b 两点间的等效电阻ab R 。 解:在图中画一条垂线,使左右两边对称,参见图中虚线所示。显然虚线为等位线,没有电流流过,故可将图中c 点分开,参见其等效图(题图2-25(3-1))所示,其等效电阻为: ()[]R R R R R R R ab 9 10 2//2//2//2= += 2-8.求图示电路的等效电压源模型。 (1)解:等效电压源模型如题图2-8(1-1)所示。 题图2-25(1) 题图2-25(2) 题图2-8(1) a b V 10题图2-8(1-1) 题图2-25(3) 题图2-25(3-1) R

第二章_放大电路分析基础

第二章放大电路分析基础 XD Univ. @ 诚夏 SincereXIA 放大电路工作原理 放大的基本概念 输出电压或电流在幅度上得到了放大,在能量上得到了加强,能量由直流电源提供放大电路的组成原则 1. 要有直流通路保证发射结正偏,集电结反偏,使晶体管工作在放大区 2. 要有交流通路待放大的输入信号能加到发射结上,放大了的信号能从电路中取出 3. 确保合适的工作点信号始终处于放大区 放大原理 放大电路的信号及常用符号 1. (小写字母,大写下标)——瞬时值,实际的物理信号 2. (大写字母,大写下标) ——实际信号的直流成分 3. (小写字母,小写下标) ——实际信号的交流成分 4. (大写字母,小写下标) ——交流信号的有效值 5. ——交流信号的最大值 放大电路的直流工作状态 确定直流工作状态,就是确定 Q 点

Q点 基极直流电源IB 集电极直流电流IC 集电极与发射极间的直流电压UCE 其中:在三极管输入曲线上确定Q点,在三极管输出曲线上确定 Q 点放大电路的基本分析方法 解析法确定静态工作点 必须已知三极管的值,静态工作点在直流通路求得,直流通路:将电容视为开路 所需要使用的公式 1. 硅 2. 3. 图解法确定静态工作点

1. 在输入特性曲线上,作出直线-,两线的交点即是Q点,得到。 2. 在输出特性曲线上,作出直流负载线-,与IBQ曲线的交点即为Q点,从而得 到和。 电路参数对静态工作点的影响 1. 增加,降低,工作点沿直流负载线下移 2. 减小,减小,斜率绝对值增加,工作点沿特性曲线右移 3. 增加,增大,直流负载线平行右上移,工作点向右上方移动 放大器的动态范围 失真输出电压的峰峰值:。 1. 当--时,受截止失真限制,。 2. 当--时,受饱和失真限制, -。 3. 当--,放大器将有最大的不失真输出电压。 放大电路的动态分析 动态分析的对象是交流通路,分析的关键是做交流负载线 交流通路:电容视为短路,理想直流电压源视为短路(接地) 图解法分析动态特性 三极管工作点的移动不再沿直流负载线,而是按交流负载线移动。 放大电路的非线性失真 1. Q 点过低,信号进入截止区—— 截止失真

电路分析基础[周围主编]第一章答案解析

1-9.各元件的情况如图所示。 (1)若元件A 吸收功率10W ,求:U a =? 解:电压电流为关联参考方向,吸收功率: V A W I P U I U P a a 10110=== →= (2)若元件B 吸收功率10W ,求:I b =? 解:电压电流为非关联参考方向,吸收功率: A V W U P I UI P b b 11010-=-=- =→-= (3)若元件C 吸收功率-10W ,求:I c =? 解:电压电流为关联参考方向,吸收功率: A V W U P I UI P c c 11010-=-== →= (4)求元件D 吸收功率:P=? 解:电压电流为非关联参考方向,吸收功率: W mA mV UI P 61020210-?-=?-=-= (5)若元件E 输出的功率为10W ,求:I e =? 解:电压电流为关联参考方向,吸收功率: A V W U P I UI P e e 11010-=-== →= (6)若元件F 输出功率为-10W ,求:U f =? 解:电压电流为非关联参考方向,吸收功率: V A W I P U I U P f f 10110-=-=- =→-= (7)若元件G 输出功率为10mW ,求:I g =? 解:电压电流为关联参考方向,吸收功率: mA V mW U P I UI P g g 11010-=-== →= (8)试求元件H 输出的功率。 解:电压电流为非关联参考方向,吸收功率: mW mA V UI P 422-=?-=-= 故输出功率为4mW 。

1-11.已知电路中需要一个阻值为390欧姆的电阻,该电阻在电路中需承受100V 的端电压,现可供选择的电阻有两种,一种是散热1/4瓦,阻值390欧姆;另一种是散热1/2瓦,阻值390欧姆,试问那一个满足要求? 解:该电阻在电路中吸收电能的功率为: W R U P 64.25390 10022=== 显然,两种电阻都不能满足要求。 1-14.求下列图中电源的功率,并指出是吸收还是输出功率。 解:(a )电压电流为关联参考方向,吸收功率为:W A V UI P 623=?==; (b )电压电流为非关联参考方向,吸收功率为:W A V UI P 623-=?-=-=, 实际是输出功率6瓦特; (c )电压电流为非关联参考方向,吸收功率为:W A V UI P 623-=?-=-=, 实际是输出功率6瓦特; (d )电压电流为关联参考方向,吸收功率为:W A V UI P 623=?==. 1-19.电路如图示,求图中电流I ,电压源电压U S ,以及电阻R 。 解: 1.设流过电压源的12A 电流参考方向由a 点到d 点,参见左图所示。 (1) 求电流I: A A A I 156=-= (2) 求电压U S : A A A I ba 14115=-= 对a 点列写KCL 方程: V 3) (a V 3) (b V 3) (c V 3) (d 题图1-14 题图1-19(1)

《电路分析基础》课程练习试题和答案

电路分析基础 第一章 一、 1、电路如图所示, 其中电流I 1为 答( A ) A 0.6 A B. 0.4 A C. 3.6 A D. 2.4 A 3Ω 6Ω 2、电路如图示, U ab 应为 答 ( C ) A. 0 V B. -16 V C. 0 V D. 4 V 3、电路如图所示, 若R 、U S 、I S 均大于零,, 则电路的功率情况为 答( B ) A. 电阻吸收功率, 电压源与电流源供出功率 B. 电阻与电流源吸收功率, 电压源供出功率 C. 电阻与电压源吸收功率, 电流源供出功率 D. 电阻吸收功率,供出功率无法确定

U I S 二、 1、 图示电路中, 欲使支路电压之比 U U 1 2 2=,试确定电流源I S 之值。 I S U 解: I S 由KCL 定律得: 2 23282 22U U U ++= U 248 11 = V 由KCL 定律得:04 2 2=+ +U I U S 11 60 - =S I A 或-5.46 A 2、用叠加定理求解图示电路中支路电流I ,可得:2 A 电流源单独作用时,I '=2/3A; 4 A 电流源单独作用时, I "=-2A, 则两电源共同作用时I =-4/3A 。

3、图示电路ab 端的戴维南等效电阻R o = 4 Ω;开路电压U oc = 22 V 。 b a 2 解:U=2*1=2 I=U+3U=8A Uab=U+2*I+4=22V Ro=4Ω 第二章 一、 1、图示电路中,7 V 电压源吸收功率为 答 ( C ) A. 14 W B. -7 W C. -14 W D. 7 W

第1章教案电路分析基础

第1章电路分析基础 本章要求 1、了解电路的组成和功能,了解元件模型和电路模型的概念; 2、深刻理解电压、电流参考方向的意义; 3、掌握理想元件和电压源、电流源的输出特性; 4、熟练掌握基尔霍夫定律; 5、深刻理解电路中电位的概念并能熟练计算电路中各点电位; 6、深刻理解电压源和电流源等效变换的概念; 7、熟练掌握弥尔曼定理、叠加原理和戴维南定理; 8、理解受控电源模型, 了解含受控源电路的分析方法。 本章内容 电路的基本概念及基本定律是电路分析的重要基础。电路的基本定律和理想的电路元件虽只有几个,但无论是简单的还是复杂的具体电路,都是由这些元件构成,从而依据基本定律就足以对它们进行分析和计算。因而,要求对电路的基本概念及基本定律深刻理解、牢固掌握、熟练应用、打下电路分析的基础。依据欧姆定律和基尔霍夫定律,介绍电路中常用的分析方法。这些方法不仅适用于线性直流电路,原则上也适用于其他线性电路。为此,必须熟练掌握。 1.1电路的基本概念 教学时数1学时 本节重点1、理想元件和电路模型的概念 2、电路变量(电动势、电压、电流)的参考方向; 3、电压、电位的概念与电位的计算。 本节难点参考方向的概念和在电路分析中的应用。

教学方法通过与物理学中质点、刚体的物理模型对比,建立起理想元件模 型的概念,结合举例,说明电路变量的参考方向在分析电路中的重要性。通过例题让学生了解并掌握电位的计算过程。 教学手段传统教学手法与电子课件结合。 教学内容 、、实际电路与电路模型 1、实际电路的组成和作用 2、电路模型: 3、常用的理想元件: 、、电路分析中的若干规定 1、电路参数与变量的文字符号与单位 2、电路变量的参考方向 变量参考方向又称正方向,为求解变量的实际方向无法预先确定的复杂电 路,人为任意设定的电路变量的方向,如图(b)所示。 参考方向标示的方法: ①箭头标示;②极性标示;③双下标标示。 注意: ①参考方向的设定对电路分析没有影响; ②电路分析必须设定参考方向; ③按设定的参考方向求解出变量的值为正,说明实际方向和参考方向相同,为负则相反。 关联参考方向和非关联参考方向的概念: 一个元件或一段电路上,电流与电压的参考方向一致时称为关联参考方向,反之为非关联参考方向。 3、功率 规定:吸收功率为正,发出功率为负。

第二章放大电路分析基础

第二章 放大电路分析基础 〖本章主要内容〗 本章重点讲述基本放大电路的组成原理和分析方法,三种组态基本放大电路的特点和应用场合。多级放大电路的耦合方式和分析方法,差动放大器的分析方法。 首先介绍基本放大电路的组成原则。三极管的低频小信号模型。固定偏置共射放大电路的图解法和等效电路法静态和动态分析,最大不失真输出电压和波形失真分析。分压式偏置共射放大电路的分析以及稳定静态工作点的方法。共集和共基放大电路的分析,由BJT 构成的三种组态放大电路的特点和应用场合。然后介绍多级放大电路的两种耦合方式、直接耦合多级放大电路的静态偏置以及多级放大电路的静态和动态分析,差动放大器的分析方法。通过习题课掌握放大电路的静态偏置方法和性能指标的分析计算方法。 〖学时分配〗 本章有6讲,每讲两个学时。 第四讲 放大电路的工作原理 一、主要内容 1、放大的概念 在电子电路中,放大的对象是变化量,常用的测试信号是正弦波。放大电路放大的本质是在输入信号的作用下,通过有源元件(BJT 或FET )对直流电源的能量进行控制和转换,使负载从电源中获得输出信号的能量,比信号源向放大电路提供的能量大的多。因此,电子电路放大的基本特征是功率放大,表现为输出电压大于输入电压,输出电流大于输入电流,或者二者兼而有之。 在放大电路中必须存在能够控制能量的元件,即有源元件,如BJT 和FET 等。放大的前提是不失真,只有在不失真的情况下放大才有意义。 2、电路的主要性能指标 1) 输入电阻 i R :从输入端看进去的等效电阻,反映放大电路从信号源索取电流的大 小。 2) 输出电阻o R :从输出端看进去的等效输出信号源的内阻,说明放大电路带负载的 能力。 3) 放大倍数(或增益):输出变化量幅值与输入变化量幅值之比。或二者的正弦交流 值之比,用以衡量电路的放大能力。根据放大电路输入量和输出量为电压或电流的不同,有四种不同的放大倍数:电压放大倍数、电流放大倍数、互阻放大倍数和互导放大倍数。

放大电路分析基础解读

第二章 放大电路分析基础 §2、1 放大电路工作原理 一:放大电路的组成原理 基本共发射极电路如图右所示。图中V 是NPN 型三极管,担负放大作用,是整个电路的核心器件。 放大电路的组成原则是: (1):放大器件工作在放大区(三极管的发射结正向偏置,集电结反向偏置) (2):输入信号能输送至放大器件的输入端(三极管的发射结) (3):有信号电压输出。 我们判断一个放大电路能否放大输入,可按上述原则进行。 如用PNP 三极管,则电源和电容C1,C2的极性均反向。 基本放大电路的习惯画法 (1) (2) 二:直流通路和交流通路 在分析放大电路时有两类问题:直流问题和交流问题。 (1)直流通路:将放大电路中的电容视为开路,电感视为短路即得。它又被称为静态分析。 (2)交流通路:将放大电路中的电容视为短路,电感视为开路,直流电源视为短路即得。它又被称为动态分析。 按上述原则,可画出图(2)的直流通路和交流通路。如图所示(3)和(4)。 - u o + - u o + + u o -

§2、2 放大电路的直流工作状态 直流工作点,又称为静态工作点,简称Q 点。它可以通过公式求出,也可以通过作图的方法求出。 一:公式法计算Q 点 根据放大电路的直流通路,估算出放大电路的静态工作点。下面把求I B 、I C 、U CE 的公式列出来 三极管导通时,U BE 的变化很小,可视为常数,我们一般认为:硅管为 0.7V 锗管为 0.2V 例:用估算法计算静态工作点。 已知:V CC=12V ,R C=4K Ω,R b=300K Ω,β=37.5。 解: 二:图解法计算Q 点 三极管的电流、电压关系可用输入特性曲线和输出特性曲线 表示,我们可以在特性曲线上,直接用作图的方法来确定静态工作点。用图解法的关键是正确的作出直流负载线,通过直流负载线与i B =I BQ 的特性曲线的交点,即为Q 点。读出它的坐标即得I C 和U CE 图解法求Q 点的步骤为: (1):通过直流负载方程画出直流负载线,(直流负载方程为U CE =U CC -i C R C ) (2):由基极回路求出I B (3):找出i B =I B 这一条输出特性曲线与直流负载线的交点就是Q 点。读出Q 点的坐标即为所求。 例2:如图(5)所示电路,已知Rb=280千欧,Rc=3千欧,Ucc=12伏,三极管的输出特性曲线如图(6) 所示,试用图解法确定静态工作点。 + u o - A μ400.04mA 300 12 b CC B ===≈ R V I mA 5.104.05.37B C =?=≈I I β6V 41.512C C CC CE =?-=-=R I V U

(完整word版)第1章教案电路分析基础.doc

第 1 章电路分析基础 本章要求 1、了解电路的组成和功能,了解元件模型和电路模型的概念; 2、深刻理解电压、电流参考方向的意义; 3、掌握理想元件和电压源、电流源的输出特性; 4、熟练掌握基尔霍夫定律; 5、深刻理解电路中电位的概念并能熟练计算电路中各点电位; 6、深刻理解电压源和电流源等效变换的概念; 7、熟练掌握弥尔曼定理、叠加原理和戴维南定理; 8、理解受控电源模型 , 了解含受控源电路的分析方法。 本章内容 电路的基本概念及基本定律是电路分析的重要基础。电路的基本定律和理想的电路元件虽只有几个,但无论是简单的还是复杂的具体电路,都是由这些元件构成,从而依 据基本定律就足以对它们进行分析和计算。因而,要求对电路的基本概念及基本定律深 刻理解、牢固掌握、熟练应用、打下电路分析的基础。依据欧姆定律和基尔霍夫定律, 介绍电路中常用的分析方法。这些方法不仅适用于线性直流电路,原则上也适用于其他 线性电路。为此,必须熟练掌握。 1.1 电路的基本概念 教学时数 1 学时 本节重点 1 、理想元件和电路模型的概念 2、电路变量(电动势、电压、电流)的参考方向;

3、电压、电位的概念与电位的计算。本 节难点参考方向的概念和在电路分析中的应用。 教学方法通过与物理学中质点、刚体的物理模型对比,建立起理想元件模 型的概念,结合举例,说明电路变量的参考方向在分析电路中的重要性。通过例题让学生了解并掌握电位的计算过程。 教学手段传统教学手法与电子课件结合。 教学内容 一、实际电路与电路模型 1、实际电路的组成和作用 2、电路模型: 3、常用的理想元件: 二、电路分析中的若干规定 1 、电路参数与变量的文字符号与单位 2 、电路变量的参考方向 变量参考方向又称正方向,为求解变量的实际方向无法预先确定的复杂电 路,人为任意设定的电路变量的方向,如图(b)所示。 参考方向标示的方法: ① 箭头标示;② 极性标示;③ 双下标标示。 注意: ①参考方向的设定对电路分析没有影响;②电路分析必须设定参考方向; ③ 按设定的参考方向求解出变量的值为正,说明实际方向和参考方向相同,为负则相反。

第二章放大电路分析基础

第二章放大电路分析基础 本章介绍三极管的三种基本组态放大电路的分析方法,为分析其他复杂电路打下基础。 本章内容: 2.1、放大电路工作原理 2.2、放大电路的直流工作状态 2.3、放大电路的动态分析 2.4、静态工作点的稳定及其偏置电路 2.5、多级放大电路 本章要点: 1、放大电路直流状态的解析法和图解法 2、放大电路交流状态的图解法和微变等效电路法 3、三种基本组态放大电路的分析方法 4、多级放大电路的耦合方式及其分析方法 电子课件二:放大电路分析基础

课时授课教案 一授课计划 批准人:批准日期:课序:4授课日期:授课班次:课题:第二章第2.1节:放大电路工作原理 目的要求: 1、掌握基本放大电路的组成原则 2、掌握放大电路的直流通路和交流通路 3、理解放大电路的工作原理 重点:放大电路的工作原理 难点:放大电路的交流通路 教学方法 手段:结合电子课件讲解 教具:电子课件、计算机、投影屏幕 复习提问: 1、三极管的类型及外部工作条件? 2、三级管的特性曲线有何规律? 课堂讨论: 1、如何画放大电路的直流通路和交流通路? 2、放大电路中三极管各极电流和极间电压如何变化?布置作业: 课时分配:

二、授课内容 引言 放大电路的任务是不失真地把微小信号放大到所需要的程度。本节首先分析放大电路的组成原则及工作原理。 2.1、放大电路工作原理 2.2.1、放大电路的组成 一、电路组成 基本共发射极放大电路如图2一1所示。 V──放大三级管 V CC──主电源、能源 V BB ──发射结偏置电源 R C ──直流负载电阻,用来确定直流工作点 R B ──发射结偏置电阻 R L ──负载电阻 R S 、u s ──信号源的电压和内阻 C 1、C 2 ──耦合电容 二、工作条件 1、三极管应处于放大状态。即发射结正偏,集电结反偏。 2、能够输入和输出信号。 3、不失真地放大信号。 为了方便起见通常把V CC及V BB合并为一个直流电源,如图2一2所示。 2.1.2 直流通路和交流通路 一、直流通路 当交流输入信号为零时,电路中只有直流电流和电压,叫直流通路,又叫直流状态。此时,可把耦合电容视为开路。如图2一3(a)所示直流状态又叫静态。分析直流电路,叫直流分析,也叫静态分析。目的在 于分析直流工作点,即求解:I BQ 、U BEQ 、I CQ 、U CEQ 。

电路分析基础 上海交通大学出版社 习题答案第一章

1.1解:频率为108MHz 周期信号的波长为 m m F c 78.2101081036 8 =??==λ 几何尺寸d ﹤﹤2.78m 的收音机电路应视为集总参数电路。 1.2解:(1)图(a )中u ,i 参考方向一致,故为关联参考方向。 图(b )中u ,i 参考方向不一致,故为非关联参考方向。 (2)图(a )中ui 乘积表示吸收功率。 图(b )中ui 乘积表示发出功率。 (3)如果图(a )中u ﹥0,i ﹤0,则P 吸=ui ﹤0,实际发出功率。 如果图(b )中u ﹥0,i ﹥0,则P 发=ui ﹥0,实际发出功率。 1.3解:因元件上电压、电流取关联参考方向,故可得 [])200sin(595)200sin(71702 1 )100sin(7)100cos(170)100sin(7)90100sin(170t t t t t t ui P o ππππππ=?= ?=?+==吸 (1) 该元件吸收功率的最大值为595W 。 (2) 该元件发出功率的最大值为595W 。 1.4解:二端元件的吸收功率为P=ui ,已知其中任两个量,可以求得第三个量。 A :mW W W UI P 51051 105-3-3 =?=??==吸 B :W W W UI P μ5105101105-6-3-3-=?-=???-=-=吸 C :KV V I P U 21012 3=?== - D :V V I P U 21 2 =-- =-= E :mA A U P I 110110101033=?=?==-- F :mA A U P I 110110 101033 -=?-=?-==-- G :tA t t t t t u P i cos 2sin cos sin 2sin )2sin(-=-=-=- = H :W e W e ui P t t --=?==422 1.5解:根据KVL 、KCL 和欧姆定律可以直接写出U ,I 关系式。 (a )RI E U +-= (b )RI E U +-=

电路分析基础基本概念

1实际电路:实际电路是各个器件按照一定的方式相互连接而构成电流的通路。以实现电能或电信号的产生、传输、转换、控制和处理等。 模型:是对实体的特征和变化规律的一种表示或者抽象。 理想电路元件:理想电路元件是用数学关系式严格定义的假想元件,每一种理想电路元件都可以表示其实际器件的其中主要的一种电磁性能,理想电路元件是电路模型的最小组成单元。 R、L、C是电路中的三类基本元件 电路模型:电路模型是实际电路在一定条件下的科学抽象和足够精确的数学描述。 集总概念:当实际电路的尺寸远小于电路工作时电磁波的波长时,可以把元件的作用集总起来,这样的元件叫做集总元件,这样的电路参数叫做集总参数,由集总元件构成的电路称为集总电路。 分布概念:当实际电路的尺寸可以电路工作时电磁波的波长相比拟时,电路中同一瞬间相邻两点的电位和电流都不相同,这样的元件叫做分布元件,这样的电路参数叫做分布参数,由分布元件构成的电路叫做分布电路。 集总电路的分类:(1)静态电路(2)动态电路 1

二端元件:具有两个端子的元件叫做二端元件,又叫单口元件支路:电路的每一个二端元件称为一条支路,流经元件的电流叫做支路电流,元件的端电压叫做支路电压。 节点:电路中两条或两条以上的支路的公共连接点叫做节点。回路:电路中由支路组成的任一闭合路径称为回路。 网孔:内部不含有支路的回路叫做网孔。 网络:一般把含有元件较多的电路称为网络。 有源网络:内部含有独立电源的网络 无源网络:内部不含独立电源的网络 平面网络:可以画在一个平面上而不出现任何支路交叉现象的网络。 非平面网络:不属于平面网络即为非平面网络。 KCL:对于任一集总电路的任一节点,在任一时刻,流进(或流出)改节点的支路电流的代数和为零。或表示为流入任一节点的支路电流的等于流出任一节点的支路电流。 KVL:对于任一集总电路的任一回路,在任一时刻,沿着该回路的所有支路电压的代数和为零。或表示为回路中各支路电压升的代数和等于各支路电压降的代数和。

电路分析基础第一章习题答案

§1-1电路和电路模型 l -1晶体管调频收音机最高工作频率约108MHz 。问该收音机的电路是集中参数电路还是分布参数电路? 解:频率为108MHz 周期信号的波长为 m 78.21010810368=??== f c λ 几何尺寸d <<2.78m 的收音机电路应视为集中参数电路。 说明:现在大多数收音机是超外差收音机,其工作原理是先将从天线接收到的高频信号变换为中频信号后再加以放大、然后再进行检波和低频放大,最后在扬声器中发出声音。这种收音机的高频电路部分的几何尺寸远比收音机的几何尺寸小。 §1-2电路的基本物理量 l -2题图 l -2(a)表示用示波器观测交流电压的电路。若观测的正弦波形如图(b)所示。试确定电压u 的表达式和 s 1 s 5.0、=t 和s 5.1时电压的瞬时值。 题图 l —2 解: V 1V )270sin(V )1.5πsin()s 5.1(V 0V )018sin(V )1πsin()s 1(V 1V )90sin(V )5.0πsin()s 5.0(V πsin )(-==?===?===?== u u u t t u 1-3各二端元件的电压、电流和吸收功率如题图1-3所示。试确定图上指出的未知量。 题图 l —3 解:二端元件的吸收功率为p =ui ,已知其中任两个量可以求得第三个量。 W e 4e 22 H,A cos 2sin cos sin 2sin 2sin G,mA 1A 10110 1010 F, mA 1A 101101010 E,V 21 2 D, kV 2V 1021012 C,W μ5W 105101105 B,mW 5W 1051105 ,A 33 333363333t t ui p t t t t t t u p i u p i u p i i p u i p u ui p ui p -------------=?-=-======?=?--=-==?=?===--=-==?=?== -=?-=???-=-==?=??==吸吸吸

相关主题
文本预览
相关文档 最新文档