当前位置:文档之家› PID调节器在开关电源的应用

PID调节器在开关电源的应用

PID 调节器在电力电子的应用?直流电机

?开关电源

???????

DC-DC 变换器

1 基本斩波电路

2复合斩波电路和多相多重斩波电路3开关电源主电路

4开关电源控制电路

直流斩波电路(DC Chopper)

将直流电变为另一固定电压或可调电压的直流电。

也称为直流--直流变换器(DC/DC Converter)。

一般指直接将直流电变为另一直流电,不包括直流—交流—直流。

电路种类

6种基本斩波电路:降压斩波电路、升压斩波电路、升降压斩波电路、Cuk 斩波电路、Sepic斩波电路和Zeta斩波电路。

复合斩波电路——不同结构基本斩波电路组合。

多相多重斩波电路——相同结构基本斩波电路组合。

4.1.1 降压斩波电路

4.1.2升压斩波电路

4.1.3升降压斩波电路和Cuk斩波电路4.1.4 Sepic斩波电路和Zeta斩波电路

R

C

L

VD

D

E

斩波电路三种控制方式

T不变,变t

on

—脉冲宽度调制(PWM)。

t

on

不变,变T—频率调制。

t on 和T都可调,改变占空比—混合型。

此种方

式应用

最多

R

C

L

VD

D

E

E

T

t U on

开关电源控制电路

线性电源问题

开关电源问题

开关电源控制电路

开关电源的基本工作原理

一、串联型开关稳压电路

调整管

取样

电路

开关调整管控制组成框图滤波

+

U I

-

+

U o

-

R L

V 1

8

A 8

C 基准电压

三角波发生器

R 1

R 2

V 2L

C

+

U REF

u F u A

u T u B u E

i L

I O

频率固定的三角波

误差放大

续流

工作波形

O

O

O O U O

t t

t O t t

u T u A

u B u E i L u o I O t off

t on

U I 脉宽调制式(PWM )

on I

O t T U U ≈+U I

-

V 1L

u E

I O

+

U o

-

R L 8

A 8

C V 2C

+

U REF

u F u A u T

u B i L = DU I

T

t D on =

—占空比

考试安排

1、机试时间:九周星期二(4月23日)第三、四大节

2、机试地点:综合实验楼212

3、笔试时间:九周星期四(4月25日)第二大节

10::10 –11:30

4、考试地点:北区黄浩川楼402

5、开卷考试,只能带教材,不允许带其它资料

6、通知到每一个同学

AP0904507冯志安、AP0904625梅学兵、AP0904638张铨赞

单片脉宽调制式(外接开关功率管)3.2 集成开关稳压器及其应用

类型

单片集成开关稳压器CW1524CW4960/4962一、CW1524/2524/3524(区别在于温度范围)组成:

基准电压源、误差放大器、脉宽调制器、

振荡器、触发器、2 只输出功率管、过热保护

最大输入电压:40 V 最高工作频率:100 kHz 每路输出电流:100 mA

内部基准电压:5 V (承受50 mA 电流)

取样电压基准电压输出方波

定时电容

定时电阻

关闭,控制脉宽

接扩流晶体管C 、E 极

输入电压振荡/同步

1 234 5678

161514131211109

–IN +IN

U IN U REF (+ 5 V)EB CB CA EA RT

CT GND

–限流

+限流断路补偿

CW1524 系列引脚排列

CW1524 系列功能图

防止寄生振荡外接复合管扩流

产生振荡 1 234 5678161514

13121110

9。

。+

–+–R 1

R 2

R 3R 4R 5R 6R 7R 9

R 8R L C 2C 1

C 3

C 4V 3V 2

V 1

5 k Ω

3 k Ω5 k Ω5 k Ω 5 k Ω

2 k Ω50 k Ω180 Ω68 Ω0.1 Ω

U I U O R 0.1μF 0.02 μF 0.01 μF

500 μF (28V )CW1524L

0.9 mH f 0 = 1.15 / R 5C 2 = 19.2 kHz

+ 5 V 2.5V 2.5V + 5 V

限流取样电阻(1 A )

UC3842、UC3844 开关电源PWM芯片 UC3842、3844等是一种型性能优良的电流控制型脉宽调制芯片,输出端可以直接驱动MOSFET芯片。

主要优点是管脚效应少,外围电路简单,电压调整率可达0.01%,工作频率高达500KHz,可利用高频变压器实现与电网的隔离。

芯片集成了振荡器、具有高温补偿的高增益误差放大器、电流检测比较器、输入和基准欠电压锁定电路以及PWM锁存器电路。

内含振荡电路,驱动电路,电压基准电路,电压,电流误差比较电路,配合外围元件,组成完整的开关电源。

PID调节器的调节过程及其参数的整定方法

摘要 锅炉汽包水位是锅炉运行中的一个重要的监控参数,它间接反映了锅炉蒸汽负荷与给水流量之间的平衡关系。汽包锅炉给水自动控制的任务是使锅炉的给水量适应锅炉的蒸发量,以维持汽包水位在规定的范围内。由于给水系统的复杂性,现有的火电厂全程给水控制采用传统的PID控制,其精确数学模型难以建立,并且系统具有大滞后、时变性等一系列特点,往往难以满足火电机组复杂工况要求,所以许多大型火电厂对现有的全程给水控制提出了优化方案。 本文首先对控制系统进行时域分析,然后介绍PID调节器的调节过程及其参数的整定方法。重点分析了锅炉的给水控制系统,针对汽包水位控制对象的动态特性表现为有惯性、无自平衡能力的特点,采用先进的智能控制算法之一的模糊控制对其进行控制,并利用MATLAB分别对常规PID控制和模糊PID 串级控制进行仿真,结果表明采用模糊PID串级控制方法比常规PID控制方法迟延小、超调量小,使得汽包的动态特性得到优化。 关键词:模糊控制;给水控制;PID控制

Abstract The steam drum water level of boil is important monitoring parameter in a boiler movement, it had reflected indirectly the balance relations between the boiler steam load and the discharge of water. In the steam drum boiler for the water automatic control duty to adapt the boiler transpiration rate for the water volume, maintains the steam drum water level in the stipulation scope. As a result of for the water system complexity, the existing thermoelectric power station entire journey for the water control adopt the traditional PID control, its precise mathematical model establishes with difficulty, when the system has the big lag, denatured and so on a series of characteristics, often with difficulty satisfies the thermal power unit complex operating mode request, therefore many large-scale thermoelectric power stations proposed the optimization plan to the existing entire journey for the water control. First this article has analyzed the time domain of control system, then introduces the PID regulator’s adjustment process and the parameter installation method. And has analyzed great emphasis on the boil for the water control system, the steam drum water control object show the inertia, the non-self regulation ability, uses of a fuzzy control to control it, and separately carries on the simulation using MATLAB to the tradition PID control and the fuzzy PID cascade control, With comparing using the fuzzy PID cascade control method obtain result that is delay slightly, over small, enables the steam drum the dynamic characteristic to obtain the optimization. Keywords: Fuzzy control; For the water control; PID control

开关电源浪涌吸收方法

开关电源的冲击电流控制方法 开关电源的输入一般有滤波器来减小电源反馈到输入的纹波,输入滤波器一般有电容和电感组成∏形滤波器,图1. 和图2. 分别为典型的AC/DC电源输入电路和DC/DC电源输入电路。 由于电容器在瞬态时可以看成是短路的,当开关电源上电时,会产生非常大的冲击电流,冲击电流的幅度要比稳态工作电流大很多,如对冲击电流不加以限制,不但会烧坏保险丝,烧毁接插件,还会由于共同输入阻抗而干扰附近的电器设备。

图3.通信系统的最大冲击电流限值(AC/DC电源) 图4.通信系统在标称输入电压和最大输出负载时的冲击电流限值(DC/DC电源) 欧洲电信标准协会(the European Telecommunications Standards Institute)对用于通信系统的开关电源的冲击电流大小做了规定,图3为通信系统用AC/DC电源供电时的最大冲击电流限值[4],图4为通信系统在DC/DC电源供电,标称输入电压和最大输出负载时的最大冲击电流限值[5]。图中It为冲击电流的瞬态值,Im为稳态工作电流。 冲击电流的大小由很多因素决定,如输入电压大小,输入电线阻抗,电源内部输入电感及等效阻抗,输入电容等效串连阻抗等。这些参数根据不同的电源系统和布局不同而不同,很难进行估算,最精确的方法是在实际应用中测量冲击电流的大小。在测量冲击电流时,不能因引入传感器而改变冲击电流的大小,推荐用的传感器为霍尔传感器。

2. AC/DC开关电源的冲击电流限制方法 2.1 串连电阻法 对于小功率开关电源,可以用象图5的串连电阻法。如果电阻选得大,冲击电流就小,但在电阻上的功耗就大,所以必须选择折衷的电阻值,使冲击电流和电阻上的功耗都在允许的范围之内。 图5. 串连电阻法冲击电流控制电路(适用于桥式整流和倍压电路,其冲击电流相同)串连在电路上的电阻必须能承受在开机时的高电压和大电流,大额定电流的电阻在这种应用中比较适合,常用的为线绕电阻,但在高湿度的环境下,则不要用线绕电阻。因线绕电阻在高湿度环境下,瞬态热应力和绕线的膨胀会降低保护层的作用,会因湿气入侵而引起电阻损坏。 图5所示为冲击电流限制电阻的通常位置,对于110V、220V双电压输入电路,应该在R1和R2位置放两个电阻,这样在110V输入连接线连接时和220V输入连接线断开时的冲击电流一样大。对于单输入电压电路,应该在R3位置放电阻。 2.2 热敏电阻法 在小功率开关电源中,负温度系数热敏电阻(NTC)常用在图5中R1,R2,R3位置。在开关电源第一次启动时,NTC的电阻值很大,可限制冲击电流,随着NTC的自身发热,其电阻值变小,使其在工作状态时的功耗减小。 用热敏电阻法也由缺点,当第一次启动后,热敏电阻要过一会儿才到达其工作状态电阻值,如果这时的输入电压在电源可以工作的最小值附近,刚启动时由于热敏电阻阻值还较大,它的压降较大,电源就可能工作在打嗝状态。另外,当开关电源关掉后,热敏电阻需要一段冷却时间来将阻值升高到常温态以备下一次启动,冷却时间根据器件、安装方式、环境温度的不同而不同,一般为1分钟。如果开关电源关掉后马上开启,热敏电阻还没有变冷,这时对冲击电流失去限制作用,这就是在使用这种方法控制冲击电流的电源不允许在关掉后马上开启的原因。

开关电源的数字控制实现方案

开关电源的数字控制实现方案 类别:电子综合阅读:5732 尽管业内不少人都认为,模拟和数字技术很快将争夺电源调节器件控制电路的主导权,但实际情况是,在反馈回路控制方面,这两种技术看起来正愉快地共存着。 的确,许多电源管理供应商都提供了不同的方案。一些数字控制最初的可编程优势现在甚至在采用模拟反馈回路的控制器和稳压器中也有了。当然,数字电源还是有一些吸引人之处。 本文主要讨论脉冲宽度调制(PWM)、脉冲密度调制(PDM)和脉冲频率调制(PFM)开关稳压器和控制器IC。其中一些集成了控制实际开关的一个或多个晶体管的驱动器,另一些则没有。还有一些甚至集成了开关FET,如果它们提供合适的负荷的话。因此,数字还是模拟的问题取决于稳压器的控制回路如何闭合。 图1显示了两种最常见的PWM开关拓朴布局的变化,降压和升压(buck/boost)转换器。在同步配置中,第二只晶体管将取代二极管。在某种意义上来讲,脉冲宽度调制的采用使得这些转换器“准数字化”,至少可与基于一个串联旁路元件的723型线性稳压器相比。事实上,PWM使得采用数字控制回路成为可能。不过,图1中的转换器缺少控制一个或几个开关占空比的电路,它可在模拟或数字域中实现。 不管采用模拟还是数字技术,都有两种方式实现反馈回路:电压模式和电流模式。简单起见,首先考虑它在模拟域中如何实现。 图1: 没有控制器的开关模式DC-DC电源十分简单。不论用于升压还是降压,其成功与否取决于设计者如何安排一些基本的元器件。 在电压模式拓朴中,参考电压减去输出电压样本就可得到一个与振荡器斜坡信号相比较的小误差信号(图2),当电路输出电压变化时,误差电压也产生变化,后者反过来改变比较器的门限值。反过来,这将使输出信号宽度发生变化。这些脉冲控制稳压器开关晶体管的导通时间。随着输出电压升高,脉冲宽度将变小。 图2: 电压模式反馈(本例中在模拟域)包含一个控制回路。 电流模式控制的一个优势在于其管理电感电流的能力。一个采用电流模式控制的稳压器具有一个嵌套在一个较慢的电压回路中的电流回路。该内回路感应开关晶体管的峰值电流,并通过一个脉冲一个脉冲地控制各晶体管的导通时间,使电流保持恒定。 与此同时,外回路感应直流输出电压,并向内回路提供一个控制电压。在该电路中,电感电流的斜率生成一个与误差信号相比较的斜坡。当输出电压下跌时,控制器就向负载提供更大的电流(图3)。 图3: 电流模式反馈采用了嵌套反馈回路。与电压模式不同,它需要计入电感上的电流。 在这些控制拓朴中,在回路的相移达到360°的任意频率处,控制回路的增益不能超过1。相移包括了将控制信号馈入反馈运放的倒相输入端所产生的固有180°相移、放大器和其它有源元件的附加延迟、以及由电容和电感(特别是输出滤波器的大电容)引入的延迟。 稳定回路要求对一定频率范围内的增益变化和相移进行补偿。传统上,采用模拟PWM 来稳定电源通常需要采用经验方法:你在一块与生产型电路板相同布局的实际电路板上,实

开关电源常见故障维修方法

开关电源常见故障及维修方法: 1.保险烧或炸 主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险烧、发黑。需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻也很容易和保险一起被烧坏。 2.无输出,保险管正常 这种现象说明开关电源未工作或进入了保护状态。首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。若有启动电压,则测量控制芯片的输出端在开机瞬间是否有高、低电平的跳变,若无跳变,说明控制芯片坏、外围振荡电路元件或保护电路有问题,可先代换控制芯片,再检查外围元件;若有跳变,一般为开关管不良或损坏。 3.有输出电压,但输出电压过高 这种故障一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如TL431、光耦、电源控制芯片等电路共同构成一个闭合的控制环路,任何一处出问题就会导致输出电压升高。 4.输出电压过低 除稳压控制电路会引起输出电压低,还有下面一些原因也会引起输出电压低: a.开关电源负载有短路故障(特别是DC/DC变换器短路或性能不良等),此时,应该 断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。若断 开负载电路电压输出正常,说明是负载过重;或仍不正常说明开关电源电路有故障。 b.输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。 c.开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能 力下降。 d.开关变压器不良,不但造成输出电压下降,还会造成开关管激励不足从而屡损开关 管 e.300V滤波电容不良,造成电源带负载能力差,一接负载输出电压便会下降。

(完整版)开关电源的用途

开关电源的用途 开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防,电脑机箱,数码产品和仪器类等领域 开关电源的主要类型和分类 开关电源的主要类型 现代开关电源有两种:一种是直流开关电源;另一种是交流开关电源。这里主要介绍的只是直流开关电源,其功能是将电能质量较差的原生态电源(粗电),如市电电源或蓄电池电源,转换成满足设备要求的质量较高的直流电压(精电)。直流开关电源的核心是DC/DC转换器。因此直流开关电源的分类是依赖DC/DC转换器分类的。也就是说,直流开关电源的分类与DC/DC 转换器的分类是基本相同的,DC/DC转换器的分类基本上就是直流开关电源的分类。

直流DC/DC转换器按输入与输出之间是否有电气隔离可以分为两类:一类是有隔离的称为隔离式DC/DC转换器;另一类是没有隔离的称为非隔离式DC/DC转换器 隔离式DC/DC转换器也可以按有源功率器件的个数来分类。单管的DC/DC转换器有正激式(Forward)和反激式(Flyback)两种。双管DC/DC转换器有双管正激式(DoubleTransistor Forward Converter),双管反激式(Double Transistr Flyback Converter)、推挽式(Push-Pull Converter)和半桥式(Half-Bridge Converter)四种。四管DC/DC转换器就是全桥DC/DC转换器(Full-Bridge Converter)。 非隔离式DC/DC转换器,按有源功率器件的个数,可以分为单管、双管和四管三类。单管DC/DC转换器共有六种,即降压式(Buck)DC/DC转换器,升压式(Boost)DC/DC转换器、升压降压式(Buck Boost)DC/DC转换器、Cuk DC/DC转换器、Zeta DC/DC转换器和SEPIC DC/DC转换器。在这六种单管DC/DC 转换器中,Buck和Boost式DC/DC转换器是基本的,Buck-Boost、Cuk、Zeta、SEPIC式DC/DC转换器是从中派生出来的。双管DC/DC转换器有双管串接的升压式(Buck-Boost)DC/DC转换器。四管DC/DC转换器常用的是全桥DC/DC转换器(Full-Bridge Converter)。

PID调节器说明书

RKC日本理化CD系列PID调节器 在工业生产中,通常需要把某递增物理量(如温度\压力\流量\液位等)维持 在指定的数值上.当这些物理量偏离所希望的给定值时,即产生偏差.PID控制仪根据测时信号与给定值,达到自动控制的效果. 模拟PID 比例运算是指输出控制量与偏差的比例关系.仪表比例参数的设定值越大, 控制的灵敏度越高.例如仪表的比例参数P设定为4%,表示测量值偏离给定值4%时,输出控制量变化100% 积分运算的目的是消除静差.只要在偏差存在,积分作用将控制量向使偏差 消除的方向移动.积分时间是表示积分作用强度的单位.仪表设定的积分时间越短,积分作用越强.例如仪表的积分时间设定为240秒时,表示对固定折偏差,积分作用的输出量达到和比例作用相同的输出量需要240秒 比例作用的积分作用是对控制结果的修正动作,响应较慢.微分作用是为了 消除其缺点而补充的,微分作用根据偏差产生的速度对输出量进行修正,使控制过程尽快回到原来的控制状态,微分时间是表示微分作用强度的单位,仪表设定的微分时间越长,则以微分作用进行的修正越强. 位式PID控制 一般PID控制是把连续的电流或电压输出到操作器对系统进行量化控制.而位式PID控制则是仪表按一定的周期,通过控制接点的通断对系统进行控制.在一个周期内,接点的接通和断开的时间长短反映控制量的大小,操作时为100%时,接点在整个周期内完全接通,操作量为0%时,接点在整个周期内完全断开. RKC型号定义 请参照下列代码表确认产品是否与您指定的型号一致 CD□□□□□□* □□□□ 1 2 3 4 5 6 7 8 9 10 1、规格尺寸 48*48*100(开口:45*45) 48*96*100(开口:45*92) 72*72*100(开口:68*68) 96*96*100(开口:92*92) 2、控制类型: F:PID动作及自动演算(逆动作)

PID调节器说明书[2]

一、概述 SLRT系列智能PID调节仪是一种测量调节精度高,功能强的数字显示调节仪,它可为第一流的尖端设备提供优质服务,广泛地用于炼油、化工、冶金、建材、轻工、电子等行业温度、压力、流量、液位的自动检测和自动控制。 二、主要技术指标 1、测量精度:0.3级 2、报警输出:等同测量精度 3、PID无扰动稳态,温度±2℃ 4、变送输出精度:±0.3%FS 负载能力:0-600∩ 5、输入特性要求:0-10mA:500∩、4-20mA:250∩、DC.V:≥200K∩热电偶及DC.mV: ≥10M∩冷端自动补偿精度0-40℃范围内±0.3℃热电阻:三线制输入3×10∩以内完全补偿 6、继电器接点容量:AC220V 7A 7、过零触发式外接可控硅(可控硅小于500A)。 8、供电电源:AC220V±10%、直流DC24V±10%供选择 9、功耗:≤15W 10、工作环境:温度0-50℃、相对温度:<85%,无腐蚀性气体,无震动场合 11、控制参数:比例带(P):0-999.9%可调 积分时间(I):3-9999S可调 微分时间(d):1-9999S可调 调节周期(t):1-65S可调 12、可以接受的输入信号: 8种热电偶温度信号:K、E、S、B、J、T、EA、N 5种热电阻温度信号:Pt100、Cu100、Cu50、G53、BA1、BA2 3种线性mV信号:0-20mV、0-100mV、0-500mV 远传压力表等线性电阻信号:0-400∩ 2种线性mA信号:0-10mA、4-20mA 2种线性直流V信号:0-5V、1-5V 三、面板型式 “SET”设定键:在正常运行状态下,按下该键可查看有关设定值的参数,此时上排主显示窗显示参数名称代号,下排付显示窗显示参数值。停止按键1 分钟或同时按下退到正常运行状态。进入设定状态,当显示SP1(第一报警参数)符号时,键入,主显示窗显示“SEL”,辅助显示窗显示“555”.输入象征操作权限的密码后,进入正式设定状态。 “RIGHT”光标键:在设定状态下,每按一次光标键右移一位,如此反复,光标在下排辅助窗口上作周而复始的移动,光标所在的位置为设定操作的有效位置。 “∨”减少键:在设定状态下为减少,每按此键一次。光标位置的数码管减少1个字。在手动状态下按此键为输出减少。 “∧”增加键:在设定状态下为增加,每按此键一次。光标位置的数码管增加1个字。在手动状态下按此键为输出增加。

开关电源控制模式的探讨

开关电源控制模式的探讨 随着科学技术的发展,开关电源数字化、模块化、高频化的实现,促进了开关电源控制技术的不断发展。文章主要对开关电源控制模式进行分析,结合开关电源发展的历程,探讨了开关电源数字化控制技术以及电流型控制模式,以供参考。 标签:开关电源;控制模式;电子技术 1 开关电源概述 开关电源是在现代电子电力技术的发展基础上,控制开关管的开通及关断时间比率,以稳定输出电压的一种特殊的电源。一般来说,开关电源由脉冲宽度调制控制IC、MOSFET组成。随着科学技术的发展,开关电源技术也不断进行改革和创新。开关电源效率能够高达85%,与普通线性电源相比,开关电源的利用效率提高了一倍。同时,开关电源采用了小体积的滤波元件及散热器,可靠性、安全性也较高。从开关电源的类别来看,可以分成AC/AC、DC/DC等类型,其中,DC/DC开关电源的变换器已经实现了模块化设计和发展,因而得到用户普遍认可。 从开关电源的产生和发展来看,自上个世纪六十年代以来,由于晶闸管控制模式的出现,大大促进了开关电源的发展。到七十年代初期,开关电源进入了长时期的瓶颈时期,开关电源的效率问题更加突出。直至七十年代后期,由于集成电技术的创新,催生了各种开关电源芯片的产生。当前,集成化电源已经广泛应用于航天、彩电、计算机等各个领域中,随着半导体技术、电子技术的快速发展,电子设备的总量和体积不断减小,导致电源体积与电子设备的体积不相匹配。因此,开关电源体积成为当前研究的重点。 从我国开关电源的研究情况来看,在上个世纪六十年代,我国已经成功研制出稳压电源。经过十年的发展,稳压电源已经成功应用于电视机和中小型计算机。到八十年代,我国已经成功研制出了0.5~5MHz谐振的软开关电源。从八十年代起,我国开关电源进入了大规模更新换代的时期,现代晶闸管稳压电源逐渐取代了传统铁磁稳压电源,对办公自动化产生了很大的影响。进入九十年代,我国成功研制了新型专用的开关电源,供特殊行业使用,如卫星及远程导弹系统所使用的开关电源。经历了约半个世纪的发展,我国开关电源技术研发已经取得了较大的成就,开关电源应用范围也逐渐扩展,但与国外开关电源技术相比,在使用方法和集成度方面,我国还存在很大的不足,还应该继续加强开关电源研究及应用。 2 开关电源数字控制技术分析 近年来,随着计算机技术及网络技术的快速发展,数字控制技术在社会生产生活中广泛应用。数字控制技术的产生,是由于控制领域的监控和计算任务的要

PID调试步骤(应用最为广泛的调节器控制规律)

PID调试步骤 没有一种控制算法比PID调节规律更有效、更方便的了。现在一些时髦点的调节器基本源自PID。甚至可以这样说:PID调节器是其它控制调节算法的吗。 为什么PID应用如此广泛、又长久不衰? 因为PID解决了自动控制理论所要解决的最基本问题,既系统的稳定性、快速性和准确性。调节PID的参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时,在PID调节器中引入积分项,系统增加了一个零积点,使之成为一阶或一阶以上的系统,这样系统阶跃响应的稳态误差就为零。 由于自动控制系统被控对象的千差万别,PID的参数也必须随之变化,以满足系统的性能要求。这就给使用者带来相当的麻烦,特别是对初学者。下面简单介绍一下调试PID参数的一般步骤: 1.负反馈 自动控制理论也被称为负反馈控制理论。首先检查系统接线,确定系统的反馈为负反馈。例如电机调速系统,输入信号为正,要求电机正转时,反馈信号也为正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。其余系统同此方法。 2.PID调试一般原则 a.在输出不振荡时,增大比例增益P。 b.在输出不振荡时,减小积分时间常数Ti。 c.在输出不振荡时,增大微分时间常数Td。 3.一般步骤 a.确定比例增益P 确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例增益P为当前值的60%~70%。比例增益P调试完成。 b.确定积分时间常数Ti 比例增益P确定后,设定一个较大的积分时间常数Ti的初值,然后逐渐减小Ti,直至系统出现振荡,之后在反过来,逐渐加大Ti,直至系统振荡消失。记录此时的Ti,设定PID 的积分时间常数Ti为当前值的150%~180%。积分时间常数Ti调试完成。 c.确定微分时间常数Td 微分时间常数Td一般不用设定,为0即可。若要设定,与确定P和Ti的方法相同,取不振荡时的30%。 d.系统空载、带载联调,再对PID参数进行微调,直至满足要求。 2.PID控制简介 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent

基于PID控制方式的8A开关电源Psim

基于PID控制方式的8A开关电源Psim 仿真研究 学院:电气与光电学院 专业:电气工程及其自动化 班级: 姓名: 学号: 时间:2016年04月04日

1、绪论 开关调节系统常见的控制对象,包括单极点型控制对象、双重点型控制对象等。为了使某个控制对象的输出电压保持恒定,需要引入一个负反馈。粗略的讲,只要使用一个高增益的反相放大器,就可以达到使控制对象输出电压稳定的目的。但就一个实际系统而言,对于负载的突变、输入电压的突升或突降、高频干扰等不同情况,需要系统能够稳、准、快地做出合适的调节,这样就使问题变得复杂了。例如,已知主电路的时间常数较大、响应速度相对缓慢,如果控制的响应速度也缓慢,使得整个系统对外界变量的响应变得很迟缓;相反如果加快控制器的响应速度,则又会使系统出现振荡。所以,开关调节系统设计要同时解决稳、准、快、抑制干扰等方面互相矛盾的稳态和动态要求,这就需要一定的技巧,设计出合理的控制器,用控制器来改造控制对象的特性。 常用的控制器有比例积分(PI)、比例微分(PD)、比例-积分-微分(PID)等三种类型。PD控制器可以提供超前的相位,对于提高系统的相位裕量、减少调节时间等十分有利,但不利于改善系统的控制精度;PI控制器能够保证系统的控制精度,但会引起相位滞后,是以牺牲系统的快速性为代价提高系统的稳定性;PID控制器兼有二者的优点,可以全面提高系统的控制性能,但实现与调试要复杂一些。本文中介绍基于PID控制器的Buck电路设计。 2、基于PID控制方式的Buck电路的综合设计 Buck变换器最常用的电力变换器,工程上常用的正激、半桥、全桥及推挽等均属于Buck族。现以Buck变换器为例,根据不同负载电流的要求,设计功率电路,并采用单电压环、电流-电压双环设计控制环路。 2.1设计指标 输入直流电压(V IN):10V; 输出电压(V O):5V; 输出电流(I I N):8A; 输出电压纹波(V rr):50mV; 基准电压(V ref):1.5V; 开关频率(f s):100kHz。 Buck变换器主电路如图1所示,其中Rc为电容的等效电阻ESR。

PID调节器

PID调节器 一、设计要求 比例系数、积分时间、微分时间可调,参数自定义。 P、PI、PD、PID可分别设置。 二、设计方案 模拟式PID调节器得电路结构 比例、积分、微分电路经过不同得组合、变换可得到三种不同得结构形式。它们具体如下:结构一:一体式模拟PI D调节电路结构。顾名思义,“一体”即将比例积分微分三者合为一体,用单一结构实现P ID调节功能,其结构限制了其只能实现PID这一单一得调节功能,并且,在调节过程中,无法保证P、I、D调节得独立进行。 结构二:串联式模拟PID调节电路结构。“串联”即将比例电路、比例积分电路、比例微分电路输入与 输出依次串联起来,三者依次作用。其结构形式决定了其输出只能为P、PL PI D运算后得结果。

三、具体电路设计及工作原理说明 该电路分别曲三个模块构成,分别就是比例电路,积分电路,微分电路。三个模块可以分别单独输出或者两两结合,也可以三个模块同时进行输出。 I、比例运算 当J 3、J6断开,J4闭合。J1向上拨接通,J 2向下拨接通时。电路为比例电路。 2、积分电路 当J4、J6断开,J 3闭合。J I、J 5向上接通,J 2任意状态时,电路为积分电路。3、微分电路 当J4、J3断开,J6接通,J5向上接通时,电路为微分电路。 4、比例积分电路 当J3、J6断开J4接通J1向下接通J 6向上接通时,电路为比例积分电路。 5、比例微分电路 当J 3、J6断开,J4接通,J 1、J2、J 5向上接通时,电路为比例微分电路。 6、比例积分微分电路

当J3、J6断开J 4接通,JI. J 5向下接通J2任意状态时,电路为比例积分微分电路。 四、测试结果 1、比例运算 今Oscilloscope-XSCl Q — ey ? 2、积分运算 3、微分运算

调节器的PID参数整定(精)

调节器的PID参数整定 临界比例带法 临界比例带法,是过去应用较广的一种整定参数的方法,它的特点是,可以不需要求得被控制对象的特性,而直接的闭合的控制系统中进行整定。 如果一个自动控制系统,在外界干扰作用后,不能回复到稳定的平衡状态,也不发散,而是产生一种等幅的震荡,这样的控制过程,称为临界震荡过程,如图所示,图中TK是被控参数,Y的临界周期TK,被控参数处于临界震荡过程时,调节器的比例带称为临界比例带PK。 临界比例带法整定调节器参数是在纯比例作用下,在闭合控制系统中,从大到小逐步改变调节器的比例带P(%),以便得到上述的临界震荡过程,然后,确定临界比例带PK和临界周期TK的数值,根据表4-1所例的经验公式,计算出各类调节器相应的各个特性参数值。

具体步骤如下 ①.先通过手动操作器,使工艺状态稳定一段时间。 ②.调节器除比例作用外,其他的控制都切除(积分时间,放在最 大。微分时间放在零处) 3.改变调节器的比例带,先是逐步减小调节器的比例带,细心观察输出电流和控制过程的变化情况,如果控制过程是衰减的,则把比例带连续放小,如果控制过程是发散的,则把比例带放大,直接持续4-5次等幅震荡为止,此时的比例带就是临界比例带pk,来回震荡一次的时间,亦即从震荡的一个顶点到相邻同期的第一个顶点所需要的时间(分)就是临界周期Tk。 4.有3pk和Tk,就可以根据表4-1的经验公式,求得各类调节器的各

个参数p。. Td值。 5,求得具体数值后,先把比例带放在比计算值大一些的数值上,然后把积分时间放到求得的数值上,如果需要,再放上微分的时间,最后把比例减少到计算值上。 二.衰减曲线法 衰减曲线法是在总结临界比例带法和其它一些方法的基础上,经过反复实验后提出来的,这种方法,不需要进行大量的凑式,也不需要得到临界震荡过程,而直接求得调节器的比例带,这种方法有两种,一种是4:1衰减曲线法,一直是10:1衰减曲线法,下面着重介绍4:1衰减曲线法。 大家都知道纯比例作用下的一个自动控制系统,在比例带逐步减少的过程中就会出现如图4-25所示的控制过程,这时控制过程的比例带称为4:1衰减比例带Ps,两个相邻波峰之间的时间称为为4:1衰减TS,4:1衰减曲线法,就是要在纯比例作用下的闭合控制系统中求得Ps。TS,从而计算出来P。T及Td,具体整定步骤如下。 1.熟悉感应卡、工艺流程,了解操作指标,掌握控制系统的组成。 2.把积分时间放到最大,微分时间放到零,待控制系统稳定后,逐 步减少比例带,观察输出电流和控制过程的波动情况,直到出现4:1的衰减过程为止,记下4:1的衰减比例带Ps和操作周期TS 3.根据Ps和TS按照表4-2所列的经验公式,求得各类调节器的相 应参数的具体数值。 4.先把比例带放到一个比计算值大一点的数值上,然后放上积分时

模拟电路PID调节器要点

实验开放课题结题报告设计课题:PID调节器的设计 专业班级:04电子科学与技术 学生姓名:骆炳福何青丽冯立平 指导教师:曾祥华 设计时间:2006年8月10日

题目:PID调节器的设计 一、设计任务与要求 1.设计一个负反馈放大电路 2.能实现比例运算电路、积分电路和微分电路的功能 二、方案设计与论证 设计一个PID调节器,PID控制器就是根据系统的误差利用比例积分微分计算出控制量,比例积分微分(PID)控制包含比例(P)、积分(I)、微分(D)三部分,实际中也有PI和PD控制器。 上图中给出了一个PID控制的结构图,控制器输出和控制器输入(误差)之间的关系在时域中可用公式表示如下:

公式中表示误差、控制器的输入,是控制器的输出,为比例 系数、积分时间常数、为微分时间常数。式又可表示为: 公式中和分别为和的拉氏变换,, 。、、分别为控制器的比例、积分、微分系数。 三、单元电路设计与参数计算 分析:上面电路中的输入支路和反馈支路中都有电阻、电容元件,因此直接在时域里求出输出与输入的关系比较困难。如果先在S域里求出电路的传递函数(即输出与输入的关系),再利用拉氏反变换得到时域里的输出与输入的关系,这样就比较容易些。 设

由图可知 在对上式进行拉氏反变换,因S表示微分,1/S表示积分。S 一次方表示微分一次,二次方表示微分两次,S负一次方表示积分一次,负两次方表示积分两次。因此式中的第一、第二项表示比例运算,第三项表示微分运算,第四项表示积分运算,所以 上述电路的输出输入关系为比例-积分-微分运算,又称为PID运算。在自动控制系统中经常用作为 PID调节器。 四、总原理图及元器件清单

PID控制方式的3A开关电源MATLAB

基于PID控制方式的3A开关电源MATLAB仿真研究 学院:电气与光电工程学院 专业:电气工程及其自动化 班级: 一绪论 Buck变换器是最常用的变换器,工程上常用的拓扑如正激、半桥、全桥、推挽等也属于Buck 族,现以Buck变换器为例,依据不同负载电流的要求,设计主功率电路,并采用单电压环、电

流-电压双环设计控制环路。开关调节系统常见的控制对象,包括单极点型控制对象、双重点型控制对象等。为了使某个控制对象的输出电压保持恒定,需要引入一个负反馈。粗略的讲,只要使用一个高增益的反相放大器,就可以达到使控制对象输出电压稳定的目的。但就一个实际系统而言,对于负载的突变、输入电压的突升或突降、高频干扰等不同情况,需要系统能够稳、准、快地做出合适的调节,这样就使问题变得复杂了。所以,开关调节系统设计要同时解决稳、准、快、抑制干扰等方面互相矛盾的稳态和动态要求,这就需要一定的技巧,设计出合理的控制器,用控制器来改造控制对象的特性。

常用的控制器有比例积分(PI)、比例微分(PD)、比例-积分-微分(PID)等三种类型。PD控制器可以提供超前的相位,对于提高系统的相位裕量、减少调节时间等十分有利,但不利于改善系统的控制精度;PI控制器能够保证系统的控制精度,但会引起相位滞后,是以牺牲系统的快速性为代价提高系统的稳定性;PID控制器兼有二者的优点,可以全面提高系统的控制性能,但实现与调试要复杂一些。本次设计就采用PID控制方式。 二设计过程 各项技术指标: 输入直流电压(V IN):10; 输出电压(V O):5V; 输出电流(I N):3A; 输出电压纹波(V rr):50mV; 基准电压(V ref):1.5V; 开关频率(f s):100kHz。 设计任务: 1.依据技术指标设计主功率电路,采用参数扫描法,对所设计的主功率电路进行仿真; 2.掌握小信号建模的方法,建立Buck变换器原始回路增益函数; 3.采用Matlab绘制控制对象的Bode图; 4.补偿网络设计,根据控制对象的Bode图,分析所需设计的补偿网络特性,采用PID调节方 式。 5.采用Matlab绘制补偿器和变换器的Bode图; 6.综合仿真,采用所选择的仿真软件进行系统仿真,要求有突加、突卸80%负载和满载时的 负载特性,分析系统的静态稳压精度和动态响应速度。 2.1 主电路设计:

PID调节器的认识及应用

PID调节器的认识及应用 PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对炉温的手动控制来理解。阅读本文不需要高深的数学知识。 1.比例控制 有经验的操作人员手动控制电加热炉的炉温,可以获得非常好的控制品质,PID 控制与人工控制的控制策略有很多相似的地方。 下面介绍操作人员怎样用比例控制的思想来手动控制电加热炉的炉温。假设用热电偶检测炉温,用数字仪表显示温度值。在控制过程中,操作人员用眼睛读取炉温,并与炉温给定值比较,得到温度的误差值。然后用手操作电位器,调节加热的电流,使炉温保持在给定值附近。 操作人员知道炉温稳定在给定值时电位器的大致位置(我们将它称为位置L),并根据当时的温度误差值调整控制加热电流的电位器的转角。炉温小于给定值时,误差为正,在位置L的基础上顺时针增大电位器的转角,以增大加热的电流。炉温大于给定值时,误差为负,在位置L的基础上反时针减小电位器的转角,并令转角与位置L的差值与误差成正比。上述控制策略就是比例控制,即PID控制器输出中的比例部分与误差成正比。 闭环中存在着各种各样的延迟作用。例如调节电位器转角后,到温度上升到新的转角对应的稳态值时有较大的时间延迟。由于延迟因素的存在,调节电位器转角后不能马上看到调节的效果,因此闭环控制系统调节困难的主要原因是系统中的延迟作用。 比例控制的比例系数如果太小,即调节后的电位器转角与位置L的差值太小,调节的力度不够,使系统输出量变化缓慢,调节所需的总时间过长。比例系数如果过大,即调节后电位器转角与位置L的差值过大,调节力度太强,将造成调节过头,甚至使温度忽高忽低,来回震荡。 增大比例系数使系统反应灵敏,调节速度加快,并且可以减小稳态误差。但是比例系数过大会使超调量增大,振荡次数增加,调节时间加长,动态性能变坏,比例系数太大甚至会使闭环系统不稳定。 单纯的比例控制很难保证调节得恰到好处,完全消除误差。 2.积分控制

基于PI控制方式的7A开关电源的MATLAB仿真

基于PI控制方式的7A开关电源MATLAB仿真研究 学院:电气与光电工程学院 专业:电气工程及其自动化 目录 0 绪论 --------------------------------------------------------------------- 3

1 设计要求 ----------------------------------------------------------------- 3 2 主电路参数计算 ----------------------------------------------------------- 3 2.1 电容参数计算 --------------------------------------------------------- 4 2.2 电感参数计算 --------------------------------------------------------- 4 3 补偿网络设计 ------------------------------------------------------------- 5 3.1原始系统的设计 -------------------------------------------------------- 5 3.2补偿网络相关参数计算 -------------------------------------------------- 6 4 负载突加突卸 ------------------------------------------------------------- 9 4.1满载运行 -------------------------------------------------------------- 10 4.2突加突卸80%负载 ------------------------------------------------------ 10 4.3 电源扰动20% --------------------------------------------------------- 11 5 小结 -------------------------------------------------------------------- 13 参考文献 ------------------------------------------------------------------ 13 一、绪论 随着电子技术的不断发展对电源的要求也不断的提高,开环的电源应该说早就不能满足要 求,无论是在输出参数的精度还是抗干扰能力方面都比不上闭环控制系统。为了使某个控制对 象的输出电压保持恒定,需要引入一个负反馈。粗略的讲,只要使用一个高增益的反相放大器,

PID调节器的作用及其参数对系统调节质量的影响

实验: PID调节器的作用及其参数对系统调节质量的影响 一.实验目的: 1.了解和观测PID基本控制规律的作用,对系统动态特性和稳态特性及稳 定性的影响。 2.验证调节器各参数(Kc,Ti,Td), 在调节系统中的功能和对调节质量的 影响。 二. 实验内容: 1.分别对系统采取比例(P)、比例微分(PD)、比例积分(PI)、比例积分微分(PID) 控制规律,通过观察系统的响应曲线,分析系统各性能的变化情况。 1.观测定值调节系统(扰动作用时)在各调节规律下的响应曲线。 2.观测调节器参数变化对定值调节系统瞬态响应性能指标的影响。 三. 实验原理: 参考输入量(给定值)作用时,系统连接如图(1)所示: 图(1) 图(2) 四. 实验步骤: 利用MATLAB中的Simulink仿真软件。 l. 参考实验一,建立如图(2)所示的实验原理图;

2. 将鼠标移到原理图中的PID模块进行双击,出现参数设定对话框,将PID 控制器的积分增益和微分增益改为0,使其具有比例调节功能,对系统进行纯比例控制。 3. 单击工具栏中的 图标,开始仿真,观测系统的响应曲线,分析系统性 能;调整比例增益,观察响应曲线的变化,分析系统性能的变化。 4. 重复步骤2-3,将控制器的功能改为比例微分控制,观测系统的响应曲线, 分析比例微分控制的作用。 5. 重复步骤2-3,将控制器的功能改为比例积分控制,观测系统的响应曲线, 分析比例积分控制的作用。 6. 重复步骤2-3,将控制器的功能改为比例积分微分控制,观测系统的响应曲线,分析比例积分微分控制的作用。 (1) P=1,I=0,D=0 (2) P=0.618,I=0,D=0 (3) P=0.618,I=0.1,D=0 (4) P=0.618,I=1,D=0

相关主题
文本预览
相关文档 最新文档