当前位置:文档之家› 九年级 二次函数与几何图形综合

九年级 二次函数与几何图形综合

九年级 二次函数与几何图形综合
九年级 二次函数与几何图形综合

二次函数与几何图形综合

类型1 利用二次函数图象解决与线段、三角形相关的问题

以函数图象为背景的几何题,图象背景往往就是一件衣服,基本套路是依据“点在图象上→点的坐标满足解析式”求出函数解析式,从而根据题目条件求出更多点的坐标,进而求出线段长度、三角形面积.

1.如图,抛物线y=ax2+2x+c经过点A(0,3),B(-1,0),请回答下列问题:

(1)求抛物线的解析式;

(2)抛物线的顶点为D,对称轴与x轴交于点E,连接BD,求BD的长.

2.二次函数y=-x2+mx+n的图象经过点A(-1,4),B(1,0),y=-1

2

x+b经过点B,且

与二次函数y=-x2+mx+n交于点D.

(1)求二次函数的表达式;

(2)点N是二次函数图象上一点(点N在BD上方),过N作NP⊥x轴,垂足为点P,交BD于点M,求MN的最大值.

3.如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.

(1)求此抛物线的解析式;

(2)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.

类型2 二次函数图象与“线段之和最短”问题

如果两条线段有公共端点,那么直接构造“线段之和最短”问题解决,如果两条线段没有公共端点,那么需要通过平移将两条线段构造得有公共端点,然后应用“线段之和最短”问题解决.

4.如图,已知抛物线y=

2

8

(x+2)(x-4)与x轴交于点A、B(点A位于点B的左侧),与y

轴交于点C,M为抛物线的顶点.

(1)求点A、B、C的坐标;

(2)设动点N(-2,n),求使MN+BN的值最小时n的值.

5.如图,已知抛物线y=-1

m

(x+2)(x-m)(m>0)与x轴相交于点A,B,与y轴相交于点C,

且点A在点B的左侧.

(1)若抛物线过点G(2,2),求实数m的值;

(2)在(1)的条件下,在抛物线的对称轴上找一点H,使AH+CH最小,并求出点H的坐标.

6.如图,抛物线y=-1

2

x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=

3.

(1)求抛物线的解析式.

(2)点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP 的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.

7.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴

上,∠AOC的平分线交AB于点D,E为BC的中点,已知A(0,4),C(5,0),二次函数y=4 5 x2

+bx+c的图象抛物线经过A,C两点.

(1)求该二次函数的表达式;

(2)F,G分别为x轴,y轴上的动点,顺次连接D,E,F,G构成四边形DEFG,求四边形DEFG周长的最小值.

8.如图,抛物线y=x2+bx+c经过点A(-1,0),B(3,0).请解答下列问题:

(1)求抛物线的解析式;

(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.

9.如图,在直角坐标系xOy中,二次函数y=x2+(2k-1)x+k+1的图象与x轴相交于O、A两点.

(1)求这个二次函数的解析式;

(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;

(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.

参考答案

1.(1)∵抛物线y =ax 2

+2x +c 经过点A(0,3),B(-1,0),∴???c =3,0=a -2+c.解得???a =-1,

c =3.

抛物线的解析式为y =-x 2+2x +3.

(2)∵y=-x 2+2x +3=-(x -1)2+4,∴抛物线的顶点坐标为(1,4).∴BE=2,DE =4.∴BD =BE 2+DE 2=2 5.

2.(1)∵二次函数y =-x 2

+mx +n 的图象经过点A(-1,4),B(1,0),∴???4=-1-m +n ,

0=-1+m +n.

得???m =-2,n =3.

∴二次函数的表达式为y =-x 2-2x +3. (2)∵y=-12x +b 经过点B ,∴-12×1+b =0.解得b =12.∴y =-12x +12.设M(m ,-12m +1

2),

则N(m ,-m 2

-2m +3),∴MN =-m 2

-2m +3-(-12m +12)=-m 2

-32m +52=-(m +34)2+4916

.∴MN

的最大值为

49

16

. 3.(1)∵该抛物线过点C(0,-2),设该抛物线的解析式为y =ax 2+bx -2.将A(4,0),B(1,0)代入,得???16a +4b -2=0,a +b -2=0.

解得?????a =-1

2,b =52.

∴此抛物线的解析式为y =-12x 2

+5

2x -2.

(2)设D 点的横坐标为t(0

2t -2.过D 作y 轴的平行线交AC

于E.由题意可求得直线AC 的解析式为y =12x -2.∴E 点的坐标为(t ,12t -2).∴DE=-1

2t 2

+52t -2-(12t -2)=-12t 2+2t.∴S △DCA =12×(-1

2t 2+2t)×4=-t 2+4t =-(t -2)2+4.∴当t =2时,△DCA 面积最大.∴D(2,1). 4.(1)令y =0,得

2

8

(x +2)(x -4)=0,解得x 1=-2,x 2=4;令x =0,得y =-2.∴A(-2,0)、B(4,0)、C(0,-2).

(2)过点A(-2,0)作y 轴的平行线l ,则点B 关于l 的对称点B′(-8,0),又M(1,-9

8

2),

连接B′M 与l 的交点即为使MN +BN 值最小的点.设直线B′M 的解析式为y =kx +b ,则

???0=-8k +b ,-982=k +b ,解得???k =-18 2.b =- 2.

∴y =-18

2x - 2.∴当x =-2时,n =-

3

4

2. 5.(1)抛物线过点G(2,2)时,-1

m

(2+2)(2-m)=2,解得m =4.

(2)∵m=4,∴y =-14(x +2)(x -4).令y =0,-1

4(x +2)(x -4)=0,解得x 1=-2,x 2=4.

则A(-2,0),B(4,0).∴抛物线对称轴为直线l :x =-2+4

2=1.令x =0,则y =2,所以

C(0,2).∵B 点与A 点关于对称轴对称,∴连接BC ,BC 与直线l 的交点便为所求点H.∵B(4,0),C(0,2),∴求得线段BC 所在直线为y =-12x +2.当x =1时,y =32,∴H(1,3

2).

6.(1)由已知条件得A(-2,0),C(0,3),代入二次函数解析式,得???c =3,

-2-2b +c =0.

解得

???b =12,c =3.

∴抛物线的解析式为y =-12x 2

+12x +3. (2)连接AD ,交对称轴于点P ,则P 为所求的点.设直线AD 的解析式为y =kx +t.由已知得???-2k +t =0,2k +t =2.

解得???k =12,t =1.∴直线AD 的解析式为y =12x +1.∵对称轴为直线x =-b 2a =12,

将x =12代入y =12x +1,得y =54.∴P(12,5

4

).

7.(1)将A(0,4)、C(5,0)代入二次函数y =45x 2

+bx +c ,得???20+5b +c =0,c =4,

解得???b =-24

5,c =4.

故二次函数的表达式为y =45x 2-24

5

x +4.

(2)延长EC 至E′,使E′C=EC ,延长DA 至D′,使D′A=DA ,连接D′E′,交x 轴于F

点,交y 轴于G 点,GD =GD′,EF =E′F,(DG +GF +EF +ED)最小=D′E′+DE ,由E(5,2),D(4,4),得D′(-4,4),E(5,-2).由勾股定理,得DE =22+12=5,D ′E ′=(5+4)2+(4+2)2=313,(DG +GF +EF +ED)最小=D′E′+DE =313+ 5.

8.(1)∵抛物线y =x 2

+bx +c 经过点A(-1,0),B(3,0),∴???1-b +c =0,9+3b +c =0.解得???b =-2,

c =-3.

y =x 2-2x -3.

(2)∵点E(2,m)在抛物线上,∴m =4-4-3=-3.∴E(2,-3)∴BE=(3-2)2+(0+3)2=10.∵点F 是AE 中点,抛物线的对称轴与x 轴交于点H ,H 是AB 中点,∴FH =12BE =10

2.

9、.(1)∵函数的图象与x 轴相交于O ,∴0=k+1,∴k=-1,∴二次函数的解析式为y=x 2-3x. (2)假设存在点B ,过点B 作BD ⊥x 轴于点D.

∵△AOB 的面积等于6,∴2

1

AO ·BD=6.

当y=0时,x(x-3)=0.解得x=0或3.∴AO=3.∴BD=4,即4=x 2-3x.解得x=4或x=-1(舍去). 又∵顶点坐标为(1.5,-2.25),2.25<4,∴x 轴下方不存在B 点.∴点B 的坐标为(4,4). (3)∵点B 的坐标为(4,4),∴∠BOD=45°,BO=2244+=42. 当∠POB=90°时,∠POD=45°.

设P 点横坐标为x ,则纵坐标为x 2-3x ,即-x=x 2-3x.解得x=2或x=0. ∴在抛物线上仅存在一点P(2,-2).∴OP=2222+=22. ∴△POB 的面积为:

21PO ·BO=2

1

×22×42=8.

二次函数与几何图形结合练习

3.2 与几何图形结合3.2.1 与等腰三角形结合1、如图,直线y=3x+3交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交 x 轴于另 一点C (3,0). ⑴求抛物线的解析式 ; ⑵在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的 Q 点坐标;若不存在,请说明理由 2、如图,已知直线y=x 与交于A 、B 两点. (1)求交点A 、B 的坐标;(2)记一次函数y=x 的函数值为y 1,二次函数 的函数值为y 2.若y 1>y 2,求x 的 取值范围; (3)在该抛物线上存在几个点,使得每个点与AB 构成的三角形为等腰三角形?并求出不 少于3个满足条件的点 P 的坐标. y =x 2 y =x 2

3、如图,已知二次函数的图象经过点A (3,3)、B (4,0)和原点O 。P 为二次函数图象 上的一个动点,过点 P 作x 轴的垂线,垂足为 D (m ,0),并与直线OA 交于点C . (1)求出二次函数的解析式; (2)当点P 在直线OA 的上方时,求线段PC 的最大值; (3)当m >0时,探索是否存在点P ,使得△PCO 为等腰三角形,如果存在,求出 P 的坐 标;如果不存在,请说明理由. 3.2.2 与直角三角形结合1、二次函数的图象的一部分如图所示.已知它的顶点 M 在第二象限,且经 过点A(1,0)和点B(0,l).(1)试求,所满足的关系式;(2)设此二次函数的图象与x 轴的另一个交点为 C ,当△AMC 的面积为△ABC 面积的 倍时,求a 的值;(3)是否存在实数a ,使得△ABC 为直角三角形.若存在,请求出 a 的值;若不存在,请说 明理由. 2 y ax bx c a b 5 4

平面图形与立体图形的认识

【几何图形】 从实物中抽象出来的各种图形,包括立体图形和平面图形。 立体图形分为柱体,锥体,球体 多面体:围城棱柱和棱锥的面都是平的面,像这样的立体图形叫做多面体 欧拉公式:定点数+面数-棱数=2 练习: 1.下面几何体中,不是多面体的是() A球体 B 三棱锥 C 三棱柱D四棱柱 2.下列判断正确的是 A长方形是多面体B柱体是多面体 C圆锥是多面体D棱柱、棱锥都是多面体 3、将半圆绕它的直径旋转一周形成的几何体是() A、圆柱 B、圆锥 C、球 D、正方体 【点、线、面、体】 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形中最基本的图形。 线:面和面相交的地方是线,分为直线和曲线。 面:包围着体的是面,分为平面和曲面。 体:几何体也简称体。 (2)点动成线,线动成面,面动成体。 例、右侧这个几何体的名称是_______;它由_______个面组成;它有_______个顶点;经过每个顶点有_______条边。 解答:五棱柱,7,10,3 【直线】 1、概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。 2、直线的性质 (1)直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点有且只有一条直线。 (2)过一点的直线有无数条。 (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。 (4)直线上有无穷多个点。 (5)两条不同的直线至多有一个公共点。 3、表示:一条直线可以用一个小写字母表示;或者用两个大写字母表示 练习: 1.经过一点,有______条直线;经过两点有_____条直线,并且______条直线. 2、我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________. 【射线】 直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。

初中数学几何图形综合题(供参考)

初中数学几何图形综合题 必胜中学2018-01-30 15:15:15 题型专项几何图形综合题 【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角函数等知识的综合运用. 【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用其他的数学思想方法等. 【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决. 【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势. 为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题.

类型1操作探究题 1.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连接BD,过点D作DF⊥AC于点F. (1)如图1,若点F与点A重合,求证:AC=BC;

中考数学专题题库∶二次函数的综合题及详细答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b. (1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示); (2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式; (3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围. 【答案】(1)b=﹣2a,顶点D的坐标为(﹣1 2 ,﹣ 9 4 a);(2) 27327 48 a a --;(3) 2≤t<9 4 . 【解析】 【分析】 (1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标; (2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可; (3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围. 【详解】 解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0), ∴a+a+b=0,即b=-2a, ∴y=ax2+ax+b=ax2+ax-2a=a(x+1 2 )2- 9 4 a ,

∴抛物线顶点D 的坐标为(- 1 2 ,-94a ); (2)∵直线y=2x+m 经过点M (1,0), ∴0=2×1+m ,解得m=-2, ∴y=2x-2, 则2 222y x y ax ax a -??+-? ==, 得ax 2+(a-2)x-2a+2=0, ∴(x-1)(ax+2a-2)=0, 解得x=1或x= 2 a -2, ∴N 点坐标为( 2a -2,4 a -6), ∵a <b ,即a <-2a , ∴a <0, 如图1,设抛物线对称轴交直线于点E , ∵抛物线对称轴为122 a x a =-=-, ∴E (- 1 2 ,-3), ∵M (1,0),N ( 2a -2,4 a -6), 设△DMN 的面积为S , ∴S=S △DEN +S △DEM = 12 |( 2a -2)-1|?|-94a -(-3)|=274?3a ?278a , (3)当a=-1时, 抛物线的解析式为:y=-x 2-x+2=-(x+ 12 )2+94,

平面图形与立体图形教案

4.1几何图形 4.1.1立体图形与平面图形 【教学目标】 1、能从实物图形中抽取出几何图形;能在生活中寻找出相应的几何图形;会认识多见的平面几何图形和立体几何图形。 2、通过实物抽取几何图形的体验,培养自己的几何图形感,能用几何图形描述生活中的物体。 3、通过对多彩多姿的图形世界体验,激发自己对几何学习的兴趣,也体会学习的喜悦。 【教学重难点】 1.重点: (1)掌握立体图形与平面图形的关系,学会它们之间的相互转化;?初步建立空间观念. (2)理解几何图形是从实物图形中抽象出来的。 (3)从实际出发,用直观的形式,让学生感受图形的丰富多彩,激发学生学习的兴趣. 2.难点: (1)立体图形与平面图形之间的互相转化. (2)从现实情境中,抽象概括出几何图形 【教具准备】 长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个),及多媒体教学设备和课本图4.1-5的教学幻灯片. 【教学过程】

一、引入新课 由多媒体展示美丽的图形世界 在同学们所观看中,有哪些是我们熟悉的几何图形? 二、新授 1.学生在回顾刚才所看到的图片,充分发表自己的意见,?并通过小组交流,补充自己的意见,积累小组活动经验. 2.指定一名学生回答问题,并能正确说出这些几何图形的名称. 学生回答:有圆柱、长方体、正方体等等. 教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征. 3.立体图形的概念. (1)长方体、正方体、球、圆柱、圆锥等都是立体图形. (2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥) (3)用多媒体放映课本4.1-4的幻灯片 (4)提出问题:在这个幻灯片中,包含哪些简单的平面图形? (5)探索解决问题的方法. ①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案. ②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.4.平面图形的概念. 长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形.

最新初中数学几何图形初步易错题汇编附答案解析

最新初中数学几何图形初步易错题汇编附答案解析 一、选择题 1.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是() A.B. C.D. 【答案】D 【解析】 解:如右图, 连接OP,由于OP是Rt△AOB斜边上的中线, 所以OP=1 2 AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以 O为圆心的圆弧上,那么中点P下落的路线是一段弧线. 故选D. 2.一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点F在CB的延长线上.若DE∥CF,则∠BDF等于() A.30°B.25°C.18°D.15° 【答案】D 【解析】 【分析】

根据三角形内角和定理可得45ABC ∠=?和30EDF ∠=?,再根据平行线的性质可得45EDB ABC ==?∠∠,再根据BDF EDB EDF =-∠∠∠,即可求出BDF ∠的度数. 【详解】 ∵∠C =90°,∠A =45° ∴18045ABC A C =?--=?∠∠∠ ∵//DE CF ∴45EDB ABC ==?∠∠ ∵∠DFE =90°,∠E =60° ∴18030EDF E DFE =?--=?∠∠∠ ∴15BDF EDB EDF =-=?∠∠∠ 故答案为:D . 【点睛】 本题考查了三角板的角度问题,掌握三角形内角和定理、平行线的性质是解题的关键. 3.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( ) A .8 B .9 C .10 D .11 【答案】C 【解析】 【分析】 连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可. 【详解】 解:如图,连接DE ,交AC 于P ,连接BP ,则此时PB PE +的值最小 ∵四边形ABCD 是正方形 B D ∴、关于A C 对称 PB PD =∴ PB PE PD PE DE ∴+=+= 2,3BE AE BE ==Q

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

二次函数与几何图形结合题及答案

1.如图,已知抛物线2 1y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标; (2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积; (3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与?PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由. 解:(1)令0y =,得2 10x -= 解得1x =± 令0x =,得1y =- ∴ A (1,0)- B (1,0) C (0,1)- ……………………3分 (2)∵O A =O B =O C =1 ∴∠BAC =∠AC O=∠BC O= 45 ∵A P ∥CB , ∴∠P AB = 45 过点P 作P E ⊥x 轴于E ,则?A P E 为等腰直角三角形 令O E =a ,则P E =1a + ∴P (,1)a a + ∵点P 在抛物线21y x =-上 ∴2 11a a +=- 解得12a =,21a =-(不合题意,舍去) ∴P E =3……………………………………………………………………………5分 ∴四边形ACB P 的面积S =12AB ?O C +12AB ?P E =11 2123422 ??+??=………………………………6分 (3). 假设存在 ∵∠P AB =∠BAC =45 ∴P A ⊥AC ∵MG ⊥x 轴于点G , ∴∠MG A =∠P AC =90 在Rt △A O C 中,O A =O C =1 ∴AC =2 在Rt △P AE 中,AE =P E =3 ∴A P= 32 ………8分 设M 点的横坐标为m ,则M 2 (,1)m m - ①点M 在y 轴左侧时,则1m <- (ⅰ) 当?A MG ∽?P CA 时,有 AG PA =MG CA ∵A G=1m --,MG=2 1m -即2322 = 解得11m =-(舍去) 23m =(舍去)………9分 G M C B y P A o x

初中数学几何图形初步技巧及练习题

初中数学几何图形初步技巧及练习题 一、选择题 1.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是() A.主视图B.俯视图C.左视图D.一样大 【答案】C 【解析】 如图,该几何体主视图是由5个小正方形组成, 左视图是由3个小正方形组成, 俯视图是由5个小正方形组成, 故三种视图面积最小的是左视图, 故选C. 2.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是 A.(0,0)B.(0,1)C.(0,2)D.(0,3) 【答案】D 【解析】 【详解】 解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′, 此时△ABC的周长最小,

∵点A 、B 的坐标分别为(1,4)和(3,0), ∴B ′点坐标为:(-3,0),则OB′=3 过点A 作AE 垂直x 轴,则AE=4,OE=1 则B′E=4,即B′E=AE ,∴∠EB ′A=∠B ′AE , ∵C ′O ∥AE , ∴∠B ′C ′O=∠B ′AE , ∴∠B ′C ′O=∠EB ′A ∴B ′O=C ′O=3, ∴点C ′的坐标是(0,3),此时△ABC 的周长最小. 故选D . 3.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( ) A .8 B .9 C .10 D .11 【答案】C 【解析】 【分析】 连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可. 【详解】 解:如图,连接DE ,交AC 于P ,连接BP ,则此时PB PE +的值最小 ∵四边形ABCD 是正方形 B D ∴、关于A C 对称 PB PD =∴

二次函数与几何图形综合题(可编辑修改word版)

二次函数与几何图形综合题 类型 1 二次函数与相似三角形的存在性问题 1.(2015·昆明西山区一模)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2) 三点. (1)求这条抛物线的解析式; (2)P 为线段BC 上的一个动点,过P 作PE 垂直于x 轴与抛物线交于点E,设P 点横坐标为m,PE 长度为y,请写出y 与m 的函数关系式,并求出PE 的最大值; (3)D 为抛物线上一动点,是否存在点D 使以A、B、D 为顶点的三角形与△COB 相似?若存在,试求出点D 的坐标;若不存在,请说明理由.

2.(2013·曲靖)如图,在平面直角坐标系xOy 中,直线y=x+4 与坐标轴分别交于A,B 两点,过A,B 两点的抛物线为y=-x2+bx+c.点D 为线段AB 上一动点,过点D 作CD⊥x 轴于点C,交抛物线于点E. (1)求抛物线的解析式; (2)当DE=4 时,求四边形CAEB 的面积; (3)连接BE,是否存在点D,使得△DBE 和△DAC 相似?若存在,求出D 点坐标;若不存在,说明理由. 3.(2015·襄阳)边长为 2 的正方形OABC 在平面直角坐标系中的位置如图所示,点D 是边OA 的中点,连接CD,点E 在第一象限,且DE⊥DC,DE=DC.以直线AB 为对称轴的抛物线过C,E 两点.

(1)求抛物线的解析式; (2)点P 从点C 出发,沿射线CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点P 作PF⊥CD 于点F.当t 为何值时,以点P,F,D 为顶点的三角形与△COD 相似? (3)点M 为直线AB 上一动点,点N 为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由. 类型 2 二次函数与平行四边形的存在性问题 1.(2014·曲靖)如图,抛物线y=ax2+bx+c 与坐标轴分别交于A(-3,0),B(1,0),C(0,3)三点,D

八年级数学几何图形练习题

八年级数学几何图形练 习题 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

第 2 题 F E D C B A 八年级下册数学——几何图形 1.已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的 面积是( ) A .12cm 2 B . 24cm 2 C . 48cm 2 D . 96cm 2 2.如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重 合,点B 落在点F 处,折痕为AE ,且EF=3,则AB 的长为( )A .3 B .4 C .5 D .6 3.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长为( ) A. 23 B. 332 C. 3 4.如图,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥BD .(1)求证: 四边形OCED 是菱形;(2)若∠ACB =30,菱形OCED 的面积为,求AC 的 长。 5.矩形ABCD 中,AE 平分∠BAD 交BC 于E,∠CAE=15°,求证:①△ODC 是等 边三角形;②BC=2AB 6.如图,在平行四边形ABCD 中,∠ABC=75°,AF ⊥BC 于点F BD 于点 E ,若DE=2AB ,求证∠AED 的度数。 A F B E B O 第3题

D C 7.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm.将△ABC沿射线BC 方向平移10 cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形。

(完整版)初中数学二次函数综合题及答案

二次函数题 选择题: 1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( ) A -1 B 2 C -1或2 D m 不存在 2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a ≠0)模型的是( ) A 在一定距离内,汽车行驶的速度与行驶的时间的关系 B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系 C 矩形周长一定时,矩形面积和矩形边长之间的关系 D 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—2 5、抛物线y= 2 1 x 2 -6x+24的顶点坐标是( ) A (—6,—6) B (—6,6) C (6,6) D (6,—6) 6、已知函数y=ax 2+bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2c 〈3b A 1 B 2 C 3 D 4 7、函数y=ax 2-bx+c (a ≠0)的图象过点(-1,0),则 c b a + =c a b + =b a c + 的值是( ) A -1 B 1 C 21 D -2 1 8、已知一次函数y= ax+c 与二次函数y=ax 2+bx+c (a ≠0),它们在同一坐标系内的大致图象是图中的( ) A B C D 二填空题: 13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是————————————。 16、若抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x =2,最小值为-2,则关于方程ax 2+bx+c =-2的根为————————————。 17、抛物线y=(k+1)x 2+k 2-9开口向下,且经过原点,则k =————————— 解答题:(二次函数与三角形) 1、已知:二次函数y=x 2 +bx+c ,其图象对称轴为直线x=1,且经过点(2,﹣). (1)求此二次函数的解析式. (2)设该图象与x 轴交于B 、C 两点(B 点在C 点的左侧),请在此二次函数x 轴下方的图象上确定一点E ,使△EBC 的面积最大,并求出最大面积. 1 —1 0 x y y x -1 x y y x y x y

(完整版)二次函数与几何图形综合题.doc

二次函数与几何图形综合题 类型 1二次函数与相似三角形的存在性问题 1. (2015 ·明西山区一模昆)如图,已知抛物线y= ax2+bx+ c(a≠0)经过 A(- 1, 0), B(4, 0), C(0 ,2) 三点. (1)求这条抛物线的解析式; (2)P 为线段 BC 上的一个动点,过P 作 PE 垂直于 x 轴与抛物线交于点 E,设 P 点横坐标为 m, PE 长度为 y,请写出 y 与 m 的函数关系式,并求出PE 的最大值; (3)D 为抛物线上一动点,是否存在点 D 使以 A、B、D 为顶点的三角形与△ COB 相似?若存在,试求出点 D 的坐标;若不存在,请说明理由.

2. (2013 ·靖曲 )如图,在平面直角坐标系xOy 中,直线y= x+ 4 与坐标轴分别交于A, B 两点,过A,B 两点的抛物线为y=- x2+ bx+ c.点 D 为线段 AB 上一动点,过点 D 作 CD⊥ x 轴于点 C,交抛物线于点 E. (1)求抛物线的解析式; (2)当 DE= 4 时,求四边形CAEB 的面积; (3)连接 BE,是否存在点 D ,使得△ DBE 和△ DAC 相似?若存在,求出 D 点坐标;若不存在,说明理由.

3.(2015 襄·阳 )边长为 2 的正方形O ABC 在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接 CD ,点 E 在第一象限,且DE⊥ DC , DE =DC.以直线 AB 为对称轴的抛物线过C, E 两点. (1)求抛物线的解析式; (2)点 P 从点 C 出发,沿射线 CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点 P 作 PF ⊥ CD 于点 F .当 t 为何值时,以点P, F ,D 为顶点的三角形与△COD 相似? (3)点 M 为直线 AB 上一动点,点N 为抛物线上一动点,是否存在点M, N,使得以点M,N, D, E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.

几何图形与平面图形

课题 4.1.1几何图形与平面图形 一、学习目标 1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程; 2、能由实物形状想象出几何图形,由几何图形想象出实物形状; 3、能识别一些简单几何体,正确区分平面图形与立体图形。 学习重点:识别简单的几何体 学习难点:从具体事物中抽象出几何图形 二、自主探究 1、几何图形 (1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界; (2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题: 从整体上看,它的形状是 从不同侧面看,你看到的图形是 看棱得到的是 看顶点的到的是 。 我们见过的长方体、圆柱、圆锥、球、圆、线段、点等,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为几何图形。 2、立体图形 说一说下面这些几何图形有什么共同特点? 有些几何图形的各部分不都在同一平面内,它们是 .(如: ) 请再举出一些立体图形的例子. 想一想 生活中还有哪些物体的形状类似于这些立体图形呢? 3、平面图形 (1)纸盒 (1)长方体 (2)长方形 (3)正方形(4)线段 点

说一说下面这些几何图形又有什么共同特点? 平面图形的概念 线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是 。 请再举出一些平面图形的例子。 思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系? 三、课堂练习 课本119页练习 四、要点归纳 1、 2、平面图形与立体图形的关系: 立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内; 立体图形中某些部分是平面图形。 五、拓展训练 1.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球. 其中属于立体图形的是( ) A. ①②③; B. ③④⑤; C. ① ③⑤; D. ③④⑤⑥ 【总结反思】 现实物体 几何图形 平面图形 立体图形 看外形

初中数学二次函数综合题及答案(经典题型)

二次函数试题 论:①抛物线y lx21 是由抛物线y-x2怎样移动得到的22 ②抛物线y2(x 2 1)是由抛物线y 1 x2 2 :怎样移动得到的 ③抛物线y[(x1)21是由抛物线y 1 2 x21怎样移动得到的 22 ④抛物线 y ](x1)21是由抛物线 y 1 2 (x 1)2怎样移动得到22 ⑤抛物线y2(x1)21是由抛物线y 1 2 -x2怎样移动得到的 22 选择题:1、y=(m-2)x m2- m是关于x的二次函数,贝U m=() A -1 B 2 C -1 或2 D m 不存在 2、下列函数关系中,可以看作二次函数y=ax2+bx+c(a丰0)模型的是() 在一定距离内,汽车行驶的速度与行驶的时间的关系 我国人中自然增长率为1%这样我国总人口数随年份变化的关系 矩形周长一定时,矩形面积和矩形边长之间的关系 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x2,则抛物线的解析式是( A y= —( x-2 ) 2+2 B y= —(x+2 )2+2 C y= (x+2 ) 2+2 D y= —( x-2 1 2 5、抛物线y= x -6x+24 2 的顶点坐标是( A (—6,—6) B(—6, 6) C(6,6) D (6,—6) 6、已知函数y=ax2+bx+c,图象如图所示,则下列结论中正确的有 ①abc〈0 ②a+ c〈 b ③ a+b+c > 7、函数y=ax2-bx+c (a丰 0) 的图象过点( A -1 B 1 C - 的值是 b 1 )个 -1 ,

填空题: 13、无论m为任何实数,总在抛物线y=x2+ 2mx+ m上的点的坐标是------------ 。 16、若抛物线y=ax2+bx+c(0)的对称轴为直线x =2,最小值为—2,则关于方程ax2+bx+c =-2的根为一 17、抛物线y= (k+1)x2+k2-9开口向下,且经过原点,则k= ---------------- 解答题:(二次函数与三角形) 1、已知:二次函数y==x2+bx+c,其图象对称轴为直线x=1,且经过点 4 (1)求此二次函数的解析式. (2)设该图象与x轴交于B、C两点(B点在C点的左侧),请在此二次函数x轴下方的图象上确定一点并求出最大面积. 2、如图,在平面直角坐标系中,抛物线与x轴交于A B两点(A在B的左侧),与y轴 9 交于点C (0,4),顶点为(1,2)? (1)求抛物线的函数表达式; (2)设抛物线的对称轴与轴交于点D,试在对称轴上找出点卩,使厶CDP为等腰三角形,请直接写岀满足条件的所有点P的坐标. (3)若点E是线段AB上的一个动点(与A B不重合),分另U连接AC BC过点E作EF // AC交线段BC于点F,连接CE记厶CEF的面积为S S是否存在最大值若存在,求出 存在,请说明理由. 4 2 3、如图,一次函数y=—4x—4的图象与x轴、y轴分别交于A、C两点,抛物线y= + bx+ c的图象经过A C两点,且与x轴交于点B (1)求抛物线的函数表达式;己,使厶EBC的面积最大, (第2题图) S的最大值及此时E点的坐标;若不

二次函数与几何图形动点问题--答案

二次函数与几何图形 模式1:平行四边形 分类标准:讨论对角线 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成平行四边形,则可分成以下几种情况 (1)当边AB 是对角线时,那么有BC AP // (2)当边AC 是对角线时,那么有CP AB // (3)当边BC 是对角线时,那么有BP AC // 1、本题满分14分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.

2、如图1,抛物线322 ++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m . ①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.

模式2:梯形 分类标准:讨论上下底 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成梯形,则可分成以下几种情况 (1)当边AB 是底时,那么有PC AB // (2)当边AC 是底时,那么有BP AC // (3)当边BC 是底时,那么有AP BC // 3、已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线 x y 3 2 -=与边BC 相交于点D . (1)求点D 的坐标; (2)抛物线c bx ax y ++=2 经过点A 、D 、O ,求此抛物线的表达式; (3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.

《立体图形与平面图形》练习题

4.1 多姿多彩的图形(1) 几何图形 长方形的是()1.如图所示,水平放置的下列几何体,从正面看到的视图不是 .. 2.下列几何体中,直棱柱的个数是() A.5 B.4 C.3 D.2 3.直四棱柱、长方体和正方体之间的包含关系是() A B C D 4.若一个棱柱有10个顶点,则下列说法正确的是() A.这个棱柱有4个侧面 B.这个棱柱有5条侧棱 C.这个棱柱的底面是十边形 D.这个棱柱是一个十棱柱 5.小明用如下左图所示的胶漆滚从左到右滚涂墙壁,下列平面图形中符合胶漆滚涂出的图案是() A B C D 6.举出两个俯视图为圆的实物例子: 、. 7.写出下列立体图形的名称(从左到右依次写出): . 8.如果直六棱柱的其中一条侧棱长为4cm,那么它的所有侧棱长度之和为 cm. 9.分别画出图中的物体的三个视图: 10.如图①②③④四个图形都是平面图形,观察图②和表中对应数值,探究计数的方法并解答下面的问题.

(1)数一数每个图各有多少顶点、多少条边、这些边围成多少区域,将结果填入下表: (2)根据表中的数值,写出平面图的顶点数、边数、区域数之间的关系; (3)如果一个平面图形有20个顶点和11个区域,求这个平面图形的边数. 参考答案 1.答案: B 解析:B答案中圆锥的主视图是三角形. 2.答案: C 解析:直棱柱的侧面应是矩形,符合这个条件的有第一个,第五个和第六个.故选C.

3.答案:A 解析:正方体是特殊的长方体,长方体又是特殊的直四棱柱,故选A.4.答案:B 解析:一个棱柱有10个顶点,则它是五棱柱,五棱柱有5个侧面,有5条侧棱,底面是五边形.故选B. 5.答案:A 解析:由胶漆滚得图形可得,最左边中间为一小黑正方形,胶漆滚从左到右,则最先留下印记的即为中间有一小黑正方形的图形.故选A. 6.圆柱,球,圆锥. 7.从左到右依次为:圆柱、长方体、四棱锥、圆锥. 8.直六棱柱的其中一条侧棱长为4cm,那么它的所有侧棱长度之和为6×4=24cm.故答案为24. 9.三个视图如下: 10.解:(1)结和图形我们可以得出: 图①有4个顶点、6条边、这些边围成3个区域; 图②有7个顶点、9条边、这些边围成3个区域; 图③有8个顶点、12条边、这些边围成5个区域; 10个顶点、15条边、这些边围成6区域.

二次函数综合题训练(含答案)

二次函数综合题训练 一、综合题(共24题;共305分) 1.如图,在平面直角坐标系中,二次函数图象的顶点坐标为,该图象与轴相交于点、,与轴相交于点,其中点的横坐标为1. (1)求该二次函数的表达式; (2)求. 2.如图,在平面直角坐标系中,二次函数的图象交x轴于点A,B(点A在点B的左侧). (1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围; (2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n 的值. 3.已知抛物线y=2x2-4x+c与x轴有两个不同的交点. (1)求c的取值范围; (2)若抛物线y=2x2-4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由. 4.如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3). (1)求a的值和图象的顶点坐标。 (2)点Q(m,n)在该二次函数图象上. ①当m=2时,求n的值;

②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围. 5.若二次函数图象的顶点在一次函数的图象上,则称 为的伴随函数,如:是的伴随函数. (1)若是的伴随函数,求直线与两坐标轴围成的三角形的面积;(2)若函数的伴随函数与轴两个交点间的距离为4,求,的值. 6.已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,并且与x轴有两个交点. (1)求k的值: (2)若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P的坐标. 7.如图,在平面直角坐标系中,抛物线与轴交于点、点,与轴交于点. (1)求拋物线的解析式; (2)过点作直线轴,点在直线上且,直接写出点的坐标.8.在平面直角坐标系中,抛物线与轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上. (1)求点B的坐标(用含的式子表示); (2)求抛物线的对称轴; (3)已知点,.若抛物线与线段PQ恰有一个公共点,结合函数图象,求的取值范围. 9.如图,直线与轴、轴分别交于两点,抛物线经过点 ,与轴另一交点为,顶点为. (1)求抛物线的解析式; (2)在轴上找一点,使的值最小,求的最小值;

立体图形与平面图形

4.1.1立体图形与平面图形 一.教学内容解析 1.内容 几何图形、立体图形、平面图形的概念及它们之间的关系. 2.内容解析 我们生活在一个多姿多彩的图形世界里,生活中处处存在着具有各种各样形状的物体,我们可以从这些物体中抽象出几何图形,如长方体、圆柱、球、长方形、三角形、圆、线段、点等.几何图形可分为立体图形和平面图形两类,常见立体图形有圆柱、棱柱、圆锥、棱锥、球等,常见的平面图形有线段、角、三角形、四边形、圆等.立体图形的表面中包含着平面图形,平面图形可以围成立体图形. 七年级第四章《几何图形初步》引入的是几何图形的一些最基本的概念,这些知识是“空间与图形”领域学习的基础.本课的内容属于初中几何图形知识学习的起始阶段,对于发展学生的空间观念,培养学生的空间想象力有着重要的作用,对后续几何知识的学习影响深远.基于以上分析,确定本节课的教学重点:认识基本的几何图形,能从具体事物中抽象出几何图形. 二.教学目标解析 1.目标 (1)认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、球等)的基本特征,能识别这些几何体. (2)丰富学生对几何图形的感性认识,理解立体图形与平面图形的联系,发展学生的空间观念,培养学生的空间想象力. 2.目标解析 达成目标(1)的标志是:通过观察生活中的大量图片或实物,认识生活中以实物为原型的几何图形,能准确识别圆柱、棱柱、圆锥、棱锥等几何体,并准确说出它们的名称. 达成目标(2)的标志是:经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,能指出一个立体图形中所包含的平面图形,能由实物形状想象出相应的几何图形,能由几何图形想象出与之形状相对应的实物. 三.学生学情分析 学生在小学阶段初步认识了一些较简单的几何图形,但对于棱柱、棱锥这两类几何体还比较陌生,对于几何图形之间的区别和联系也模糊不清,小学阶段对几何图形的认识是形象化的、感性的,需要通过进一步学习提高到理性认识.七年级学生抽象逻辑思维能力还有待发展,对于从现实生活中的实物抽象出几何图形,如从一个纸盒抽象出长方体、长方形、线段、点,学生不容易理解,在教学过程中需要借助精心挑选的实物和特制的模型,来帮助学生理解.本节课的教学难点是:从实物中抽象出几何图形. 四.教学策略分析

(专题精选)初中数学几何图形初步易错题汇编及答案解析

(专题精选)初中数学几何图形初步易错题汇编及答案解析 一、选择题 1.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠ 1=32°,那么∠2的度数是() A.64°B.68°C.58°D.60° 【答案】A 【解析】 【分析】 首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可. 【详解】 ∵AB∥CD, ∴∠1=∠AEG. ∵EG平分∠AEF, ∴∠AEF=2∠AEG, ∴∠AEF=2∠1=64°, ∵AB∥CD, ∴∠2=64°. 故选:A. 【点睛】 本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键. 2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=() A.35°B.45°C.55°D.65° 【答案】A 【解析】 【分析】 【详解】 解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35° 故选:A. 【点睛】 本题考查余角、补角的计算.

3.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( ) A .90° B .75° C .105° D .120° 【答案】B 【解析】 【分析】 根据平行线的性质可得30E BCE ==?∠∠,再根据三角形外角的性质即可求解AFC ∠的度数. 【详解】 ∵//BC DE ∴30E BCE ==?∠∠ ∴453075AFC B BCE =+=?+?=?∠∠∠ 故答案为:B . 【点睛】 本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键. 4.在等腰ABC ?中,AB AC =,D 、E 分别是BC ,AC 的中点,点P 是线段AD 上的一个动点,当PCE ?的周长最小时,P 点的位置在ABC ?的( ) A .重心 B .内心 C .外心 D .不能确定 【答案】A 【解析】 【分析】 连接BP ,根据等边三角形的性质得到AD 是BC 的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可. 【详解】 连接BP 、BE ,

相关主题
文本预览
相关文档 最新文档