当前位置:文档之家› 压电换能器驱动电路的设计

压电换能器驱动电路的设计

压电换能器驱动电路的设计
压电换能器驱动电路的设计

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为 CR I I C R ωδ1 tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: π2 的机械能 谐振时振子每周所损失能谐振时振子储存的机械?=m Q 机械品质因数可根据等效电路计算而得 11 1 11 R L C R Q s s m ωω= = 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m 2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。

换能器优化设计与实验

燕山大学 本科毕业设计(论文)文献综述 课题名称:超声波换能器优化设计与实验 学院(系):里仁学院 年级专业:工业自动化仪表2班 学生姓名:孙骏 指导教师:童凯 完成日期: 2013年3月27日

一、课题国内外现状 超声技术出现于20世纪初期.它是以经典声学理论为基础,同时结合电子学、材料学、信号处理技术、雷达技术、固体物理、流体物理、生物技术及计算技术等其他领域的成就而发展起来的一门综合性高新技术学科。近一个世纪的发展历史表明,超声学是声学发展中最为活跃的一部分,它不仅在一些传统的工农业技术中获得广泛应用,而且已经渗透到国防、生物、医学及航空航天等高技术领域。 超声技术已成为国际上公认的高科技领域.随着科学技术的发展,超声技术必将在我国的国民经济建设中发挥越来越大的作用。超声换能器是超声技术中的一个重要组成部分,其研发水平直接决定了超声技术的发展及应用广泛程度。超声换能器的研究是一门综合技术,其发展与现代科学技术密切相关.电子技术、自动控制技术、计算机技术以及新材料技术是影响超声换能器发展水平的一些重要的高新技术。 1、超声换能器的种类 目前超声换能器的种类有很多。按照能量转换的机理和所用的换能材料,可分为压电换能器、磁致伸缩换能器、静电换能器(电容型换能器)、电磁声换能器、机械型超声换能器等.按照换能器的振动模式,可分为纵向(厚度)振动换能器、剪切振动换能器、扭转振动换能器、弯曲振动换能器、纵-扭复合以及纵-弯复合振动模式换能器等。按照换能器的工作介质,可分为气介超声换能器、液体换能器以及固体换能器等.按照换能器的工作状态,可分为发射型超声换能器、接收型超声换能器和收发两用型超声换能器。按照换能器的输入功率和工作信号,可分为功率超声换能器、检测超声换能器、脉冲信号换能器、调制信号换能器和连续波信号换能器等.按照换能器的形状,可分为棒状换能器、圆盘型换能器、圆柱型换能器、球形换能器及复合型超声换能器等。另外,不同的应用需要不同形式的超声换能器,如平面波超声换能器、球面波超声换能器、柱面波超声换能器、聚焦超声换能器以及阵列超声换能器等等。 2、超声换能器的性能参数 超声换能器是一种能量转换器件,其性能描述与评价需要许多参数。超声换能器的特性参数包括共振频率、频带宽度、机电耦合系数、电声效率、

新型共轨压电喷油器驱动模块开发及应用

第2期(总第138期) 现代车用动力 N o 2(ser i a lN o 138) 2010年5月 M ODERN VEH ICLE POW ER M ay 2010 do:i10.3969/.j issn.1671-5446.2010.02.006 新型共轨压电喷油器驱动模块开发及应用* 高崴1,2,寇伟2,宋国民2 (1.上海交通大学计算机科学与工程系,上海 200030;2.中国一汽无锡油泵油嘴研究所,江苏无锡 214063) 摘要:在自主研发的新型共轨压电式喷油器基础上,设计开发了驱动电路,对压电驱动的核心电路进行研究,最后进行相关喷油泵及发动机台架试验验证,结果表明该驱动模块在各种工况下驱动性能良好,从而为下一步压电式共轨系统应用奠定了基础。关键词:喷油器;压电执行器;驱动;共轨系统 中图分类号:TK423.83 文献标识码:A 文章编号:1671-5446(2010)02-0032-04 D evelop m ent and Application of New P iezoelectric Injector for Co mm on Rail Syste m GAO W e i1,2,KOU W ei2,SONG Guo m i n2 (1.D ept o f Computer Sc i ence&Eng i nee ri ng,Shangha i Ji aotong U n i versity,Shangha i 200030,Ch i na; 2.FAW W ux i Fue l In j ection Equip m ent R esea rch Instit ute,W ux i 214063,Ch i na) Abstrac t:D r i v i ng c ircuit of piezoe l ectric ac t uator w as des i gned based on the study o f comm on rail sy stem w ith ne w i ndependent piezoe lectr i c syste m,and key c ircu its of p i ezoe lectr i c actuator we re stud i ed.F i nall y,some f ue l test bench and eng ine experi m ents w ere car ried out.It w as sho w ed by results tha t perfor m ance of dri v ing c i rcuit was good fo r various k i nds of conditions,the re f o re itw ill l ay a sol id foundati on f o r app licati on deve l op m en t of p i ezoe lectr i c co mmon ra il syste m. K ey word s:i n jector;piezoe l ec tric actuator;dr i v i ng;common ra il syste m 引 言 为满足不断提高的喷射压力及越来越苛刻的环保法规要求,须采用多次喷射控制策略,从而达到对燃烧过程进行优化的目的。柴油机特别是在中低转速时,必须进行多次喷射,以达到降低发动机工作噪音及优化性能的目的。对于多次喷射而言,执行器响应速度是关键,常规电磁式执行器由于受到原理限制,在响应提高到一定程度后要继续提高难度较大,压电式执行器正是顺应这种形势而产生,压电执行器作为快速响应执行器的一种,其优势越来越明显,基本代表着未来燃油喷射系统执行器的发展方向[1,2]。 1 压电晶体喷油器驱动设计 第1代共轨系统喷油器基于电磁阀电磁力工作,最新共轨技术要求燃油系统进行多次喷射,以便进一步优化发动机燃烧过程,同时降低发动机噪音。对多次喷射而言,需执行器具有快速响应能力,压电执行器利用压电材料的逆压电效应工作,即压电材料在施加电压后产生机械应力,压电式共轨系统正是利用这种原理进行工作的。利用压电特性设计的喷油器优势明显,这是由于压电石英晶格的变形速度在100 s以内,所以,压电喷油器的开关响应速度比电磁阀更快,这样对于同样的燃油喷射量,只需更短的喷油持续时间;另一方面,由于采用压电晶体块取代了电磁线圈,在喷油器内整个喷射控制链的累积公差可进一步降低,从而提高了喷射的重复精度,进而可更精确地控制燃油喷射量[1,3]。 1.1 压电晶体喷油器驱动模块介绍 压电晶体喷油器驱动开发的核心是驱动回路电压及电流的控制及开发,压电执行器驱动的原理如图1所示。其中V DC为充电电压,T1为充电高端开关,T2为低端开关,C A代表喷油器执行器,I CA为驱 *收稿日期:2009-12-13 作者简介:高崴(1981-),男,江苏盐城人,硬件工程师,工程硕士,研究方向为汽车电控系统。 基金项目:江苏省基础研究计划(自然科学基金)资助项目,项目编号BK2008535。

压电超声波换能器原理

超声波换能器 一种能把高频电能转化为机械能的装置。由材料的压电效应将电信号转换为机械振动。超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,而自身消耗很少的一部分功率。 超声波换能器,要解决的技术问题是设计一种作用距离大、频带宽的超声波换能器。 换能器由外壳、匹配层、压电陶瓷圆盘换能器、背衬、引出电缆和Cymbal阵列接收器组成。压电陶瓷圆盘换能器采用厚度方向极化的PZT-5压电材料制成,Cymbal阵列接收器由8~16只Cymbal换能器、两个金属圆环和橡胶垫圈组成。本发明的作用距离大于35m,频带宽度达到10kHz,能检测高速移动的远距离目标。 压电陶瓷超声换能器工作原理 压电陶瓷是一种功能性陶瓷,所谓功能性陶瓷就是对光,电,等物理量比较敏感的陶瓷。压电陶瓷对光和压力比较敏感,对压电陶瓷施加一个外力,压电陶瓷表面会产生电荷,这就是压电陶瓷的正压电效应,是一个将机械能转化为电能的过程;对压电陶瓷外加一个电场,压电陶瓷会发生微小的形变,这就是压电陶瓷的逆压电效应,是一个将电能转化为机械能的过程。利用逆压电效应,可以把高频电压转化为高频率的振动,从而产生了超声波。 超声波换能器是将电能转换成机械能(超声波)的器件,其中最成熟可靠的是以压电效应实现电能与声能相互转换的器件,称为压电换能器。这种夹心换能器在负荷变化时产生稳定的超声波,是获得功率超声波驱动源的最基本最主要的方法。[1] 将非电能量转换成电能量,不需要外电源,称换能器,也称有源传感器,换能器是超声波设备的核心器件,其特性参数决定整个设备的性能。 现在用的超声波换能器,除了磁致伸缩结构以外就是常用的用前后盖板夹紧压电陶瓷的“朗之万”换能器,超声波就是通过换能器将高频电能转换为机械振动。换能器的特性取决与选材和制作工艺,同样尺寸外形的换能器的性能和使用寿命是千差万别的。 我们主要生产大功率超声波换能器,应用与超声波塑料焊接机、超声波金属焊接机、各种手持式超声波工具、连续工作的超声波乳化均质器、雾化器、超声波雕刻机等超声波焊接设备。磁致伸缩 磁致伸缩有镍片换能器和铁氧体换能器。 铁氧体换能器的电声转换效率比较低,使用一、二年后效率下降,甚至几乎丧失电声转换能力。 镍片换能器的工艺复杂,价格昂贵,所以很少使用。 压电晶体 最成熟可靠的是以压电效应实现电能与声能相互转换的器件,称为压电换能器。 压电效应将电信号转换为机械振动。这种换能器电声转换效率高,原材料价格便宜,制作方便,也不容易老化。 常用的材料有石英晶体、钛酸钡和锆钛酸铅。 石英晶体的伸缩量太小,3000V电压才产生0.01um以下的变形。 钛酸钡的压电效应比石英晶体大20-30倍,但效率和机械强度不如石英晶体。 锆钛酸铅具有二者的优点,可用作超声波清洗,探伤和小功率超声波加工的换能器。 压电换能器的应用十分广泛,它按应用的行业分为工业、农业、交通运输、生活、医疗及军事等。 按实现的作用分为超声波加工、超声波清洗、超声波探测以及超声波雾化等。 编辑本段外形分类

打印机基本工作原理--完整版

打印机基本工作原理--完整版

打印机的基本工作原理 1.1.3 打印机的基本工作原理 一.阵式打印机的基本工作原理 针式打印机是与传统手写较为接近的一类打印机。针式打印机的打印头是由打印针构成 的,不同厂家的针式打印机,只是电路设计和内含的单片机软硬件不同而已,其基本工作原 理基本相同,即:打印机在自身微处理器(主控电路)的控制下,启动字车执行横向位移,与 此同时,装载在字车上的打印头也产生横向微步移动,打印头中排成一列、两列或三列的打 印针每移动一步,机子便按照机内字符库中的字形编码矩阵格式激励出打印针进行打印,形 成字符。

其具体工作原理是:加电后,按进纸键,机子执行进纸动作,按联机键,接口电路接收 主机发送来的打印控制命令、字符打印命令和图形打印命令。打印机及微型计算机根据送来 的信息进行相应的处理,从字符库或汉字库中调出相对应的字符或图形编码首列地址(正向 打印时)或末列地址(反向打印时),按送来的信息一列一列找出相对应的字符或图形编码, 经驱动电路送到打印头,激励打印针出针,击打色带后,在打印纸上打印出相应的字符或图 形。 字符库和汉字库都是事先存在打印机微型计算机内部的EPROM芯片内。由不同的点阵 组成不同的字符或汉字,并事先分配好地

址,针式打印机打印汉字时,实际上是打印字符或 图形的点阵,通过点阵的密集,形成字符或图形的线条或图块。 二.喷墨打印机的基本工作原理 喷墨打印机是借助于内置的墨水喷头,在打印信号的驱动下向打印纸喷射墨水来实 现字符及图形打印的。根据墨水喷射方式的不同,喷墨打印机又分为连续式和按需式两种。 连续式喷墨打印机的工作方式为电荷调制式,其墨水连续地从喷头中喷出,喷射的墨水 滴受到字符集点阵调制的控制进行充电,利用偏转电极来改变墨水滴的前进方向,选出的点 阵墨水滴到纸上形成图案。其主要特点是打印速度快,易实现彩色打印且打印纸可使用普通

一种高压共轨喷油器的驱动电路设计

一种高压共轨喷油器的驱动电路设计 时间:2012-06-29 11:41:59 来源:现代电子技术作者:于正同张楠摘要:分析了高压共轨喷油器电磁阀工作原理,设计的驱动模块采用高电压、大电流对电磁阀的开启加以控制,随后采用低电压、小电流的PWM波维持导通,满足了高压共轨喷油器电磁阀驱动控制的要求。试验表明此驱动电路性能优异,设计运行可靠,能满足高压共轨喷油器电磁阀驱动控制的要求。 关键词:高压共轨;电磁阀;驱动电路 0 引言 高压共轨系统由高压油泵、共轨、喷油器、电子控制单元(ECU)和各种传感器组成。低压燃油泵将燃油输入高压油泵,高压油泵将低压燃油加压成高压燃油,并将高压燃油供入共轨之中。燃油压力是由通过调节供入共轨中的燃油量来控制的。共轨内的高压燃油经高压油管输送到安装在气缸盖上的喷油器内,经喷油器内的喷油嘴将燃油喷入燃烧室内。在电控共轨系统中,由各种传感器检测出发动机的实际运行状况,经过ECU硬件的输入模块进行相应处理,将信号传送给CPU,由CPU进行计算、判断、定出适合于该运行状况的供油量、喷油量、喷油定时等参数,再经过ECU专用集成电路的输出模块进行处理,提供高压预喷射、主喷射和PWM喷射脉冲,驱动电磁阀开关,使发动机处于最佳工作状态。要达到最佳工作状态需要借助灵活可变的喷油速率(多次喷射技术)得以实现,这要求共轨喷油器具有高速响应的特征。而其快速响应特性是通过电磁阀的特殊设计及高压电源(50V)模块快速放电实现的。电控燃油系统核心部件是执行器,电磁阀作为应用最广泛的燃油喷射系统执行器,其驱动电路直接影响燃油喷射系统乃至整个发动机的性能。 喷油器电磁阀驱动模块是共轨ECU开发的核心技术,现阶段,喷油器电磁阀广泛地采用峰值~维持控制方式,峰值电流为20A左右,维持电流为13A左右,该方式通常由BOOST升压与PWM调制驱动两个部分构成,本研究对这两部分进行详细的分析,并给出相应的实现方法和控制电流波形。 1 升压模块的结构和原理 喷油器为了实现快速响应需要高驱动电压,这里采用DC-DC转换模块将柴油机24V蓄电池电压转换到50V。50V电源模块是共轨喷油器电磁阀驱动电路中的重要部件,它由升压型DC-DC电路构成。设计思路采用24V斩波-升压-整流-电容充电-放电激励电磁阀的方式,基本构成如图1所示。在充电过程中,开关管闭合,开关处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。放电过程这是当开关管断开时的等效电路。当开关断开时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢地由充电完毕时的值变为0。而原来的电路己断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了,升压完毕。起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。

换能器知识点

概念题: 1.换能器:能够发射或接收声波,并完成声波所携带的信息和能量与电的信息和能量装换的装置,就称为电声换能器,简称换能器。 2.等效电路法:将换能器看为做机械振动的弹性体,依据波动理论可以得到它的机械振动方程,根据电路的规律可以得到电路状态方程,根据压电方程和机电类比可以建立换能器的机电等效图,换能器的工作特性和参数就可以通过机电等效图来求得。(优点:物理意义明确,缺点:通常是一维分析,适用于简单结构) 3.有限元法:是以变分原理和剖分插值原理为基础,将待分析模型想象的划分成一系列单元,构造单元插值函数,将单元内部点的状态用单元节点状态的差值函数来近似描述。 这样就将实际的物理问题转化成求解单元节点状态的代数方程组问题。(优点:分析任意结构的换能器;结果直观准确;工作状态仿真;应用广泛) 4.居里点:压电陶瓷的性能随温度变化,温度超过某一温度时压电性能会完全消失。5.自发形变:在压电陶瓷的晶格结构中,晶胞的大小形状与温度相关,t>Tc(居里温度),立方晶胞;t

压电换能器的主要技术参数(V2.2)

上海谐鸣超声设备有限公司 谐鸣超声技术支持:电话013681952953(王工)、QQ 2564620565 1 压电换能器的主要技术参数 压电(超声)换能器的技术参数较多,大致有以下一些: 1、灵敏度:指换能器转化能量的效率,高灵敏度表示高的转化效率; 2、谐振(工作)频率:指换能器谐振时的频率,谐振时,换能器灵敏度趋 于最高,该参数和系统紧密相关; 3、指向性:指换能器辐射面各方向角度发射或接收信号的强度变化,一般 测试换能器主声轴的一个平行截面,测距、定位、成像时需考虑该指标; 4、盲区(余振):指换能器余振或拖尾的严重程度,即驱动信号结束后,换 能器自身惯性振动持续的时间,测距成像类换能器需检测该指标; 5、耐温性:指换能器能正常工作的高低温极限; 6、耐压力性:指换能器能正常工作的高低压力极限; 7、电参数:指换能器本身的阻抗(导纳)、容值、感值等,和系统匹配相关; 8、振幅:指换能器在固定驱动电压下的振动幅度,和灵敏度基本类似,利 用换能器的动能时需参考该指标; 9、电压极限:指换能器可加的最大电压值,大功率超声系统特别需考虑该 指标,电压长期超过该值易引起压电陶瓷的退极化; 10、密封性:指换能器在液体中的密封性,水下换能器需考虑该指标; 11、耐腐蚀性:指换能器对腐蚀性环境抵抗能力,腐蚀性环境下应用需考虑 该指标; 12、带宽:指换能器灵敏度的平坦程度,或对不同频率信号的兼容程度; 13、其他:如重量、体积、外形尺寸、外壳材料、信号引出方式、换能器安 装接口类型等。 以上罗列的是换能器主要指标参数,不同的仪器设备、不同的应用环境和场合要求不太一样,有一定的选择性,并不是指标越多、要求越高越好,如有的场合要求指向性越尖越好,而有的场合又希望指向性的开角大些好。此外,每增加一项考核指标,都会同时增加换能器制造者、使用者的工作量和成本,部分指标会导致换能器制造工作量和成本成倍的增加,这没有必要,只有选择和系统或使用场合相应的指标参数才是合理有效的。

第三章 医用超声换能器

第三章医用超声换能器 应用超声波进行诊断时,首先要解决的问题是如何发射和接收超声波,通过使用超声换能器可以解决这个问题。 目前医学超声设备大多采用声电换能器来实现超声波的发射与接收。 声电换能器按工作原理分为两大类,即电场式和磁场式。 电场式中,利用电场所产生的各种力效应来实现声电能量的相互转换,其内部储能元件是电容,它又分为压电式、电致伸缩式、电容式。 磁场式中,是借助磁场的力效应实现声电能量的互相转换,内部储能元件是电感,它又分为电动式、电磁式、磁致伸缩式。 在医学超声工程中,使用的最多的是压电式超声换能器。 §3.1 压电效应与压电材料特性 一、压电效应 压电效应是法国物理学家Pierre Curie 和Jacqnes Curie 兄弟于1880年发现的。 图3-1 压电效应示意图 对某些单晶体或多晶体电介质,如石英晶体、陶瓷、高分子聚合材料等,当沿着一定方向对其施加机械力而使它变形时,内部就产生极化现象,同时在它的两个对应表面上便

产生符号相反的等量电荷,并且电荷密度与机械力大小成比例;而且当外力取消后,电荷也消失,又重新恢复不带电状态,这种现象称为正压电效应,如图3-1。当作用力的方向改变时,电荷的极性也随着改变。 相反,当在电介质的极化方向上施加电场(加电压)作用时,这些电介质晶体会在一定的晶轴方向产生机械变形;外加电场消失,变形也随之消失,这种现象称为逆压电效应(电致伸缩)。 如果在电介质的两面外加交变电场时,电介质产生压缩及伸张,即产生振动,此振动加到弹性介质上,介质亦将振动,产生机械波。如外加交变电场频率高于20KHz,则这种波即是超声波。 超声接收换能器采用了正压电效应,将来自人体中的声压转变为电压。超声波发射换能器采用了逆压电效应,将电压转变为声压,并向人体发射。 压电效应是可逆的,压电材料既具有正压电效应,又具有逆压电效应。医学超声设备中,常采用同一压电换能器作为发射和接收探头,但发射与接收必须分时工作。 当外加的交变电压的频率与固有频率一致时,产生的机械振动最强;当外加的机械力的频率与固有频率一致时,所产生的电荷也最多。在超声波诊断仪中激励脉冲的频率必须与探头的固有频率相同。 实验证明,当所施加力或电的频率不与晶体固有频率一致时,压电换能器晶体产生的电信号幅度和变形振动幅度都将变小,可见,它们都是频率的函数。 二、压电材料 具有压电效应的物质称为压电材料或压电元件。 目前已发现的压电材料品种繁多,性能各异,按系列可分为三大类。 (一)压电单晶体 超声换能器应用的天然单晶体有石英、电石等,人工制造的单晶体,如硫酸锂、鈮酸锂等,都具有同样的压电特性。 石英晶体的性能相当稳定,但需使用几千伏以上的高电压,而且要求加工精密度高,机电耦合系数(灵敏度)低,故目前医用诊断探头已很少使用。 (二)压电陶瓷 压电陶瓷品种最多,它是人工制成的压电多晶体材料,

用ANSYS软件分析压电换能器入门

用ANSYS 软件分析压电换能器入门 A :分析过程基本步骤 一:问题描述(草稿纸上完成) 1:画出换能器几何模型,包括尺寸 2:选定材料 3:查材料手册确定材料参数 二:建立模型 1:根据对称性确定待建模型的维数 2:根据画出的几何模型确定关键点坐标,给关键点编好号码 3:建立一个文件夹用于当前分析 4:启动ANSYS 软件,指定路径到建立的文件夹, 5:定义单元类型 压电换能器分析使用的单元类型: solid5:8个节点3D 六面体耦合场单元(也可缩减为三角柱形单元或四面体单元)。无实常数。 plane13:4个节点2D 四边形耦合场单元(也可缩减为三角形单元)。无实常数。 solid98:10个节点3D 四面体耦合场单元。无实常数。 Fluid30:8个节点3D 六面体声学流体单元(也可缩减为三角柱形单元或四面体单元)。应用于近场水和远场水。实常数为参考声压,可缺省。 Fluid130:4个节点面无穷吸收水声学流体单元(也可缩减为三角形面单元)。实常数:半径,球心X ,Y ,Z 坐标值。 6:定义材料参数 对一般均匀各向同性材料要给出材料密度,杨氏模量,泊松系数。(静态分析不用密度) 对压电材料: 一般使用的压电方程:e 型压电方程,因此输入的常数为 ????????? ?????? ???? ?=E E E E E E E E E E E E E E E E E E E E E E c c c c c c c c c c c c c c c c c c c c c C 665655 464544 36353433 2625242322 161514131211对称 ???????? ??????????=6362 61 535251434241333231 232221131211 e e e e e e e e e e e e e e e e e e e ????????? ?=S S S S 3322 11εεεε 注意!一般顺序为:XX ,YY ,ZZ ,YZ ,XZ ,XY 。在ANSYS 中为XX ,YY ,ZZ ,XY ,YZ ,XZ 。因此,前两矩后三行和后三列要做相应变化。 7:建立关键点 8:把关键点连成线

换能器优化设计与实验

燕山大学 本科毕业设计(论文)开题报告 课题名称:超声波换能器优化设计与实验 学院(系):里仁学院 年级专业:工业自动化仪表2班 学生姓名:孙骏 指导教师:童凯 完成日期:2013年3月27日

一、综述本课题国内外研究动态,说明选题的依据和意义 (一)本课题研究意义 超声换能器是实现声能与电能相互转换的部件。最早的超声换能器是P.郎之万(P1L angevin) 在1917 年为水下探测设计的夹心式换能器。这个换能器是以石英晶体为压电材料, 用两块钢板在两侧夹紧而成的。1933 年以后出现的叠片型磁致伸缩换能器, 强度高、稳定性好、功率容量大, 迅速取代了当时的郎之万换能器。到了50 年代, 由于电致伸缩材料钛酸钡铁电陶瓷、锆钛酸铅压电陶瓷的研制成功, 使郎之万型超声换能器再度兴起。目前压电超声的应用范围很广, 且对超声测量精度、测量范围、超声功率以及器件的微小化程度的要求越来越高。目前妨碍超声广泛应用的原因是缺少适用、可靠、经济、耐用的超声换能器。但是超声换能器历来是各种超声应用的关键部件, 其性能描述与评价需要许多参数。超声换能器的特性参数包括共振频率、频带宽度、机电耦合系数、电声效率、机械品质因数、阻抗特性、频率特性、指向性、发射及接收灵敏度等等。不同用途的换能器对性能参数的要求不同,例如,对于发射型超声换能器,要求换能器有大的输出功率和高的能量转换效率;而对于接收型超声换能器,则要求宽的频带和高的灵敏度及分辨率等。因此,在换能器的具体设计过程中,必须根据具体的应用,对换能器进行性能测试实验与分析,从而进行合理的设计与优化。 (二)国内外研究动态 1、超声压电材料的发展 (1)压电复合材料换能器:目前压电陶瓷是超声换能器中最常用的材料,具有机电转换效率高、易与电路匹配、性能稳定、易加工和成本低等优点得到广泛应用。同时,压电陶瓷材料也存在声特性阻抗高,不易与人体软组织及水的声阻抗匹配;机械品质因数高,带宽窄;脆性大、抗张强度低、元件成型较难及超薄高频换能器不易加工等缺陷。20世纪70年代美国Newnham 等J开始对复合材料的研究,复合材料是将压电陶瓷和高分子材料按一定的连通方式、一定的体积比例和一定的空间几何分布复合而成,目前研究和应用最广泛的为l-3型压电复合材料,其具有高灵敏度、低声特性阻抗、较低的机械品质因数和容易成型等特性。复合材料超声换能器可实现多频率成像、谐波成像和其他非线性成像,其性能明显优于压电陶瓷材料制作的换

超声波换能器的匹配设计

超声波换能器的匹配设计 一、匹配概述 超声波发生器与换能器匹配包括两个方面,一是通过匹配使发生器向换能器输出额定的电功率,这是由于发生器需要一个最佳的负载才能输出额定功率所致,把换能器的阻抗变换成最佳负载,也即阻抗变换作用;二是通过匹配使发生器输出效率最高,这是由于换能器有静电抗的原因,造成工作频率上的输出电压和电流有一定相位差,从而使输出功率得不到期望的最大输出,使发生器输出效率降低,因此在发生器输出端并上或串上一个相反的抗,使发生器负载为纯电阻,也即调谐作用。由此可见匹配的好坏直接影响着功率超声源的产生和效率。二、阻抗匹配 为了使功率放大器输出额定功率最大;在电源电压给定条件下主要取决于负载阻抗。一般在D类开关型功放中其发生器变压器初级等效负载Rl'上的输出功率表达式为: 式中,V Am为等效负载上的基波幅度; vcc为电源电压;vces为功放管饱和压降,故 为了保证系统有一定功率余量(因输出变压器,末级匹配回路及晶体管损耗电阻都有损耗,po' 需要乘上一个约等于1.4—1.5的系数。即输出功率po为1.5Po'; 从上式可知,在电源电压给定之后,输出功率的大小取决于等效负载RL’。目前大多数功率超声发生器的负载为压电型换能器,其阻抗约为几十欧姆至几百欧姆间,为了要达到要求的额定功率,因此需要对换能器负载RL进行阻抗变换。由高阻抗变换为低阻抗。一般常用的方法,通过输出变压器的初次级线圈的匝数

比进行变换。变压器次初级匝数比为n/m,则输出功率PO时的初级电阻 举例:要求一发生器输出在换能器上的功率为1000W,设直流电VCC为220V,VCES=10V,功率应留有一定余量,则PO=1.5PO'=1500W。则变压器初 级的 若换能器谐振时等效电阻RL=200Ω,则输出变压器次级/初级圈数比 以上称谓阻抗变换,是通过输出变压器实行的。 输出变压器是超声波发生器阻抗匹配、传输功率的重要部件,它的设计与绕制工艺对发生器的工作安全是十分重要的。它不仅会以漏感、励磁电流等方式影响电路的工作,其漏感还是形成输出电压尖峰的主要原因。为此,在设计时,应选取具有高磁通密度B,高导磁率μ,高电阻率ρc和低矫顽力Hc的高饱和材料作铁芯。一般在防止高频变压器的瞬态饱和时,在设计时要注意如下几点:1.工作磁通密度B的选取 铁芯材料的磁感应增量ΔB愈大,所需线圈匝数愈少,直流电阻R也愈小,从而线圈的铜损Pm也愈小。ΔB取得高时,传输的脉冲前沿就愈陡。因此,在设计变压器时,选取高磁通密度的材料作铁芯,这对降低变压器的损耗、减小体积和重量都是很有利的。为了避免在稳态或过渡过程中发生饱和,一般选取工作磁通密度B≤Bs/3为宜,这里Bs为磁芯的最大和磁通密度。 2.要保证初级电感量足够大 一般要求变压器初级阻抗应满足下式关系:WLl≥15RL',其中RL' 为次级负载所算到初级边的等效电阻值,WLl为初级电感感抗,若初级电感量太小,励 6.5Ω

超声波换能器的匹配设计

一、匹配概述 超声波发生器与换能器匹配包括两个方面,一是通过匹配使发生器向换能器输出额定的电功率,这是由于发生器需要一个最佳的负载才能输出额定功率所致,把换能器的阻抗变换成最佳负载,也即阻抗变换作用;二是通过匹配使发生器输出效率最高,这是由于换能器有静电抗的原因,造成工作频率上的输出电压和电流有一定相位差,从而使输出功率得不到期望的最大输出,使发生器输出效率降低,因此在发生器输出端并上或串上一个相反的抗,使发生器负载为纯电阻,也即调谐作用。由此可见匹配的好坏直接影响着功率超声源的产生和效率。二、阻抗匹配 为了使功率放大器输出额定功率最大;在电源电压给定条件下主要取决于负载阻抗。一般在D类开关型功放中其发生器变压器初级等效负载Rl'上的输出功率表达式为: 式中,VAm为等效负载上的基波幅度; vcc为电源电压;vces为功放管饱和压降,故 为了保证系统有一定功率余量(因输出变压器,末级匹配回路及晶体管损耗电阻都有损耗,po' 需要乘上一个约等于1.4—1.5的系数。即输出功率po 为1.5Po'; 从上式可知,在电源电压给定之后,输出功率的大小取决于等效负载RL’。目前大多数功率超声发生器的负载为压电型换能器,其阻抗约为几十欧姆至几百欧姆间,为了要达到要求的额定功率,因此需要对换能器负载RL进行阻抗变换。由高阻抗变换为低阻抗。一般常用的方法,通过输出变压器的初次级线圈的匝数比进行变换。变压器次初级匝数比为n/m,则输出功率PO时的初级电阻 举例:要求一发生器输出在换能器上的功率为1000W,设直流电VCC为220V,

VCES=10V,功率应留有一定余量,则PO='=1500W。则变压器初级的 Ω若换能器谐振时等效电阻RL=200Ω,则输出变压器次级/初级圈数比 以上称谓阻抗变换,是通过输出变压器实行的。 输出变压器是超声波发生器阻抗匹配、传输功率的重要部件,它的设计与绕制工艺对发生器的工作安全是十分重要的。它不仅会以漏感、励磁电流等方式影响电路的工作,其漏感还是形成输出电压尖峰的主要原因。为此,在设计时,应选取具有高磁通密度B,高导磁率μ,高电阻率ρc和低矫顽力Hc的高饱和材料作铁芯。一般在防止高频变压器的瞬态饱和时,在设计时要注意如下几点:1.工作磁通密度B的选取 铁芯材料的磁感应增量ΔB愈大,所需线圈匝数愈少,直流电阻R也愈小,从而线圈的铜损 Pm也愈小。ΔB取得高时,传输的脉冲前沿就愈陡。因此,在设计变压器时,选取高磁通密度的材料作铁芯,这对降低变压器的损耗、减小体积和重量都是很有利的。为了避免在稳态或过渡过程中发生饱和,一般选取工作磁通密度B≤Bs/3为宜,这里Bs为磁芯的最大和磁通密度。 2.要保证初级电感量足够大 一般要求变压器初级阻抗应满足下式关系:WLl≥15RL',其中RL' 为次级负载所算到初级边的等效电阻值,WLl为初级电感感抗,若初级电感量太小,励磁电流将比较大,励磁电流过大,变压器的损耗将增加,温升随之增高,从而降低Bs,使变压器进入饱和的可能性增大。 3.要考虑“集肤效应”的影响 在高频工作时,流过导线的电流会产生“集肤效应”。这相当于减少了导线有效截面积,增加了导线的电阻,从而引起导线的压降增大,导致变压器温度升高,结果增大了变压器进入饱和的危险性,建议采用小直径的多股导线并绕的方

多喷头数字喷绘机喷头控制系统研究

多喷头数字喷绘机喷头控制系统研究 发表时间:2019-07-05T12:06:49.760Z 来源:《电力设备》2018年第36期作者:陈广接[导读] 摘要:在本篇文章当中我们主要是以一台自行设计的多喷头全彩喷绘机压电喷头控制系统为一个研究基础,我们主要是对喷绘机的整体设计进行了简单的探讨,通过对于用户需求的分析以及市场中产品存在的一些问题,并且我们相应了也提出了一些解决方案,希望能够提供给相关从事者一些帮助。 (皇剑数码科技(上海)有限公司上海 201705) 摘要:在本篇文章当中我们主要是以一台自行设计的多喷头全彩喷绘机压电喷头控制系统为一个研究基础,我们主要是对喷绘机的整体设计进行了简单的探讨,通过对于用户需求的分析以及市场中产品存在的一些问题,并且我们相应了也提出了一些解决方案,希望能够提供给相关从事者一些帮助。 关键词:多喷头;数字喷绘;喷头控制; 引言:随着我们不断的迈入21世纪的时候,数字产品已经开始渐渐的影响到了社会的每一个角落,并且开始应用到各个产业中,带来了十分巨大的商业价值,对于数字喷绘来讲,它作为一个新兴的产业,在继承了传统印刷的优点后,已经开始逐渐应用到人们的生活中,从而形成了一条新兴的产业链。 一、压电喷头的简单概括 在本篇文章当中,我们主要是以国外的企业研发出来的一款喷头来做为我们的参考对象,在这款喷头中它的喷孔分为三列,每一列在进行喷火的时候,只能点燃其三分之一的喷孔,每三次点火才能完成所有喷孔的点火。 1.1压电喷头外观以及相应的逻辑机构 喷头主要是由四个部分进行组成的,分别为墨水入口,接口插件,喷孔板以及防护面板四个方面组成。对于墨水入口来讲,它的作用便是当墨水注入的时候能够有效的进入到管状通道中,接口插件的作用是管控压电喷头工作的一条通道,能够通过插头引出的数字信号端来对喷头控制单元以及喷头两者进行有效的交互,从而能够对喷头达成一个有效的管控,喷孔板是用作于对喷孔进行一个排列组合,因此我们在进行观察的时候,不容易被察觉到。防护面板这是在喷孔板外围的一个金属外壳,能够有效的防止喷孔和外界进行直接接触。 1.2喷头内部的寄存器进行简单的说明 图2 寄存器简单概括 我们从图2中可以进行看出,在其内部有着两种寄存器,这两种寄存器分别为像素寄存器以及配置数据寄存器,来使得像素数据能够准确的输送到像素数据寄存器当中,并且还能够把配置数据传送到数据寄存器中。 1.3喷头控制板的总体设计 在计算机当中我们需要把已经载入的图像数据相应的设定好喷绘参数,接着使用USB线路来把对应的图像数据传输到处理单元中,接着处理单元通过FPGA以及32位的MCU来将喷绘数据进行有效的处理,接着通过分流传输接口以及喷器控制单元两者同时对数据图像进行传输,并且还需要将数据传送到喷头当中,对其进行解码以及同步等操作。 除了上面的一些数据信号之外,我们还需要使得喷头进行高压驱动才能有效的完成喷绘任务,因为在喷头中每一个容量的电压参数值都是不同的,因此不能全部的写入到程度当中,因此,对于这样的一个问题,我们需要使用USB总线来讲数据由计算机提供的控制窗口载入到图像数据处理中。 2.1 喷头控制板设计要求进行简单分析 对于喷头中的控制电路中的电源可以分为逻辑电源以及驱动电源,我们在对压电喷头的驱动电压进行使用的时候,为了能够在一定程度上稳定点火,那么就需要随着温度的不断改变而改变驱动电压这是一件十分重要的事情,那么便需要进行设计相应的控制模板,这一个模板主要是负责存储喷头的容积电压以及墨水的补偿电压。 对于喷头驱动信号部分这一个部分主要负责的便是对内部的配制数据以及像素数据进行有效的加载,而配制数据是喷头上电之前需要进行喷绘任务前必须完成的一个关键问题,而像素数据则是需要由上位机按照图像的不同向喷头控制板进行输出,接着再由喷孔控制板载入到喷头进行相应的处理工作。那么,当我们在进行设计中,应当让CPLD来做为喷头驱动信号的控制逻辑单元,它可以对配置数据以及像素数据两者进行有效的加载处理操作。 2.2 喷头控制板的电路设计探讨

压电式微量液滴分配的机理与实验研究

压电式微量液滴分配的机理与实验研究 液滴分配系统在打印生物液滴阵列,喷制柔性电子电路,打印生物组织与器官,制作微机电器件,配制药物以及快速精密成型制造等领域发挥了重要作用。其中,基于圆管式压电式喷头的液滴分配系统更是因为分配精度高、速度快和操作方便而被广泛应用。因此,研究圆管式压电喷头的内部动作机理和液体分配特性,包括相关的液柱分离机理、压电喷头激励波形的调整方法,对于设计压电式液滴分配系统、指导液滴分配试验均具有重要的意义。为了获得压电喷头在电压激励下其内部的变形情况和应力情况,建立了压电喷头稳态响应的数学模型。 基于逆压电效应和厚壁圆管变形理论,结合压电管和玻璃管的位移和应力条件,求得圆管式压电喷头在电压激励下的位移场、应力场、电势分布以及内部流体产生的压力大小。基于此,进一步讨论了壁厚和液体体积弹性模量对于喷头的整体位移场和驱动效应的影响效果。研究结果对于理解圆管式压电喷头的变形过程,设计合理的压电分配喷头具有指导意义。为了揭示液面振荡的内在机理,建立了压力波在喷头内部产生、传递和反射过程的数学模型,最终得到喷嘴口处压力波的响应情况。 该模型结合细管粘性流体的压力波传递理论,提出液体粘性能对于喷头内部的压力波传递过程产生了较为明显的阻滞和耗散作用。设计了液滴喷射实验和液舌振荡实验,结合液滴成像系统获得了不同停留时间情况下液滴喷射速度或液舌振荡情况随停留时间的变化关系,验证了压力波数学模型的正确性。实验发现,喷嘴口的压力响应是激励电压在上升时间和下降时间产生的压力波经过传播和反射后到达喷嘴口处的综合作用,过大或过小的停留时间均不利于液滴的产生。在喷射动能的意义上,最佳停留时间可能介于l/c(玻璃管长度除以静态声速)与2l/c之间,并且与流体粘度和激励频率存在一定的关系。 圆管式压电喷头除了可以在按需分配的模式下产生液滴外,也存在着连续分配液滴的潜力,因此,有必要研究液柱分离的相关机理。利用Young-Laplace定理建立了液柱轮廓演变过程中轴对称空间光滑曲面的当地曲率与法向应力之间的关系,确定了几个重要的边界条件,并结合柱坐标系下的连续性方程和动量方程,得到了液柱分离的数学模型。利用交错网格和有限差分法将偏微分方程组中的空间导数差分化,利用Matlab中的ODE15S求解器求解得到液滴分离前各个时刻液

相关主题
文本预览
相关文档 最新文档