当前位置:文档之家› 概率论1.5事件的独立性

概率论1.5事件的独立性

概率论1.5事件的独立性
概率论1.5事件的独立性

《概率论》课后练习(四)

第一章§1-5事件的的独立性

班级 姓名 座号 成绩

一.填空题(本题共计1.分)

1. 若B A ,为两个相互独立的事件,且4.0)(,3.0)(==B P A P ,则)|(B A P = .

2. 某人投篮,命中的概率为2.0,现独立投篮3次,求至少命中2次的概率为 .

3.在三重伯努里实验中,如果至少有一次实验成功的概率为

64

37,则每次成功的概率 . 二.单项选择题(本题共计1分)

1.设0)(=AB P ,则下列选项哪个正确 ( )

(A )B A 和不相容; (B )B A 和独立;

(C ) ;0)(0)(==B P A P 或 (D ) )()(A P B A P =- 2.某人向同一目标连续独立地射击3次,他第i次击中目标的概率为1

+=i i p i )3,2,1(=i ,则此人3次射击中恰好一次命中目标的概率为( )。

(A )2411 (B ) 241 (C ) 41 (D ) 2

1 3. 将一枚硬币独立地抛投两次,引进事件=1A “第一次出现正面”, =2A “第二次出现正面”, =3A “正、反面各出现一次”, =4A “正面出现两次”,则下列结论正确的是( )。

(A )321,,A A A 相互独立 (B )432,,A A A 相互独立

(C )321,,A A A 两两独立 (D )432,,A A A 两两独立

三.判断题(每小题0.5,共计1分)

1. 若事件C B A ,,相互独立,则C B A ,,一定两两相互独立. ( )

2. 若事件,A B 相互独立,则,A B 一定互不相容. ( )

四.计算题(每小题1分,共计2分)

1. 三人独立地破译一个密码,他们能单独译出的概率分别是1/5,1/3,1/4,试求此密码被译出的概率.

2.设每个元件的可靠度都是0.96,试问,至少要并联多少个元件才能使系统的可靠度大于

0.999?(假定每个元件是否正常工作是相互独立的)

一.,3.0 ,

104.0.41 二.DCC

三.√× 四.1.设三人独立破译密码事件分别为A,B,C ,密码被破译事件为D , ,4

1)(,31)(,51)(===C P B P A P )(1)()(C B A P C B A P D P ??-=??= )

()()(1)(1C P B P A P C B A P -=-= 4332541??-

= =.5

3

2. 设A:“至少要并联n 个元件才能使系统的可靠度大于0.999”,

999.004.0*96.0*1)(00>-=n n C A P

则15.2>n

故至少要并联3个元件才能使系统的可靠度大于0.999.

事件的独立性

§ 1.5 事件的独立性 一、两个事件的独立性 在条件概率中,一般情况下,P(B|A)P(B)P(A|B)P(A)≠≠, 但在特殊的条件下,就不同了,请看下例: 例1.5.1 袋中有5球,3新2旧,从中任取一球,有返回的取两次, 令A=第一次取新球,B=第二次取新球。 因为是有返回抽取,所以 3P(B|A)P(B)5 = = 显然也有 3P(A|B)P(A)5== 两个事件独立的直观定义: 设A 、B 两个事件,一个事件发生与否对另一个事件的发生及其发生的概率不产生影响,则称A 、B 这两个事件是相互独立的。 这是中文描述性定义。下面推出数学定义: 事件A ,B 互不影响P(B|A)P(B)?=,P(A |B)P(A)= P(A)P(B |A)P(AB)P(A)P(B)P(B)P(A |B)??==??或 11A B P(AB)P(A)P(B) A B =定义.5.:设有事件、,若则称事件、相互独立。 由定义可证明,必然事件、不可能事件与任何事件都是独立的。 在现实世界中,随机现象独立的情况是大量存在的,如返回抽样、重复试验、彼此无关的工作…..。 若要证明两个事件独立,必须依据定义证明。 而在实际问题中,判断两个事件独立,大多根据实际情况和经验,看是否相互影响,要注意的是我们不能只停留在感觉上。 定理1.5.1 A B A B A B A B 若,相互独立,则与;与;与都相互独立。 证明:A B 以与为例, P (A B )P (A B )=-P (A A B )=-P (A )P (A B =- P (A ) P (A )P (=- P (A )[1P (B )]P (A )P (B )=-= 由定义可知 A B 与相互独立。

事件的独立性教案

§2.2.2事件的独立性 学习目标 1.理解两个事件相互独立的概念。 学习过程 【任务一】问题分析 问题1:准备知识回顾: (1)互斥事件:不可能同时发生的两个事件,=+)(B A P 一般地:如果事件12,,,n A A A L 中的任何两个都是互斥的,那么就说事件 12,,,n A A A L 彼此互斥 (2)对立事件:必然有一个发生的互斥事件.()___()_________P A A P A +=?= (3)互斥事件的概率的求法:如果事件12,,,n A A A L 彼此互斥,那么 12()n P A A A +++L = 问题2:袋子中装有大小质地均相同的5个小球,其中3个红球,2个白球,每次取一个,无放回地取两次,求在已知第一次取到红球的条件下,第二次取到红球的概率。 问题3:上述问题中,将“无放回”改为“有放回”,问题中事件的概率会改变吗?请尝试猜想并验证你的猜想。 【任务二】概念理解 1.相互独立事件:事件A 是否发生对事件B 发生的概率没有影响,称两个事件B A ,相互独立,并把这两个事件叫做相互独立事件。 2.若两个事件B A ,相互独立,则有)()()(B P A P B A P ?=I 【任务三】典型例题分析 例1:甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求: (1)2人都射中目标的概率;

(2)2人中恰有1人射中目标的概率; (3)2人至少有1人射中目标的概率; (4)2人至多有1人射中目标的概率? 例2:某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是 0 . 05 ,求两次抽奖中以下事件的概率: (1)都抽到某一指定号码; (2)恰有一次抽到某一指定号码; (3)至少有一次抽到某一指定号码. 【任务四】课后作业 1.已知某种高炮在它控制的区域内击中敌机的概率为0.2,假定有5门这种高炮控制某个区域,则敌机进入这个区域后未被击中的概率是 2.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是 3.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34 ,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为 4.来成都旅游的外地游客中,若甲,乙,丙三人选择去武侯祠游览的概率均为35 ,且他们的选择互不影响,则这三人中至多有两人选择去武侯祠游览的概率为 5.从10位同学(其中6女,4男)中随机选出3位参加测验,每位女同学能通过 测验的概率均为45,每位男同学通过测验的概率均为35 ,求: (1)选出的3位同学中,至少有一位男同学的概率; (2)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.

高中数学事件的独立性

高中数学事件的独立性 一、基础过关 1.有以下3个问题: (1)掷一枚骰子一次,事件M :“出现的点数为奇数”,事件N :“出现的点数为 偶数”; (2)袋中有5红、5黄10个大小相同的小球,依次不放回地摸两球,事件M :“第1次摸到红球”,事件N :“第2次摸到红球”; (3)分别抛掷2枚相同的硬币,事件M :“第1枚为正面”,事件N :“两枚结果相同”. 这3个问题中,M ,N 是相互独立事件的有 ( ) A .3个 B .2个 C .1个 D .0个 2.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是 ( ) A.5 12 B.1 2 C.712 D.34 3.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,x ,y 构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为 ( ) A.1 16 B.18 C.3 16 D.14 4.两个实习生每人加工一个零件,加工为一等品的概率分别为23和3 4 ,两个零件是否加工为 一等品相互独立,则这两个零件中恰有一个一等品的概率为 ( ) A.12 B.512 C.14 D.1 6 5.来成都旅游的外地游客中,若甲、乙、丙三人选择去武侯祠游览的概率均为3 5,且他们的 选择互不影响,则这三人中至多有两人选择去武侯祠游览的概率为 ( ) A.36125 B.44125 C.54125 D.98125 二、能力提升 6.设两个独立事件A 和B 都不发生的概率为19 ,A 发生B 不发生的概率与B 发生A 不发生的 概率相同,则事件A 发生的概率P (A )是 ( ) A.29 B.1 18 C.13 D.23 7.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为16 25 ,

事件的相互独立性教案

§2.2.2事件的相互独立性 教学目标: 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:独立事件同时发生的概率 教学难点:有关独立事件发生的概率计算 授课类型:新授课 课时安排:2课时 教学过程: 一、复习引入: 1事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率m 总是接近某个常数,在它附近摆动,这时就把这个常数叫 n 做事件A的概率,记作() P A. 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1 ≤≤,必然事件和不可能事件看作随机事件的两 P A 个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A)称

为一个基本事件 6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n = 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,,,n A A A L 中的任何两个都是互斥的,那么就 说事件12,,,n A A A L 彼此互斥 11.对立事件:必然有一个发生的互斥事件. ()1()1()P A A P A P A +=?=- 12.互斥事件的概率的求法:如果事件12,,,n A A A L 彼此互斥,那么 12()n P A A A +++L =12()()()n P A P A P A +++L 探究: (1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少? 事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上 (2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?

事件的独立性与条件概率专题

1.口袋内装有100个大小相同的红球、白球和黑球,其中红球有45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( ) A .0.31 B .0.32 C .0.33 D .0.36 2.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,在第1次抽到文科题的条件下,第2次抽到理科题的概率为( ) A.12 B.35 C.34 D.310 3.打靶时甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则它们都中靶的概率是( ) A.35 B.34 C.1225 D.1425 4.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,在他第一次拿到白球的条件下,第二次拿到红球的概率为 ( ) A.310 B.13 C.38 D.29 5.(优质试题·济南质检)优质试题年国庆节放假,甲去北京旅游的概率为13 ,乙,丙去北京旅游的概率分别为14,15 .假定三人的行动相互之间没有影响,那么这段时间内至少有1个去北

京旅游的概率为( ) A.5960 B.35 C.12 D.160 6.(优质试题·合肥月考)周老师上数学课时,给班里同学出了两道选择题,她预估计做对第一道题的概率为0.8,做对两道题的概率为0.6,则预估计做对第二道题的概率为( ) A .0.80 B .0.75 C .0.60 D .0.48 7.从应届毕业生中选拔飞行员,已知该批学生体型合格的概率为13,视力合格的概率为16 ,其他几项标准合格的概率为15 ,从中任选一名学生,则该学生三项均合格的概率为(假设三次标准互不影响)( ) A.49 B.190 C.45 D.59 8.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是( ) A.12 B.13 C.14 D.25 二、填空题 9.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625 ,则该队员每次罚球的命中率为________. 10.袋中有三个白球,两个黑球,现每次摸出一个球,不放回地摸取两次,则在第一次摸到黑球的条件下,第二次摸到白球的概率为________. 11.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队每局获胜的概率相同,则甲队获得冠军的概率为________. 12.在一段时间内,甲去某地的概率是14,乙去此地的概率是15 ,假定两人的行动相互之间没有影响,那么在这段时间内至少有一人去此地的概率是________.

事件的独立性教案

事件的相互独立性 数学与统计学学院芮丽娟2009212085 一、教学目标: 1、知识与技能: (1)了解独立性的定义(即事件A的发生对事件B的发生没有影响); (2)掌握相互独立事件的概率乘法公式P(AB)=P(A)P(B) 2、过程与方法: 通过对现实生活中不同事件问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力 3、情感态度与价值观: 通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点. 二、重点与难点: 正确理解独立性的定义与互斥事件的差别,掌握并运用独立事件概率公式 三、教学设想: 1、创设情境:通过回顾上节课学习的条件概率,引入本节课独立性的定义 例:3张奖券中只有一张能中奖,现分别由3名同学无放回的抽取,事件A为“第一名同学没有抽到中奖奖券”,事件B为“最后一名同学抽到中奖奖券”。则问事件A的发生会影响事件B发生的概率吗?若条件改为有放回,这时又是什么情况? 解:显然无放回时,A的发生影响着B,即是条件概率。而当有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A的发生不会影响事件B发生的概率。于是P(B|A)=P(B),代入条件概率公式得P(AB)=P(B|A)P(A)=P(A)P(B) 2、基本概念: 独立性定义:设A,B为两个事件,如果满足P(AB)=P(A)P(B),则称事件A与事件B 相互独立。 例1:分别抛掷两枚质地均匀的硬币,设A是事件“第1枚为正面”,B是事件“第2枚为正面”,C是事件“2枚结果相同”。问:A,B,C中哪两个相互独立? 分析:理解相互独立的定义,即是一事件的发生对另一事件的发生与否没有影响,由于A事件抛掷第一枚硬币为正面,对B事件第二枚硬币为正面没有影响,故A与B独立,而

随机事件独立性概念的引入

(下转第108页 )摘要 事件的独立性是概率论中重要的概念之一。本文分析了两个随机事件相互独立的直观解释与公式形式的定义之间的关系,指出了公式形式的定义与直观解释不完全一致的情形,并通过引入三个事件相互独立的直观解释来加强学生对三个事件相互独立的定义的理解。关键词随机事件独立性两两独立 The Way to Introduce the Concept of the Independency of Random Events //Ji Wei Abstract The independency of random events is one of the most important concepts in probability theory.The relationship betw-een the quick look interpretation and formulaic definition of the independency between two random events is discussed.Especi-ally,an example is given to show the discrepancy between the quick look interpretation and formulaic definition.Moreover,a quick look interpretation of the independency among three random events is given to make the definition more understandable. Key words random event;independence;mutual independent Author 's address College of Science,Guilin University of Technology,541004,Guilin,Guangxi,China 随机事件的独立性是概率论中重要的概念之一,它的引进极大地推动了概率论的发展,概率论前期最重要的一些结论大都是在独立性假定下获得的。独立性不仅在理论上具有重要意义,而且在实际中有着广泛的应用。要掌握好独立性的定义,首先必须深刻理解事件独立性的定义。 1两个事件独立性的定义 国内大多数概率论与数理统计教材在引入两个事件独立性定义的时候,通常是先给出描述性的直观解释:事件B 的发生与否的概率不受事件A 是否发生的影响,再将直观解释表示成数学语言。事实上,事件B 发生与否的概率不受事件A 的影响,也就意味着有 P (B )=P (B |A ),这时,由乘法公式可得P (AB )=P (A )P (B )。定义1[1-3]:对任意两个事件A 、B,若P (AB )=P (A )P (B )成立,则称事件A 与B 是相互独立的。 采用这样一种方式,不免给学生留下了疑问:为什么不采用第一种更直观的P (B)=P (B |A )来定义?由于大多数教材在定义条件概率P (B |A )时,都假定P (A )≠0,如果选取该式作为定义,就将满足P (A )=0的情况排除在外了。而由独立性的直观解释可以得到,当A 为不可能事件时,A 与任何事件独立。因此,采用P (B)=P (B |A )作为独立性的定义有一定的局限性。而定义1涵盖了“不可能事件与任何事件独立” 这一命题,并且具有良好的对称性。因此,大多数教材采用定义1作为独立性的定义。 但定义1也与独立性的直观解释有一定的出入,我们看下面的例子。 例1:Ω={全体整数},A={1,2},B={1},则P (A )=P (B )=P (AB )=0。由定义1可知,事件与事件是独立的。但在事件A 发生的情况下,事件发生的概率为0.5,而不是0;即事件B 发生的概率受到事件A 是否发生的影响。类似地,在事件B 发生的情况下,事件A 发生的概率为1,而不是0;即事件A 发生的概率也受到事件B 是否发生的影响。 幸运的是,这种不一致的情形只有在所讨论的事件中含有概率为0的事件时才会发生,而且定义1是一个公式形式的定义,给独立性的数学处理带来了极大的方便。因此,国内大多数教材都是采用该定义。但也有一些教材直接采用描述性的语言来定义两个独立性。 定义2[5]:两个事件A 与B,如果其中任何一个事件发生的概率不受另外一个事件发生与否的影响,则称事件A 与B 是相互独立的。 由于该定义没有转化为明确的数学公式,使用起来没有定义1方便,因而采用该定义的教材较少。随机事件独立性的公式形式定义与直观解释之间的差别,在一定程度上反映了数学定义来源于实践,但又不完全与实践相同的特点。将实践中产生的数学思想经过适当的加工,得到更易于数学处理的定义比直观解释更有生命力。定义与直观解释这种不一致,也是数学魅力的一种体现,可以启发学生思考是否存在一个与独立性的直观解释更吻合同时又易于数学处理的公式形式的定义。 2三个事件独立性的定义 大部分概率论教材中两个事件独立性概念的是从事件B 的发生与否不受事件A 是否发生的影响来引入独立性的概念,这种引入方式比较容易被学生接受。而三个事件独立性的定义,国内概率论的教材大多采用直接给出的方式。 定义3[1-4]:对于任意三个事件A,B,C,如果(1)P (AB )=P (A )P (B ),P (AC )=P (A )P (C ),P(BC )=P(B )P (C ); (2)P (ABC )=P (A )P (B )P (C ),则称事件A,B,C 相互独立。 采用这一种方式,读者自然会提出这样的一个问题:三个事件两两独立,能否保证它们相互独立呢?虽然教材举出反例证明了答案是否定的,依然会有许多读者疑惑:为何不采用三个事件两两独立的形式作为三个事件独立性的定义呢?为了解决这个疑惑,我们可以采用先给出三个事件独立性的描述性的直观解释:三个事件A 、B 、C 相互独立,如果其中任何一个事件发生的概率不受另外两个事件发生与否的影响,三个事件两两独立能否保证某一事件不受另外两个 中图分类号:O211 文献标识码:A 文章编号:1672-7894(2012)15-0088-02 88

高中数学概率统计

第八讲 概率统计 【考点透视】 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 【例题解析】 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =n m ; 等可能事件概率的计算步骤: ① 计算一次试验的基本事件总数n ; ② 设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n =求值; ④ 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”:

① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [考查目的]本题主要考查概率的概念和等可能性事件的概率求法. [解答过程]0.3提示:1 33 5 C 33.54C 10 2 P ===? 例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 . [考查目的]本题主要考查用样本分析总体的简单随机抽样方式,同时考查概率的概念和等可能性事件的概率求法. 用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法. [解答过程]1.20 提示:51.10020P == 例3从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499 根据的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g 之间的概率约为__________. [考查目的]本题主要考查用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法.

概率论第一章随机事件及其概率答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第一章 随机事件及其概率(一) 一.选择题 1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ] (A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件 2.下面各组事件中,互为对立事件的有 [ B ] (A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品} (B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品} (C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个} (D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品} 3.下列事件与事件A B -不等价的是 [ C ] (A )A AB - (B )()A B B ?- (C )AB (D )AB 4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ?表示 [ C ] (A )二人都没射中 (B )二人都射中 (C )二人没有都射着 (D )至少一个射中 5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D ] (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销 6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则AB 表示 [ A ] (A ){|01}x x ≤< (B ){|01}x x << (C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<

概率论--事件与概率

第一章 事件与概率 1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。 (1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。 (2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。 解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则 ,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,, ,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,, =A ){(1次正,,,,)(2次正)}(9次正,, (2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r } (ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r } 1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。 (1) 叙述C AB 的意义。 (2)在什么条件下C ABC =成立? (3)什么时候关系式B C ?是正确的? (4) 什么时候B A =成立? 解 (1)事件C AB 表示该是三年级男生,但不是运动员。 (2) C ABC = 等价于AB C ?,表示全系运动员都有是三年级的男生。 (3)当全系运动员都是三年级学生时。 (4)当全系女生都在三年级并且三年级学生都是女生时`。 1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。用i A 表示下列事件: (1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。 解 (1) n i i A 1=; (2) n i i n i i A A 11===; (3) n i n i j j j i A A 11)]([=≠=;

独立性及相关性相容性

第三章独立性与相关性相容性 1.两两独立但不相互独立 【例1】设有一个均匀的正四面体,第一,二,三面分别涂上红,黄,兰一种颜色,第四面涂上红,黄,兰三种颜色。现以A,B,C分别记投一次 四面体底面出现红,黄,兰颜色的事件,则 所以A,B,C两两独立,但 因而A,B,C不相互独立。 【例2】设有四张形状,大小,质量完全一样的卡片,上面分别标有数字112,121,211,222,现从四张卡片中任抽一张,以随机变量X,Y,Z分别表 示抽到卡片上的第一,二,三位数字,则 所以X,Y,Z两两独立,但 因而X,Y,Z不相互独立。 2.P(ABC)=P(A)P(B)P(C)成立,但A,B,C不两两独立. 设有一均匀正八面体,其第1,2,3,4面涂有红色,第1,2,3,5面图黄色,第1,6,7,8面涂兰色。现以A,B,C分别表示投一次正八面体,底面出现红,黄,兰颜色的事件,则 但是 ) ( ) ( 4 1 8 3 ) (B P A P AB P= ≠ = 所以A,B,C不两两独立。 3.独立关系不具有传递性 设三事件A,B,C,若由A与B独立,且B与C独立,得到A与C独立,我们就称A,B,C的独立关系具有传递性 考虑有两个孩子和家庭全体,假定生男生女是等可能的,因而样本空间 )} , (), , (), , (), , {(g g b g g b b b = Ω,其中b为男孩,g为女孩,每一对里的次序是指出生的次序. 现在从全体有两个孩子的家庭中随机地选择一个家庭,并考虑下面三个事件:A为“第一个孩子是男孩”,B为“两个孩子不同性别”,C为“第一个孩子是女孩”,则有 即A与B独立,B与C独立,但是 因此A与C不独立. 顺便指出不独立关系也不具有传递性,即若A,B不独立,B,C不独立,则A,C可以独立 考察掷三枚均匀硬币的试验 A为“全正面或全反面”,B为“至多两个正面”,C为“至多一个正面”,试验的样本空间为 其中H表示正面,T表示反正,容易算出: 于是有 可见A,B不独立,B,C不独立,A,C却独立. 4.随机变量不独立,但其函数可以独立 正态分布有个特性:任何n(>1)维正态随机变量,可由坐标轴的旋转转变为一组几个独立的正态随机变量.(参见丁寿田译的前苏联《概率论教程》P157) 例如n=2,即使X,Y不独立,当(X,Y)服从二维正态分布,令

随机事件条件独立性

Advances in Applied Mathematics 应用数学进展, 2019, 8(7), 1208-1211 Published Online July 2019 in Hans. https://www.doczj.com/doc/f11201195.html,/journal/aam https://https://www.doczj.com/doc/f11201195.html,/10.12677/aam.2019.87139 Conditional Independence of Random Events Keming Zhang*, Jinping Zhang School of Mathematics and Physics, North China Electric Power University, Beijing Received: Jun. 28th, 2019; accepted: Jul. 15th, 2019; published: Jul. 22nd, 2019 Abstract The concept and properties of condition independence of random events are introduced. The rela-tionship between independence of random events and conditional independence is discussed with examples, which shows that independence of random events and conditional independence do not imply each other. Finally, the determining theorems of conditional independence are provided. Keywords Random Events, Conditional Probability, Independence, Conditional Independence 随机事件条件独立性 张可铭*,张金平 华北电力大学数理学院,北京 收稿日期:2019年6月28日;录用日期:2019年7月15日;发布日期:2019年7月22日 摘要 介绍了随机事件条件独立的概念和性质,结合例子讨论了随机事件独立性和条件独立性的关系,说明随机事件独立性和条件独立性互不蕴含。最后,讨论了条件独立的判定定理。 关键词 随机事件,条件概率,独立性,条件独立性 *通讯作者。

概率论与数理统计整理(一二章)

一、随机事件和概率 考试内容:随机事件(可能发生可能不发生的事情)与样本空间(包括所有的样本点) 事件的关系(包含相等和积差互斥对立)与运算(交换分配结合德摸根对差事件文氏图) 完全事件组(所有基本事件的集合) 概率的概念概率的基本性质(非负性规范性可列可加性) 古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验 考试要求:1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率(弄清几何意义),掌握概率的加法公式(PAUB=PA+PB--PAB)、减法公式(P(A--B)=PA--PAB)、乘法公式(PAB=PA*PB|A)、全概率公式(关键是对S进行正确的划分),以及贝叶斯公式.3.理解事件的独立性(PAB=PA*PB)的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.整理重点: 1. 随机事件:可能发生也可能给不发生的事件。0<概率<1。 2. 样本空间:实验中的结果的每一个可能发生的事件叫做实验的样本点,实验的所有样本点构成 的集合叫做样本空间,大写字母S表示。 3. 事件的关系:(1)包含:事件A发生必然导致事件B发生,称事件B包含事件A。(2)相等: 事件A包含事件B且事件B包含事件A。(3)和:事件的并,记为A∪B。(4)差:A-B称为A 与B的差,A发生而B不发生,A-B=A-AB。(5)积:事件的交,事件A与B都发生,记为AB 或A∩B。(6)互斥:事件A与事件B不能同时发生,AB=空集。(7)对立:A∪B=S。 4. 集合的运算:(1)交换律:A∪B=B∪A AB=BA (2结合律:(A∪B)∪C=A∪(B∪C) (AB)C=A(B C)(3)分配率:A (B∪C)=AB∪AC A∪(BC)=(A∪B)(A∪C) (4)德*摩根定律 5. 完全事件组:如果n个事件中至少有一个事件一定发生,则称这n个事件构成完全事件组(特 别地:互不相容的完全事件组)。 6. 概率的概念:用来表示随机事件发生的可能性大小的数,称为随机事件的概率。 7. 概率的基本性质:(1)非负性:任意随机事件的是介于0和1之间的,0《P(A)《1。(2)规范 性:P(S)=1。(3)可列可加性:基本事件两两不相容。 8.古典型概率:如果E是一个等可能概型,且它的样本空间S只有有限个样本点,则称E为古典 概型。等可能概型。)P(A)=M/N M为随机事件A中所含有的基本事件数,N为基本事件的总数。 9. 几何型概率:假设试验的基本事件有无穷多个,但可以用某些几何特征来表示总和,设为D, 并且其中一部分,即随机事件A所包含的基本事件数也可以用同样的几何特征来表示,设为d,则随机事件的概率为P(A)=d/D。 10. 条件概率:在基本事件B已经发生的情况下。基本事件A发生的概率。P(A|B)=P(AB)/P(B)(B 中A发生的情况只有AB部分)。 11.概率的基本性质:(1)两个互不相容事件的并的概率,等于着两个事件概率的和,即 P(A+B)=P(A)+P(B)。(2)有限个互不相容的并的概率,等于这些事件概率的和,即P(∑A) =∑P(A)。→对立事件的概率的和等于1。(3)任意两个事件的并的概率等于这两个事件的 概率的和减去这两个事件的交的概率,即P(A∪B)=P(A)+P(B)-P(AB)。→对于任意三个事件 A,B,C,有P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)-P(ABC)。(4)设事件B的概率 P(B)>0,则在事件B已发生的情况下,事件A的条件概率等于事件AB的概率除以事件B的概 率所得的商,即P(A|B)=P(AB)/P(B)。→有限个事件的交的概率等于这些事件的概率的乘积, 其中每一事件的概率是在它前面的一切事件都已经发生的条件下的条件概率,即 P(A1A2A3…Ai)=P(A1)P(A1|A2)P(A2|A1A2)…P(Ai|A1A2A3Ai-1) 。 12. 全概率公式与贝叶斯公式:(1)若基本事件两两不相容,且B1∪B2∪B3∪…. ∪Bn=S,则称 B1,B2,B3,….,Bn为S的一个划分。(2)设事件A当且仅当互不相容的基本事件中至少有一

事件的独立性精品教案

2.2.2事件的相互独立性(平行班) 【学情分析】: 教学对象是高二理科学生,刚刚学习了条件概率的概念,以及条件概率的求法。独立性也是概率论中极其重要的概念,它的主要作用是简化概率计算。本节中引入独立性的概念主要是为了介绍二项分布的产生背景。在教学中要通过具体事例直观解释独立性概念,两个事件相互独立与两个事件互斥学生容易混淆,在教学中要让学生对两个概念进行比较。 【教学目标】: 1、知识与技能 理解两个事件相互独立的概念; 2、过程与方法 能进行一些与事件独立有关的概率的计算。 3、情感、态度与价值观 通过本节的学习,感受社会生活中大量事件是相互独立的,体会数学来源于实践,发现数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。 【教学重点】: 1.独立事件同时发生的概率 2.独立事件的性质 【教学难点】: 1.有关独立事件发生的概率计算 2.区分事件独立,事件互斥两个概念 【教学突破点】: 用具体简单事例,让学生自己计算、比较得到事件独立的条件,从而得出独立事件的概念。 【教法、学法设计】: 运用启发式、探究式的教学方法. 【教学过程设计】: 教学环节教学活动设计意图及师生 活动 一、问题情境问题1. 甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2 个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是 多少? 答案: 3 10 问题2. 设甲坛子摸出白球为事件A,已坛子摸出白球为事件B,事 件A(或B)是否发生对事件B(或A)发生的概率是否有影响? 答案:没有 通过问题1,问题 2自然引入独立 事件的概念 二、1.相互独立事件的定义:

概率论重点及课后题答案1

第1章随机事件与概率 一、大纲要求 (1)理解随机事件的概率,了解样本空间的概念,掌握事件之间的关系与运算. (2)了解概率的统计定义和公理化定义,掌握概率的基本性质. (3)会计算古典概型的概率和几何概型的概率. 二、重点知识结构图 三、基础知识 1.随机试验的特征 (1)试验可以在相同的条件下重复地进行. (2)试验的可能结果不止一个,但明确知道其所有可能会出现的结果.

(3)在每次试验前,不能确知这次试验的结果,但可以肯定,试验的结果必是所有可能结果中的某一个. 2.样本空间 在讨论一个随机试验时,试验的所有可能结果的集合是明确知道的,称这个集合为该实验的样本空间,常用()S Ω或表示,其元素称为样本点,常用ω记之,它是试验的一个可能结果. 3.随机事件 在实际问题中,面对一个随机试验,人们可能会关心某些特定的事情在重复试验下是否会发生.例如,投资者关心明日收市股价是否上涨,即明日股价>今日收市价,它是样本空间的一部分.因此,称样本空间的一些子集为随机事件,简称事件,通常用大写英文字母A B C 、、记之. 4.事件的关系和运算 一个较为复杂的事件,通过种种关系,可使其与一些较为简单的事件联系起来,这时,我们就可设法利用这种联系,通过简单的事件去研究那些较为复杂的事件,用已知的事件去表示未知的事件. 5.事件的蕴含与包含 若当事件A 发生时B 必发生,则称A 蕴含B ,或者说B 包含A ,记作A B ?. 6.事件的相等 若A 与B 互相蕴含,即A B ?且B A ?,则称事件A 与B 相等,记为A B =. 7.事件的互斥(或称互不相容) 若事件A B 、不能在同一次试验中都发生(但可以都不发生),则称它们是互不相容的或互斥的. 若一些事件中的任意两个事件都互不相容,则称这些事件是两两互不相容的,或简称互不相容的. 8.事件的对立(或称逆) 互不相容的一个重要特例是“对立”.称事件{}B A =不发生为A 的对立事件或逆事件,常记作A . 9.事件的并(或称和)

随机事件的独立性

第3讲随机事件的独立性伯努利概型 教学目的:使学生掌握随机事件独立性的概念和伯努利概型。 教学重点:随机事件独立性的概念和伯努利概型中有关概率的计算。 教学难点:学生对随机事件独立性概念的理解 教学时数:2学时 教学过程: 第一章随机事件及其概率 §1.5 随机事件的独立性 对于任意两个事件A、B,若0 (B A | P有定义,此时可能有两种情 P,则) (> B ) 况) (A | ) P P=。前者说明事件B的发生对事件A发生的概率有 ( A B ( P≠和) ) (A | A B P 影响,只有当) P A P=时才认为这种影响不存在,这时自然认为事件A不依赖B ( ) | (A 于事件B,即A、B是彼此独立的。这时有 A B P A AB = P= P P B P ( ( ) (B ) ) ( ) ) ( | 由此引出关于事件独立性的问题。 定义1对任意两个随机事件A与B,若 A P P= P AB ) ( (B ) ) ( 则称事件A与B是相互独立的(简称为独立的)。 由定义1不难证明下面的定理。 定理1若事件A与B相互独立,则下列各对事件

A 与 B , A 与B , A 与B 也相互独立。 证 这里只证明事件A 与B 相互独立,其它类似。因为 B A AB A += 从而 )()()(B A P AB P A P += 由此得 ) ()()](1)[() ()()() ()()(B P A P B P A P B P A P A P AB P A P B A p =-=-=-= 所以事件A 与B 相互独立。 例1 设事件A 、B 相互独立,3.0)(,4.0)(==B P A P ,求)(B A P ?。 解 )()()()(B A P B P A P B A P -+=? ))(1))((1()()()()()(A P B P A P B P A P B P A P --+=-+= 82.06.07.04.0=?+= 对于三个或更多个事件,我们给出下面的定义。 定义2 设有n 个事件n A A A ,,,21 (3≥n ),若对其中任意两个事件i A 与)1(n j i A j ≤<≤有 )()()(j i j i A P A P A A P = 则称这n 个事件是两两相互独立的。 定义3 设有n 个事件n A A A ,,,21 (3≥n ),若对其中任意k 个事件)2(,,,21n k A A A k i i i ≤≤ 有

相关主题
文本预览
相关文档 最新文档