当前位置:文档之家› 热学第五章答案

热学第五章答案

热学第五章答案
热学第五章答案

第五章 热力学第一定律

5-1 0.020kg 的氦气温度由17oC 升为27oC ,若在升温过程中:(1)体积保持不变;(2)压强保持不变;(3)不与外界交换热量,试分别求出气 体内能的改变,吸收的热量,外界对气体所作的功,设氦气可看作理想气体,且Cv =

R 2

3

. 解:理想气体内能是温度的单值函数,三过程中气体温度的改变相同,所以内能的改变也相同,为: ΔU=)(12T T C M

V -μ=

)(12t t C M

V -μ

J 25.623)1727(31

.823420=-?? 热量和功因过程而异,分别求之如下: (1)等容过程:V=常量 A=0 由热力学第一定律,Q=ΔU (2)等压过程 Q=

)(12T T C M

P -μ

=1038.75J

由热力学第一定律, A=ΔU-Q=623.25-1038.75=-415.5J 负号表示气体对外作功。 (3)绝热过程 Q=0

由热力学第一定律A=ΔU

5-2 分别通过下列过程把标准状态下的0.014kg 氮气压缩为原体积的一半:(1)等温过程;

(2)绝热过程;(3)等压过程,试分别求出在这些过程中气体内能的改变,传递的热量和外界对气体所作的功,设氮气可看作理想气体.且Cv=

R 2

5 解:把上述三过程分别表示在P-V图上;(1)等温过程,理想气体内能是温度的单值函数,过程中温度不变,故:ΔU =0 A=121ln

V V RT ν-=

2

11ln V V RT M

μ

2ln 27331.828

14

???=786J 由热一:Q=-A=-786J 负号表示系统向外界放热 (2)绝热过程 Q=0 由T1V 2r-1=T 2V 2γ-1 或T 2=T 1(V 1/V 2)γ-1 得△U=

J V V C M

T T C M

v V V 906)2(27331.82

52814]1)[(

)(14.112112=???=-=

---μ

μ

由热力学第一定律A=ΔU

另外,也可由A=

)(1

1

1122V p V p --γ 及p 1V 1γ=p 2V 2γ 先求得A (3)等压过程,有 V 1/T 1=V 2/T 3 或T 2=T 2*V 2/V 1=T 1/2 而 C p=C v+R=5R/2+R=7R/2 所以Q=

1122

1)(T C M

T T C M

P P ?-

=-μμ

=2732

1

31.8272814????-=-1985J ΔU=

1122

1

)(T C M

T T C M

V V ?-

=-μμ

=-1418J 由热力学第一定律A=ΔU-Q=-1418-(-1985)=567J A 也可由A=-p 1(V 2-V 1)求之

另外,由计算结果可见,等压压缩过程,外界作功,系统放热,内能减小,数量关系为,系统放的热等于其内能的减少和外界作的功.

5-3在标准状态下的0.016㎏的氧气,分别经过下列过程从外界吸收了80cal 热量。(1)若为等温过程,求终态体积。(2)若为等容过程,求终态压强。(3)若为等压过程,求气体内能的的变化。设氧气可看作理想气体,且Cv=R 2

5

解:(1)等温过程时 V 1=

3104.22-??μ

M

=1.12*10-3m 3

Q=-A=

1

21ln

V V RT M

μ

则 ㏑(V 2/V 1)= 273232

1680

1??=RT M Q μ=0.293

故 V 2=V 1e 0.293==1.5*10-2m 3

(2)等容过程:

∵P 1/T 1=P 2/T 2 T 2/T 1=P 2/P 1 P 1=1.1013*105Pa Q=

)(12T T C M

V -μ

=

)1(

121-T T T C M

V μ

=)1(1

21-P P T C M

V μ ∴P 2=11

)1(

p T C M

Q V +μ

= 1)127322

5

321680(

p +???=1.12P=1.13×105P a

(3)等压过程: ∵Q=

)(12T T C M

P -μ

∴ΔU=)(12T T C M V -μ= R R

Q C C C M Q C M P

V P V 2

725==μμp=239J

5-4 为确定多方过程pV n=C 中的指数n,通常取㏑p 为纵坐标,㏑V 为横坐标作图.试讨论

在这种图中多方过程曲线的形状,并说明如何确定n. 解:将pV n=C 两边取对数

㏑p+n ㏑V=㏑C 或㏑p=-n ㏑V+㏑C 比较 y=kx+b 知在本题图中多方过程曲线的形状为一直线,如图所示. ∵直线的斜率为-n

∴可由直线的斜率求n -n=tg(π-β)=-tg β 或 n=tg β=A/B 即n 可由两截距之比求出。

5-5 室温下一定量理想气体氧的体积为2.31,压强为1.0atm.经过一多方过程后体积变为

4.11,压强为0.5atm.试求:(1)多方指数n;(2)内能的变化;(3)吸收的热量;(4)氧膨胀时对外界所作的功.设氧的Cv=

R 2

5

. 解(1)p 1V n=p 2V n 或 (V 2/V 1)n=p 1/p 2 取对数得

n=1

22

1ln ln

V V

p p =3.21.4ln

5.00

.1ln =1.2

(2)ΔU=

)(12T T C M

V -μ

=

)(25

12T T R M -μ=5(p 2V 2-p 1V 1)/2=-63J 内能减少. (3)Q=

)(12T T C M

V -μ

=

)(1

12T T n r

n C M

V

---μ

=63J (4)由热力学第一定律:-A=Q-ΔU=63-(-63)=126J 也可由 A=[1/(n-1)](p 2V 2-p 1V 1) 求 -A

5-6 一摩尔理想气体氦,原来的体积为8.01,温度为27℃,设经过静态绝热过程被压缩为

1.01,求在压缩过程中,外界对系统所作的功,设氦气的C v =3R/

2. 解:T 1V 1=T 2V 2 由热力学第一定律

A=ΔU=C v (T 2-T 1)=C v T 1(T 2/T 1-1)γ=CvT 1[(V 2/V 2)γ-1-1]=3688J

5-7在标准状态下的0.016㎏氧气,经过一绝热过程对外作功80J.求终态压强、体积和温度.设氧气为理想气体,且C=5R/2,γ=1.4 解: 绝热 Q=0 由热力学第一定律 -A=-ΔU=)(21T T C M

V -μ

∴T 2=T 1—A/(MC v /μ)=256K T 1V 1 =T 2V 2γ-1

∴V 2=11

11)(-γT T T V =14.11

3)265273(104.223216--??=12.3×103m 3 p 2V 2=

2RT M

μ ∴p 2=32210

3.1226531.83216-???=V T R

M

μ

=9*104Pa

5-8 0.0080㎏氧气,原来温度为27℃,体积为0.41L,若(1)经过绝热膨胀体积增加

4.1L,(2)先经过等温过程再经过等容过程达到与(1)同样的终态。试分别计算在以上两种过程中外界对气体所作的功,设氧气可看作理想气体,且Cv=R 2

5

。 解:如图,将两种过程在p-v 图上表示 (1)绝热过程 T 1V 1γ-1=T 2V 2γ-1

A=ΔU=

)(21T T C M V -μ

=

)1(

121-T T T C M

V μ

=]1)[(12

11--γμV V T C M

V =-938J

负号表示系统对外界作功 (2)∵等容过程外界对气体不作功 ∴A=A T =121ln

V V RT M

μ

-=41

.01.4ln )27273(31.8328+??-=-1435J

5-9 在标准状态下,一摩尔单原子理想气体先经过一绝热过程,再经过一等温过程,最后

压强和体积均为原来的2倍,求整个过程中系统吸收的热量.若先经过等温过程再经过绝热过程而达到同样的状态,则结果是否相同?

解:(1)先绝热压缩再等温膨胀,从态1到态2,如图 ,对态2 p 2V 2=2p 12V 1=RT 2

∴T 2=4p 1V 1/R=4T 1 ∵T 1V 1γ-1=T 3V 3γ-1 T 3=T 2 V 2=2V 1 ∴V 2/V 3=2V 1/[(T 1/T 2)1/(γ-1)V 1]=2(T 2/T 1)1/(γ-1)=16 又,仅由等温过程吸热 ∴Q=RT 2㏑(V 2/V 3)=4RT 1㏑16=4×8.31×273×㏑16=2.52×104J (2)先等温膨胀再绝热压缩,气体从态1到态2,如图由(1)知 T 2=4T 1

又 T 4V 4γ-1=T 2V 2γ-1 T 4=T 1 V 2=2V 1

∴V 4/V 1=V 2(T 2/T 4)1/(γ-1)/V 1=2V 1(4T 1/T 1)1/(γ-1)/V 1=16 仅等温过程态1到态4吸热

∴Q=RT 1㏑(V 4/V 1)=8.31×273㏑16=6.3×103J 可见,结果与(1)中不同,说明热量是过程量

5-10 一定量的氧气在标准状态下体积为10.0L,求下列过程中气体所吸收的热量,(1)等温膨胀到20.0L ;(2)先等容冷却再等压膨胀到(1)所达到的终态.设氧气可看作理想气体,设Cv=

R 2

5 解: (1)等温膨胀 Q=

1

211121ln ln

V V

V p V V RT M

= 1.013×105×10×10-3㏑(20/10)=702J (2)先等容冷却再等压膨胀 ∵P 1V 1=p 2V 2 ∴p 2=p 1(V 1/V 2)=p 1/p 2 对1-3-2全过程:

T 1=T

2

U=U(T) 则ΔU=0

由热力学第一定律

Q=-A=p

2(V

2

-V

3

)=(1/2)p

1

(V

2

-V

1

)=1/2×1.013×105(20.0-10.0)×10-3=507J

5-11图5-11中的实线表示一任意形状系统的界面。设当系统的界面由实线膨胀到虚线的微元过程中,系统总体积增加dV,而在这过程界面上各均受到与界面垂直的外界均

匀压强p

e 。试证明:外界对系统所作体积功为-p

e

dV;若过程为准静态的,则此功又

可表示为-pdV,其中p表示系统内部均匀压强。

证明:如图,当系统的界面由实线膨胀到虚线的微元过程中,所取面元dS移动距离

dl,移动方向与p

e 相反,所以此微元过程中外界压强p

e

对面元dS作的功为:

-p

e

dSdl

由于在p

e

界面上各处均匀,且在微元过程中可视为不变,则外界对整个系统所作的体积功为

dA= -p e dSdl=-p e dV

对于无摩擦的准静态过程p=p

e

故此功又可表为 dA=-pdV

其中p表示系统内部均匀压强。

5-12 证明:当γ为常数时,若理想气体在某一过程中的热容量也是常数,则这个过程一定是多方过程。

证明:由热力学第一定律:

dU=dQ+dA (1)

设该过程气体的摩尔热容量为C,对理想气体的准静态过程,(1)式为:

vCvd

T =vCd

T

-pdV

或vd

T

(Cv-C)+pdV=0 (2)

将pV=vRT 微分

pdV+Vdp=vRdT

或vd

T

=(pdV+ Vdp)/R (3)代(3)入(2)得:

(pdV+ Vdp )/R ×(Cv-C )+ pdV=0

利用Cp=Cv+R ,上式可整理为

0=--+V

dV C C C C p dp V P 令C

C C

C n V P --=

,上式为:

0=+V

dV n p dp (4) ∵已知γ、R 为常数 由

γ=V

P

C C 及R C C V P =- ∴Cp 、Cv 皆为常数 又,已知C 为常数 ∴C

C C

C n V P --=

=常数

故,(4)式积分为

常数=n pV

正是多方过程方程,说明该过程是多方过程。

5-13 某气体服从状态方程p=(V-b )=RT ,内能为u=Cv+u 。Cv 、u 。为常数。试证明,

在准静态绝热过程中,这气体满足方程:p (V-b )γ=常数 其中γ=Cp/Cv 。

证明:由热力学第一定律: dU=dQ+dA (1)

由u=Cv+u 。,du=CvdT

对准静态绝热过程,dQ=0, Da=-pdV 则(1)式为

CvdT+pdV=0 (2) 将p (V-b )=RT 微分,

pdv+(v-b)dp=RdT 代入(2)式得:

0])([=+-+pdv dp b v pdv R

C v

(3) 又,该气体有:

R

C dT

b p

RT

pd u C d dT

pdv du dT dQ C v p V p p p +=+++=+==])

()([)()(

已知Cv 为常数,则Cp 为常数。 令

γ=V

P

C C ,则γ为常数 代入(3)式

0=-+b

v dv p dp γ 积分得:p (V-b )γ=常数

5-14 在24℃时水蒸气的饱和气压为0.029824bar 。若已知在这条件下水蒸气的焓是

2545.0KJ ·kg -1,水的焓是100.59KJ ·kg -1,求在这条件下水蒸气的凝结热。

解:在水蒸气凝结为水的等温等压过程中,系统吸收的热量等于其焓的增加,为: Qp=H 水-H 气=100.59-2545.0

=-2444.4 KJ ·kg -1

即该条件下水蒸气的凝结热,负号表示水蒸气凝结时放热。

5-15 分析实验数据表明,在1atm 西,从300K 到1200K 范围内,铜的定压摩尔热容量可

表示为: Cp=a+bT

其中a=2.3×104,b=5.92,Cp 的单位是[J ·mol -1kg -1]。试由此计算在1atm 下,当温度从300K 增到1200K 时铜的焓的改变。

解:铜在升温过程中压强不变,吸收的热量等于其焓的增加,所以

17224212

212121047.2)

3001200(92.52

1

)3001200(103.2)(2)()(2

1

2

1

-??=-?+-?=-+

-=+===-??vmol J T T b T T a dT

bT a dT C Q H H T T T T p p

5-16 设一摩尔固体的物态方程可写作:v=v 0+aT+bp

内能可表示为u=CT-apT ,其中a 、b 、c 和v 0均是常数。试求: (1) 摩尔焓的表达式

(2) 摩尔热容量Cp 和Cv 。 解:(1)h=u+pv

=(C T -apT)+p(v 0+aT+bp)

=C T +pv 0+bp 2 (2) C T h

C p p =??=)(

利用v v T u

C )(??=先将u 表示为T ,v 的函数

u=CT-aT )(1

0aT v v b

--

∴ap

T b a C aT bp b a

C aT aT v v b

a

C T u C v v -+=--=----=??=2

0]

[]

)[()(

5-17 若把氮气、氢气和氨气都看作理想气体(p →0),由气体热力学性质表[9]可查到它

们在298K 的焓值分别为8669 J ·mol -1

,8468 J ·mol -1和-29154 J ·mol -1。试求在定压下氨的合成热。氨的合成反应为: 3222

3

21NH H N →+ 解:系统在定压下吸收的热量等于其焓的增加,为:

(氢氮氨h h h Q p 2

3

21+-= 1

5.4619084682

386692129154-?-=?+?--=mol J )(

5-18 燃料电池是把化学能直接转化为电能的装置.图5-18所示是燃料电池一例。把氢气

和氧气连续通入多孔Ni 电极,Ni 电极是浸在KOH 电解溶液中的(电极的孔径很小,可使电解液因毛细现象而渗入,但氢和氧气都透不过)。负极上的化学反应是,氢与电解液中的氢氧根离子结合,生成离子和水: 2H 2+4OH -→4H 2O+4e -

电子通过电极跑到外电路去。正极上的化学反应是,氧与电解液中的水、电子结合为氢氧离子:

4OH -←O 2+4e -+4H 2O

这燃料电池反应的总效果是:

H 2(气)+1/2 O 2(气)→4H 2O (液)

若一燃料电池工作于298K 定压下,在反应前后焓的改变为: △ H=-285.8KJ ·mol -1

两极电压为1.229V ,试求这燃料电池的效率。

解:定压下,1摩尔氢和半摩尔氧化合生成1摩尔水时吸收的热量为:

Q= △H=-285.8KJ ·mol -1

负号表示实际放出的热量为Q ′=285.8 KJ ·mol -1 每产生一个水分子就有两个电子自阴极跑到阳极,因而生成1摩尔的水就有2×6.02

×1023

个电子自阴极跑到阳极,每个电子的电量为1.60×10-19库仑,故总电量为: q=2×1.60×10-19×6.02×1023库仑

已知两极间电压为1.229V ,故所做电功为: A=1.229×2×1.60×10-19×6.02×1023焦耳 则,这燃料电池的效率为: η=A/Q ′=83%

5-19 大气温度随高度Z 降低的主要原因是,低处与高处各层间不断发生空气交换。由于

空气的导热性能不好,所以空气在升高时的膨胀(及下降时的压缩)可认为是绝热过程。若假设过程是准静态的,并注意到大气达到稳定机械平衡时压强差与高度差的关系,证明空气的梯度为:

g p

T

dZ dT ργγ1--= 其中p 为空气压强,ρ、T 分别为密度与温度,γ是空气的v p C C /。

证明:所谓“大气达稳定机械平衡”,指重力场中的气体分子在热运动和重力两种互相对立的作用下的平衡,平衡时分子数密度随高度减小的规律可由玻尔兹曼分布律给出,结合p=nKT 可得大气压强差与高度差的关系(等温气压公式):

Z

RT

g

e

p p μ-

=0

积分得:

dZ

RT

g

p

dZ

RT

g

e p dp Z

RT

g μμμ-=-

=-

)(0

从RT M

PV μ

=

,有RT

p V M μ

ρ=

=

代入上式得: dp=-gdZ ρ (1)

认为一定量的空气上升时经历的过程,是理想气体的准静态绝热膨胀,有:

C T p =--γγ1

取对数,再微分,有:

0)

1(=--T

dT

p dp γγ 或dp p

T

dT γγ1-=

将(1)代入此式得:

g p

T

dZ dT ργγ1--= 即空气的温度梯度。

化工热力学详细答案

化工热力学详细答案

————————————————————————————————作者:————————————————————————————————日期:

化工热力学第二章作业解答 2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式 解 (1)用理想气体方程(2-4) V = RT P =68.314673 4.05310 ??=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6) 从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b ) 2 2.50.42748c c R T a p ==2 2.5 6 0.42748(8.314)(190.6)4.610???=3.224Pa ·m 6·K 0.5·mol -2 0.0867c c RT b p = =6 0.08678.314190.6 4.610 ???=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6) 4.053×106= 5 8.314673 2.98710 V -?-?-0.553.224(673)( 2.98710)V V -+? 迭代解得 V =1.390×10-3 m 3·mol -1 (注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式 673 3.53190.6 r T T Tc === 664.053100.8814.610r P P Pc ?===? 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。 由式(2-44a )、式(2-44b )求出B 0和B 1 B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269 B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138 代入式(2-43) 010.02690.0080.1380.0281BPc B B RTc ω=+=+?= 由式(2-42)得 Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ???? =+=+?= ??? ???? V =1.390×10-3 m 3·mol -1 2.2试分别用(1)Van der Waals,(2)R-K ,(3)S-R-K 方程计算27 3.15K 时将CO 2压缩到比体积为 550.1cm 3·mol - 1所需要的压力。实验值为3.090MPa 。 解: 从附录二查得CO 2得临界参数和偏心因子为

化工热力学答案课后总习题答案详解

化工热力学答案_课后总习题答案详解 第二章习题解答 一、问答题: 2-1为什么要研究流体的pVT 关系? 【参考答案】:流体p-V-T 关系是化工热力学的基石,是化工过程开发和设计、安全操作和科学研究必不可少的基础数据。(1)流体的PVT 关系可以直接用于设计。(2)利用可测的热力学性质(T ,P ,V 等)计算不可测的热力学性质(H ,S ,G ,等)。只要有了p-V-T 关系加上理想气体的id p C ,可以解决化工热力学的大多数问题。 2-2在p -V 图上指出超临界萃取技术所处的区域,以及该区域的特征;同时指出其它重要的点、线、面以及它们的特征。 【参考答案】:1)超临界流体区的特征是:T >T c 、p >p c 。 2)临界点C 的数学特征: 3)饱和液相线是不同压力下产生第一个气泡的那个点的连线; 4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。 5)过冷液体区的特征:给定压力下液体的温度低于该压力下的泡点温度。 6)过热蒸气区的特征:给定压力下蒸气的温度高于该压力下的露点温度。 7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。 2-3 要满足什么条件,气体才能液化? 【参考答案】:气体只有在低于T c 条件下才能被液化。 2-4 不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决定偏离理想气体程度的最本质因素? 【参考答案】:不同。真实气体偏离理想气体程度不仅与T 、p 有关,而且与每个气体的临界特性有 ()() () () 点在点在C V P C V P T T 00 2 2 ==?? ?

关,即最本质的因素是对比温度、对比压力以及偏心因子r T ,r P 和ω。 2-5 偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗? 【参考答案】:偏心因子ω为两个分子间的相互作用力偏离分子中心之间的作用力的程度。其物理意义为:一般流体与球形非极性简单流体(氩,氪、氙)在形状和极性方面的偏心度。为了提高计算复杂分子压缩因子的准确度。 偏心因子不可以直接测量。偏心因子ω的定义为:000.1)p lg(7.0T s r r --==ω , ω由测定的对比温度为0.7时的对比饱和压力的数据计算而得,并不能直接测量。 2-6 什么是状态方程的普遍化方法?普遍化方法有哪些类型? 【参考答案】:所谓状态方程的普遍化方法是指方程中不含有物性常数a ,b ,而是以对比参数作为独立变量;普遍化状态方程可用于任何流体、任意条件下的PVT 性质的计算。普遍化方法有两种类型:(1)以压缩因子的多项式表示的普遍化关系式 (普遍化压缩因子图法);(2)以两项virial 方程表示的普遍化第二virial 系数关系式(普遍化virial 系数法) 2-7简述三参数对应状态原理与两参数对应状态原理的区别。 【参考答案】:三参数对应状态原理与两参数对应状态原理的区别在于为了提高对比态原理的精度,引入了第三参数如偏心因子ω。三参数对应态原理为:在相同的 r T 和r p 下,具有相同ω值的所有 流体具有相同的压缩因子Z ,因此它们偏离理想气体的程度相同,即),P ,T (f Z r r ω=。而两参数对应状态原理为:在相同对比温度r T 、对比压力 r p 下,不同气体的对比摩尔体积r V (或压缩因子z ) 是近似相等的,即(,) r r Z T P =。三参数对应状态原理比两参数对应状态原理精度高得多。 2-8总结纯气体和纯液体pVT 计算的异同。 【参考答案】: 由于范德华方程(vdW 方程)最 大突破在于能同时计算汽、液两相性质,因此,理论上讲,采用基于vdW 方程的立方型状态方程能同时将纯气体和纯液体的性质计算出来(最小值是饱和液体摩尔体积、最大值是饱和气体摩尔体积),但事实上计算的纯气体性质误差较小,而纯液体的误差较大。因此,液体的p-V-T 关系往往采用专门计算液体体积的公式计算,如修正Rackett 方程,它与立方型状态方程相比,既简单精度又高。 2-9如何理解混合规则?为什么要提出这个概念?有哪些类型的混合规则? 【参考答案】:对于混合气体,只要把混合物看成一个虚拟的纯物质,算出虚拟的特征参数,如Tr ,

化工热力学详细答案

化工热力学第二章作业解答 2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式 解 (1)用理想气体方程(2-4) V =RT P =68.3146734.05310 ??=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6) 从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b ) 2 2.50.42748c c R T a p ==2 2.5 60.42748(8.314)(190.6)4.610???=3.224Pa ·m 6·K 0.5·mol -2 0.0867c c RT b p ==60.08678.314190.64.610 ???=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6) 4.053×106= 58.3146732.98710V -?-?-0.553.224(673)( 2.98710) V V -+? 迭代解得 V =1.390×10-3 m 3·mol -1 (注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式 673 3.53190.6 r T T Tc === 664.053100.8814.610r P P Pc ?===? 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。 由式(2-44a )、式(2-44b )求出B 0和B 1 B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269 B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138 代入式(2-43) 010.02690.0080.1380.0281BPc B B RTc ω=+=+?= 由式(2-42)得 Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ????=+=+?= ??????? V =1.390×10-3 m 3·mol -1 2.2试分别用(1)Van der Waals,(2)R-K ,(3)S-R-K 方程计算27 3.15K 时将CO 2压缩到比体积为 550.1cm 3·mol -1所需要的压力。实验值为3.090MPa 。 解: 从附录二查得CO 2得临界参数和偏心因子为 Tc =304.2K Pc =7.376MPa ω=0.225

化工热力学答案(完整资料).doc

【最新整理,下载后即可编辑】 化工热力学第二章作业解答 2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式 解 (1)用理想气体方程(2-4) V = RT P = 6 8.314673 4.05310 ??=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6) 从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b ) 2 2.50.42748c c R T a p ==2 2.56 0.42748(8.314)(190.6)4.610???=3.224Pa ·m 6·K 0.5·mol -2 0.0867c c RT b p ==6 0.08678.314190.64.610 ???=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6) 4.053×106= 5 8.314673 2.98710V -?-?- 0.553.224 (673)( 2.98710) V V -+? 迭代解得 V =1.390×10-3 m 3·mol -1 (注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式 673 3.53190.6 r T T Tc === 6 6 4.053100.8814.610r P P Pc ?===? 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。 由式(2-44a )、式(2-44b )求出B 0和B 1 B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269 B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138 代入式(2-43) 010.02690.0080.1380.0281BPc B B RTc ω=+=+?= 由式(2-42)得 Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ???? =+=+?= ??? ???? V =1.390×10-3 m 3·mol -1

化工热力学 第三版 课后答案 朱自强

第二章流体的压力、体积、浓度关系:状态方程式 2-1试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。(1)理想气体方程;(2)RK 方程;(3)PR 方程;(4)维里截断式(2-7)。其中B 用Pitzer 的普遍化关联法计算。 [解](1)根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积id V 为 331 6 8.314(400273.15) 1.381104.05310 id RT V m mol p --?+= ==???(2)用RK 方程求摩尔体积 将RK 方程稍加变形,可写为 0.5() () RT a V b V b p T pV V b -= +-+(E1) 其中 2 2.5 0.427480.08664c c c c R T a p RT b p = = 从附表1查得甲烷的临界温度和压力分别为c T =190.6K,c p =4.60MPa ,将它们代入a,b 表达式得 2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ??==????531 6 0.086648.314190.6 2.9846104.6010b m mol --??= =???以理想气体状态方程求得的id V 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为 516 8.314673.15 2.9846104.05310 V -?= +??350.563353.2217(1.38110 2.984610) 673.15 4.05310 1.38110(1.38110 2.984610) -----??-?- ??????+?355331 1.38110 2.984610 2.1246101.389610m mol -----=?+?-?=??第二次迭代得2V 为

化工热力学习题集(附答案)

模拟题一 1. T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为( c ) A. 饱和蒸汽 B. 超临界流体 C. 过热蒸汽 2. T 温度下的过冷纯液体的压力P ( a ) A. >()T P s B. <()T P s C. =()T P s 3. T 温度下的过热纯蒸汽的压力P ( b ) A. >()T P s B. <()T P s C. =()T P s 4. 纯物质的第二virial 系数B ( a ) A 仅是T 的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 5. 能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到( a ) A. 第三virial 系数 B. 第二virial 系数 C. 无穷项 D. 只需要理想气体方程 6. 液化石油气的主要成分是( a ) A. 丙烷、丁烷和少量的戊烷 B. 甲烷、乙烷 C. 正己烷 7. 立方型状态方程计算V 时如果出现三个根,则最大的根表示( ) A. 饱和液摩尔体积 B. 饱和汽摩尔体积 C. 无物理意义 8. 偏心因子的定义式( ) A. 0.7lg()1s r Tr P ω==-- B. 0.8lg()1s r Tr P ω==-- C. 1.0lg()s r Tr P ω==- 9. 设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( ) A. 1x y z Z Z x x y y ?????????=- ? ? ?????????? B. 1y x Z Z x y x y Z ?????????=- ? ? ?????????? C. 1y x Z Z x y x y Z ?????????= ? ? ?????????? D. 1y Z x Z y y x x Z ?????????=- ? ? ?????????? 10. 关于偏离函数M R ,理想性质M *,下列公式正确的是( ) A. *R M M M =+ B. *2R M M M =- C. *R M M M =- D. *R M M M =+ 11. 下面的说法中不正确的是 ( ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。

(完整word版)化工热力学((下册))第二版夏清第5章干燥答案

第5章 干燥的习题解答 1.已知湿空气的总压强为50Pa,温度为60℃,相对湿度为40%,试求: (1)湿空气中水汽的分压; (2)湿度; (3)湿空气的密度。 解:(1)湿空气的水汽分压,V S p P ?= 由附录查得60C 时水的饱和蒸汽压19.92S p KPa = 0.419.927.97V p KPa =?= (2) 湿度 0.6220.6227.970.118/507.97V V P H kg kg p P ?= ==--绝干气 (1) 密度 55 3 273 1.0131027360 1.01310(0.772 1.244)(0.772 1.2440.118)2732735010H t v H P +?+?=+??=+??? ? 32.27m =湿空气/kg 绝干气 密度 3110.118 0.493/2.27 H H H kg m v ρ++= =湿空气 2.在总压101.33KPa 下,已知湿空气的某些参数,利用湿空气的H-I 图查出本题附表中空格内的数值,并给出序号4中各数值的求解过程示意图。 习题2附表

解: 上表中括号内的数据为已知,其余值由图H I -查得。 分题4的求解示意图如附图所示,其中A 为状态点。 3.干球温度为20℃、湿度为0.009kg 水/kg 绝干气的温空气通过预热器加热到50℃后,再送至常压干燥器中,离开干燥器时空气的相对温度为80%,若空气在干燥器中经历等焓干燥过程,试求: (1)1m 3原温空气在预热过程中始的变化; (2)1m 3原温空气在干燥器中获得的水分量。 解:(1)31m 原湿空气在预热器中焓的变化 当0020,0.009/t C H kg kg ==绝干气时,由H I -图查出043/I KJ kg =绝干气。 当01050,0.009/t C H H kg kg ===绝干气时,由H I -图查出

化工热力学复习题及答案 ()

《化工热力学》课程模拟考试试卷 A 开课学院:化工学院,专业:材料化学工程 考试形式: ,所需时间: 分钟 考生姓名: 学号: 班级: 任课教师: 写T ,错的写F) 1.理想气体的压缩因子1Z =,但由于分子间相互作用力的存在,实际气体的压缩因子 。 (A) 小于1 (B) 大于1 (C) 可能小于1也可能大于1 (D) 说不清楚 2.甲烷c 4.599MPa p =,处在r 0.3p =时,甲烷的压力为 。 (A) 15.33MPa (B) 2.7594 MPa ; (C) 1.3797 MPa (D) 1.1746 MPa 3.关于建立状态方程的作用,以下叙述不正确的是 。 (A) 可以解决由于实验的p -V -T 数据有限无法全面了解流体p -V -T 行为的问题。 (B) 可以解决实验的p -V -T 数据精确度不高的问题。 (C) 可以从容易获得的物性数据(p 、V 、T 、x )来推算较难测定的数据(H ,U ,S ,G )。 (D) 可以解决由于p -V -T 数据离散不便于求导和积分,无法获得数据点以外的p -V -T 的 问题。 4.对于流体混合物,下面式子错误的是 。 (A) lim i i i x M M ∞→=(B)i i i H U pV =+ (C) 理想溶液的i i V V =,i i U U = (D) 理想溶液的i i S S =,i i G G = 5.剩余性质R M 的概念是表示什么差别的 。 (A) 真实溶液与理想溶液 (B) 理想气体与真实气体 (C) 浓度与活度 (D) 压力与逸度 6.纯物质在临界点处的状态,通常都是 。 (A) 气体状态 (B) 液体状态 (C) 固体状态 (D) 气液不分状态 7.关于化工热力学研究内容,下列说法中不正确的是( )。

化工热力学(第三版)陈钟秀课后习题答案

第二章 2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。 解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol 查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程 P=RT/V=8.314×323.15/124.6×10-6=21.56MPa (2) R-K 方程 22.5 22.5 6 0.52 6 8.314190.60.427480.42748 3.2224.610 c c R T a Pa m K mol P - ?== =???? 531 68.314190.60.08664 0.08664 2.985104.610 c c RT b m mol P --?===??? ∴() 0.5RT a P V b T V V b = --+ ()()50.555 8.314323.15 3.222 12.46 2.98510323.1512.461012.46 2.98510---?= - -???+? =19.04MPa (3) 普遍化关系式 323.15190.6 1.695r c T T T === 124.699 1.259r c V V V ===<2 ∴利用普压法计算,01Z Z Z ω=+ ∵ c r ZRT P P P V = = ∴ c r PV Z P RT = 65 4.61012.46100.21338.314323.15 c r r r PV Z P P P RT -???===? 迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.4623 01Z Z Z ω=+=0.8938+0.008×0.4623=0.8975 此时,P=P c P r =4.6×4.687=21.56MPa 同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。 ∴ P=19.22MPa 2-2.分别使用理想气体方程和Pitzer 普遍化关系式计算510K 、2.5MPa 正丁烷的摩尔体积。已知实验值为1480.7cm 3/mol 。 解:查附录二得正丁烷的临界参数:T c =425.2K P c =3.800MPa V c =99 cm 3/mol ω=0.193

化工热力学作业答案

一、试计算一个125cm 3的刚性容器,在50℃和18.745MPa 的条件下能贮存甲烷多少克(实验值是17克)?分别比较理想气体方程、三参数对应态原理和PR 方程的结果。 解:查出T c =190.58K,P c =4.604MPa,ω=0.011 (1) 利用理想气体状态方程nRT PV = g m RT PV n 14872.0=?== (2) 三参数对应态原理 查表得 Z 0=0.8846 Z 1=0.2562 (3) PR 方程利用软件计算得g m n mol cm V 3.1602.1/7268.1223=?=?= 二、用virial 方程估算0.5MPa ,373.15K 时的等摩尔甲烷(1)-乙烷(2)-戊烷(3)混合物的摩尔体积(实验值5975cm 3mol -1)。已知373.15K 时的virial 系数如下(单位:cm 3 mol -1), 399,122,75,621,241,20231312332211-=-=-=-=-=-=B B B B B B 。 解:混合物的virial 系数是 44 .2309 399 212227526212412022231 132332122132 3222121313 1 -=?-?-?----= +++++==∑∑==B y y B y y B y y B y B y B y B y y B ij i j j i 298.597444.2305.0/15.373314.8/=-?=+=B P RT V cm 3 mol -1 三、(1) 在一定的温度和常压下,二元溶液中的组分1的偏摩尔焓如服从下式2 211 x H H α+=,并已知纯组分的焓是H 1,H 2,试求出H 2和H 表达式。 解: ()112221 2 2121121222dx x dx x x x dx dx H d x x H d x x H d αα-=-=???? ??-=- =得 2122x H H α+= 同样有2211 x H H α+= 所以 212211x x x H x H H x H i i α++==∑ ()()1,,o r r r r Z Z P T Z P T ω=+323.1518.745 1.696 4.071190.58 4.604r r T P = ===0.88640.0110.25620.8892Z =+?=30.88928.314323.15127.4/18.745 ZRT V cm mol P ??= ==1250.9812127.4t V n mol V ===15.7m g =

化工热力学课后答案

化工热力学课后答案(填空、判断、画图) 第1章 绪言 一、是否题 1. 封闭体系的体积为一常数。(错) 2. 封闭体系中有两个相βα,。在尚未达到平衡时,βα,两个相都是均相敞开体系; 达到平衡时,则βα,两个相都等价于均相封闭体系。(对) 3. 理想气体的焓和热容仅是温度的函数。(对) 4. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积 相等,初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、 终态压力相等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径 无关。) 二、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的 功为() f i rev V V RT W ln =(以V 表示)或() i f rev P P RT W ln = (以P 表示)。 3. 封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则 A 等容过程的 W = 0 ,Q =()1121T P P R C ig P ???? ??--,?U =() 1121T P P R C ig P ???? ??--,?H = 112 1T P P C ig P ??? ? ??-。 B 等温过程的 W =21ln P P RT -,Q =2 1ln P P RT ,?U = 0 ,?H = 0 。 第2章P-V-T关系和状态方程 一、是否题 1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。(错。可以通过超临界流体区。) 2. 当压力大于临界压力时,纯物质就以液态存在。(错。若温度也大于临界温度时,则是 超临界流体。)

化工热力学第三版(完全版)课后习题答案

化工热力学课后答案 第1章 绪言 一、是否题 1. 封闭体系的体积为一常数。(错) 2. 封闭体系中有两个相βα,。在尚未达到平衡时,βα,两个相都是均相敞开体系; 达到平衡时,则βα,两个相都等价于均相封闭体系。(对) 3. 理想气体的焓和热容仅是温度的函数。(对) 4. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积 相等,初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、 终态压力相等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径 无关。) 二、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的 功为() f i rev V V RT W ln =(以V 表示)或() i f rev P P RT W ln = (以P 表示)。 3. 封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则

A 等容过程的 W = 0 ,Q =() 1121T P P R C ig P ??? ? ??--, 错误!未找到引用源。U =( )11 2 1T P P R C ig P ???? ? ?--,错误!未找到引用源。H = 112 1T P P C ig P ??? ? ??-。 B 等温过程的 W =21ln P P RT -,Q =2 1ln P P RT ,错误!未找到引用源。U = 0 ,错误!未找到引用源。H = 0 。 C 绝热过程的 W =( ) ???? ????? ?-???? ??--11 2 11ig P C R ig P P P R V P R C ,Q = 0 ,错误!未找到引用源。U =( ) ???? ????? ? -??? ? ??-11 2 11ig P C R ig P P P R V P R C ,错误!未找到引用源。H =112 1T P P C ig P C R ig P ??????????-???? ??。 4. 1MPa=106Pa=10bar=9.8692atm=7500.62mmHg 。 5. 普适气体常数R =8.314MPa cm 3 mol -1 K -1=83.14bar cm 3 mol -1 K -1=8.314 J mol -1 K -1 =1.980cal mol -1 K -1。 四、计算题 1. 某一服从P (V-b )=RT 状态方程(b 是正常数)的气体,在从1000b 等温可逆膨胀 至2000b ,所做的功应是理想气体经过相同过程所做功的多少倍? 解:000722.12ln 9991999ln ln ln 1 212=??? ??=----=V V RT b V b V RT W W ig rev EOS rev 2. 对于ig P C 为常数的理想气体经过一绝热可逆过程,状态变化符合下列方程 γ γ) 1(1212-?? ? ???=P P T T ,其中ig V ig P C C = γ,试问,对于2cT bT a C ig P ++=的理想气体,上述关系 式又是如何? 以上a 、b 、c 为常数。

化工热力学课后作业答案(学生版)

习题 第1章 绪言 一、是否题 1. 孤立体系的热力学能和熵都是一定值。(错。G S H U ??=?=?,,0,0但和 0不一定等于A ?,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧 状态是T ,P 的理想气体,右侧是T 温度的真空。当隔板抽去后,由于Q =W =0,0=U ?,0=T ?,0=H ?, 故体系将在T ,2V ,0.5P 状态下达到平衡,()2ln 5.0ln R P P R S =-=?,2ln RT S T H G -=-=???,2ln RT S T U A -=-=???) 2. 封闭体系的体积为一常数。(错) 3. 封闭体系中有两个相βα,。在尚未达到平衡时,βα,两个相都是均相敞开体系; 达到平衡时,则βα,两个相都等价于均相封闭体系。(对) 4. 理想气体的焓和热容仅是温度的函数。(对) 5. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T ,V )的自变量 中只有一个强度性质,所以,这与相律有矛盾。(错。V 也是强度性质) 7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相 等,初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、终态 压力相等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径无关。) 8. 描述封闭体系中理想气体绝热可逆途径的方程是γ γ) 1(1212-??? ? ??=P P T T (其中ig V ig P C C =γ), 而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。(错。) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。(错。有时可能不一致) 10. 自变量与独立变量是不可能相同的。(错。有时可以一致) 三、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。

化工热力学第五章作业讲解

第五章 例题 一、填空题 1. 指出下列物系的自由度数目,(1)水的三相点 0 ,(2)液体水与水蒸汽处于汽液平衡 状态 1 ,(3)甲醇和水的二元汽液平衡状态 2 ,(4)戊醇和水的二元汽-液-液三相平衡状态 1 。 2. 说出下列汽液平衡关系适用的条件 (1) l i v i f f ??= ______无限制条件__________; (2)i l i i v i x y ?? ??= ______无限制条件____________; (3)i i s i i x P Py γ= _________低压条件下的非理想液相__________。 3. 丙酮(1)-甲醇(2)二元体系在98.66KPa 时,恒沸组成x 1=y 1=0.796,恒沸温度为327.6K ,已 知此温度下的06.65,39.9521==s s P P kPa 则 van Laar 方程常数是 A 12=______0.587_____,A 21=____0.717____ (已知van Laar 方程为 2 21112212112x A x A x x A A RT G E +=) 4. 在101.3kPa 下四氯化碳(1)-乙醇(2)体系的恒沸点是x 1=0.613和64.95℃,该温度下两组分 的饱和蒸汽压分别是73.45和59.84kPa ,恒沸体系中液相的活度系数 693.1,38.121==γγ。 1. 组成为x 1=0.2,x 2=0.8,温度为300K 的二元液体的泡点组成y 1的为(已知液相的 3733,1866),/(75212121==+=s s E t P P n n n n G Pa) ___0.334____________。 2. 若用EOS +γ法来处理300K 时的甲烷(1)-正戊烷(2)体系的汽液平衡时,主要困 难是MPa P s 4.251=饱和蒸气压太高,不易简化;( EOS+γ法对于高压体系需矫正)。 3. EOS 法则计算混合物的汽液平衡时,需要输入的主要物性数据是ij Ci Ci Ci k P T ,,,ω,通常如何得到相互作用参数的值?_从混合物的实验数据拟合得到。 4. 由Wilson 方程计算常数减压下的汽液平衡时,需要输入的数据是Antoine 常数A i ,B i ,C i ; Rackett 方程常数α,β;能量参数),2,1,)((N j i ii ij =-λλ,Wilson 方程的能量参数是如何得到的?能从混合物的有关数据(如相平衡)得到。

化工热力学(天大)第5章习题答案新

第五章 习 题 答 案 5-10 某二组元液体混合物在恒定T 及p 下的焓可用下式表示: ) (2121211025450300x x x x x x H +++= 式中H 单位为1mol J -?。试确定在该温度、压力状态下 (1)用1x 表示的1H 和2H ; (2)纯组分焓1H 和2H 的数值; (3)无限稀释下液体的偏摩尔焓∞1H 和∞ 2H 的数值。 解:(1)已知 )1025(450300212121x x x x x x H +++= (A ) 由于 211x x -= 故 )1025(450300212121x x x x x x H +++= )]1(1025)[1()1(450300111111x x x x x x -+-+-+= 3 1211155140450x x x -+-= (B ) 根据 P T x H x H H ???-+=))( 1(1 1 P T x H x H H ???-=)( 1 12 其中 211.1 4510140)( x x x H P T -+-=?? 则:)4510140)(1(15514045021113 12111x x x x x x H -+--+-+-= 31211305010310x x x +-+= (C ) )4510140(1551404502111312112x x x x x x H -+---+-= 3121305450x x +-= (D) (2) 将11=x 及01=x 分别代入式(B ),得纯组元的焓1H 和2H 11m o l J 300-?=H 12m o l J 450-?=H

化工热力学复习题及答案概要

第1章 绪言 一、是否题 1. 孤立体系的热力学能和熵都是一定值。(错。G S H U ??=?=?,,0,0但和 0不一定等于A ?,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状 态是T ,P 的理想气体,右侧是T 温度的真空。当隔板抽去后,由于Q =W =0,0=U ?,0=T ?,0=H ?,故体系将在T ,2V ,0.5P 状态下达到平衡,()2ln 5.0ln R P P R S =-=?,2ln RT S T H G -=-=???,2ln RT S T U A -=-=???) 2. 封闭体系的体积为一常数。(错) 3. 理想气体的焓和热容仅是温度的函数。(对) 4. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等, 初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、终态压力相 等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径无关。) 6. 自变量与独立变量是一致的,从属变量与函数是一致的。(错。有时可能不一致) 三、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。 3. 1MPa=106Pa=10bar=9.8692atm=7500.62mmHg 。 4. 1kJ=1000J=238.10cal=9869.2atmcm 3=10000bar cm 3=1000Pa m 3。 5. 普适气体常数R =8.314MPa cm 3 mol -1 K -1=83.14bar cm 3 mol -1 K -1=8.314J mol -1 K -1=1.980cal mol -1 K -1。 第2章P-V-T关系和状态方程 一、是否题 1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。(错。可以通过超临界流体区。) 2. 当压力大于临界压力时,纯物质就以液态存在。(错。若温度也大于临界温度时,则是超临 界流体。) 3. 纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸汽的摩尔体积随着温度的升高而减小。(对。则纯物质的P -V 相图上的饱和汽体系和饱和液体系曲线可知。) 4. 纯物质的三相点随着所处的压力或温度的不同而改变。(错。纯物质的三相平衡时,体系自 由度是零,体系的状态已经确定。)

化工热力学 第三版 课后答案完整版 朱自强

第二章 流体的压力、体积、浓度关系:状态方程式 2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。其中B 用Pitzer 的普遍化关联法计算。 [解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积id V 为 (2) 用RK 方程求摩尔体积 将RK 方程稍加变形,可写为 0.5() () RT a V b V b p T pV V b -= +-+ (E1) 其中 从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得 以理想气体状态方程求得的id V 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为 第二次迭代得2V 为 353 5 20.56335355331 3.2217(1.389610 2.984610) 1.38110 2.98461067 3.15 4.05310 1.389610(1.389610 2.984610) 1.38110 2.984610 2.1120101.389710V m mol ------------??-?=?+?- ??????+?=?+?-?=??1V 和2V 已经相差很小,可终止迭代。故用RK 方程求得的摩尔体积近似为 (3)用PR 方程求摩尔体积 将PR 方程稍加变形,可写为

() ()() RT a V b V b p pV V b pb V b -= +-++- (E2) 式中 22 0.45724c c R T a p α= 从附表1查得甲烷的ω=0.008。 将c T 与ω代入上式 用c p 、c T 和α求a 和b , 以RK 方程求得的V 值代入式(E2),同时将a 和b 的值也代入该式的右边,藉此求式(E2)左边的V 值,得 56 3563355353558.314673.15 2.68012104.05310 0.10864(1.39010 2.6801210) 4.05310[1.39010(1.39010 2.6801210) 2.6801210(1.39010 2.6801210)] 1.38110 2.6801210 1.8217101.3896V ------------?= +?-???-??????+?+???-?=?+?-?=331 10m mol --?? 再按上法迭代一次,V 值仍为3311.389610m mol --??,故最后求得甲烷的摩尔体积近似为3311.39010m mol --??。 (4)维里截断式求摩尔体积 根据维里截断式(2-7) 11()c r c r Bp p Bp Z RT RT T =+ =+ (E3) 01c c Bp B B RT ω=+ (E4) 0 1.60.0830.422/r B T =- (E5) 1 4.20.1390.172/r B T =- (E6) 其中 已知甲烷的偏心因子ω=0.008,故由式(E4)~(E6)可计算得到

相关主题
文本预览
相关文档 最新文档