当前位置:文档之家› 平面几何的26个定理

平面几何的26个定理

平面几何的26个定理
平面几何的26个定理

高一数学竞赛班二试讲义

第1讲 平面几何中的26个定理

班级 姓名

一、知识点金 1. 梅涅劳斯定理:若直线l 不经过ABC ?的顶点,

并且与ABC ?的三边,,BC CA AB 或它们的延长线

分别交于,,P Q R ,则1BP CQ AR PC QA RB

??= 注:梅涅劳斯定理的逆定理也成立

(用同一法证明)

2. 塞瓦定理: 设,,P Q R 分别是ABC ?的三边,,BC CA AB 或它们的延长线上的点,

若,,AP BQ CR 三线共点,则

1BP CQ AR PC QA RB

??= 注:塞瓦定理的逆定理也成立

3. 托勒密定理:在四边形ABCD 中,有AB CD BC AD AC BD ?+?≥?,并且当且仅当四边形ABCD 内接于圆时,等式成立。 AB AE AC AD

BC ED AC AD

==?又

4. 西姆松定理:若从ABC ?外接圆上一点P 作,,BC AB CA 的垂线,

垂足分别为,,D E F ,则,,D E F 三点共线。

西姆松定理的逆定理:从一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F 。若,,D E F 三点共线,则点P 在ABC ?的外接圆上。

5. 蝴蝶定理:圆O 中的弦PQ 的中点M ,过点M 任作两弦AB ,CD ,弦AD 与BC 分别交PQ 于X ,Y ,则M 为XY 之中点。

证明:过圆心O 作AD 与BC 的垂线,垂足为S 、T ,

,OY ,OM ,SM ,MT 。

∽△CMB ∴AM/CM=AD/BC

∵AS=1/2AD ,BT=1/2BC ∴AM/CM=AS/CT

又∵∠A=∠C ∴△AMS ∽△CMT

∴∠MSX=∠MTY

∵∠OMX=∠

∴∠OMX+∠OSX=180°

∴O ,S ,X ,M

同理,O ,T ,

∴∠MTY=∠MOY ,∠MSX=∠MOX

∴∠MOX=∠MOY , ∵OM ⊥PQ ∴XM=YM

注:把圆换成椭圆、抛物线、双曲线蝴蝶定理也成立

6. 坎迪定理:设AB 是已知圆的弦,M 是AB 上一点,弦,CD EF

过点M ,连结,CF ED ,分别交AB 于,L N ,则

1111LM MN AM MB -=-。 7. 斯特瓦尔特定理:设P 为ABC ?的BC 边上任一点,则有

2222P C B P B P P C A P A B A C B C B C B C B C B C

=?+?-??。 注:斯特瓦尔特定理的逆定理也成立

8.张角定理: 设,,A C B 顺次分别是平面内一点P 所引三条射线,,AB AP AC 上的点,线段,AC CB 对点P 的张角分别为,αβ,且180αβ+<,则,,A C B 三点共线的充要条件是:

sin()sin sin PC PB PA

αβαβ+=+ 9.九点圆定理:三角形的三条高的垂足、三边的中点,以及垂心与顶点的三条连接线段的中点, 共九点共圆。此圆称为三角形的九点圆,或称欧拉圆。ABC ?的九点圆的圆心是其外心与垂心所

连线段的中点,九点圆的半径是ABC ?的外接圆半径的12

。 证明:ABC ?的九点圆与ABC ?的外接圆,以三角形的垂心为外位似中心,又以三角形的重心为内位似中心。位似比均为1:2。

10.欧拉线:ABC ?的垂心H ,

重心G ,

外心O 三点共线。此线称为欧拉线,且有关系:2HG GO = 11.欧拉公式:设三角形的外接圆与内切圆的半径分别为R 和r ,则这两圆的圆心距

OI =2R r ≥。 证明:设外心为O ,内心为I ,连结OI ,延长交外接圆于,N P 两点,令d OI =,AI 交外接

圆于L ,则()()2sin

22sin 2

A r R d R d NI IP LI IA L

B IA R Rr A

-+=?=?=?=?= 12.笛沙格定理;在ABC ?和A B C '''?中,若,,AA BB CC '''相交于一点O ,则AB 与A B '',BC 与B C '',AC 与A C ''的交点,,F D E 共线。

证明:OBC ?和梅尼线B C D '',1OB BD CC B B DC C O ''??='';OAB ?和梅尼线A B F '',1OA AF BB A A FB B O

''??=''; OAC ?和梅尼线A C E '',1OC CE AA C C EA A O

''??='',三式相乘,得1BD CE AF DC EA FB ??=。得证

13.牛顿(Newton)定理1:

圆的外切四边形的对角线的交点和以切点为顶点的四边形对角线交点重合。

证法1:设四边形ABCD的边AB,BC,CD,DA与内切圆分别切于点E,F,G,H.

首先证明,直线AC,EG,FH交于一点.设EG,FH分别交AC于点I,I'.

显然∠AHI‘=∠BFI ’ ,因此易知AI'*HI'/FI'*CI'=S(AI'H)/S(CI'F)=AH*HI'/CF*FI'

故AI'/CI'=AH/CF. 同样可证:AI/CI=AE/CG

又AE=AH,CF=CG. 故AI/CI=AH/CF=AI'/CI'.

从而I,I'重合.即直线AC,EG,FH交于一点.

同理可证:直线BD,EG,FH交于一点. 因此直线AC,BD,EG,FH交于一点。

证法2:外四边形为ABCD,对应内切四边形为EFGH。连接EG,FH交于P。

下面证明BD过P即可。

过D座EG的平行线交BA与S,过D做FH的平行线交BC于T。由于弦切角及同位角,角BEG=角CGE=角CDS=角BSD。所以SEGD四点共圆,且为等腰梯形。设此圆为圆M,圆M与圆O,内切圆交于EG,所以其根轴为EG,同理对圆N,DHFT,与圆O交于HF。HF为此两圆的根轴。由根轴定理,只需证明BD为圆M与圆N的根轴即可证明BD,EG,HF共于点P。

D在圆M和圆N上,所以其为根轴一点。由于SEGD,和DHFT为等腰梯形,所以ES=DG,DH=FT。由切线长定理,DH=DG,BE=BF;所以BE=BF,ES=FT,BS=BT。若B为圆M与圆N 的根轴上一点,则BE*BS=BF*BT,其为割线长。明显等式成立。所以BD为圆M与圆N的根轴,则BD,EG,HF共于点P。同理AC,EG,HF共于点P。命题得证。

14.牛顿(Newton)定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线。

证明:设四边形ABCD是⊙I的外切四边形,E和F分别是它的对角线AC和BD的中点,连接EI只需证它过点F,即只需证△BEI与△DEI面积相等。

显然,S△BEI=S△BIC+S△CEI-S△BCE,而S△DEI=S△ADE+S△AIE-S△AID。

注意两个式子,由ABCD外切于⊙I,AB+CD=AD+BC,S△BIC+S△AID=1/2*S四边形ABCD,S△ADE+S△BCE=1/2*S△ACD+1/2*S△ABC=1/2*S四边形ABCD

即S△BIC+S△AID=S△ADE+S△BCE,移项得S△BIC-S△BCE=S△ADE-S△AID,由E是AC中点,S△CEI=S△AEI,故S△BIC+S△CEI-S△BCE=S△ADE+S△AIE-S△AID,即S△BEI=△DEI,而F是BD中点,由共边比例定理EI过点F即EF过点I,故结论成立。15.牛顿(Newton)定理3:完全四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线。这条直线叫做这个四边形的牛顿线。

证明:四边形ABCD,AB∩CD=E,AD∩BC=F,BD中点M,AC中点L,EF中点N 取BE 中点P,BC中点R,PN∩CE=Q

R,L,Q共线,QL/LR=EA/AB;M,R,P共线,RM/MP=CD/DE;

N,P,Q共线,PN/NQ=BF/FC。

三式相乘得: QL/LR*RM/MP*PN/NQ=EA/AB*CD/DE*BF/FC

QL/LR*RM/MP*PN/NQ=1

及梅尼线LMN,

PQR

由梅涅劳斯定理的逆定理知L,M,N三点共线。

16.布利安双定理:设一六角形外切于一条圆锥曲线,那么它的三双对顶点的连线共点。在此,提供用初等几何证明外切于圆的情形。

记六边形为ABCDEF外切于圆O,AB,BC,CD,DE,EF,FA上的切点分别是G,H,I,J,K,L.设AB,DC 交于X,AF,DE交于Y.则四边形AXDY外切于圆O,切点分别是G,I,J,L。圆外切四边形对边切点连线与主对角线交于一点,有AD,GJ,LI共点(记为点P)。同理,BE,GJ,KH共点(记为点r),CF,LI,KH 共点(记为点q则命题可转为证明DP,BR,FQ共点。

17.拿破仑定理:若在任意三角形的各边向外作正三角形。则它们的中心构成一个正三角形。

证明:设等边△ABD的外接圆和等边△ACF的外接圆相交于O;连AO、CO、BO。

∴∠ADB=∠AFC=60°;∵ A、D、B、O四点共圆;A、F、C、O四点共圆;

∴∠AOB=∠AOC=120°;∴∠BOC=120°;∵△BCE是等边三角形

∴∠BEC=60°;∴ B、E、C、O四点共圆;∴这3个等边三角形的外接圆共点。

设等边△ABD的外接圆⊙N,等边△ACF的外接圆⊙M,等边△BCE的外接圆⊙P 相交于O;连AO、CO、BO。∵A、D、B、O四点共圆;A、F、C、O四点共圆,B、E、C、O四点共圆,∠AFC=∠ADB=∠BEC=60°;∴∠AOB=∠AOC=∠BOC=120°;

∵ NP、MP、MN是连心线;BO、CO、AO是公共弦;∴ BO⊥NP于X;CO⊥MP 于Y;AO⊥NM于Z。

∴ X、P、Y、O四点共圆;Y、M、Z、O四点共圆;Z、N、X、O四点共圆;

∴∠N=∠M=∠P=60°;即△MNP是等边三角形。

18.帕斯卡(Pascal)定理:如图,圆内接六边形ABCDEF的边AB、DE的延长线交于点G,边BC、EF的延长线交于点H,边CD、FA的延长线交于点K。则H、G、K三点共线。

证明:延长AB、CD、EF,分别交直线CD、EF、AB于M、N、L三点,构成△LMN。

直线BC截LM、MN、NL于B、C、H三点,则…①

直线DE截LM、MN、NL于G、D、E三点,则|LG|/|MG|.|MD|/|ND|.|NE|/|LE|=1…②

直线AF截LM、MN、NL于A、K、F三点,则…③

连BE,则LA·LB=LF·LE,∴…④。同理…⑤,…⑥。

将①②③④⑤⑥相乘,得。

∵点H、G、K在△LMN的边LN、LM、MN的延长线上,∴H、G、K三点共线。

19.蒙日定理(根心定理):平面上任意三个圆,若这三个圆圆心不共线,则三条根轴相交于一点,这个点叫它们的根心;若三圆圆心共线,则三条根轴互相平行。

注:在平面上任给两不同心的圆,则对两圆圆幂相等的点的集合是一条直线,这条线称为这两个圆的根轴。另一角度也可以称两不同心圆的等幂点的轨迹为根轴,或者称作等幂轴。

(1)平面上任意两圆的根轴垂直于它们的连心线;

(2)若两圆相交,则两圆的根轴为公共弦所在的直线;

(3)若两圆相切,则两圆的根轴为它们的内公切线;

20.莫利定理(Morley's theorem),也称为莫雷角三分线定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形。这个三角形常被称作莫利正三角形。

证法一:在△ABR中,由正弦定理,得AR=csinβ/sin(α+β)。不失一般性,△ABC 外接圆直径为1,则由正弦定理,知c=sin3γ,所以AR= (sin3γ*sinβ)/sin(60°-γ)=[sinβ*sinγ(3-4sin^2 γ)]/[1/2(√3cosγ-sinγ)]= 2sinβsinγ(√3cosγ+sinγ)=4sinβsinγsin(60°+γ). 同理,AQ=4sinβsinγsin(60°+β) 在△ARQ中,由余弦定理,得RQ^2 =16sin^2 βsin^2 γ[sin^2 (60+γ)+sin^2 (60°+β)-2sin(60°+γ)*sin(60°+β)cosα]=16sin^2 αsin^2 βsin^2 γ. 这是一个关于α,β,γ的对称式,同理可得PQ^2 ,PR^2 有相同的对称性,故PQ=RQ=PR,所以△PQR是正三角形。

证法二:∵AE:AC=sinγ:sin(α+γ),AF:AB=sinβ:sin(α+β),

AB:AC=sin3γ:sin3β,∴AE:AF=(ACsin(α+γ)/si nγ):(ABsin(α+β)/sinβ),

而sin3γ:sin3β=(sinγsin(60°+γ)sin(60°-γ) ):(sinβ sin(60°+β) sin(60°-β) ),

∴AE:AF=sin(60°+γ):sin(60°+β),∴在△AEF中,∠AEF=60°+γ,

同理∠CED=60°+α,∴∠DEF=60°,∴△DEF为正三角形。

21.斯坦纳—莱默斯定理:

如图,已知△ABC中,两内角的平分线BD=CE。求证:AB=AC。

证法①作∠BDF=∠BCE;并使DF=BC

∵BD=EC,∴△BDF≌△ECB,BF=BE,∠BEC=∠DBF.

设∠ABD=∠DBC=α,∠ACE=∠ECB=β,

∠FBC=∠BEC+α=180°-2α-β+α=180°-(α+β);

∠CDF=∠FDB+∠CDB=β+180-2β-α=180°-(α+β);

∴∠FBC=∠CDF,∵2α+2β<180°,

∴α+β<90°,∴∠FBC=∠CDF>90°

∴过C点作FB的垂线和过F点作CD的垂线必都在FB和CD的延长线上.

设垂足分别为G、H;∠HDF=∠CBG;∵BC=DF,∴Rt△CGB≌Rt△FHD,∴CG=FH,BC=FD 连接CF,∵CF=FC,FH=CG,∴Rt△CGF≌△FHC(HL),∴FG=CH, 又∵BG=DH,∴BF=CD, 又∵BF=BE,∴CD=BE,∵BE=CD,BC=CB,EC=DB,∴△BEC≌△CDB,∴∠ABC=∠ACB ∴AB=AC.

证法②设二角的一半分别为α、β ,sin(2α+β)/ sin2α= BC/CE = BC/BD = sin(α+2β)/ sin2β, ∴2sinαcosαsin(α+2β) - 2sinβcosβsin(2α+β) =0

→sinα[sin2(α+β)+sin 2β]- sinβ[sin2(α+β)+ sin2α]=0

→sin2(α+β)[sinα-sinβ]+2 sinαsinβ[cosβ- cosα]=0

→sin [(α-β)/2][sin2(α+β) cos[(α+β)/2] + 2 sinαsinβsin [(α+β)/2]=0 ,

∴sin[(α-β)/2]=0 ∴α=β,∴AB=AC.

证法③用张角定理:2cosα/BE=1/BC+1/AB ,2cosβ/CD=1/BC+1/AC ,

若α>β 可推出AB>AC矛盾!若α<β 可推出AB

22.费尔马点:费尔马点——就是到三角形的三个顶点的距离之和最短的点。对于一个顶角不超过120度的三角形,费尔马点是对各边的张角都是120度的点。对于一个顶角超过120度的三角形,费尔马点就是最大的内角的顶点。

证明:在平面三角形中: (1).三内角皆小于120°的三角形,分别以AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点. (2).若三角形有一内角大于或等于120度,则此钝角的顶点就是所求. (3)当△ABC为等边三角形时,此时外心与费马点重合(1)等边三角形中BP=PC=PA,BP、PC、PA分别为三角形三边上的高和中线、三角上的角分线。是内切圆和外切圆的中心。△BPC≌△CPA≌△PBA。(2)当BC=BA但CA≠AB时,BP为三角形CA上的高和中线、三角上的角分线。

证明(1)费马点对边的张角为120度。

△CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1, △CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B 同理可得∠CBP=∠CA1P 由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度同理,∠APB=120度,∠APC=120度(2)PA+PB+PC=AA1 将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BPD=60度又∠BPA=120度,因此A、P、D三点在同一直线上,又∠CPB=∠A1DB=120度,∠PDB=60度,∠PDA1=180度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。

(3)PA+PB+PC最短在△ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将△BMC 以点B为旋转中心旋转60度与△BGA1重合,连结AM、GM、A1G(同上),则

AA1

23.等差幂线定理:已知A、B亮点,则满足AP2-BP2=k(k为常数)的点P轨迹是垂直于AB的一条直线。

24.婆罗摩笈多定理

若圆内接四边形ABCD的对角线相互垂直,则垂直于一边CD且过对角线交点E的直线EF将AB平分对边。

25.莱莫恩(Lemoine)定理:过△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB所在直线交于P、Q、R,则P、Q、R三点共线。直线PQR称为△ABC的莱莫恩线。

证明:由弦切角定理可以得到:sin∠ACR=sin∠ABC ,sin∠BCR=sin∠BAC sin∠BAP=sin∠BCA,sin∠CAP=sin∠ABC

sin∠CBQ=sin∠BAC sin∠ABQ=sin∠BCA

所以,我们可以得到:(sin∠ACR/sin∠BCR)*(sin∠BAP/sin∠CAP)*(sin∠CBQ/sin∠ABQ)=1,这是角元形式的梅涅劳斯定理,所以,由此,得到△ABC被直线PQR所截,即P、Q、R共线。

26.清宫定理:设P、Q为△ABC的外接圆上异于A、B、C的两点,P关于三边BC、CA、AB的对称点分别是U、V、W,且QU、QV、QW分别交三边BC、CA、AB或其延长线于D、E、F,则D、E、F在同一直线上

证明:设P、Q为△ABC的外接圆上异于A、B、C的两点,P关于三边BC、CA、AB 的对称点分别是U、V、W,且QU、QV、QW分别交三边BC、CA、AB或其延长线于D、E、F 这时,P、Q两点和D、F、E、三点有如下关系:将三角形的三边或者其延长线作为镜面,则从P点出发的光线照到D点经过BC反射以后通过Q点,从P点出发的光线照到E点经AC的延长线反射后通过Q点,从P点出发的光线照到F点后通过Q点从而,如果P、Q两点重合,则D、E、F三点成为从P(即Q)点向BC,CA,AB或者它们的延长线所引的垂线的垂足。于是,如果P、Q两点重合,清宫定理就成为西摩松定理。

我们决定将证明清宫定理的方针确定如下:因为D、E、F三点中,有两点在△ABC 的边上,其余一点在边的延长线上,如证明(BD/DC)·(CE/EA)·(AF/FB)=1,则根据梅涅劳斯定理的逆定理,就可证明DEF三点在同一直线上。

首先,A、B、P、C四点在同一圆周上,因此∠PCE=∠ABP

但是,点P和V关于CA对称所以∠PCV=2∠PCE

又因为P和W关于AB对称,所以∠PBW=2∠ABP

从这三个式子,有∠PCV=∠PBW

另一方面,因为∠PCQ和∠PBQ都是弦PQ所对的圆周角,

所以∠PCQ=∠PBQ 两式相加,有∠PCV+∠PCQ=∠PBW+∠PBQ

即∠QCV=∠QBW 即△QCV和△QBW有一个顶角相等,

因此S(△QCV)/S(△QBW)=(CV·CQ)/(BW·BQ)

但是CV=CP,BW=BP,所以S(△QCV)/S(△QBW)=(CP·CQ)/(BP·BQ)同理S(△QAW)/S(△QCU)=(AP·AQ)/(CP·CQ)

S(△QBU)/S(△QAV)=(BP·BQ)/(AP·AQ)

于是(BD/DC)·(CE/EA)·(AF/FB)=[S(△QBU)/S(△QCU)]·[S(△QCV)/S (△QAV)]·[S(△QAW)/S(△QBW)] =[S(△QBU)/S(△QAV)]·[S(△QCV)/S(△QBW)]·[S (△QAW)/S(△QCU)] =[(BP·BQ)/(AP·AQ)]·[(CP·CQ)/(BP·BQ)]·[(AP·AQ)/(CP·CQ)] =1

根据梅涅劳斯定理的逆定理,D、E、F三点在同一直线上

平面几何60条著名定理

1、勾股定理(毕达哥拉斯定理) 2、射影定理(欧几里得定理) 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 6、三角形各边的垂直一平分线交于一点。 7、三角形的三条高线交于一点 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD 20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高” A B C D F P

还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、 E 、 F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 / / 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

平面几何基本定理

. 一.平面几何 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边 的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则 有)(22222BP AP AC AB +=+; 中线长:2 222 22a c b m a -+= 4. 垂线定理:2 2 2 2 BD BC AD AC CD AB -=-?⊥ 高 线 长 : C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---= 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线 段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定 理) 角平分线长:2 cos 2)(2A c b bc a p bcp c b t a +=-+= (其中 p 为周长一半) 6. 正弦定理: R C c B b A a 2sin sin sin ===, (其中R 为三角形外接圆半径) 7. 余弦定理:C ab b a c cos 2222 -+= 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2 ·DC +AC 2 ·BD -AD 2 ·BC =BC ·DC ·BD 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一 半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角 12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定 理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边 14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙ O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作 一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2 -r 2 |.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两 组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD 16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过 点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近 两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距 离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点 18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、 △BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF = CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向 外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙ A 1 、⊙ B 1的圆心构成的△——外拿破仑的三角形,⊙ C 1 、 ⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心 19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形 中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如: (1)三角形的九点圆的半径是三角形的外接圆半径之半 (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点 (3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕 20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心 依次位于同一直线(欧拉线)上. 21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半 径为r ,外心与内心的距离为d ,则d 2 =R 2 -2Rr . 22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各 边距离的和. 23. 重心:三角形的三条中线交于一点,并且各中线被这个点分 成2:1的两部分;)3 ,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC

专题平面几何的四个重要定理

专题平面几何的四个重 要定理 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

竞赛专题讲座06 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、 Q、R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点 的充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求 证:。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的 中点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、 BF、CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的 比为AM:AC=CN:CE=k,且B、M、N共 线。求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、 R b、R c表示O到A、B、C的距离。

第十九讲平面几何中的几个著名定理

第十九讲平面几何中的几个著名定理 几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过演绎推理得到不少结论,这些结论一般就称为定理.平面几何中有不少定理,除了教科书中所阐述的一些定理外,还有许多著名的定理,以这些定理为基础,可以推出不少几何事实,得到完美的结论,以至巧妙而简捷地解决不少问题.而这些定理的证明本身,给我们许多有价值的数学思想方法,对开阔眼界、活跃思维都颇为有益.有些定理的证明方法及其引伸出的结论体现了数学的美,使人们感到对这些定理的理解也可以看作是一种享受.下面我们来介绍一些著名的定理. 1.梅内劳斯定理 亚历山大里亚的梅内劳斯(Menelaus,约公元100年,他和斯巴达的Menelaus是两个人)曾著《球面论》,着重讨论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理”现载在初等几何和射影几何的书中,是证明点共线的重要定理. 定理一直线与△ABC的三边AB,BC,CA或延长线分别相交于X,Y,Z,则 证过A,B,C分别作直线XZY的垂线,设垂足分别为Q,P,S,见图3-98.由△AXQ∽△BXP得

同理 将这三式相乘,得 说明(1)如果直线与△ABC的边都不相交,而相交在延长线上,同样可证得上述结论,但一定要有交点,且交点不在顶点上,否则定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为 AX×BY×CZ=XB×YC×ZA, 仍然成立. (2)梅内劳斯定理的逆定理也成立,即“在△ABC 的边AB和AC上分别取点X,Z,在BC的延长线上取点Y,如果 那么X,Y,Z共线”.梅内劳斯定理的逆定理常被用来证明三点共线. 例1 已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D,求证:D,E,F共线. 证如图3-99有 相乘后得

认识平面几何的61个著名定理

【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】 ★1、勾股定理(毕达哥拉斯定理) ★2、射影定理(欧几里得定理) ★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线和两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 ★6、三角形各边的垂直平分线交于一点。 ★7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 ★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: ()()()s c s b s a s r ---=,s 为三角形周长的一半 ★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC 的边BC 的中点为P ,则有AB 2+AC 2=2(AP 2+BP 2) 16、斯图尔特定理:P 将三角形ABC 的边BC 分成m 和n 两段,则有n×AB 2+m×AC 2=BC×(AP 2+mn ) 17、波罗摩及多定理:圆内接四边形ABCD 的对角线互相垂直时,连接AB 中点M 和对角线交点E 的直线垂直于CD 18、阿波罗尼斯定理:到两定点A 、B 的距离之比为定比m:n (值不为1)的点P ,位于将线段AB 分成m:n 的内分点C 和外分点D 为直径两端点的定圆周上 ★19、托勒密定理:设四边形ABCD 内接于圆,则有AB×CD+AD×BC=AC×BD

初中平面几何四个重要定理

初中数学知识重点整理 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、 R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的 充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求证: 。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的中 点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、BF、 CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的比 为AM:AC=CN:CE=k,且B、M、N共线。 求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、R b、R c表示O到A、B、C的距离。

平面几何四大定理

平面几何四大定理 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Me nelau s)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R,则P、Q 、R共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Pto lemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(S imso n)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△A BC的边BC 上的中线,直线CF 交AD 于F 。求 证:FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B、D 之一作CF 的平行 线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F,交CB 于

平面几何四大定理 D 。 求证: 1FA CF EA BE =+。 【分析】连结并延长AG 交BC 于M,则M为BC 的中点。 DEG 截△AB M→1DB MD GM AG EA BE =??(梅氏定理) D GF 截△AC M→1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE + =MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、C A、AB 边上, λ===EA CE FB AF DC BD ,A D、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△B CE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 【评注】塞瓦定理 5. 已知△ABC 中,∠B=2∠C。求证:AC 2=AB 2+AB ·B C。

平面几何的几个重要定理--托勒密定理

托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组 对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之 和). 即:ABCD AB CD AD BC AC BD ?+?≥? 定理:在四边形中,有: ABCD 并且当且仅当四边形内接于圆时,等式成立; () ABCD E BAE CAD ABE ACD AB BE ABE ACD AB CD AC BE AC CD AB AE BAC EAD ABC AED AC AD BC ED AD BC AC ED AC AD AB CD AD BC AC BE ED AB CD AD BC AC BD E BD A B C ∠=∠∠=∠ ??∴=??=? =∠=∠∴?? ∴=??=? ∴?+?=?+ ∴?+?≥? 证:在四边形内取点,使, 则:和相似 又且和相似 且等号当且仅当在上时成立,即当且仅当、、、 一、直接应用托勒密定理 例1如图2,P是正△ABC外接圆的劣弧上任一点(不与B、C重合), 求证:PA=PB+PC. 分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为 繁冗.若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB, ∵AB=BC=AC.∴PA=PB+PC. 二、完善图形借助托勒密定理 例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2 证明:如图,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是 圆内接四边形. 由托勒密定理,有AC·BD=AB·CD+AD·BC.① 又∵ABCD是矩形,∴AB=CD,AD=BC,AC=BD.② 把②代人①,得AC2=AB2+BC2. 例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD, 求证:AD·BC=BD(AB+AC). 证明:连结CD,依托勒密定理,有AD·BC=AB·CD+AC·BD. ∵∠1=∠2,∴BD=CD. 故AD·BC=AB·BD+AC·BD=BD(AB+AC). 三、构造图形借助托勒密定理 例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1. 证明:如图作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB, 使AC=a,BC=b,BD=x,AD=y. 由勾股定理知a、b、x、y是满足题设条件的. 据托勒密定理,有AC·BD+BC·AD=AB·CD. ∵CD≤AB=1,∴ax+by≤1. 四、巧变原式妙构图形,借助托勒密定理 例5已知a、b、c是△ABC的三边,且a2=b(b +c),求证:∠A=2∠B. 分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进 而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c. 证明:如图,作△ABC 的外接圆,以A为圆心,BC为半径作弧交圆于 D,连结BD、DC、DA.∵AD=BC,ACD BDC =∴∠ABD=∠BAC. 又∵∠BDA=∠ACB(对同弧),∴∠1=∠2. 依托勒密定理,有BC·AD=AB·CD+BD·AC.① 而已知a2=b(b+c),即a·a=b·c+b2.② ∴∠BAC=2∠ABC. 五、巧变形妙引线 借肋托勒密定理 例6在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4, 分析:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆联系起 来,可联想到托勒密定理,进而构造圆内接四边形. 如图,作△ABC的外接圆,作弦BD=BC,边结AD、CD. 在圆内接四边形ADBC中,由托勒密定理, 有AC·BD+BC·AD=AB·CD 易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC, 1.已知△ ABC 中,∠ B=2∠ C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。 则CD=DA=AB,AC=BD。由托勒密定理,AC·BD=AD·BC+CD·AB。 2.ABC BC P BC AC AB PK PL PN BC AC AB PK PL PM ? =+ 由外接圆的弧上一点分别向边、与作垂线、和, 求证:

著名的15个平面几何定理

1、欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 证明:利用向量,简单明了 设H,G,O,分别为△ABC的垂心、重心、外心.,D为BC边上的中点。 ∵向量OH=向量OA+向量AH =向量OA+2向量OD (1) =向量OA+向量OB+向量BD+向量OC+向量CD =向量OA+向量OB+向量OC; 而向量OG=向量OA+向量AG =向量OA+1/3(向量AB+向量AC) (2) =1/3[向量OA+(向量OA+向量AB)+(向量OA+向量AC)] =1/3(向量OA+向量OB+向量OC). ∴向量OG=1/3向量OH, ∴O、G、H三点共线且OG=1/3OH。 2、九点圆: 任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

证明:如右图所示,△ABC的BC边垂足为D,BC边中点为L。证法为以垂心H为位似中心,1/2为位似比作位似变换。 连结HL并延长至L',使LL'=HL;做H关于BC的对称点D'。 显然,∠BHC=∠FHE=180°-∠A,所以∠BD'C=∠BHC=180°-∠A,从而A,B,D',C四点共圆。 又因为BC和HL'互相平分于L,所以四边形BL'CH为平行四边形。故∠BL'C=∠BHC=180°-∠A,从而A,B,L',C四点共圆。 综上,A,B,C,D',L'五点共圆。显然,对于另外两边AB,AC边上的F,N,E,M也有同样的结论成立,故A,B,C,D',L',F',N',E',M'九点共圆。此圆即△ABC的外接圆⊙O。 接下来做位似变换,做法是所有的点(⊙O上的九个点和点O本身)都以H为位似中心进行位似比为1/2的位似变换。那么,L'变到了L(因为HL'=2HL),D'变到了D(因为D'是H关于BC的对称点),B变到了Q,C变到了R(即垂心与顶点连线的中点)。其它各点也类似变换。O点变成了OH中点V。 位似变换将圆仍映射为圆(容易用向量证明),因此原来在⊙O上的九个点变成了在⊙V上的九个点,且⊙V 的半径是⊙O的一半。 这就证明了三角形三边的中点,三高的垂足和三个欧拉点都在一个圆上。 3、费尔马点: 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。 证明:如图,以△ABC三边为边向外作等边△ABD、△BCE、△ACF, 连接CD、BF、AE交于点O,试证:O是费马点。 证明:在△ACD、△ABF中, AD=AB,∠DAC=∠BAF,AC=AF ∴△ACD≌△ABF(SAS)

平面几何四个重要定理

竞赛专题讲座-平面几何四个重要定理 重庆市育才中学瞿明强 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线的充要条件是四个重要定理: 。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的充要条件是 。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 例题:

1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求证:。 【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F,交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的中点。DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理

3.D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的等腰△BCE、△CAF、△ABG。求证:AE、BF、CG相交于一点。 【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则CD=DA=AB,AC=BD。由托勒密定理,AC·BD=AD·BC+CD·AB。 【评注】托勒密定理

平面几何的几个重要的定理

平面几何的几个重要的定理 一、梅涅劳斯定理: 1=??=??B A A C C B C B A h h h h h h RB AR QA CQ PC BP l C B A h h h 的垂线的长度,则:到直线 、、分别是、、证:设 注:此定理常运用求证三角形相似的过程中的 线段成比例的条件; 。 的交点,证明:与是的中点,是上,在点 的平分线,是是斜边上的高,中,:若直角例CE //BF CK DE F AC D AK E ACK CE CK ABC ∠?11PC BP R Q P AB CA BC ABC ABC l 1=??RB AR QA CQ ,则 、、的延长线分别交于或它们、、的三边的顶点,并且与不经过:若直线定理??CE //BF CKE FKB KE BK KC KF BE BK FC KF BE BK BC BP AC EP AC CK AE EK FC KF 1FC KF EK AE DA CD F E D ACK EP CK EP BC EBC CE BH 90HCB ACE HCB HBC ACE HBC ACK EBC BH B EBC ∴?∴= ====??=∴⊥?=∠+∠=∠+∠∠=∠∠=∠∠?????= 依分比定理有:=即:=于是依梅涅劳斯定理有:、、和三点对于,则:上的高作为等腰三角形 即:则:的平分线中,作在证:Θ

1 11 111111111D B D A : C B C A B D AD :BC AC D C B A D C B A K 1=,试证:、、、和、、、线分别交这四条直线于引四条直线,另两条直】从点【练习 注:此定理常用于证明三点共线的问题,且常需要多次使用 再相乘; 共线; 、、证明点引的垂线的垂足, 、、向是从点、、的外接圆上;位于点例111111C B A AB CA BC P C B A ABC P .2? 三点共线; 、、综上可得:也重合与的延长线上时,同在与类似地可证得当矛盾=这与于是可得即这时设必定重合,不然的话,与线段上,则同在与若的延长线上; 线段上,或者同在或者同在与因此,或边上的点的个数也为三点中,位于、、由于在同一直线上的= ,则:又得: ,于是由定理交于与直线证:设直线R Q P R R AB R R BR AR BR AR BR AR BR AR ,BR BR ,AR AB AR AB ,AR AR R R AB R R AB AB R R 20ABC R Q P RB AR B R AR 1RB AR QA CQ 1B R AR QA CQ 1R AB PQ ''' ' ' ' ' ' ''''''''' '> <-<->=??=???PC BP PC BP Θ三点共线; 、、求证:, ,这时若或边上的点的个数为三点中,位于、、三点,并且 上或它们的延长线上的、、的三边分别是、、:设定理R Q P PC BP 20ABC R Q P AB CA BC ABC R Q P 21RB AR QA CQ =???? C B A 1 A 1 B 1 C 三点共线; 、、依梅涅劳斯定理可知,=可得 且将上面三条式子相乘, 证:易得:1111 1 1111111111C B A 1BC AC AB CB CA BA 180PBA PCA ,PCB PAB ,PBC PAC PBA cos PB PAB cos AP BC AC PAC cos AP PCA cos CP AB CB , PCB cos CP PBC cos BP CA BA ???=∠+∠∠=∠∠=∠∠?∠?-=∠?∠?-=∠?∠?-=Θ

关于平面几何的60条著名定理

关于平面几何的60条著名定理 一些平面几何的著名定理 1、勾股定理(毕达哥拉斯定理) 2、射影定理(欧几里得定理) 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 6、三角形各边的垂直一平分线交于一点。 7、三角形的三条高线交于一点 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,

设垂足为L,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角

平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有nAB2+mAC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有ABCD+ADBC=ACBD 20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形, 21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、

平面几何四大定理

. . 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R , 则P 、Q 、R 共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。 求证:FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平 行线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB

DEG 截△ABM →1DB MD GM AG EA BE =??(梅氏定理) DGF 截△ACM →1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE +=MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上, λ===EA CE FB AF DC BD ,AD 、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 B

平面几何中几个重要定理的证明

1 平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得 ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以 APC BPC S AD DB S ??=.同理可得 APB APC S BE EC S ??=, BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是?ABC 的顶点,若 1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 // 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有 A B C D F P A B C D E F P D /

平面几何的17个著名定理

平面几何的17个著名定理 1?欧拉(Enter)线… 同一三角形的垂心*重心、外心三点共线,这条直线稀为三角形的欧拉线, 且外4与重心的距离等于垂心与重心距离的一半审 氛九点圆匕* 任意三角形三边的中点,三高的垂足及三顶歳与垂心问线段的中点,共九个点共圆,这个風秫为三角形的九点圆;其圆心为三角形夕皿与垂心所连线段的中勲其半径等于三角形外接圆半径的一半? *

3.费尔马点… 己知 P 为锐SAABC 内一点,当ZAPB = ZBPC= ZCPA= 120° 时,PA + PB + PC 的值最小,这个点P 称为AABC 的费尔马点。心 CP = 2.45 厘米 AP = 1.64 厘米 4、海伦(Heron)公式::卩 在ZXABC 中,边BC 、CA. AB 的长分别为a 、b 、c,若 严丄(a+b+c), “ 2 则/XABC 的面积 S = Jp(p_a)(p_b)(p_c), A 7 p (p-AB>(p-BC)-(p-CA) = 8.96 殛米2 BC AD = 8.96 J#米 2

5、SK (Ceva) 在AABC 中,过AABC 的顶点作相交于一点P 的直线,分别交边BC 、CA 、 AB 与点D 、E 、F,则竺.—= 1;其逆亦真a DC EA FB BD = 2.78 MX DC = 1.95 厘米 CE = 1.64 厘米 EA = 2.23 厘米 AF = 2.31 厘米 FB = 2.42 厘米 6、密格尔(Kfeuel)点=? 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个 三角形,它们是AABF 、AAED . ABCE . ADCF ,贝I J 这四个三角形的外接圆共(韵借)备)" 点,这个点称为密格尔点°卩 A B D

平面几何定理及公式

平面几何定理及公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48定理四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理n边形的内角的和等于(n-2)×180° 51推论任意多边的外角和等于360°

相关主题
文本预览
相关文档 最新文档