当前位置:文档之家› 油菜植株三维结构的测量与可视化建模研究

油菜植株三维结构的测量与可视化建模研究

油菜植株三维结构的测量与可视化建模研究
油菜植株三维结构的测量与可视化建模研究

关于近景摄影测量及三维建模探究

关于近景摄影测量及三维建模探究 发表时间:2016-11-08T15:59:03.283Z 来源:《基层建设》2015年11期作者:辛晓岗 [导读] 摘要:近景摄影测量是通过摄影和随后的图像处理和摄影测量处理以获取被摄目标形状、大小和运动状态的一门技术。近景摄影测量是摄影测量的一个重要分支,主要研究近景物体的三维构建,地形测量等。 青海省第一测绘院青海西宁 810001 摘要:近景摄影测量是通过摄影和随后的图像处理和摄影测量处理以获取被摄目标形状、大小和运动状态的一门技术。近景摄影测量是摄影测量的一个重要分支,主要研究近景物体的三维构建,地形测量等。三维模型已成为对象表达的一种新的数据媒介,三维建模技术能对现实世界中的对象逼真建模和模拟再现。本文主要对近景摄影测量和三维建模进行了详细的介绍和论述,仅供参考和借鉴。 关键词:近景摄影测量;三维建模;方法;对比 前言 随着科学技术的发展和社会文明的进步,对三维测量的技术要求越来越严格,目前三维测量技术在航空、航天、城市规划,地质建模,自然灾害等领域都有着广泛的应用。数字摄影测量是一种基于全数字的测量方法,不仅测量的原始资料和记录的中间数据是数字形式,而且摄影的地图,模型,影像图,数据库以及地理信息系统等等都是数据形式的。随着数字采集技术的不断发展以及数字化概念的不断深化,人们已不再满足于传统二维手段描述的三维信息,目前三维模型已成为继图像、声音和视频之后的第四种多媒体数据类型,物体的表现形式也逐渐从二维表示向三维自动化建模的方向过渡。 1、近景摄影测量概述 近景摄影测量是指利用对物距不大于300米的目标物摄取的立体像对进行的摄影测量。 近景摄影测量综合了数字图像处理、计算机技术、模式识别、影像匹配等多学科的理论和方法;是基于摄影测量与数字影像处理的基本原理;是用数学方式将所摄影对象的几何与物理信息提取出来的摄影测量学。 随着摄影测量经过模拟摄影测量、解析摄影测量的发展,数字化摄影测量已比较成熟。而数字化近摄影测量作为它的一个应用领域,在许多方面具有优越性,据世界各国的应用情况表明,现几乎找不到未使用近景摄影测量技术的行业。所以,对近景摄影测量技术进行理论和应用研究是必要的,对提高工作效率和促进国民经济发展具有实际意义及使用价值。 2、三维建模方法 2.1 基于AutoCAD的人机交互式建模 对于几何形体相对规则的建筑,常规使用免棱镜电子全站仪对建筑物构件的三维特征点进行散点式数据采集。采集数据同时采用“四位编码法”对特征点编码,并按建筑构件分类分层存储。绘图时根据特征点编码结合测绘顺序在CAD中编写LISP程序对建筑物实现自动展点和自动连线生成线框图。 2.2 基于扫描点云的建模 对于不规则物体,全站仪则显得无能为力了。三维激光扫描技术克服了传统数据采集方式的不足,应运而生的模型自动化重建技术愈来愈受到重视。目前基于扫描点云的建模一般流程可概括为点云的获取、表面重建、点云的处理与建模三个阶段。以某建筑为例具体实验步骤如下: ①点云数据获取。实验采用Leica C10对某楼进行扫描测量,根据该楼的轮廓特征和实际扫描范围等影响因子。 ②点云数据预处理。为了给建模阶段提供较理想的点云数据,需对原始点云数据进行点云拼接、去噪、采样等预处理。点云数据预处理既可通过算法实现,也可以通过扫描仪配套软件完成。这一步操作十分重要,是决定后续数据质量好坏和执行效率的关键。 ③点云数据建模。目前,对建筑物点云数据模型重建的研究多数从两个方面展开:一方面提取建筑物的边界特征,以特征为约束构建三维实体模型;另一方面是直接对点云数据网格化,建立拓扑关系,进行表面重建和优化。本实验采用点云数据分割、曲面拟合以及交互组合的方法来实现建筑物对象的三维建模。建模步骤大致可分类以下三大步: 首先是海量散乱点云数据分割,点云分割是为下阶段精细建模做准备。根据空间点的邻域关系估算点与点间的拓扑关系,将建筑模型分割为平整墙面、屋顶和附件几大区域。其次是分割部分精细建模,自动识别提取点云数据特征,并以此特征为约束迭代拟合模型,在此基础上构建三角网格。其次是模型拼接,根据模型间的特征及法矢拼接相邻模型,对拼接后的两模型公共区域部分的三角网进行裁剪、检查以及模型修补和优化。 2.3 基于近景摄影测量的建模 实验摄影采用的是非量测型相机,以某大学建筑正门为例,根据近景摄影测量原理构建三维模型的流程步骤如下: ①影像采集。以多摄站正直环绕摄影方式用普通相机对大礼堂进行摄影,共布设8个摄站。 ②坐标解算。考虑到非量测数码相机的内、外方位元素的初始近似值未知以及像点、摄影中心、相应地物点间的不共线,需使用加入像点坐标改正数的直接线性变换解法,建立像点坐标与相应物点空间坐标之间的线性关系。 ③绘制实体。在相片上采集一定密度的特征点并解算该特征点的三维坐标,反向投影到三维空间后借助三维绘图软件展绘建筑上的特征点,增补遗漏点,并利用计算机视觉技术构建一个线框和几何实体模型。 3、三维建模方法对比分析 基于人机交互的建模、基于扫描点云和基于摄影测量的建模这三种建模方法都是基于测量的建模方式,都需要以外业采集的三维坐标数据为基础进行建模。 基于人机交互的建模方法应用时间较长,技术路线较成熟,国内外研发的许多控制集成建模软件都可以利用基本的几何元素构建复杂的几何场景。这种建模方法灵活,能逼真再现对象的几何结构和表面纹理信息,适合用于对建模效果和细节要求较高的对象。但对于诸如小区、城市这样的大规模场景,如果每个模型都进行精细建模,不仅工作量大、费时费力,而且庞大的数据量也要求计算机硬件具备配套的处理能力,这也成为日后模型调用、管理的一大瓶颈。 基于点云的三维建模方法适用于不规则对象的三维建模,三维激光扫描技术克服了传统数据采集方式的不足,提高了数据采集的精度和效率,获得的点云数据信息量大,包含三维空间信息、颜色属性和反射强度信息,通过一定的算法对点云数据进行处理即可快速构建被

无人机倾斜摄影测量三维建模及精度评定

无人机倾斜摄影测量三维建模及精度评定 摘要:无人机倾斜摄影测量技术是现阶段测绘行业的一种新兴的测量技术,无 需与被测量物体接触,能够保障测量结果的高精度和有效性,且在一定程度上节 约了大量的人力和物力。在该技术的实际运用过程中,应根据待测区域的实际情况,选择恰当的设备,合理规划航测时间和航线,并考虑天气因素,从而保障航 测的有效性、可靠性。鉴于此,文章对无人机倾斜摄影测量三维建模及精度评定 进行了研究,以供参考。 关键词:无人机倾斜摄影测量;三维建模;精度评定 1无人机倾斜摄影测量技术的特点 1.1多视影像联合平差 无人机倾斜摄影测量技术应用过程中使用了新的多视影像联合平差技术,可 以有效解决传统的测量系统在数据处理方面的不灵敏等问题,以合理方式处理影 像之间的遮挡关系,及时确定合理的连接点和连接线等,提高了成像结果的准确度。 1.2多视影像密集匹配 无人机倾斜摄影测量技术在应用过程中使用了多式影像密集匹配技术,该类 技术可以有效提高摄影测量的分辨率,其覆盖的面积范围也明显增大。在利用该 技术开展匹配的过程中,可以及时对各类多余的信息进行研究,通过明确坐标点 的位置,可以获取地面物体的准确三维信息。通过多元影像密集匹配技术,可以 利用建筑物的侧面等来提取各类信息,建筑物的边缘信息和文理信息等也可以被 充分利用起来,继而形成相对完善的二维数据,通过该技术将其转变为三维数据,建筑物的高度和轮廓信息等可以及时提取出来。 1.3模型生成和影像纠正 在多视影像技术的帮助下,可以及时将地面建筑物的各类数据扫描表达出来,继而形成相对较为全面的数字表面模型。但是在实际测量建设工作开展过程中, 受到角度和尺度的差异,很可能出现建筑物遮挡以及阴影等现象。为了降低概率 因素对数字表面模型造成的影响,应当及时利用影像外的方位元素来开展匹配设 计工作,结合当前比较相对的算法等开展各项计算,提高计算效率的同时合理确 定建筑物的高度等相关数据,保障三维建模工作的精确性。在获得了高密度的数 据之后,应当及时进行滤波处理等工作,将不同的匹配单元融合起来,形成整体 统一的数据。在利用多式影像技术开展各项工作的过程中,应当及时对屋顶重建 等几何信息进行提取,结合其他相关技术来开展信息优化等工作,制定合理的全 局优化措施,合理开展均光处理,保证各项工作的有效性。 2基于无人机倾斜摄影测量技术的三维建模方法研究 2.1航线规划 在无人机倾斜摄影测量的工作中,飞机的飞行要保证一定的平稳性,并且要 根据实际情况规划路线,并且在此航线中无人机的航高要在一定的允许范围内。 对于无人机来说,如果需要其飞行具有一定规则的航空路线,在不借助航线规划 的前提下,单靠人工通过遥控控制无人机得以操作飞行方向是不容易实现的,除 此之外,数据采集的过程中还要保证飞行速度保持匀速,以便影像采样率均匀且 影像稳定,再则,在空中作业过程中,会受到空气流速度的影响,使无人机平衡 性被打破,导致得到的影响数据模糊,最后,根据相应的规范要求,建模对于像 片的采样率和重叠率有比较高的要求,光靠人工操作遥控器飞行不好把握的,最

校园安全管理及可视化解决方案

校园安全管理及可视化解决方案

目录 1 应用需求 (4) 2 GIS在行业中的典型应用 (8) 2.1 校园三维场景展示 (8) 2.2 多样化定位调图功能 (12) 2.3 校园室内数据展示与管理 (12) 2.4 校园管线三维模型展示 (12) 3 基于GIS的数字校园解决方案 (5) 3.1 GIS产品配置与总体架构 .............................................................................................. 错误!未定义书签。 3.1.1 总体架构 ............................................................................................................ 错误!未定义书签。 3.1.2 平台逻辑结构 .................................................................................................... 错误!未定义书签。 3.1.3 平台开发架构 .................................................................................................... 错误!未定义书签。 3.1.4 平台部署架构 .................................................................................................... 错误!未定义书签。 3.1.5 软件配置 ............................................................................................................ 错误!未定义书签。 3.1.6 数据库平台 ........................................................................................................ 错误!未定义书签。 3.1.7 平台运行环境 .................................................................................................... 错误!未定义书签。 3.2 校园地面设施管理 ....................................................................................................... 错误!未定义书签。 3.2.1 建立校园地面三维仿真环境 ............................................................................ 错误!未定义书签。 3.2.2 校园建筑属性展示 ............................................................................................ 错误!未定义书签。 3.2.3 地下管线三维管线查询 .................................................................................... 错误!未定义书签。 3.2.4 自动飞行浏览 .................................................................................................... 错误!未定义书签。 3.3 校园地下管线管理 ....................................................................................................... 错误!未定义书签。 3.3.1 地下管线敷设数据入库 (13) 3.3.2 管线属性数据查询 (13) 3.3.3 管线综合分析 (14) 3.3.4 管线三维浏览展示 ............................................................................................ 错误!未定义书签。 3.3.5 管线三维查询 .................................................................................................... 错误!未定义书签。 3.4 学校房产资源管理 (19) 3.4.1 查看三维建筑的每层房间图形 ........................................................................ 错误!未定义书签。 3.4.2 房产资源专业权属管理功能 (19) 3.4.3 校园教室分配审批发布 (19) 3.4.4 房产信息查询功能 (20) 3.5 三维仿真设施报修管理 (21) 3.5.1 故障点管理及综合分析统计 (21) 3.5.2 实时故障报修 (21) 3.6 绿色校园 (22) 3.6.1 建筑房间照明节能分析管理 (22) 3.6.2 供热数据统计与管理 (22) 3.7 数字校园生活 (22) 3.7.1 公共活动位置定向 (22) 3.7.2 图书馆查询 (22) 3.7.3 应急演练 (22) 3.8 校园安全 ....................................................................................................................... 错误!未定义书签。

倾斜摄影测量在三维建模中的应用

毕业设计 题目:倾斜摄影测量在三维建模中的应用学院:测绘工程学院 专业:测绘工程 姓名:原一哲 学号: 061410150 指导老师:李军杰 完成时间:2014年5月25日

摘要 机载倾斜摄影测量系统是对常规摄影测量系统的改进和发展,它能够获取常规摄影无法得到的地物立面的纹理信息和几何信息,在数字城市构建中具有重要的意义。本文应用机载倾斜摄影数据进行了三维建模和单斜片测量的应用研究与实验,初步实验表明:倾斜摄影数据应用三维建模单斜片测量是可行的并且具有较好的应用前景。 关键词:倾斜摄影测量,三维建模,单斜片测量

Abstract Airborne oblique photogrammetric system is the improvement of the traditional photogrammetric system ,which can get the facade texture and geometry information that cannot be obtained by conventional photography ,and it is of great significance in the construction of digital city .In this paper,the airborne oblique photogrammetry data were used for three dimensional modeling and single-oblique photo measure.Preliminary experiments showed the good application prospects. Key words:oblique photogrammetry ;three dimensional modeling;single-oblique photo measure.

浅谈三维建模技术的研究与应用

浅谈三维建模技术的研究与应用 兰文涛 新疆油田公司风城油田作业区 摘要:以应用为主的三维地理信息系统模型,通过Skyline TerraExplorer Pro和3ds Max模型制作,并发布应用到GIS,从而推进了GIS应用,实现了油田设施在计算机中的展示、研究与管理步伐,加快了数字油田建设,并促进了克拉玛依标志性建筑三维模型的早日完成。 关键词:3ds Max;Skyline TerraExplorer Pro;建模;GIS;应用 1.1 前言 2000年,中国石油天然气股份有限公司新疆油田分公司(以下简称油田公司)在“数字地球”技术背景下,提出了数字新疆油田的宏伟战略,并制定了“数字新疆油田”信息建设“三个阶段”的战略部署。不仅将从根本上建立从分散到集中,从无序到有序的信息化建设新秩序,而且标志着“数字新疆油田”规模化建设的开始。 但是“数字油田”是一个庞大,复杂的工程,涉及的内容之多,之广,它涉及数据建设,信息系统建设,网络工程建设等,其中信息系统的建设,是由二维地理信息来表示的。二维 GIS始于二十世纪六十年代的机助制图,今天已深入到社会的各行各业中,如土地管理、电力、电信、城市管网、水利、消防、交通以及城市规划等。但二维GIS存在着自身难以克服的缺限,本质上是基于抽象符号的系统,不能给人以自然界的本原感受。随着应用的深入,第三维的高程信息显得越来越重要。一些二维GIS 和图象处理系统现已能处理高程信息,但它们并未将高程变量作为独立的变量来处理,只将其作为附属的属性变量对待,能够表达出表面起伏的地形,但地形下面的信息却不具有,因此它们在国际国内也被俗称为2.5维的系统。考虑到2.5维这一概念并不严密,作者称之为“地形面三维”或简称面三维。我们认为,面三维的GIS本质上仍然是二维GIS系统。 二维GIS只能处理平面X、Y轴向上的信息,不能处理铅垂方向Z轴上的信息。它在表达上通常是将Z值投影到二维平面上进行处理,因此对于同一(x, y)位置的多个Z值不能表达。 世界的本原是处在三维空间中的,二维GIS将现实世界简化为平面上二维投影的概念模型注定了它在描述三维空间现象上的无能为力,克服这一缺陷迫切需要真正的基于三维空间的GIS的问世。三维地理信息系统就是在这一前提下进行的开发,它充分体现了三维建模技术,对三维物体进行了真实再现,从而满足生产、科研、管理、决策等对空间信息的可视化需求。 2.1 三维地理信息系统的定义与特点 2.1.1 三维地理信息系统的定义 三维地理信息系统(Geographical Information System)简称三维GIS,三维GIS是近年来迅速发展起来的一门融计算机图形学和数据库技术于一体的新型空间信息技术,它把现实世界中对象的空间位置和相关属性有机地结合起来,满足用户对空间信息管理的要求 ,并借助其特有的空间分析功能和可视化表达,进行各种辅助决策。从而满足了生产、科研、管理、决策等对空间信息的可视化需求。 从不同的角度出发,GIS有三种定义:①基于工具箱的定义:认为GIS是一个从现实世界采集、存

三维前沿倾斜摄影建模高级技术培训指南

三维前沿倾斜摄影建模高级技术培训指南 01 | 指南概况 倾斜摄影建模高级技术培训指南对于希望从事于本行业的学员具有基础性、可操作性的指导意义,通过提高学员对倾斜三维建模全关联软硬件技术的认识度与掌握度,并深度结合对当前最前沿的行业技术的动态分析,才能在实际项目建设过程中选着最经济、有效、合理的实施方案,并且能够对过程质量控制及意外情况的处理具有较全面的把控能力。 指南大纲

1、学习导入数据、创建、分割、提取、合并、和导出 区 块; 2、学习地方坐标系统设置,像控点与连接点的编辑; 3、学习空三运算的原理和参数讲解; 4 、 ContextCapture Engine 进行空三加密及集群运算; 5、水面约束、轴约束的使用,三维模型重建与优化; 6、三维激光点云建模,及点云、照片联合建模; 7、S3CComposer 合并 OSG 、B S3C 等三维模型成果; 8、大面积倾斜摄影项目实施全流程经验分享; 9 、关于 ContextCapture 使用过程各种疑难杂症的分 析,包括空三质量分析,空三交叉混乱、空三失败、模 型重建失败的原因分析和解决办法; 10、倾斜摄影技术 领域最强大的空三软件 Mirauge3D 系 统培训。对于带状、高程落差大、弱纹理、多架次数据 融合颜色差异大和多则 11 万张照片的大数据工程, Mirauge3D 都是一 次性通 过,而 且空 三可 以导入 ContextCapture ; 11、 Photoscan 、PixdMapper 在正摄影像建图、三维建 模全部流程。 实景三维模型修饰和 单体化建模 Geomagic 、 Photoshop 修饰实景三维模型,包括地面 / 水面 / 路面平整、墙体拉直、补洞、纹理修饰。 实景三维建模成果后 期展示与应用 倾斜摄影测量在国土测绘、 路桥隧施工设计、 旅游景区 规划设计、水利行业、电力、矿产资源等行业的应用。 02 | 技术指南分享情况 1 讨论会合影留念 第二 ~四 天 ContextCapture 、Phot oScan 、Mirauge3D 、大 疆智图使用全流程介 绍

基于航空摄影测量三维建模作业指导手册

基于航空摄影测量的三维建模作业指导手册 武汉适普软件有限公司

前言 随着社会的进步,城市发展的需求,三维城市建模数据直接给城市规划、城市防恐系统、地质灾害、城市商业管理、数字城市等提供了基础三维数据,三维城市的建立能够全方位地、直观地给人们提供有关城市的各种具有真实感的场景信息。 利用适普公司特有的三维建模制作方案和甲方所提出需求,综合制定出三维生产方案,提供给客户满意的成果。就以上问题规化思路提出多种解决办法供客户参考。

目录 一、引用标准 (2) 二、通用配置 (2) (一)软件准备 (2) (二)硬件环境及数据准备 (2) (三)比例尺设置 (3) (四)数据准备 (4) (五)作业区的划分 (4) (六)V IRTUO Z O IGS快捷键设置 (4) 三、工作流程 (6) (一)数据采集前准备 (6) (二)恢复测区、设置测区及模型参数 (7) 四、基于立体采集特征线生成高精度 DEM (12) (一)DEM格网设置 (12) (二)矢量数据分层要求 (13) (三)特征线采集要求 (13) (四)特征线接边检查 (13) (五)DEM生成 (14) (六)DEM拼接、裁切 (16) 五、建筑模型立体采集 (17) (一)建筑物表现标准 (17) (二)建筑物采集要求 (18) (三)采集案例 (19) 六、使用DIBUD自动建模软件 (22) 七、常见问题及解决方法 (25)

一、 引用标准 ?《基础地理信息要素分类与代码》GB/T13923 ?《地球空间数据交换格式》GB/T17798 ?《数字测绘成果质量检查与验收》GB/T18316 ?《全球定位系统(GPS)测量规范》GB/T18314 ?《国家基本比例尺地图图式第1部分:1:500 1:1000 1:2000地形图图式》 GB/T20257.1 ?《基础地理信息要素数据字典第1部分:1:500 1:1000 1:2000基础地理信息 要素数据字典》GB/T20258.1 ?《基础地理信息数字产品数据文件命名规则》CH/T1005 ?《基础地理信息数字产品元数据》CH/T1007 ?《基础地理信息数字成果1:500 1:1000 1:2000数字高程模型》CH/T9008.2 ?《低空数字航空摄影测量外业规范》CH/Z3004 ?《低空数字航空摄影规范》CH/Z3005 ?《1:500 1:1000 1:2000地形图航空摄影规范》GB/T6962—2005 ?《1:5000 1:10000 1:25000 1:50000 1:100000地形图航空摄影规范》GB/T 15661—2008 二、 通用配置 (一)软件准备 VirtuoZo全数字摄影测量系统;DiBud建筑物三维建模系统 (二)硬件环境及数据准备 标准航测内业硬件设备,其中以NVIDIA Quadro 4000显卡为例,显卡驱动安装后,进入NVIDIA控制面板,参考如下显示参数。

基于GE_GIS技术的三维可视化校园地理信息系统设计与实现

基于GE &GIS 技术的三维可视化校园地理信息系统设计与实现 郭正鑫,张祖陆,赵 璐 (山东师范大学人口#资源与环境学院,山东济南250014) 摘要:目前,校园地理信息系统多采用二维地图显示。基于Google Earth 展示平台和GIS 技术的校园地理信息系统,探讨了以动态、三维的方式来显示和管理校园信息的新方法。实践证明,与传统的校园GIS 相比,该系统可更加直观地反映校园信息,有效提高校园信息交互检索的效率,并为在其它领域的应用提供了借鉴。 关键词:三维仿真模型;地理信息系统;校园地理信息系统 中图分类号:P208;G47 文献标志码:A 文章编号:1005-8141(2008)11-0961-04 Design and Implementation of 3D Campus Geographic Information System Based on Google Earth and GIS GUO Zheng-xin,ZHANG Zu-lu,ZHAO Lu (College of Population,Resources and Envi ronmen t,Shandong Normal University ,Jinan 250014,Chi na) Abstract:Nowadays,the spatial data in campus GIS were displayed by planar map s.This paper discussed a new method to display and manage the diversiform campus information in a dynamic 3D mode and constructed the campus geographic information system based on Google Earth and GIS.The resul t showed that this system could recur the campus information much more vividly and could interactively search the campus information much more efficien tly than traditional campus GIS.In addition,this study could provide reference for the application of 3D visualization technology in other field. Key words:3D artificial model;Geographic Information System;campus geographic i nformation system 收稿日期:2008-09-10;修订日期:2008-10-19 基金项目:国家自然科学基金项目(编号:40471122);山东省自然科学基金项目(编号:Y2004E01)资助。 第一作者简介:郭正鑫(1983-),男,硕士研究生,主要从事GIS 开发和应用。 1 3D )C GIS 的提出 GIS 是用来存储、管理空间数据的信息系统,几乎所有使用空间数据和空间信息的部门都可以应用,如导航、土地、水资源利用以及辅助决策服务等[1]。在对校园GI S 的研究中,如曲巨宝对分布式WebGIS 技术的校园地理信息系统的研究[2] ,李明峰、朱振宇等对建立基于MapX 校园地理信息系统的研究[3],杨武年等关于数字成都理工大学校园空间信息系统构建与实现的研究[4] 等。这些研究有的侧重专业研究,有的侧重对具体问题的分析,有的侧重技术开发。但上述大部分校园GI S 研究多采用二维地图显示,并且着重突出某一方面的功能。因此,本研究提出了另一个新的思路,即构建一个三维可视化校园地理信息系统(3D Campus Geographic Information System,3D )CGIS)来增强校园GIS 的可视化程度。 GE(Google Earth)采用的3D 地图定位技术能够把Google Map 上的最新卫星图片推向一个新水平,使其最近几年的应用范围越来越广,如汽车导航、交通服务、城市定位搜索、监控系统等。刘冰、石奉华对GE 在旅游、导航的问题进行了探讨 [5] ;陈锐祥、何兆成等 主要研究了GE 在交通信息服务系统中的应用[6];孙 玉龙、茅志兵等阐述了GE 在航标监控系统中的应用等[7]。基于Visual Basic 6.0平台,本文借助GE 和GIS 技术,构建了基于GE &GIS 平台的校园三维仿真模型,并在模型中实现空间数据和属性数据的集成和交互,实现/图数0同步查询和管理,从而为管理者提供决策依据。本系统采用GE &GIS 技术作为开发平台,结合VB6.0集成开发环境进行了模型的构建。考虑到数据范围,本文采用ACCESS 数据库。 2 系统需求分析 目前,大部分高校的校园信息是相互独立的,这主要是由于其管理模式造成的。该管理模式现状是:学生信息由学生工作处管理,校园建筑信息由学校总务处管理,因此未进行有效的集成管理。这种管理模式不利于实现学生档案信息与校园地图实体的关联及动态查询更新。为了提高学校整体管理效率,校园地理信息系统应该寻找一种有效的方式,能集中管理多种信息,并能进行扩充。 我们通过用户访谈和问卷调查的形式[8,9]了解到,用户对该系统的功能需求主要有以下方面:1三维可视化展示校园信息,能详细直观地表达校园的各项空间信息和属性信息;o实现属性信息和地图上图元的定位互查;?实现出发地和目的地两点间的路径分析,从而得出最优路径;?实现学生信息的定位管理和 # 961#

AutoCAD根据二维图画三维图的思路和方法

AutoCAD根据二维图画三维图的思路和方法 用Auto CAD进行二维绘图,对具有机械制图基础的人来说,一般都比较容易掌握。但对三维建模,特别是自学者,却总觉得不知从何下手。有鉴于此,特撰本教程,以冀对初学者有所帮助。 本教程旨在介绍由三视图绘制三维实体图时,整个建模过程的步骤和方法。 一、分析三视图,确定主体建模的坐标平面 在拿到一个三视图后,首先要作的是分析零件的主体部分,或大多数形体的形状特征图是在哪个视图中。从而确定画三维图的第一步――选择画三维图的第一个坐标面。这一点很重要,初学者往往不作任何分析,一律用默认的俯视图平面作为建模的第一个绘图平面,结果将在后续建模中造成混乱。 看下面几例:图1

图1 此零件主要部分为几个轴线平行的通孔圆柱,其形状特征为圆,特征视图明显都在主视图中,因此,画三维图的第一步,必须在视图管理器中选择主视图,即在主视图下画出三视图中所画主视图的全部图线。

图2 此零件的特征图:上下底板-四边形及其中的圆孔,主体-圆筒及肋板等,都在俯视图,故应在俯视图下画出三视图中的俯视图。 图3是用三维图模画三维图,很明显,其主要结构的形状特征――圆是在俯视方向,故应首先在俯视图下作图。

图3 二、构型处理,尽量在一个方向完成基本建模操作 确定了绘图的坐标平面后,接下来就是在此平面上绘制建模的基础图形了。必须指出,建模的基础图形并不是完全照抄三视图的图形,必须作构型处理。所谓构型,就是画出各形体在该坐标平面上能反映其实际形状,可供拉伸或放样、扫掠的实形图。 如图1所示零件,三个圆柱筒,按尺寸要求画出图4中所示6个绿色圆。与三个圆筒相切支撑的肋板,则用多段线画出图4中的红色图形。其它两块肋板,用多段线画出图中的两个黄色矩形。

三维可视化建模技术在地质勘查中的应用

三维可视化建模技术在地质勘查中的应用 摘要:根据地质勘查的数据特点,利用三维可视化建模技术。实现了以真三维模型来恢复地表以下地质体的结构、形态特征以及空间展布,能对其进行旋转、漫游、切片分析、虚拟钻探等操作,动态地研究其内部细节,了解目标对象与周围地质环境之间的关系,为地质信息的进一步定量分析、探索与利用提供了强有力的支持。 关键字:地质勘查三维可视化建模技术虚拟钻探 引言 在地质勘查工作中,地质工作者越来越迫切地希望建立一套完善的地质体三维可视化与分析系统,实现对地质体信息的三维可视化仿真,丰富地质勘查成果的表现形式,为地质信息的进一步定量分析、探索与利用提供强有力的支持。随着计算机软件和硬件的飞速发展,针对地质体的三维建模与可视化,综合运用三维仿真、数学地质、计算机图形学、虚拟现实、科学计算可视化、计算机软件开发等成熟的理论方法与技术,实现复杂地质条件下的三维地质建模。 二.三维地质建模数据来源与特点分析 在三维地质建模中,用来反映地质体特征的数据来源多种多样,包括地质勘探数据、地球物理勘探数据、地球化学勘探数据、工程地质数据等等。 由于地质原始数据的多源性、离散性和定性特征在很大程度上阻碍了三维地质建模研究的发展。因此,在三维地质建模工作中需要耦合多源信息,对场区地质构造进行分析、解译,将定性描述的数据定量化,尽量以数值型数据和图形数据来进行表达,将离散不确定的数据通过各种插值拟合的手段转化为连续确定的数据,为三维地质建模提供合适的数据源。 三.三维地质建模的难点与关键技术问题分析 通过对三维地质建模数据来源与特点的分析可知,建立一个客观准确的三维地质模型必须满足三个条件:足够多的原始地质采样数据、能够真实反映复杂地下空间关系的地质解译分析、合适的数据结构。就目前复杂地质体的三维建模主要面临的困难可归纳为以下3点: (1)原始地质数据获取艰难。地质体通常位于地表以下,人们无法直接全面地观察到地质体的各种特征,往往只能通过物探、化探等手段获得地质体的部分特征信息,并通过对这些信息的分析、解释、推断来获得地质体的基本信息。 (2)地下地质体及其空间关系极其复杂。地质条件和地质作用复杂多变,在其影响下,地层被切割成不连续的空间分布,岩体内复杂的岩性变化,以及地

CAD三维建模实例

CAD三维建模实例操作一-----创建阀盖零件的三维模型将下面给出的阀盖零件图经修改后,进行三维模型的创建。阀盖零件图如图1所示。 ●图形分析: 阀盖零件的外形由左边前端倒角30度的正六边体,右边四个角R=12mm的底座,中间有一个倒45度角和R=4mm连接左右两边。该零件的轴向为一系列孔组成。根据该零件的构造特征,其三维模型的创建操作可采用: (1)拉伸外轮廓及六边形; (2)旋转主视图中由孔组成的封闭图形; (3)运用旋转切除生成30度和45度、R4的两个封闭图形,生成外形上的倒角;(4)运用差集运算切除中间用旋转生成的阶梯轴(由孔组成的图形旋转而成),来创建该零件中间的阶梯孔,完成三维模型的创建。 如需室内设计学习指导请加QQ技术交流群:106962568 庆祝建群三周年之际,如今超级群大量收人!热烈欢迎大家! ●零件图如图1所示。

图1 零件图 具体的操作步骤如下: 1.除了轮廓线图层不关闭,将其他所有图层关闭,并且可删除直径为65mm的圆形。然后,结果如图2所示。 图2 保留的图形 2.修改主视图。将主视图上多余的线条修剪,如图3所示。 3.将闭合的图形生成面域。单击“绘图”工具条上的“面域”按钮,框选所有的视 图后,按回车键,命令行提示:已创建8个面域。

4.旋转左视图。单击“视图”工具条上的“主视”按钮,系统自动将图形在“主视平面”中显示。注意:此时,显示的水平线,如图4 a)所示。输入“RO”(旋转)命令,按回车键,再选择右边的水平线(即左视图)的中间点,输入旋转角度值90,按回车键,完成左视图的旋转如图4 b)所示。在轴测图中看到旋转后的图形如图4 c)所示。 图4 a)旋转前图4 b)放置后 提示:图中的红色中心线是绘制的, 用该线表明二视图的中心是在一条 水平线上。 图4 c)轴测视图 5.移动视图将两视图重合的操作如下: ①单击“视图”工具条上的“俯视”按钮,系统自动将图形转换至俯视图中,如图5所示。 图5 俯视图显示图6 标注尺寸 ②单击“标注”菜单,选择“线性”标注,标注出二图间的水平距离,如图6所示。标注尺寸的目的是便于将图形水平移动进行重合。

无人机倾斜摄影测量三维建模及应用

无人机倾斜摄影测量三维建模及应用 摘要:经济的发展,人们生活水平的提高,促进城镇化进程的加快。无人机倾斜摄影测量作为一项高端的、新型的测绘技术,其在城市化建设中发挥着重要的作用,即通过无人机倾斜摄影测量技术的应用,可以快速建立城市三维模型,为后续工程规划和建设提供有力指导。本文就无人机倾斜摄影测量三维建模及应用展开探讨。 关键词:无人机;倾斜摄影;三维建模 引言 现阶段,无人机倾斜摄影技术是国际测绘遥感领域中一种新兴技术,根据倾斜摄影技术获得的测量信息建立相应的三维模型,能够更加直观地展现地物、地貌。 1无人机倾斜摄影测量原理 倾斜摄影是在相机主光轴与铅垂线具有一定倾斜角的情况下进行影像拍摄,倾斜摄影测量是在同一飞行平台上搭载多台传感器,同时从垂直、4个倾斜等不同角度进行影像采集,在获取建筑物空间地理信息的同时,获取建筑物全方位的纹理信息,可以更为真实、形象地对建筑物进行表现,其打破了传统摄影测量基于正射影像方法只能从垂直方向进行影像采集的局限。倾斜摄影测量从多个角度对建筑物进行影像采集,获取多张多分辨率、多尺度的影像数据,对区域三维模型构建提供了更为丰富的数据支撑,也方便了空间信息的量测,并且数据获取速度快、处理自动化水平高,有利于数据的及时更新。无人机倾斜摄影测量技术是基于无人机搭载平台的倾斜摄影技术,该技术要点在于可以利用多视角影像进行联合平差,尤其是对传统摄影测量影像遮挡、数据规避方面的处理更为方便,提高了测量过程中地理要素间的连接效果,从而提高三维建模基础数据的准确性。而无人机倾斜摄影测量提高了影像信息的密集程度,通过密集匹配可以获得更为广泛的地物属性信息,尤其加强了对地物特征点、线、面属性信息的获取。无人机倾斜摄影测量系统主要由无人机飞行平台、GNSS导航和惯性导航系统、数据传输系统、地面监控系统等组成。为了保证无人机飞行稳定,对倾斜摄影测量的无人机的气动外形及总体结构进行了优化设计,可以满足城市密集区域内的飞行通畅。无人机控制和导航系统是无人机倾斜摄影测量系统的核心部分,包括了飞行控制和管理系统、GNSS导航和惯性导航系统、红外传感器、高度和速度传感器等,可以准确地对无人机飞行姿态、飞行高度、瞬时空间位置等进行记录,控制中心可通过实时的信息反馈对无人机倾斜摄影测量系统飞行姿态、高度等进行调控。 2与传统三维模型比较 传统的三维模型制作通常采用数字正射影像图与数字高程模型进行叠加,快速建立大场景的地表三维模型,其生产出的三维模型纹理分辨率不高,缺少侧面纹理信息,实质上是2.5维的数据产品。对于局部需要精细建模的场景,再采用人工拍照、贴上纹理的方式进行。但由于照片分辨率、角度等问题以及采用的原二维数据底图质量和精度问题,即使这样也并不能完全展现建构筑物各个角度的细节。而采用倾斜摄影测量生产的实景三维模型,是采用多镜头、多角度、实时拍摄的,能够不受地形地貌限制,更加真实全面立体地反映地表物体的局部细节和整体层次。其仿真度、建模效率相比传统的三维模型制作方式,均提高了很多;而时间成本、经济成本均能得到降低。

倾斜摄影三维建模技术流程及案例分析

龙源期刊网 https://www.doczj.com/doc/fa306690.html, 倾斜摄影三维建模技术流程及案例分析 作者:刘森 来源:《科技资讯》2017年第30期 DOI:10.16661/https://www.doczj.com/doc/fa306690.html,ki.1672-3791.2017.30.001 摘要:本文介绍了倾斜摄影测量原理、实景三维建模技术流程及其技术优势,并探讨了 利用倾斜摄影自动三维建模的方法对输电线路走廊资源进行快速调查,尤其是在建筑物拥挤地区、林木密集覆盖区、恶劣地质区和交叉跨越设施复杂地区,可有效提高输电线路的设计质量,优化工程投资造价,具有创新性和先进性。 关键词:倾斜摄影真三维模型输电线路走廊资源快速调查 中图分类号:P231 文献标识码:A 文章编号:1672-3791(2017)10(c)-0001-02 随着城市建设的飞速发展,建设环境日益恶化,地质灾害频繁发生,输电线路走廊规划设计难度日益加大。采用传统的测量方式对输电线路走廊资源进行调查,工作量大、效率低,成本高,难以满足电网建设需求。针对上述问题,本文提出了利用倾斜摄影技术进行实景三维建模的方法对输电线路走廊资源进行快速调查,可有效提高输电线路的设计质量,优化工程建设投资造价,保护生态环境。 1 倾斜摄影工作原理及技术优势 1.1 倾斜摄影测量原理 倾斜摄影技术是国际测绘遥感领域新兴发展起来的一项高新技术,融合了传统的航空摄影和近景测量技术,颠覆了以往正射影像只能从垂直角度拍摄的局限,通过在同一飞行平台上搭载多台传感器,同时从垂直、前视、左视、右视与后视共5个不同的角度采集影像。其中,垂直摄影影像,可经过传统航空摄影测量技术处理,制作4D(DEM、DOM、DLG与DRG)产品;前视、左视、右视与后视4个倾斜摄影影像,倾斜角度在15°~45°之间,可用于获取地物侧面丰富的纹理信息。 通过高效自动化的三维建模技术,快速构建具有准确地物地理位置信息的真三维空间场景,直观地掌握目标区域内地形地貌与所有建筑物的细节特征,可为电力和水利工程建设、地质灾害应急指挥等提供现势、详尽、精确、逼真的空间基础地理信息数据支持和公共服务。 1.2 实景三维建模技术流程 目前,采用倾斜摄影技术进行三维建模的后处理软件以法国ASTRIUM公司的StreetFactory和Acute3D公司的Smart3DCapture软件为典型代表[2]。利用地物的垂直与倾斜影

相关主题
文本预览
相关文档 最新文档