当前位置:文档之家› 高三物理第一轮教案(选修)

高三物理第一轮教案(选修)

高三物理第一轮教案(选修)
高三物理第一轮教案(选修)

高三物理第一轮教案(选修)带***号为考纲要求Ⅱ级高频必考点

第十五章 动 量

知识网络:

第1单元 动量 冲量 动量定理

一、动量和冲量

1.动量——物体的质量和速度的乘积叫做动量:p =mv

⑴动量是描述物体运动状态的一个状态量,它与时刻相对应。

⑵动量是矢量,它的方向和速度的方向相同。

⑶动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。

(4)研究一条直线上的动量要选择正方向

2.动量的变化:p p p -'

=?

由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。

A 、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。

B 、若初末动量不在同一直线上,则运算遵循平行四边形定则。

【例1】一个质量为m =40g 的乒乓球自高处落下,以速度v =1m/s 碰地,竖直向上弹回,碰撞时间极短,离地的速率为v '=0.5m/s 。求在碰撞过程中,乒乓球动量变化为多少? 取竖直向下为正方向,乒乓球的初动量为:

s m kg s m kg mv p /04.0/104.0?=??== 乒乓球的末动量为:

s m kg s m kg v m p /02.0/)5.0(04.0?-=?-?='=' 乒乓球动量的变化为: p p p -'=?=s m kg s m kg /06.0/04.002.0?-=?--

负号表示p ?的方向与所取的正方向相反,即竖直向上。

2.冲量——力和力的作用时间的乘积叫做冲量:I =Ft

⑴冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。

⑵冲量是矢量,它的方向由力的方向决定。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t 内的冲量,就不能说是力的方向就是冲量的方向。对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。 p ? p ' p 正方向

⑶高中阶段只要求会用I=Ft 计算恒力的冲量。

⑷冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。

(5)必须清楚某个冲量是哪个力的冲量

(6)求合外力冲量的两种方法

A 、求合外力,再求合外力的冲量

B 、先求各个力的冲量,再求矢量和

【例2】 质量为m 的小球由高为H 的光滑固定斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大? 解析:力的作用时间都是g

H g H t 2sin 1sin 22αα==,力的大小依次是mg 、mg cos α和mg sin α,所以它们的冲量依次是:

gH m I gH m I gH m I N G 2,tan 2,sin 2===合αα 点评:特别要注意,该过程中弹力虽然不做功,但对物体有冲量。

二、动量定理

1.动量定理——物体所受合外力的冲量等于物体的动量变化。既I =Δp

⑴动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。

⑵动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。 ⑶现代物理学把力定义为物体动量的变化率:t

P F ??=(牛顿第二定律的动量形式)。动量定理和牛顿第二定律的联系与区别 ①、ma t

mv mv F =-12=

合 形式可以相互转化 ②、t p F ??=合动量的变化率,表示动量变化的快慢 ③、牛顿定律适用宏观低速,而动量定理适用于宏观微观高速低速

④、都是以地面为参考系

⑷动量定理表达式是矢量式。在一维情况下,各个矢量以同一个规定的方向为正。

(5)如果是变力,那么F 表示平均值

(6)对比于动能定理

I = F t = m v 2 - m v 1

W = F s =21 m v 2

2 -2

1 m v 2

1 【例3】以初速度v 0平抛出一个质量为m 的物体,抛出后t 秒内物体的动量变化是多少?

解析:因为合外力就是重力,所以Δp =F t =m g t

2.动量定理的定性应用

【例4】某同学要把压在木块下的纸抽出来。第一次他将纸迅速抽出,木块几乎不动;第二次他将纸较慢地抽出,木块反而被拉动了。这是为什么?

解析:物体动量的改变不是取决于合力的大小,而是取决于合力冲量的大小。在水平方向上,第一次木块受到的是滑动摩擦力,一般来说大于第二次受到的静摩擦力;但第一次力的作用时间极短,摩擦力的冲量小,因此木块没有明显的动量变化,几乎不动。第二次摩擦力虽然较小,但它的作用时间长,摩擦力的冲量反而大,因此木块会有明显的动量变化。

3.动量定理的定量计算

⑴明确研究对象和研究过程。研究对象可以是一个物体,也可以是几个物体组成的质点组。质点组内各物体可以是保持相对静止的,也可以是相对运动的。研究过程既可以是全过程,也可以是全过程中的某一阶段。

⑵进行受力分析。只分析研究对象以外的物体施给研究对象的力。 ⑶规定正方向。由于力、冲量、速度、动量都是矢量,在一维的情况

下,列式前要先规定一个正方向,和这个方向一致的矢量为正,反之为负。

A C

⑷写出初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和)。

⑸根据动量定理列式求解。

【例5】质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里。求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I 。

解析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C 。⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有:

m g (t 1+t 2)-F t 2=0, 解得:()221t t t mg F += ⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:

m g t 1-I =0,∴I =m g t 1

点评:若本题目给出小球自由下落的高度,可先把高度转换成时间后再用动量定理。当t 1>> t 2时,F >>mg 。

【例6】 质量为M 的汽

车带着质量为m 的拖车在平直公路上以加速度a 匀加速

前进,当速度为v 0时拖车突

然与汽车脱钩,到拖车停下瞬

间司机才发现。若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大?

解析:以汽车和拖车系统为研究对象,全过程系统受的合外力始终为()a m M +,该过程经历时间为v 0/μg ,末状态拖车的动量为零。全过程对系统用动量定理可得:

()()()()000,v Mg

g a m M v v m M v M g v a m M μμμ++='∴+-'=?+

【例7】 质量为m =1kg 的小球由高h 1=0.45m 处自由下落,落到水平地

面后,反跳的最大高度为h 2=0.2m ,从小球下落到反跳到最高点经历的时间

为Δt =0.6s ,取g =10m/s 2。求:小球撞击地面过程中,球对地面的平均压力

的大小F 。

解析:以小球为研究对象,从开始下落到反跳到最高点的全过程动量变

化为零,根据下降、上升高度可知其中下落、上升分别用时t 1=0.3s 和

t 2=0.2s ,因此与地面作用的时间必为t 3=0.1s 。由动量定理得:mg Δt-Ft 3=0 ,F =60N

4.在F -t 图中的冲量:F -t 图上的“面积”表示冲量的大小。

【例11】(难)跳伞运动员从2000m 高处跳下,开始下落过程未打开降落伞,假设初速度为零,所受空气阻力与下落速度大小成正比,最大降落速度为v m =50m/s 。运动员降落到离地面s =200m 高处才打开降落伞,在1s 内速度均匀减小到v 1=5.0m/s ,然后匀速下落到地面,试求运动员在空中运动的时间。

解析:整个过程中,先是变加速运动,接着匀减速,最后匀速运动,作出v —t 图线如图(1)所示。由于第一段内作非匀变速直线运动,用常规方法很难求得这1800m 位移内的运动时间。考虑动量定理,将第一段的v —t 图按比例转化成f —t 图,如图(2)所示,则可以巧妙地求得这段时间。

设变加速下落时间为t 1,m f mv I mgt =-1

1s k t v k t kv t f I f ?=??∑=??∑=??∑=

又:mg=kv m ,得m v mg k =

所以:m m

mv v mgs mgt =-11 m M v 0 v

s v s g v t m m 4150

1800105011=+=+= 第二段1s 内:22/451

505s m a -=-= m a v v s m 5.2722

222=-= 所以第三段时间s v s s t 5.345

5.2720023=-=-= 空中的总时间:s t t t t 5.76321=++= 三、针对训练

1.对于力的冲量的说法,正确的是 ( )

A .力越大,力的冲量就越大

B .作用在物体上的力大,力的冲量也不一定大

C .F 1与其作用时间t 1的乘积F 1t 1等于F 2与其作用时间t 2的乘积F 2t 2,则这两个冲量相同

D .静置于地面的物体受到水平推力F 的作用,经时间t 物体仍静止,则此推力的冲量为零

2.下列关于动量的说法中,正确的是 ( )

A .物体的动量改变,其速度大小一定改变

B .物体的动量改变,其速度方向一定改变

C .物体运动速度的大小不变,其动量一定不变

D .物体的运动状态改变,其动量一定改变

3.如图所示为马车模型,马车质量为m ,马的拉力F 与水平方向成θ角,在拉力F 的拉力作用下匀速前进了时间t ,则在时间t 内拉力、重力、阻力对物体的冲量大小分别为 ( )

A .Ft ,0,Ftsin θ

B .Ftcos θ,0,Ftsin θ

C .Ft ,mgt ,Ftcos θ

D .Ftcos θ,mgt ,Ftcos θ

4.一个质量为m 的小钢球,以速度v 1竖直向下射到质量较大的水平钢板上,碰撞后被竖直向上弹出,速度大小为v 2,若v 1 = v 2 = v ,那么下列说法中正确的是 ( )

A .因为v 1 = v 2,小钢球的动量没有变化

B .小钢球的动量变化了,大小是2mv ,方向竖直向上

C .小钢球的动量变化了,大小是2mv ,方向竖直向下

D .小钢球的动量变化了,大小是mv ,方向竖直向上

5.物体动量变化量的大小为5kg ·m/s ,这说明 ( )

A .物体的动量在减小

B .物体的动量在增大

C .物体的动量大小也可能不变

D .物体的动量大小一定变化

6.初动量相同的A 、B 两滑冰者,在同样冰面上滑行,已知A 的质量大于B的质量,并且它们与冰面的动摩擦因数相同,则它们从开始到停止的滑行时间相比,应是( )

A .t A >t

B B .t A =t B

C .t A

D .不能确定

7.质量为m 的钢球自高处落下,以速率v 1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v 2。在碰撞过程中,地面对钢球的冲量方向和大小为 ( )

A .向下,m (v 1-v 2)

B .向下,m (v 1+v 2)

C .向上,m (v 1-v 2)

D .向上,m (v 1+v 2)

8.某物体以-定初速度沿粗糙斜面向上滑,如果物体在上滑过程中受到的合冲量大小为I上,下滑过程中受到的合冲量大小为I下,它们的大小相比较为()A.I上> I下B.I上

9.对下列几个物理现象的解释,正确的有()

A.击钉时,不用橡皮锤仅仅是因为橡皮锤太轻

B.跳高时,在沙坑里填沙,是为了减小人落地时地面对人的冲量

C.在车内推车推不动,是因为外力冲量为零

D.初动量相同的两个物体受相同制动力作用,质量小的先停下来

10.质量相等的A、B两个物体,沿着倾角分别为

α和β的两个光滑斜面,由静止从同一高度h2开始下

滑到同样的另一高度h 1的过程中(如图所示),A、B两个物体相同的物理量是()

A.所受重力的冲量

B.所受支持力的冲量

C.所受合力的冲量

D.动量改变量的大小

11.三颗水平飞行的质量相同的子弹A、B、C以相同速度分别射向甲、乙、丙三块竖直固定的木板。A能穿过甲木板,B嵌入乙木板,C被丙木板反向弹回。上述情况木板受到的冲量最大的是

A.甲木板 B.乙木板 C.丙木板 D.三块一样大

13.以初速度20m/s竖直向上抛出一个质量为0.5kg的物体,不计空气阻力,g取10m/s2.则抛出后第1s末物体的动量为______kg·m/s,抛出后第3s末物体的动量为____kg·m/s,抛出3s内该物体的动量变化量是_____kg·m/s.(设向上为正方向)

16.质量为1kg的物体沿直线运动,其v-t图象如图所示,则此物体前4s和后4s 内受到的合外力冲量分别为 __________和_____________。

17.科学家设想在未来的航天事业中用太阳帆来加速星际

宇宙飞船.按照近代光的粒子说,光由光子组成,飞船在太空

中张开太阳帆,使太阳光垂直射到太阳帆上,太阳帆面积为S,

太阳帆对光的反射率为100﹪,设太阳帆上每单位面积每秒到

达n个光子,每个光子的动量为p,如飞船总质量为m,求飞

船加速度的表达式。如太阳帆面对阳光一面是黑色的,情况又

如何?

18.如图所示,水力采煤时,用水枪在高压下喷出强力的水柱冲击煤层,设水柱直径为d=30cm,水速v=50m/s,假设水柱射在煤层的表面上,冲击煤层后水的速度变为零,求水柱对煤层的平均冲击力.(水的密度ρ= 1.0×103kg/m3)

19.震惊世界的“9.11”事件中,从录像可以看到客机切入大厦及大厦的坐塌过程.(1)设飞机质量为m、速度为v,撞机经历时间为t,写出飞机对大厦撞击力的表达式.(2)撞击世贸大厦南楼的是波音767飞机,波音767飞机总质量约150吨,机身长度为48.5m,撞楼时速度约150m/s,世贸大厦南楼宽63m,飞机头部未从大楼穿出,可判断飞机在楼内运动距离约为机身长度,设飞机在楼内作匀减速运动,估算撞机时间及飞机对大厦撞击力。

参考答案

1.B

2.D

3.C

4.B

5.C

6.C

7.D

8.CD

9.A 10.C 11.D 12. C

13.5,-15 16.0,-8N ·S

17.12,)]([ma nPs F st P P n t F ==--=?,m nPs a 21=;m

nPs a =2 18.设时间为1s ,2)2

(d vt V m

πρρ??==?,由F ·t=△P ,得F=1.77×105N 19(1)t mv F =;(2)可认为飞机在楼内运动距离红为50m ,t v s =,得,32s t = F=3.4×107

N

***第2单元 动量守恒定律及其应用

一、动量守恒定律

1.动量守恒定律的内容

一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。

即:221

12211v m v m v m v m '+'=+ 守恒是指整个过程任意时刻相等(时时相等,类比匀速) 定律适用于宏观和微观高速和低速

2.动量守恒定律成立的条件

⑴系统不受外力或者所受外力之和为零;

⑵系统受外力,但外力远小于内力,可以忽略不计;

⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。

3.动量守恒定律的表达形式

(1)221

12211v m v m v m v m '+'=+,即p 1+p 2=p 1/+p 2/, (2)Δp 1+Δp 2=0,Δp 1= -Δp 2

4、理解:①正方向②同参同系③微观和宏观都适用

5.动量守恒定律的重要意义

从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。

5.应用动量守恒定律解决问题的基本思路和一般方法

(1)分析题意,明确研究对象.在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.

(2)要对各阶段所选系统内的物体进行受力分析,弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力.在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒。

(3)明确所研究的相互作用过程,确定过程的始、末状态,即系统内各个物体的初动量和末动量的量值或表达式。

注意:在研究地面上物体间相互作用的过程时,各物体的速度均应取地球为参考系。

(4)确定好正方向建立动量守恒方程求解。

二、动量守恒定律的应用

1.碰撞

两个物体在极短时间内发生相互作用,这种情况称为

碰撞。由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。

碰撞又分弹性碰撞、非弹性碰

撞、完全非弹性碰撞三种。

仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A

/ /

开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B

的速度分别为21

v v ''和。全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。

(1)弹簧是完全弹性的。Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。这种碰撞叫做弹性碰撞。由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:12

1121212112,v m m m v v m m m m v +='+-='。(这个结论最好背下来,以后经常要用到。) (2)弹簧不是完全弹性的。Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。这种碰撞叫非弹性碰撞。

(3)弹簧完全没有弹性。Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ

过程。这种碰撞叫完全非弹性碰撞。可以证明,A 、B 最终的共同速度为12

1121

v m m m v v +='='。在完全非弹性碰撞过程中,系统的动能损失最大,为: ()()

21212122121122121m m v m m v m m v m E k +='+-=?。

【例1】 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。质量为m 的小球以速度v 1向物块运动。不计一切摩擦,圆

弧小于90°且足够长。求小球能上升到的最大高度H 和物块的最终

速度v 。

解析:系统水平方向动量守恒,全过程机械能也守恒。

小球上升过程中,由水平系统动量守恒得:()v m M mv '+=1 由系统机械能守恒得:()mgH v m M mv +'+=2212

121 解得()g m M Mv H +=221 全过程系统水平动量守恒,机械能守恒,得12v m

M m v +=

【例2】 动量分别为5kg ?m/s 和6kg ?m/s 的小球A 、B 沿光滑平面上的同一条直线同向运动,A 追上B 并发生碰撞后。若已知碰撞后A 的动量减小了2kg ?m/s ,而方向不变,那么A 、B 质量之比的可能范围是什么?

解析:A 能追上B ,说明碰前v A >v B ,∴B

A m m 65>;碰后A 的速度不大于

B 的速度, B A m m 83≤;又因为碰撞过程系统动能不会增加, B

A B A m m m m 282326252222+≥+,由以上不等式组解得:7

483≤≤B A m m 点评:此类碰撞问题要考虑三个因素:①碰撞中系统动量守恒;②碰撞过程中系统动能不增加;③碰前碰后两个物体位置关系(不穿越)和速度大小应保证其顺序合理。

2.子弹打木块类问题 子弹打木块实际上是一种完全非弹性碰撞。作为一个

典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。

【例3】 设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。

从动量的角度看,子弹射入木块过程中系统动量守恒:()v m M mv +=0

从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f ,设子弹、木块的位移大小分别为s 1、s 2,如图所示,显然有s 1-s 2=d 对子弹用动能定理:22012121mv mv s f -=? ……① 对木块用动能定理:2221Mv s f =

? ……② ①、②相减得:()()

2022022121v m M Mm v m M mv d f +=+-=? ……③ 点评:这个式子的物理意义是:f ?d 恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见Q d f =?,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。

由上式不难求得平均阻力的大小:()d

m M Mmv f +=220 至于木块前进的距离s 2,可以由以上②、③相比得出:d m

M m s +=2 从牛顿运动定律和运动学公式出发,也可以得出同样的结论。由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:

()d m

M m s m m M v v s d v v v v v v s d s +=+==∴+=+=+2020022,,2/2/ 一般情况下m M >>,所以s 2<

动量守恒,最后共同运动的类型,全过程动能的损失量可用公式:()202v m M Mm E k +=?…

当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统动量仍然守恒,系统动能损失仍然是ΔE K = f ?d (这里的d 为木块的厚度),但由于末状态子弹和木块速度不相等,所以不能再用④式计算ΔE K 的大小。

3.反冲问题

在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。这类问题相互作用过程中系统的动能增大,有其它能向动能转化。可以把这类问题统称为反冲。

【例4】 质量为m 的人站在质量为M ,长为L 的静止小船的右端,小船的左端靠在岸边。当他向左走到船的左端时,船左端离岸多远?

解析:先画出示意图。人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等。从图中可以看出,人、船的位移大小之和等于L 。设人、船位移大小分别为l 1、l 2,则:

mv 1=Mv 2,两边同乘时间t ,ml 1=Ml 2,而l 1+l 2=L ,

∴L m

M m l +=2

点评:应该注意到:此结论与人在船上行走的速度大小无关。不论是匀速行走还是变速行走,甚至往返行走,只要人最终到达船的左端,那么结论都是相同的。

以上列举的人、船模型的前提是系统初动量为零。如果发生相互作用前系统就具有一定的动量,就不能再用m 1v 1=m 2v 2这种形式列方程,而要用(m 1+m 2)v 0= m 1v 1+ m 2v 2列式。

【例5】 总质量为M 的火箭模型 从飞机上释放时的速度为v 0,速度方向水平。火箭向后以相对于地面的速率u 喷出质量为m 的燃气后,火箭本身的速度变为多大?

解析:火箭喷出燃气前后系统动量守恒。喷出燃气后火箭剩余质量变为M-m ,以v 0方向为正方向,()m M mu Mv v v m M mu Mv -+=''-+-=00, 4.爆炸类问题

【例6】 抛出的手雷在最高点时水平速度为10m/s ,这时突然炸成两块,其中大块质量300g 仍按原方向飞行,其速度测得为50m/s ,另一小块质量为200g ,求它的速度的大小和方向。

分析:手雷在空中爆炸时所受合外力应是它受到的重力G =( m 1+m 2 )g ,可见系统的动量并不守恒。但在爆炸瞬间,内力远大于外力时,外力可以不计,系统动量近似守恒。

设手雷原飞行方向为正方向,则整体初速度s m v /100=;m 1=0.3kg 的大块速度为50 1=v m/s 、m 2=0.2kg 的小块速度为2 v ,方向不清,暂设为正方向。

由动量守恒定律:2211021)(v m v m v m m +=+

502

.0503.010)2.03.0()(2110212-=?-?+=-+=m v m v m m v m/s 此结果表明,质量为200克的部分以50m/s 的速度向反方向运动,其中负号表示与所设正方向相反

5.某一方向上的动量守恒

【例7】 如图所示,AB 为一光滑水平横杆,杆上套一

质量为M 的小圆环,环上系一长为L 质量不计的细绳,绳的

另一端拴一质量为m 的小球,现将绳拉直,且与AB 平行,

由静止释放小球,则当线绳与A B 成θ角时,圆环移动的距离是多少?

解析:虽然小球、细绳及圆环在运动过程中合外力不为零(杆的支持力与两圆环及小球的重力之和不相等)系统动量不守恒,但是系统在水平方向不受外力,因而水平动量守恒。设细绳与AB 成θ角时小球的水平速度为v ,圆环的水平速度为V ,则由水平动量守恒有:MV =mv

且在任意时刻或位置V 与v 均满足这一关系,加之时间相同,公式中的V 和v 可分别用其水平位移替代,则上式可写为:

Md =m [(L -L cos θ)-d ]

解得圆环移动的距离: d =mL (1-cos θ)/(M +m )

6.物块与平板间的相对滑动

【例8】如图所示,一质量为M 的平板车B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,A 、B 间动摩擦因数为μ,现给A 和B 以大小相等、方向相反的初速度v 0,使A 开始向左运动,B 开始向右运动,最后A 不会滑离B ,求:

(1)A 、B 最后的速度大小和方向;

(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动位移大小。 解析:(1)由A 、B 系统动量守恒定律得:

Mv 0-mv 0=(M +m )v ①

所以v =m

M m M +-v 0 方向向右 (2)A 向左运动速度减为零时,到达最远处,此

时板车移动位移为s ,速度为v ′,则由动量守恒定律

得:Mv 0-mv 0=Mv ′ ①

对板车应用动能定理得:

-μmg s=21mv ′2-21mv 02 ② 联立①②解得:s =mg m M μ22-v 02 【例9】两块厚度相同的木块A 和B ,紧靠着放在光滑的水平面上,其质量分别为kg m A 5.0=,kg m B 3.0=,它们的下底面光滑,上表面粗糙;另有一质量kg m C 1.0=的滑块C (可视为质点),以s m v C /25=的速度恰好水平地滑到A 的上表面,如图所示,由于摩擦,滑块最后停在木块B 上,B 和C 的共同速度为3.0m/s ,求:

(1)木块A 的最终速度A v ; (2)滑块C 离开A 时的速度C v '。

解析:这是一个由A 、B 、C 三个物体组成的系统,以这系统为研究对象,当C 在A 、B 上滑动时,A 、B 、C 三个物体间存在相互作用,但在水平方向不存在其他外力作用,因此系统的动量守恒。

(1)当C 滑上A 后,由于有摩擦力作用,将带动A 和B 一起运动,直至C 滑上B 后,A 、B 两木块分离,分离时木块A 的速度为A v 。最后C 相对静止在B 上,与B 以共同速度s m v B /0.3=运动,由动量守恒定律有 B C B A A C C v m m v m v m )(++=

∴A B C B C C A m v m m v m v )(+-=

=s m s m /6.2/5.00.3)1.03.0(251.0=?+-?

(2)为计算C v ',我们以B 、C 为系统,C 滑上B 后与A 分离,C 、B 系统水平方向动量

守恒。C 离开A 时的速度为

C v ',B 与A 的速度同为A v ,由动量守恒定律有 B C B C C B B v m m v m v m )(+='+

∴C A B B C B C

m v m v m m v -+=')(s m s m /2.4/1

.06.23.00.3)1.03.0(=?-?+=

三、针对训练

练习1

1.质量为M 的小车在水平地面上以速度v 0匀速向右运动。当车中的砂子从底部的漏斗中不断流下时,车子速度将( B )

A .减小

B .不变

C .增大

D .无法确定

2.如图所示,放在光滑水平桌面上的A 、B 木块中部夹一被

压缩的弹簧,当弹簧被放开时,它们各自在桌面上滑行一段距离

后,飞离桌面落在地上。A 的落地点与桌边水平距离0.5m ,B 的

落地点距离桌边1m ,那么( A 、B 、D )

A .A 、

B 离开弹簧时的速度比为1∶2

B .A 、B 质量比为2∶1

C .未离开弹簧时,A 、B 所受冲量比为1∶2

D .未离开弹簧时,A 、B 加速度之比1∶2

3.如图所示,在沙堆表面放置一长方形木块A ,其上面再放一个质量为m=0.10kg 的爆竹B ,木块的质量为M=6.0kg 。当爆竹爆炸时,因反冲作用使木块陷入沙中深度h=50cm ,而木块所受的平均阻力为f=80N 。若爆竹的火药质量以及空气阻力可忽略不计,g 取2/10s m ,求爆竹能上升的最大高度。

解:爆竹爆炸瞬间,木块获得的瞬时速度v 可由牛顿第二定律和运动学公式求得 Ma Mg f =-,2/620s m a =

,s m ah v /332==

爆竹爆炸过程中,爆竹木块系统动量守恒 00=-mv Mv

s m s m m Mv v /320/1.03360=?==

练习2

1.质量相同的两个小球在光滑水平面上沿连心线同向运动,球1的动量为 7 kg ·m/s,球2的动量为5 kg ·m/s,当球1追上球2时发生碰撞,则碰撞后两球动量变化的可能值是A

A .Δp 1=-1 kg ·m/s ,Δp 2=1 kg ·m/s

B .Δp 1=-1 kg ·m/s ,Δp 2=4 kg ·m/s

C .Δp 1=-9 kg ·m/s ,Δp 2=9 kg ·m/s

D .Δp 1=-12 kg ·m/s ,Δp 2=10 kg ·m/s

2.小车AB 静置于光滑的水平面上,A 端固定一个轻质弹簧,B 端粘有橡皮泥,AB 车质量为M ,长为L ,质量为m 的木块C 放在小车上,用细绳连结于小车的A 端并使弹簧压缩,开始时AB 与C 都处于静止状态,如图所示,当突然烧断细绳,弹簧

被释放,使物体C 离开弹簧向B 端冲去,并跟B 端橡皮泥粘在一起,

以下说法中正确的是 BCD

A .如果A

B 车内表面光滑,整个系统任何时刻机械能都守恒

B .整个系统任何时刻动量都守恒

C .当木块对地运动速度为v 时,小车对地运动速度为

M m v D .AB 车向左运动最大位移小于M

m L 4.质量为M 的小车静止在光滑的水平面上,质量

为m 的小球用细绳吊在小车上O 点,将小球拉至水平位

置A 点静止开始释放(如图所示),求小球落至最低点

时速度多大?(相对地的速度)

(m M MgL +2)

6.如图所示甲、乙两人做抛球游戏,甲站在一辆平板车

上,车与水平地面间摩擦不计.甲与车的总质量M =100 kg ,

另有一质量m =2 kg 的球.乙站在车的对面的地上,身旁有若

干质量不等的球.开始车静止,甲将球以速度v (相对地面)

水平抛给乙,乙接到抛来的球后,马上将另一质量为m ′=2m

的球以相同速率v 水平抛回给甲,甲接住后,再以相同速率v 将此球水平抛给乙,这样往复进行.乙每次抛回给甲的球的质量都等于他接到的球的质量为2倍,求:

(1)甲第二次抛出球后,车的速度大小.

(2)从第一次算起,甲抛出多少个球后,再不能接到乙抛回来的球. ((1)101v ,向左 (2)5个)

练习3

1.在光滑水平面上,两球沿球心连线以相等速率相向而行,并发生碰撞,下列现象可能的是( )

A .若两球质量相同,碰后以某一相等速率互相分开

B .若两球质量相同,碰后以某一相等速率同向而行

C .若两球质量不同,碰后以某一相等速率互相分开

D .若两球质量不同,碰后以某一相等速率同向而行

2.如图所示,用细线挂一质量为M 的木块,有一质量为m 的子弹

自左向右水平射穿此木块,穿透前后子弹的速度分别为

0v 和v (设子弹穿过木块的时间和空气阻力不计),木块的速度大小为( )

A .M mv mv /)(0+

B .M mv mv /)(0-

C .)

/()(0m M mv mv ++ D .

)/()(0m M mv mv +- 3.载人气球原静止于高h 的空中,气球质量为M ,人的质量为m 。若人要沿绳梯着地,则绳梯长至少是( )

A .(m+M )h/M

B .mh/M

C .Mh/m

D .h

4.质量为2kg 的小车以2m/s 的速度沿光滑的水平面向右运动,若将质量为2kg 的砂袋以3m/s 的速度迎面扔上小车,则砂袋与小车一起运动的速度的大小和方向是( )

A .2.6m/s ,向右

B .2.6m/s ,向左

C .0.5m/s ,向左

D .0.8m/s ,向右

5.车厢停在光滑的水平轨道上,车厢后面的人对前壁发射一颗子弹。设子弹质量为m ,出口速度v ,车厢和人的质量为M ,则子弹陷入前车壁后,车厢的速度为( )

A .mv/M ,向前

B .mv/M ,向后

C .mv/(m+M ),向前

D .0

6.向空中发射一物体,不计空气阻力。当此物体的速度恰好沿水平方向时,物体炸裂成a 、b 两块,若质量较大的a 块的速度方向仍沿原来的方向,则( )

A .b 的速度方向一定与原速度方向相反

B .从炸裂到落地的这段时间里,a 飞行的水平距离一定比b 的大

C .a 、b 一定同时到达水平地面

D .在炸裂过程中,a 、b 受到的爆炸力的冲量大小一定相等

7.两质量均为M 的冰船A 、B 静止在光滑冰面上,轴线在一条直线上,船头相对,质量为m 的小球从A 船跳入B 船,又立刻跳回,A 、B 两船最后的速度之比是_________________。

参考答案1.A 、D 2.B 3.A 4.C 5.D 6.C 、D 7.m M M

+

第三单元 动 量 和 能 量

概述:处理力学问题、常用的三种方法

一是牛顿定律;二是动量关系;三是能量关系。若考查的物理量是瞬时对应关系,常用牛顿运动定律;若研究对象为一个系统,首先考虑的是两个守恒定律;若研究对象为一个物体,可优先考虑两个定理。特别涉及时间问题时,优先考虑的是动量定理、而涉及位移及功的问题时,优先考虑的是动能定理。两个定律和两个定理,只考查一个物理过程的始末两个状态,对中间过程不予以细究,这正是它们的方便之处,特别是变力问题,就显示出其优越性。 例题分析:

例1. 如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 靠紧竖直墙。用水平力F

将B 向左压,使弹簧被压缩一定长度,静止后弹簧储存的弹性势能为E 。这时突然撤去F ,关于A 、B 和弹簧组成的系统,下列说法中正确的是 (BD )

A.撤去F 后,系统动量守恒,机械能守恒

B.撤去F 后,A 离开竖直墙前,系统动量不守恒,机械能守恒

C.撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为E

D.撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为E /3

[A 离开墙前墙对A 有弹力,这个弹力虽然不做功,但对A 有冲量,因此系统机械能守恒而动量不守恒;A 离开墙后则系统动量守恒、机械能守恒。A 刚离开墙时刻,B 的动能为E ,动量为p =mE 4向右;以后动量守恒,因此系统动能不可能为零,当A 、B 速度相等时,系统总动能最小,这时的弹性势能为E /3。]

指出:应用守恒定律要注意条件。

对整个宇宙而言,能量守恒和动量守恒是无条件的。但对于我们选定的研究对象所组成的系统,守恒定律就有一定的条件了。如系统机械能守恒的条件就是“只有重力做功”;而系统动量守恒的条件就是“合外力为零”。 例2. 长为L 宽为d 质量为m 总电阻为R 的矩形导线框上下两边保持水平,在竖直平面内自由落下而穿越一个磁感应强度为B 宽度也是d 的匀强磁场

区。已知线框下边刚进入磁场就恰好开始做匀速运动。则整个线框穿越该磁

场的全过程中线框中产生的电热是___________。 [若直接从电功率计算,就需要根据R

v L B mg 22=求匀速运动的速度v 、再求电

动势E 、电功率P 、时间t ,最后才能得到电热Q 。如果从能量守恒考虑,该

过程的能量转化途径是重力势能E P →电能E →电热Q ,因此直接得出Q =2mgd ]

例3如图所示,质量为1.0kg 的物体m 1,以5m/s 的速度在水平桌面上AB 部分的左侧向右运动,桌面AB 部分与m 1间的动摩擦因数μ=0.2,AB 间的距离s=2.25m ,桌面其他部分光滑。m 1滑到桌边处与质量为2.5kg 的静止物体m 2发生正碰,

碰撞后m 2在坚直方向上落下0.6m 时速度大小为4m/s ,

若g 取10m/s 2,问m 1碰撞后静止在什么位置?

解析:m1向右运动经过AB 段作匀减速运动,由动能定

律可以求出离开B 点继续向右运动的速度为4米/秒;和

m2发生碰撞后,m2作平抛运动,由平抛运动知识可以求

出m2做平抛运动的初速度(碰撞之后)为2米/秒。利

用动量守恒定律可以求出碰撞之后瞬间m1的速度为1米/秒。由动能定律可以求出返回经过AB 段,离B 点0.25米处停止。

例4如图所示,球A 无初速地沿光滑圆弧滑下至最低点C 后,又沿水平轨道前进至D 与质量、大小完全相同的球B 发生动能没有损失的碰撞。B 球用长L 的细线悬于O 点,恰与水平地面切于D 点。A 球与水平地面间摩擦系数μ=0.1,已知球A 初

始高度h=2米,CD=1米。问:

(1)若悬线L=2米,A 与B 能碰几次?最后A 球停在何处?

(2)若球B 能绕悬点O 在竖直平面内旋转,L 满足什么

条件时,A 、B 将只能碰两次?A 球最终停于何处?

(1)20次 A 球停在C 处

(2)L ≤0.76米,A 球停于离D9.5米处

例5如图所示,小木块的质量m =0.4kg ,以速度υ=20m/s ,水平地滑上一个静止的平板小车,小车的质量M =1.6kg ,小木块与小车间的动摩擦因数μ=0.2.(不计车与路面的摩擦)求:

(1)小车的加速度;

(2)小车上的木块相对于小车静止时,小车的速度;

(3)这个过程所经历的时间.

[ (1)0.5m/s 2;(2)4m/s ;(3)8s]

第二问:对m 、M 系统研究,利用动量守恒定律很快求出

木块相对小车静止时,小车的速度。也可以利用动能定

理分别研究m 和M ,但相对而言要麻烦得多。表明合理选择物理规律求解,可以提高解题速度和准确程度

例6 如图所示,在光滑水平地面上有一辆质量为M 的小

车,车上装有一个半径为R 的光滑圆环.一个质量为m 的

小滑块从跟车面等高的平台上以速度V0滑入圆环.试问:

小滑块的初速度V0满足什么条件才能使它运动到环顶

L d d B

时恰好对环顶无压力?

解析:滑块至圆环的最高点且恰好对环顶无压力,应有

)1(2

R v m mg =式中V 是滑块相对圆心O 的线速度,方向向左。设小车此时速度

u ,并以该速度方向为正方向,则滑块的对地速度为).(u v --对滑块和小车组成的系统,由于水平方向所受合外力为零,由动量守恒有

)2()(0 u v m Mu mv --=由滑块和小车系统的机械能守恒有

)3(2)(2

121212220 mgR u v m Mu mv +-+=三式联立求解得:M

Rg m M v )45(0+= 指出:公式v R v 中的/2是相对圆心的线速度,而本题中的圆心是以u 向右移动的,所以滑

快对地速度为V —u 。而动量守恒定律、机械能守恒定律表达式中的速度均应为对地的。

例7、 如图所示,小车A 质量为kg m A 2=置于光滑水平面上。初速度为s m v /14=,带电量q=0.2C 的可视为质点的物体B,质量为kg m B 1.0=,轻放在小车的右端,它们的周转围存在匀强磁场,方向垂直纸面向里,磁场强度为B=0.5T,物体B 与小车之间有摩擦力,小车足够长.求(1)物体B 的最大速度.(2)小车A 的最小速度.(3)在此过程中转变成多少内能

[解析:小车受到摩擦力作减速运

动,物体B 受到摩擦力作用而加速运动,其受到的磁场力方向向上,把A 和B 作为一个系统,在竖直方

向上合外力为零,

力平衡时,其速度最大,此时小车A 的速度最小,在这个过程中系统损失的动能转变成内能.(1)mg qBv =1 s m qB

g m v B /101== (2)根据动量守恒定律有:s m v Mv mv Mv /5.13221=+=

(3)J mv Mv Mv Q 75.82

1212121222=--= 例8静止在太空中的飞行器上有一种装置,它利用电场加速带电粒子,形成向外发射的粒子流,从而对飞行器产生反冲力,使其获得加速度.已知飞行器的质量为M,发射的2价氧离子,发射功率为P,加速电压为U,每个氧离子的质量为m,单位电荷的电量为e,不计发射离子后飞行器质量的变化,求:(1)射出的氧离子速度;(2)每秒钟射出的氧离子数;(3)射出离子后飞行器开始运动的加速度。

[解析:(1)以氧离子为研究对象,根据动能定理,有:)1(22

12 eU qU mv E k ===?所以氧离子速度为 m eU v /2= (2)设每秒钟射出的氧离子数为N ,则发射功率可表示为:)2(2 NeU E N P k =?=所以氧离子数为N=P/2eU (3)以氧离子和飞行器为系统,设飞行器的反冲速度为V ,根据动量守恒定律MV tmv N MV mv =?=-∑ 0 所以,飞行器的加速度为eU m M P

a /=

例9、质量为0.01kg 的子弹以300m/s 的水平速度射中一静止在光滑水平面上的木块,子弹进入木块6cm 而相对于木块静止下来。在这过程中,木块往前移动了0.2cm 。求:(1)木块的末速度;(2)木块的质量

解析:以子弹和木块为系统,相对静止时共同速度为V 由动量守恒v M m mv )(0+= ① 子弹与木块相对静止时,木块滑动的位移为L ,子弹相对地面发生的位移为L+d ,对子弹和

木块分别利用动能定理:2202121)(mv mv d L f -=+② 22

1Mv fL = ③ 由以上三式可解得V=10m/S M=0.29Kg 例10、 (难)质量为m 的长木板A 静止在光滑水平面上,另两

个质量也是m 的铁块B 、C 同时从A 的左右两端滑上A 的上表面,

初速度大小分别为v 和2v ,B 、C 与A 间的动摩擦因数均为μ。

⑴试分析B 、C 滑上长木板A 后,A 的运动状态如何变化?⑵为

使B 、C 不相撞,A 木板至少多长? 解:B 、C 都相对于A 滑动时,A 所受合力为零,保持静止。这段时间为g

v t μ=?1。B 刚好相对于A 静止时,C 的速度为v ,A 开向左做匀加速运动,由动量守恒可求出A 、B 、C 最终的共同速度3v v =',这段加速经历的时间为g

v t μ322=?,最终A 将以3v v ='做匀速运动。 全过程系统动能的损失都将转化为系统的内能,而摩擦生热mgd fd Q μ==,由能量守恒定律列式:()g v d v m v m mv mgd μμ37,33212212122

22=??

? ???-+=解得。这就是A 木板应该具有的最小长度。 第 十 一 章 热学

第1单元 分 子 运 动 的 三 条 理 论

Ⅰ物 质 的 构 成

一、物质是由大量分子构成的

分子是具有各种物质的化学性质的最小微粒,在热学中,原子、离子、分子这些微

粒做热运动时,遵从相同的规律,所以,统称为“分子”

二、分子的大小:直径的数量级 10 -10 m 1、 单分子油膜法 粗测:s

v d =(1)单层(2)球形(3)空隙 1+1≠2 2、离子显微镜 (200万倍)3、扫描隧道显微镜(几亿倍)

三、几个常用的等式

1、

m M v V N A ==即:分子质量

摩尔质量=分子占有体积摩尔体积阿佛加德罗常数=

阿佛加德罗常数——1摩尔的任何物质所含的微粒数相同N A = 6.02×10

23 mol -1 2、 分子的个数 = 摩尔数 ×阿伏加德罗常数

3、 V

M =ρ 估 算 练 习

一、将1摩尔的油酸溶于酒精,制成200毫升的溶液。已知1毫升的溶液有50滴,取1滴

滴在水面上,在水面上形成0.2平方米的油膜,估算油酸分子的直径

解:1 cm 3的溶液中,酒精溶于水后,油酸体积V 0 =1/200 cm 3 =1/200×10-6m 3

1滴溶液中,油酸体积v =V o /50,得油酸分子直径为d = v / s =5×10-10米

注:酒精的作用 (1)、提高扩散速度

(2)、油膜面积不致于很大,易于测量

二、10克的氧气,在标准状况下(0 ℃,1 atm )

(1)、含有多少个氧气分子

=??n n 1010

02.63223= (2)、占有多大体积 =??v v 10104.22323=- 三、估算标准状况下,气体分子和水分子的间距

1、 气体 m v r v 9323

3

103.31002.6104.22--距

体,其边长就是分子间把这个体积看成小立方=?==??= 2、 同理,水的摩尔体积v =18×10-3 103233101.31002.61018--=???=r 注:1、比较间距的大小2、边长=间距3、水还可以看成球形模型v =4 π r 3

/ 3

四、空气的摩尔质量m =29×10 -3 kg / mol , 当V =45 m 3时,

求:气体的质量M =? 解:kg M M 3.584510

29104.2233=???=-- Ⅱ分 子 无 规 则 运 动(热运动) 的 实 验 证 明

一 、扩散:不同物质相互接触时彼此进入对方的现象

意义:分子永不停息的做无规则的运动,而且温度越高,扩散越快。

固体、液体也有扩散现象

二、布朗运动1827年(英)布朗首先用显微镜观察水中的花粉时发

现的,称为布朗运动。

1、运动是无规则的

2、颗粒体积越小越明显,质量越小越明显

3、温度越高越明显

4、气体中没有布朗运动

原因 ——颗粒足够小时,来自各方向受到液体分子的撞击作用是

不平衡的,颗粒越小,分子数越少,不平衡性越显著

三、布朗运动与扩散的异同

1、 是颗粒还是分子

2、 是直接还是间接反映分子的运动

3、 成因是相同的,都是分子的无规则运动引起的

练习

1、 空气中漂浮的灰尘的运动是不是布朗运动

否:(1)、与颗粒大小有关 颗粒直径10 -6米 (2)、空气的流动

2、 物体运动的速度越大,布朗运动越显著(×)

Ⅲ 分 子 间 的 相 互 作 用 力

1、 哪些现象说明分子间有空隙?

扩散、布朗运动、教材彩图(石墨原子)酒精和水相混合1+1≠2

2、 为什么分子不能紧贴在一起?——分子间有斥力

3、 为什么有空隙还能形成固体和液体?——分子间有引力

r

r

4、分子间的引力和斥力如何变化?

力和斥力同时减小,斥力减小的快,半径r减

小,引力和斥力同时增加,斥力增加的快

5、分子力何时表现出引力、斥力?

分子间作用力(指引力和斥力的合力)随

分子间距离而变的规律是:①r

力;②r=r0时分子力为零;③r>r0时表现为引

力;④r>10r0以后,分子力变得十分微弱,可

以忽略不计。对比弹簧振子的振动(类似)

6、从本质上来说,分子力是电场力的表现。因为分子是由原子组成的,原子内有带正电的原子核和带负电的电子,分子间复杂的作用力就是由这些带电粒子间的相互作用而引起的。(也就是说分子力的本质是四种基本基本相互作用中的电磁相互作用)。

练习:

1、为什么物体可以被压缩,但又不能无限的被压缩?

2、为什么气体容易被压缩,而固体和液体不容易被压缩?

3、既然分子间有引力,那么打碎的玻璃为什么不能靠引力粘合在一起?

第2单元物体的内能和热力学定律

一、温度的宏观和微观意义是什么?如何理解?

分子的无规则运动特点是多、快、乱、变,中间多,两头少,在热现象中,关心的是多个分子,而不是单个分子。

(1)、分子的平均动能――所有分子的动能的平均值 m~10-26 kg v=10 5 m / s (2)、温度:宏观――表示物体的冷热程度,微观――是物体平均动能的标志

(3)、温度相同,平均动能就相同,不论物体组成、结构、种类和物态 (无论如何)二、什么是分子势能?分子势能与什么有关?

(1)、由于分子间存在着相互作用的引力和斥力而具有的与其相对位置有关的能量,叫做分子势能。

(2)、微观――与相对位置有关,宏观――与体积有关

(3)分子势能与距离的变化关系和图象(类似于重力势能和弹性势能)。

三、什么是物体的内能,它与什么有关?

1、 所有分子做热运动的动能和分子势能的总和叫做物体的内能,也叫热力学能

2、 与温度T 、体积V 和分子个数N 有关

3、 一切物体都具有内能

四、内能和机械能又什么区别?

1、 宏观物体的机械运动对应机械能。机械能可以

为零。

2、 微观物体对应内能。内能不可以为零。

3、 内能和机械能之间可以相互转化。

五、做功改变物体的内能

1、 物体做功,物体内能增加

2、 对外做功,物体内能减小

3、 做多少功,改变多少内能

六、热传递改变物体的内能

1、 外界向物体传递热量(吸热),物体的内能增加

2、 物体向外界传递热量(放热),物体的内能减小

3、 传递多少热量,内能就改变多少。能量的转移

七、做功和热传递的实质

1、 做功改变内能,是能量的转化,用功的数值来度量

2、 热传递改变内能,是能量的转移,用热量来度量。能量的转化。

八、做功和热传递的等效性——做功和热传递在改变内能上是等效的。

例如:使物体升高温度,可以用热传递的方法,也可以用做功的方法,得到的结果是相

同的,如果事先不知道,我们无法知道它是通过哪种途径改变的内能。

1 cal =4.

2 J 1 J =0.24 cal

九、区分内能、热量和温度

热量是在热传递的过程中转移的内能,它只有在转移的过程中才有意义,热传递

使物体的温度改变。温度不同是热传递的条件(类比:云――雨――水)

例如:两物体温度不同相接触,热量从高温物体相低温物体传递,高温物体内能

减少,温度降低,低温物体内能增加,温度升高。

十、理想气体:

(1)分子间无相互作用力,分子势能为零;

(2)一定质量的理想气体的内能只与温度有关。

(3)在温度不太低、压强不太大(常温常压)的条件下,实际气体可以近似为理想气体。 练习

1、 物体平均速度大的物体的温度高(×)

2、 20℃的水和20℃的铜的平均动能相同(√)

3、 体积变大,内能变大(×)

4、 温度升高,所有的分子的平均动能都变大(×)

5、 同温度的水和氢气相比,氢气的平均速度大(√)

十一、热力学第一定律——△U = Q + W

1、表示内能的改变、做功、热传递之间的关系

2、第一类永动机——不消耗能量,持续对外做功(违反能量守恒定律,不能制成)

【例】 下列说法中正确的是

A.物体吸热后温度一定升高

B.物体温度升高一定是因为吸收了热量

C.0℃的冰化为0℃的水的过程中内能不变

D.100℃的水变为100℃的水汽的过程中内能增大

解析:吸热后物体温度不一定升高,例如冰融化为水或水沸腾时都需要吸热,而温度不变,这时吸热后物体内能的增加表现为分子势能的增加,所以A 不正确。做功也可以使物体温度升高,例如用力多次来回弯曲铁丝,弯曲点铁丝的温度会明显升高,这是做功增加了物体的内能,使温度上升,所以B 不正确。冰化为水时要吸热,内能中的分子动能不变,但分子势能增加,因此内能增加,所以C 不正确。水沸腾时要吸热,内能中的分子动能不变但分子势能增加,所以内能增大,D 正确。

例1、如图示,甲分子固定在坐标原点O ,乙分子位于X 轴上,甲分子对乙分子的作用力与两分子间距离的关系如图中曲线所示,F >0为斥力,F <0为引力,a 、b 、c 、d 为X 轴上四个特定的位置。现把乙分子从a 处由静止释放,则( )

A 、乙分子从a 到b 做加速运动,由b 到c 做减速运动

B 、乙分子从a 到c 做加速运动,到达c 时速度

最大

C 、乙分子从a 到b 的过程中,两分子的分子势

能一直增加

D 、乙分子从b 到d 的过程中,两分子的分子势

能一直增加

分析:

乙分子从a 到b 、c 、d 的运动过程中,先是分

子的引力作用,加速度的方向跟运动方向一致,

所以加速运动,到达c 位置时,分子力等于零,

加速度也就等于零,运动的速度是最大。从c 再到d 运动时,分子力为斥力,加速度的方向跟运动的方向相反,速度减小。通过分子力做功情况判断两分子的势能如何变化。(略)

例2、如图示,容器A 、B 各有一个可以自由移动的轻活塞,活塞下面是水,上面是大气,大气压恒定。A 、B 的底部带有阀门K 的管道相连,整个装置与外界绝热。原先A 中水面比B 中水面高,打开阀门K 后,A 中的水向B 中流,最后达到平衡,这个过程中( )

A 、大气压力对水做功,水的内能增加

B 、水克服大气压力做功,水的内能减小

C 、大气压力对水不做功,水的内能不变

D 、大气压力对水不做功,水的内能增加分析:设大气压为P ,水箱 水轮 砂轮 抽水机 水箱

A 、

B 活塞的表面积分别为S 1和S 2,打开阀门后A 容器中的水流到B 容器中,A 容器中的水面下降h 1,B 容器中的水面上升h 2,根据压强与压力的关系及水的流动体积不变的原理,可以推导出,大气压力对A 、B 两活塞做功的代数和等于零。但是水的重力势能发生了变化,水的重力势能变了,根据能量守恒定律可知,水减小的机械能将转化为水的内能。

例3、一颗质量为10g 的子弹以400m/s 的速度水平射入置于光滑水平桌面上的质量为1kg 的木块后又从木块中穿出,木块从桌边滑出后着地点与桌边的水平距离为1.4m ,已知桌面

高为0.8m ,取g=10m/s 2,设子弹射穿木块过程中系统损失的机械能全部转化为系统的内能,

求在这一过程中系统内能的增加量。

分析:运用能量守恒观点求解。(略)

十二、热 力 学 第 二 定 律

1、 第一种表述:如果没有其他变化,不可能使热量由低温物体传到高温物体。(克劳

修斯表述) (其他变化――是指从单一热源吸热并把它用来做功以外的任何变化。) 实质:热传递具有方向性,不可逆

2、 第二种表述:如果没有其他变化,不可能从单一热源吸收热量全部用来做功。即第

二类永动机不可能制成。(开尔文表述)

实质:机械能向内能转化有方向性

3、 两种表述是等价的

4、 第二类永动机――没有冷凝器,只有单一热源。它从单一热源吸收热量,全部做功,

而不引起其他变化。这种永动机不可能制成,虽然不违反机械能守恒定律,但违反了机械能和内能转化的方向性。(注:单一热源指温度均匀且恒定的热源 )

5、

十三、热力学第三定律和第零定律

第3单元 气体、固体和液体

(一)气体

一 气体的状态参量

(1)温度(T )

1、意义:微观――是分子平均动能的标志

宏观――物体的冷热程度

2、单位:摄氏温度(t ) 摄氏度 ℃

开氏温度(热力学温度T ) 开尔文 K

(补: 摄氏――摄尔修斯

华氏温度――华伦海特

勒氏――勒奥默)

T = t + 273.15

3、 就每一度来说,它们是相同的 0℃273K -2730K

高中物理必修2全套教案

高中物理必修2教案 第一章抛体运动 第一节什么是抛体运动 【教学目标】 知识与技能 1.知道曲线运动的方向,理解曲线运动的性质 2.知道曲线运动的条件,会确定轨迹弯曲方向与受力方向的关系 过程与方法 1.体验曲线运动与直线运动的区别 2.体验曲线运动是变速运动及它的速度方向的变化 情感态度与价值观 能领会曲线运动的奇妙与和谐,培养对科学的好奇心和求知欲 【教学重点】 1.什么是曲线运动 2.物体做曲线运动方向的判定 3.物体做曲线运动的条件 【教学难点】 物体做曲线运动的条件 【教学课时】 1课时 【探究学习】 1、曲线运动:__________________________________________________________ 2、曲线运动速度的方向: 质点在某一点的速度,沿曲线在这一点的方向。 3、曲线运动的条件: (1)时,物体做曲线运动。(2)运动速度方向与加速度的方向共线时,运动轨迹是___________ (3)运动速度方向与加速度的方向不共线,且合力为定值,运动为_________运动。(4)运动速度方向与加速度的方向不共线,且合力不为定值,运动为___________运动。 4、曲线运动的性质: (1)曲线运动中运动的方向时刻_______ (变、不变),质点在某一时刻(某一点)的速度方向是沿__________________________________________ ,并指向运动轨迹凹下的一侧。 (2)曲线运动一定是________ 运动,一定具有_________ 。

【课堂实录】 【引入新课】 生活中有很多运动情况,我们学习过各种直线运动,包括匀速直线运动,匀变速直线运动等,我们知道这几种运动的共同特点是物体运动方向不变。下面我们就来欣赏几组图片中的物体有什么特点(展示图片) 再看两个演示 第一, 自由释放一只较小的粉笔头 第二, 平行抛出一只相同大小的粉笔头 两只粉笔头的运动情况有什么不同? 学生交流讨论。 结论:前者是直线运动,后者是曲线运动 在实际生活普遍发生的是曲线运动,那么什么是曲线运动?本节课我们就来学习这个问题。 新课讲解 一、曲线运动 1. 定义:运动的轨迹是曲线的运动叫做曲线运动。 2. 举出曲线运动在生活中的实例。 问题:曲线运动中速度的方向是时刻改变的,怎样确定做曲线运动的物体在任意时刻速度的方向呢? 引出下一问题。 二、曲线运动速度的方向 看图片:撑开带有水滴的雨伞绕柄旋转。 问题:水滴沿什么方向飞出? 学生思考 结论:雨滴沿飞出时在那点的切线方向飞出。 如果球直线上的某处A 点的瞬时速度,可在离A 点不远处取一B 点,求AB 点的平均速度来近似表示A 点的瞬时速度,时间取得越短,这种近似越精确,如时间趋近于零,那么AB 见的平均速度即为A 点的瞬时速度。 结论:质点在某一点的速度方向,沿曲线在这一点的切线方向。

人教版高中物理选修3-5教案

物理选修3-5教案 第十六章 动量和动量守恒定律 16.1 实验:探究碰撞中的不变量 目的要求 通过这节课的学习,让学生掌握科学探究的思维方法,从最简单的关系开始寻找,利用身边的资源及已学过的原理,来完成该实验的探究过程。 重难点分析 一、重点 本节课的重点在于如何让学生掌握科学探究的方法。如何真正实现探究的过程。 二、难点 本节课的难点在于,如何启发学生利用身边的一切可利用资源,来自行设计可行性较强的实验方案。 新课教学 一、新课引入 碰撞是自然界中常见的现象。比如,两节火车车厢之间的挂钩靠碰撞相连,台球由于两球的碰撞而改变运动状态。两个迎面而来的人相撞后会相仰而倒,或者各自后退。在微观粒子之间,更是由于相互碰撞而改变能量,甚至由于撞击而使得一种粒子转化为其他粒子。 二、新课教学 由很多例子可知,两个物体碰撞前后的速度都会发生变化,物体的质量不同时速度变化也不一样。那么,碰撞前后会不会有什么物理量保持不变?这节课主要介绍研究这个问题的实验。 (一)实验的基本思路 研究最简单的情况——两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动。这种碰撞叫做一维碰撞。 思考一下,在一维碰撞的情况下,与物体有关的物理量有哪些? (学生答:质量m ,速度v ) 为什么与质量m 有关? (学生答:相互作用力下,质量越大的物体速度改变越慢) 设两物体质量分别为m 1、m 2,碰撞前速度分别为v 1、v 2,碰撞后速度分别为1v '、2 v '。速度为矢量,因而需规定正方向。 问题是:物体的质量和速度在碰撞前后有什么不变的关系? 质量必定是不变的,但质量只是惯性的量度,无法描述物体的运动状态。而速度却是在碰撞前后改变的,那么,可否有一个物理量为质量与速度的某种关系,却又恰好能在碰撞前后保持不变呢? 可能关系: ①2222112 2 22112 1212121v m v m v m v m '+'=+ →这个关系不可能。碰撞前后能量必有损失,只是多少的问题。而我们要寻找的物 理量是在任何一种碰撞中都不变的量。 ②221 12211v m v m v m v m '+'=+

高中物理教学设计模板

高中物理教学设计模板 高中物理的教学方式对于学生们而言影响十分的大,那么高中物理的教学设计到底应该怎么开展呢?下面是小编推荐给大家的高中物理教学设计模板,希望大家有所收获。 篇一:高中物理教学设计模板 教学目标: (一):知识与技能: 1、知道力的分解的含义。并能够根据力的效果分解力 2、通过实验探究,理解力的分解,会用力的分解的方法分析日常生活中的问题。 3、培养观察、实验能力;以及利用身边材料自己制作实验器材的能力 (二)过程与方法: 1、通过经历力的分解概念和规律的学习过程,了解物理学的研究方法,认识物理实验、物理模型和数学工具在物理学研究过程中的作用。 2、通过经历力的分解科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。 (三)情感态度与价值观 1、培养学生实事求是的科学态度。

2、通过学习,了解物理规律与数学规律之间存在和谐美,领略自然界的奇妙与和谐。 3、发展对科学的好奇心与求知欲,培养主动与他人合作的精神,能将自己的见解与他人交流的愿望,培养团队精神。 设计意图 为什么要实施力的分解?关于如何依据力的作用效果实施分解?这既是本课节教学的内容,更是该课节教学的重心!很多交换四认为只要教会学生正交分解就可以了,而根据力的效果分解没有必要,所以觉得这一节根本不需要教。其实本节内容是一个很好的科学探究的材料。本人对这节课的设计思路如下:受伽利略对自由落体运动的研究的启发,按照伽利略探究的思路:“猜想――验证”,本节课主要通过学生的猜想――实验探究得出力的分解遵循平行四边形定则,让学生通过实验自己探究出把一个理分解应该根据力的效果来分解。同时物理是一门实验学科,本节课通过自己挖掘生活中的很多材料,设计了一些很有趣而且效果非常好实验让学生动手做,亲身去体验和发现力的分解应该根据什么来分解。同时也让学生了解到做实验并不是一定要有专门的实验室,实验的条件完全可以自己去创造,从而激发学生做实验的兴趣。 教学流程 一. 通过一个有趣的实验引入新课:激发学生的兴趣 【实验】“四两拨千斤” (两位大力气男同学分别用双手拉住绳子两端,一位女生在绳

高三物理一轮复习教案设计(精品)

第一章 运动的描述 匀变速直线运动的研究 第1单元 直线运动的基本概念 1、 机械运动:一个物体相对于另一物体位置的改变(平动、转动、直线、曲线、圆周) 参考系:假定为不动的物体 (1) 参考系可以任意选取,一般以地面为参考系 (2) 同一个物体,选择不同的参考系,观察的结果可能不同 (3) 一切物体都在运动,运动是绝对的,而静止是相对的 2、 质点:在研究物体时,不考虑物体的大小和形状,而把物体看成是有质量的点,或者 说用一个有质量的点来代替整个物体,这个点叫做质点。 (1) 质点忽略了无关因素和次要因素,是简化出来的理想的、抽象的模型,客观 上不存在。 (2) 大的物体不一定不能看成质点,小的物体不一定就能看成质点。 直 线 运 动 直线运动的条件:a 、v 0共线 参考系、质点、时间和时刻、位移和路程 速度、速率、平均速度 加速度 运动的描述 典型的直线运动 匀速直线运动 s=v t ,s-t 图,(a =0) 匀变速直线运动 特例 自由落体(a =g ) 竖直上抛(a =g ) v - t 图 规律 at v v t +=0,2021at t v s + =as v v t 2202=-,t v v s t 2 0+=

(3) 转动的物体不一定不能看成质点,平动的物体不一定总能看成质点。 (4) 某个物体能否看成质点要看它的大小和形状是否能被忽略以及要求的精确程 度。 3、时刻:表示时间坐标轴上的点即为时刻。例如几秒初,几秒末。 时间:前后两时刻之差。时间坐标轴线段表示时间,第n 秒至第n+3秒的时间为3秒 (对应于坐标系中的线段) 4、位移:由起点指向终点的有向线段,位移是末位置与始位置之差,是矢量。 路程:物体运动轨迹之长,是标量。路程不等于位移大小 (坐标系中的点、线段和曲线的长度) 5、速度:描述物体运动快慢和运动方向的物理量, 是矢量。 平均速度:在变速直线运动中,运动物体的位移和所用时间的比值,υ=s/t (方向为位移的方向) 平均速率:为质点运动的路程与时间之比,它的大小与相应的平均速度之值可能不相同(粗略描述运动的快慢) 即时速度:对应于某一时刻(或位置)的速度,方向为物体的运动方向。(t s v t ??=→?0lim ) 即时速率:即时速度的大小即为速率; 【例1】物体M 从A 运动到B ,前半程平均速度为v 1,后半程平均速度为v 2,那么全程的平均速度是:( D ) A .(v 1+v 2)/2 B .21v v ? C .212221v v v v ++ D .21212v v v v +

高三物理教案全集(共250页)

力学 一、力 教学目标 1.知识目标: (1)理解高中学习的各种力的概念; (2)掌握高中学习的各种力的公式、单位及矢量性; (3)掌握高中学习的各种力之间的联系. 2.能力目标; (1)要求学生做到恰当选择研究对象,增长灵活运用知识的能力; (2)要求学生做到准确对研究对象进行受力分析,会把运动物体抽象为正确的物理模型; (3)培养学生正确的解题思路和综合分析问题的能力. 3.德育目标: (1)在教学的整个过程中,渗透物理学以观察、实验为基础的科学研究方法,以及注重理性思维的科学态度; (2)用科学家的言行教育学生如何做人. 教学重点、难点分析 1.对高一、高二学习的各种力进一步加深理解,进行全面系统的总结. 2.引导学生正确选取研究对象,掌握对研究对象进行受力分析的一般方法. 3.力学是整个物理学的基础,而受力分析又是解决物理问题最关键的步骤,熟练进行受力分析既是本节复习课的教学重点也是教学的难点. 教学过程设计 一、对复习的几点建议 1.提倡“三多、三少”.“三多”即多做小题,多做小综合题,多做变式型的常见题;“三少”即少做大题,少做大综合题,少做难题. [例1] 如图1-1-1所示,斜劈B置于地面上静止,物块A置于斜劈B上静止,求地面对斜劈B的摩擦力. 方法一:分别选A、B为研究对象进行受力分析,可以求得地面对斜劈B的摩擦力为零.

方法二:选整体为研究对象进行受力分析,可迅速得出地面对斜劈B的摩擦力为零. 可见,一道简单的题目,可以做得较复杂,也可以做得相当简单.此题关键在于研究对象选取是否巧妙.此外,若采用方法一,必须很明白作用力和反作用力的关系.这两种方法,学生都应该熟练掌握. 此题变式型为: [例2]斜劈B置于地面上静止,物块A在斜劈B上沿斜面匀速下滑,求地面对斜劈B的摩擦力.利用上述方法一,受力情况完全相同,所以地面对斜劈B的摩擦力为零. [例3]倾角为θ的斜劈B置于地面上静止,物块A在沿斜面向上F力的作用下沿斜面匀速上滑,求地面对斜劈B的摩擦力. 分别选A、B为研究对象进行受力分析可以求得地面对斜劈B的摩擦力为Fcos . [例4]倾角为θ的斜劈B置于地面上静止,物块A在沿斜面向上F力的作用下沿斜面以加速度a匀加速上滑,求地面对斜劈B的摩擦力. 分别选A、 B为研究对象进行受力分析,可以求得地面对斜劈B的摩擦力为Fcos θ-macosθ. 由此可见,多做小题、变式型题可以帮助你掌握巩固基础知识,还可以帮助你灵活应用这些知识.只有基础知识巩固,才能在做难题时能力得到发挥. 2.自我诊断:错题改正,定期复习,做好标记. 在复习过程中,要不断地回顾,考察自己在哪个知识点容易出错.只有不断地对自己进行自我诊断,才能明确地知道自己的弱点,才能更有效地利用时间,提高成绩.值得注意的是:千万别盲从,不要看见别人干什么,自己就干什么.抓不住自己的重点.总做一些对自己提高成绩帮助并不太大的事,那样会得不偿失的. 要经常进行错题改正,建立错题档案本.错题不能只抄在本上,就完事了.必须要做定期复习,并且做上标记.一道错题,若第一次复习时做对了,可以做上标记,时间过得长一些再复习,若复习三次做对了,可以做上标记暂时不用管了,以后放寒假、暑假或一模、二模前再复习.这样,虽然你抄的错题越来越多,但通过每次的定期复习,不会做的,再做错的题目应该越来越少. 关于做错题本的建议: (1)分类别抄错题; (2)抄错题本身就是一次复习.用明显的颜色总结、归纳错误原因,以及得出的小结; (3)将题目抄在正页,在反面抄录答案,每一页在页边上开辟空白行,专供写错误原因、得出的小结以及复习的标记(日期、第几次)等用. 3.平时要经常准备“备忘录”.

2020届高三物理一轮教案匀变速直线运动

2020届高三物理一轮教案匀变速直线运动 一、匀变速直线运动公式 1.常用公式有以下四个 at v v t +=0 2 02 1at t v s + = as v v t 22 02=- t v v s t 2 0+= 点评: 〔1〕以上四个公式中共有五个物理量:s 、t 、a 、v 0、v t ,这五个物理量中只有三个是独 立的,能够任意选定。只要其中三个物理量确定之后,另外两个就唯独确定了。每个公式中只有其中的四个物理量,当某三个而要求另一个时,往往选定一个公式就能够了。假如两个匀变速直线运动有三个物理量对应相等,那么另外的两个物理量也一定对应相等。 〔2〕以上五个物理量中,除时刻t 外,s 、v 0、v t 、a 均为矢量。一样以v 0的方向为正方 向,以t =0时刻的位移为零,这时s 、v t 和a 的正负就都有了确定的物理意义。 2.匀变速直线运动中几个常用的结论 〔1〕Δs=aT 2,即任意相邻相等时刻内的位移之差相等。能够推广到 s m -s n =(m-n)aT 2 〔2〕t s v v v t t =+= 202/,某段时刻的中间时刻的即时速度等于该段时刻内的平均速度。 2 2 2 02/t s v v v += ,某段位移的中间位置的即时速度公式〔不等于该段位移内的平均速度〕。 能够证明,不管匀加速依旧匀减速,都有2/2 /s t v v <。

点评:运用匀变速直线运动的平均速度公式t s v v v t t =+= 202/解题,往往会使求解过程变得专门简捷,因此,要对该公式给与高度的关注。 3.初速度为零〔或末速度为零〕的匀变速直线运动 做匀变速直线运动的物体,假如初速度为零,或者末速度为零,那么公式都可简化为: gt v = , 221at s = , as v 22= , t v s 2 = 以上各式差不多上单项式,因此能够方便地找到各物理量间的比例关系。 4.初速为零的匀变速直线运动 〔1〕前1秒、前2秒、前3秒……内的位移之比为1∶4∶9∶…… 〔2〕第1秒、第2秒、第3秒……内的位移之比为1∶3∶5∶…… 〔3〕前1米、前2米、前3米……所用的时刻之比为1∶2∶3∶…… 〔4〕第1米、第2米、第3米……所用的时刻之比为1∶ ( ) 12-∶〔23-〕∶…… 对末速为零的匀变速直线运动,能够相应的运用这些规律。 5.一种典型的运动 经常会遇到如此的咨询题:物体由静止开始先做匀加速直线运动,紧接着又做匀减速直线运动到静止。用右图描述该过程,能够得出以下结论: 〔1〕t s a t a s ∝∝∝ ,1 ,1 〔2〕2 21B v v v v = == 6、解题方法指导: 解题步骤: 〔1〕依照题意,确定研究对象。 〔2〕明确物体作什么运动,同时画出运动示意图。 〔3〕分析研究对象的运动过程及特点,合理选择公式,注意多个运动过程的联系。 〔4〕确定正方向,列方程求解。 a 1、s 1、t 1 a 2、s 2、t 2

人教版高三年级物理教案

人教版高三年级物理教案 篇一:《力的合成》 一.教材简析 本节课力的合成,是在学生了解力的基本性质和常见几种力的基础上,通过等效替代思想,研究多个力的合成方法,是对前几节内容的深化。 本节重点介绍力的合成法则——平行四边形定则,但实际这是所有矢量运算的共同工具,为学习其他矢量的运算奠定了基础。 更重要的是,力的合成是解决力学问题的基础,对今后牛顿运动定律、平衡问题、动量与能量问题的理解和应用都会产生重要影响。 因此,这节课承前启后,在整个高中物理学习中占据着非常重要的地位。 二、教学目标定位 为了让学生充分进行实验探究,体验获取知识的过程,本节内容分两课时来完成,今天我说课的内容为本节内容的第一课时。根据上述教材分析,考虑到学生的实际情况,在本节课的教学过程中,我制定了如下教学目标: 一、知识与技能 .理解合力、分力、力的合成的概念.理解力的合成本质上是从等效的角度进行力的替代. .探究求合力的方法——力的平行四边形定则,会用平行四边形定则求合力. 二、过程与方法 .通过学习合力和分力的概念,了解物理学常用的方法——等效替代法. .通过实验探究方案的设计与实施,体验科学探究的过程。 三、情感态度与价值观 .培养学生的合作精神,激发学生学习兴趣,形成良好的学习方法和习惯. .培养认真细致、实事求是的实验态度.

根据以上分析确定本节课的重点与难点如下: 一、重点 .合力和分力的概念以及它们的关系. .实验探究力的合成所遵循的法则. 二、难点 平行四边形定则的理解和运用。 三、重、难点突破方法——教法简介 本堂课的重、难点为实验探究力的合成所遵循的法则——平行四边形定则,为了实现重难点的突破,让学生真正理解平行四边形定则,就要让学生亲自体验规律获得的过程。 因此,本堂课在学法上采用学生自主探究的实验归纳法——通过重现获取知识和方法的思维过程,让学生亲自去体验、探究、归纳总结。体现学生主体性。 实验归纳法的步骤如下。这样设计让学生不仅能知其然,更能知其所以然,这也是本堂课突破重点和难点的重要手段。 本堂课在教法上采用启发式教学——通过设置问题,引导启发学生,激发学生思维。体现教师主导作用。 四、教学过程设计 采用六环节教学法,教学过程共有六个步骤。 教学过程第一环节、创设情景导入新课: 安排两个同学共提一桶水,再请全班力气的同学来提这一桶水,游戏虽简单,但能迅速调动学生参与课堂的积极性。然后用图片引导学生通过作用效果相同得出合力与分力的概念。由此引出—— 第二环节、新课教学: 展示合力与分力以及力的合成的概念,强调等效替代法。举例说明等效替代

高三物理第二轮平衡问题专题复习教案

第一讲 平衡问题 一、特别提示[解平衡问题几种常见方法] 1、力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三力等大反向”的关系,借助三角函数、相似三角形等手段求解;或将某一个力分解到另外两个力的反方向上,得到这两个分力必与另外两个力等大、反向;对于多个力的平衡,利用先分解再合成的正交分解法。 2、力汇交原理:如果一个物体受三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必有共点力。 3、正交分解法:将各力分解到x 轴上和y 轴上,运用两坐标轴上的合力等于零的条件)00(∑∑==y x F F 多用于三个以上共点力作用下的物体的平衡。值得注意的是,对x 、y 方向选择时,尽可能使落在x 、y 轴上的力多;被分解的力尽可能是已知力。 4、矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接恰好构成三角形,则这三个力的合力必为零,利用三角形法求得未知力。 5、对称法:利用物理学中存在的各种对称关系分析问题和处理问题的方法叫做对称法。在静力学中所研究对象有些具有对称性,模型的对称往往反映出物体或系统受力的对称性。解题中注意到这一点,会使解题过程简化。 6、正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。 7、相似三角形法:利用力的三角形和线段三角形相似。 二、典型例题 1、力学中的平衡:运动状态未发生改变,即0=a 。表现:静止或匀速直线运动 (1)在重力、弹力、摩擦力作用下的平衡 例1 质量为m 的物体置于动摩擦因数为μ的水平面上,现对它 施加一个拉力,使它做匀速直线运动,问拉力与水平方向成多大夹角 时这个力最小? 解析 取物体为研究对象,物体受到重力mg ,地面的支持力N , 摩擦力f 及拉力T 四个力作用,如图1-1所示。 由于物体在水平面上滑动,则N f μ=,将f 和N 合成,得到合力F ,由图知F 与f 的夹角: μ==αarcctg N f arcct g 不管拉力T 方向如何变化,F 与水平方向的夹角α不变,即F 为一个方向不发生改变的变力。这显然属于三力平衡中的动态平衡问题,由前面讨论知,当T 与F 互相垂直时,T 有最小值,即当拉力与水平方向的夹角μ=μ-=θarctg arcctg 90时,使物体做匀速运动的拉力T 最小。 (2)摩擦力在平衡问题中的表现 这类问题是指平衡的物体受到了包括摩擦力在内的力的作用。在共点力平衡中,当物体虽然静止但有运动趋势时,属于静摩擦力;当物体滑动时,属于动摩擦力。由于摩擦力的

高三物理复习教案

高三物理复习教案 静电场 教学目标 通过复习整理静电场的规律、概念,建立静电扬的知识结构。利用场的思想、场叠加的思想认识和解决电场问题,加深对静电场的理解。 教学重点、难点分析 静电场部分的内容概念性强,规律内容含义深刻,是有关知识应用的基础。但由于概念和规律较抽象,对掌握这些概念和规律造成了一定的难度。所以,恰当地建立有关的知识结构,处理好概念之间、规律之间的关系,是解决复习困难的有效方式。 教学过程设计 教师活动 一、对规律和概念的回顾 从本节课开始,我们复习静电场的有关知识,请同学们回顾一下,我们原来学过的规律和概念都有哪些?(将学生分组,进行回顾和整理) 学生活动 学生按组,回忆已学的有关知识,相互提醒,相互启发。 在教师的安排下,每组学生选择一名代表,将他们整理的知识内容写在黑板上。(安排3个,由于内容基本相同,其它组再做一些补充。) 学生代表上台。 建立知识结构: 从同学们整理出来的知识内容上看,基本上能够把静电场的有关内容列举出来,但一般来说,每个同学在整理知识时,方式方法又有所区别。为了使知识在我们头脑中更有利于理解和记忆,建立一个适合于自己的知识结构网络是必要的和有效的。下面,我们来共同构造这个静电场部分的知识结构网络。 (带领学生整理和建立静电场的知识结构,知识结构图表见附图) 二、静电场概念的几个问题讨论 1.场概念的巩固 [问题1]带电小球A、C相距30cm,均带正电。当一个带有负电的小球B放在A、C 间连线的直线上,且B、C相距20cm时,可使C恰受电场力平衡。A、B、C均可看成点电

荷。①A 、B 所带电量应满足什么关系?②如果要求A 、B 、C 三球所受电场力同时平衡, 它们的电量应满足什么关系? 学生读题、思考,找学生说出解决方法。 通过对此题的分析和求解,可以加深对场强概念和场强叠加的理解。学生一般从受力平 衡的角度进行分析,利用库仑定律求解。在学生解题的基础上做以下分析。 分析与解:①C 处于平衡状态,实际上是要求C 处在A 、B 形成的电场中的电场强度为 零的地方。 既然C 所在处的合场强为零,那么,C 所带电量的正或负、电量的多或少均对其平衡无 影响。 ②再以A 或B 带电小球为研究对象,利用上面的方法分析和解决。 答案:①q A ∶q B =9∶4,②q A ∶q B ∶q C =9∶4∶36。 [问题2]如图3-1-1所示,在方框区域内有匀强电场,已知U A =2V ,U B =-6V ,U C = -2V 。试用作图法画出电场中电场线的方向。 学生读题、思考。找学生在黑板上作图。 通过此题的分析和解决,使学生对匀强电场的理解更深刻。 分析和解:据题A 、B 两点间的电势差为8V ,A 、C 两点间的电势差为4V 。所以,先 将A 、B 两点用直线连接,则A 、B 两点间的中点的电势为4V ,与C 点的电势相同。将这 两点连起来,就是电势为-2V 的等势线,电场线应与该直线垂直,且由高电势点指向低电 势点。(如图3-1-1所示) [问题3]我们知道,公式2r Q k E =表示点电荷Q 的场中的某一点的电场强度,得到的单位为N/C ;公式d U E =表示匀强电场中的场强。大小,其单位为V/m 。那么,单位N/C 能否用在匀强电场中?如果能,其物理意义是什么?单位V/m 能否用在点电荷的电场中,如 果能,其物理意义又是什么?

高三物理总复习第一轮复习教案

第四章曲线运动万有引力与航天 [考纲展示] 1.运动的合成和分解Ⅱ 2.抛体运动Ⅱ 3.匀速圆周运动、角速度、线速度、向心加速度Ⅰ 4.匀速圆周运动的向心力Ⅱ 5.离心现象Ⅰ 6.万有引力定律及其应用Ⅱ 7.环绕速度Ⅰ 8.第二宇宙速度和第三宇宙速度Ⅰ 说明:(1)斜抛运动只作定性要求 (2)第二宇宙速度和第三宇宙速度只要求知道其物理意义 [命题热点] 1.运动的合成与分解的方法和思想是热点,尤其是处理类平抛运动、带电粒子在电磁复合场中的复杂运动,可以以选择题形式呈现,也可以以计算题的形式呈现. 2.运用圆周运动的知识和方法处理生活中常见的圆周运动、电场磁场中的圆周运动都是高考考查的热点,主要以计算题的形式考查,这几乎是高考必考内容. 3.运用万有引力定律及向心力公式分析人造卫星的绕行速度、运行周期以及计算天体的质量、密度等在近几年高考中每年必考. 第一节曲线运动运动的合成与分解 【三维目标】 知识与技能 1.知道曲线运动的条件及规律 2.知道并掌握运动合成与分解的方法 过程与方法 理解和掌握运动合成与分解的基本方法与过程 情感态度与价值观 培养学生对物理现象的分析及表达能力 【教学重点】 运动的合成与分解的方法 【教学难点】 小河渡河问题的分析 【教学过程】 复习引入(课前5分钟) 从曲线运动与直线运动的区别引入、复习 [基础知识梳理](课中35分钟) 一、曲线运动 1.曲线运动的特点 在曲线运动中,运动质点在某一点的瞬时速度的方向就是通过曲线的这一点的________向,因此,质点在曲线运动中速度的方向时刻在变化.所以曲线运动一定是_________运动,但是,变速运动不一定是曲线运动,直线运动中速度大小变化时也是变速运动. 2.做曲线运动的条件 (1)从运动学角度,物体的加速度方向跟速度方向____________时,物体就做曲线运动.

高三物理复习教案

高三物理复习教案 第三章运动和力第2课时 教学内容: 牛顿运动定律应用(一) 教学要求: 掌握牛顿第二定律的应用 教学过程: 一、应用牛顿第二定律解题的一般步骤 1、确定研究对象 2、分析受力 3、弄清受力 4、选好轴向 5、列式求解 6、检验讨论 带领学生看书P46 二、由运动情况判断受力情况 先由运动情况求出加速度a,然后利用F合=ma求得F合 再具体分析物体受力情况,此处a起到了桥梁的作用。 例1(P46巩固练习3)、如图,物体原来静止在水平地面上的A处,受水平向右的恒力F拉动L距离时速度达到v,然后立即将水平力F反向而大小不变,再经过时间t物体速度 变为0,求物体的质量M和受到的阻力f(要求画出运动过程 例2(P48巩固练习2 m o的小球,车匀变速运动时悬绳与竖直方向夹角稳定为α,运 动方向如图,质量为m的物体相对车厢静止.求:(1)m受到的 摩擦力的大小和方向.(2)若车的质量为M(M中中不包括m和

m o),地面对车阻力多大? 例3(P45巩固练习2)、如图,斜面体M与水平地面间动磨擦因数为μ,一弹簧的劲度系数为K,一端固定在斜面上,另一端系一质量为m的小球.当M受水平拉力F向右匀加速运动时,弹簧长度比m和M静止时长度增加了L,而球不漂离斜面.求F( 例4、P47例题1、如图,吊篮沿斜索道向上匀口加速运动,已知其中质量为m的物体对吊篮的水平底面压力为1.2mg,此时加速度a=0.33g,求斜索与悬绳之间夹角θ以及m受到的摩擦力的大小和方向.

三、由受力情况判断运动情况 先求出物体所受合外力,再利用F合=ma求得加速度 a,判断其运动情况,求出运动学量。 例1(P48例题2)、物体静止在光滑水平地面上的O点,某一时刻起受到一水平向右的恒力甲向右匀加速运动,一段时间后突然撤去力甲,同时施一水平左的恒力乙,再经相同时间物体正好回到O点,此时速度的大小为V.求:(1)撤去甲力时物体的速度大小V (2)F甲:F乙=? 例2、P49(巩固练习3)、如图,与地面间动摩擦因数相同的A、B用长为L=1米的绳拴着,在拉力F作用下正以6米/秒的速度匀速运动。A和B的质量分别为2m,m,某一时刻中间绳突然断裂,经2秒后A停下。求:(1)此时AB间距离;(2)此时B的速度。

最新高三物理一轮复习教案圆周运动

高三物理一轮复习教案 圆周运动 课时安排:2课时 教学目标:1.掌握描述圆周运动的物理量及相关计算公式 2.学会应用牛顿定律和动能定理解决竖直面内的圆周运动问题 本讲重点:1.描述圆周运动的物理量及相关计算公式 2.用牛顿定律和动能定理解决竖直面内的圆周运动问题 本讲难点:用牛顿定律和动能定理解决竖直面内的圆周运动问题 考点点拨:1.“皮带传动”类问题的分析方法 2.竖直面内的圆周运动问题 3.圆周运动与其他运动的结合 第一课时 一、考点扫描 (一)知识整合 匀速圆周运动:质点沿圆周运动,在相等的时间里通过的弧长相等。 描述圆周运动的物理量 1.线速度 (1)大小:v = t s (s 是t 时间内通过的弧长) (2)方向:矢量,沿圆周的切线方向,时刻变化,所以匀速圆周运动是变速运动。 (3)物理意义:描述质点沿圆周运动的快慢 2.角速度 (1)大小:ω= t φ (φ是t 时间内半径转过的圆心角) 单位:rad/s (2)对某一确定的匀速圆周运动来说,角速度是恒定不变的 (3)物理意义:描述质点绕圆心转动的快慢 3.描述匀速圆周运动的各物理量间的关系:r fr T r v ωππ===22 4.向心加速度a (1)大小:a =ππω44222 2===r T r r v 2 f 2r (2)方向:总指向圆心,时刻变化 (3)物理意义:描述线速度方向改变的快慢。 5.向心力:是按效果命名的力,向心力产生向心加速度,即只改变线速度方向,不会

改变线速度的大小。 (1)大小:R f m R T m R m R v m ma F 22222 244ππω=====向 (2)方向:总指向圆心,时刻变化 做匀速圆周运动的物体,向心力就是物体所受的合外力,总是指向圆心。做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力。 (二)重难点阐释 在竖直平面内的圆周运动问题 在竖直平面内做圆周运动的物体,按运动轨道的类型,可分为: (1)无支撑(如球与绳连结,沿内轨道的“过山车”) 在最高点物体受到弹力方向向下. 当弹力为零时,物体的向心力最小,仅由重力提供,由牛顿定律知mg=R v m 2 0,得临界 速度gR v =0.当物体运动速度v 产生离心运动, 要维持物体做圆周运动,弹力应向下.当gR v < 物体有向心运动倾向, 物体受弹力向上.所以对有约束的问题,临界速度的意义揭示了物体所受弹力的方向. (3)对于无约束的情景,如车过拱桥,当gR v > 时,有N=0,车将脱离轨道.此时 临界速度的意义是物体在竖直面上做圆周运动的最大速度. 以上几种情况要具体问题具体分析,但分析方法是相同的。 二、高考要点精析 (一)“皮带传动”类问题的分析方法 ☆考点点拨 在分析传动问题,如直接用皮带传动(包括链条传动、摩擦传动)的两个轮子,要抓住相等量和不等量的关系。两轮边缘上各点的线速度大小相等;同一个轮轴上(各个轮都绕同一根轴同步转动)的各点角速度相等(轴上的点除外)。然后利用公式ωr v =或r v =ω即可顺利求解。 【例1】如图所示装置中,三个轮的半径分别为r 、2r 、4r ,b 点到圆心的距离为r ,求图中a 、b 、c 、d 各点的线速度之比、角速度之比、加速度之比。 解析:v a = v c ,而v b ∶v c ∶v d =1∶2∶4,所以v a ∶

高中物理教案范文【三篇】

高中物理教案范文【三篇】 【导语】教育要使人愉快,要让一切的教育带有乐趣。无忧考网为大家准备了高中物理教案范文【三篇】,希望对大家有所帮助! 篇一:《涡流》 知识目标 1、知道涡流是如何产生的; 2、知道涡流对我们的不利和有利的两个方面,以及如何防止和利用; 情感目标 通过分析事例,培养学生全面认识和对待事物的科学态度. 教学建议 本节是选学的内容,它又是一种特殊的电磁感应现象,在实际中有很多应用,比如:发电机、电动机和变压器等等.所以可以根据实际情况选讲,或者知道学生阅读.什么是涡流是本节课的重点内容. 涡流和自感一样,也有利和弊两个方面.教学中应该充分应用这些实例,培养学生全面认识和对待事物的科学态度. 教学设计方案 一、引入:引导学生观察发电机、电动机和变压器(可用事物或图片) 提出问题:为什么它们的铁芯都不是整块金属,而是由许多相互绝缘的薄硅钢片叠合而成? 引导学生看书回答,从而引出涡流的概念:什么是涡流? 把块状金属放在变化的磁场中,或者让它在磁场中运动时,金属块内将产生感应电流,这种电流在金属块内自成闭合回路,很象水的旋涡,因此叫做涡流. 整块金属的电阻很小,所以涡流常常很大. (使学生明确:涡流是整块导体发生的电磁感应现象,同样遵守电磁感应定律.) 二、涡流在实际中的意义是什么?

⑴为什么电机和变压器通常用相互绝缘的薄硅钢片叠合而成,就可以减少涡流在造成的损失? ⑵利用涡流原理制成的冶炼金属的高频感应炉有什么优点? 电学测量仪表如何利用涡流原理,方便观察? 提出上述问题后,让学生看书、讨论回答 三、作业:让学生业余时间到物理实验室观察电度表如何利用涡流,写出小文章进行阐述. 篇二:《电势差电势》 一、教材分析 (一)、教材的地位和作用 本节是人教社物理选修3-1第一章第4、5节的内容,本节处在电场强度之后,位于静电现象前,起到承上启下的作用。教材从电场对电荷做功的角度出发,推知在匀强电场中电场力做功与移动电荷的路径无关。利用定义法给出电势的定义,并通过电势描述等势面,对学生能力的提高和对知识的迁移、灵活运用给予了思维上的指导作用。 (二)、学情分析 学生已学习了电荷及库仑定律、电场强度的知识,对本节的学习已具备基础知识,但不够深入,仍需要通过本节的学习进一步培养和提高。 (三)、教学内容 本节课为第一课时,主要内容为概念的引入和对其物理含义的理解。 二、教学目标分析 根据高中新课程总目标(进一步提高科学素养,满足全体学生的终身发展需求)的要求和理念(探究性、主体性、发展性、和谐性)、本节教材的特点(思想性、探究性、逻辑性、方法性和哲理性融会一体)和所教学生的学习基础(知识结构、思维结构和认知结构),本节课的教学目标为: 知识与技能目标:1、理解电势的概念,知道电势是描述电场的能的性质的物理量,理解电势差与零点电势面位置的选取无关,熟练应用其概念及定义式UAB?WAB进行相关计q 算。明确电势差、电势、静电力的功、电势能的关系。2、理解电势是描述电场的物

高中:高三物理一轮复习教学案

高中物理新课程标准教材 物理教案( 2019 — 2020学年度第二学期 ) 学校: 年级: 任课教师: 物理教案 / 高中物理 / 高三物理教案 编订:XX文讯教育机构

高三物理一轮复习教学案 教材简介:本教材主要用途为通过学习物理知识,可以让学生培养自己的逻辑思维能力,对事物的理解认识也会有一定的帮助,本教学设计资料适用于高中高三物理科目, 学习后学生能得到全面的发展和提高。本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。 课题:运动学基本概念 班级_____姓名_____学号____ 一、知识梳理 1.机械运动是指物体相对于的位置的改变,选择不同的参照物来观察同一个运动物体,观察的结果往往; 2.质点是一种理想化的模型是指; 3.位移表示,位移是量,路程是指,路程是量,只有当物体做运动时位移的大小才等于路程; 4.时刻指某,在时间轴上表示为某一点,而时间指间隔,在时间轴上表示为两点间线段的长度; 5.速度表示质点运动的,速度是量,它的方向就是物体的方向,也是位移变化的方向,但不一定与位移方向相同;平均速度指,平均速度的方向与位移方向相同,平均速度总

是与那一段时间或那一段位移相对应;即时速度指; 6.匀速直线运动是指; 二、例题精讲 例1.下列关于质点的说法正确的是() a.体积很大的物体不能看成质点 b.质点是一种理想化模型实际不存在 c.研究车轮的转动时可把车轮看成质点d.研究列车从徐州到南京的时间时可把车轮看成质点 例2.如图所示,一质点沿半径为r的圆周从a点到b点运动了半周,它在运动过程中位移大小和路程分别是() a.πr、πr b.2r、2r c.2r、πr d.πr、r 例3.关于时刻和时间,下列说法正确的是 ( ) a.时刻表示时间较短,时间表示时间较长 b.时刻对应位置,时间对应位移 c.作息时间表上的数字均表示时刻 d.1min只能分成60个时刻 例4.速度大小是5m/s的甲、乙两列火车,在同一直路上相向而行。当它们相隔XXm时,一只鸟以10m/s的速度离开甲车头向乙车飞去,当到达乙车车头时立即返回,并这样连续在

高中物理必修二全套教案

物理必修二全册教案 第五章曲线运动 5.1 曲线运动 三维教学目标 1、知识与技能 (l)知道曲线运动中速度的方向,理解曲线运动是一种变速运动; (2)知道物体做曲线运动的条件是所受的合外力与它的速度方向不在一条直线上。 2、过程与方法 (1)体验曲线运动与直线运动的区别; (2)体验曲线运动是变速运动及它的速度方向的变化。 3、情感、态度与价值观 (1)能领略曲线运动的奇妙与和 谐,发展对科学的好奇心与求知欲; (2)有参与科技活动的热情,将物理知识应用于生活和生产实践中。 教学重点:什么是曲线运动;物体做曲线运动的方向的确定;物体做曲线运动的条件。 教学难点:物体微曲线运动的条件。 教学方法:探究、讲授、讨论、练习 教具准备:投影仪、投影片、斜面、小钢球、小木球、条形磁铁。 教学过程: 第一节曲线运动 (一)新课导入 前面我们学习过了各种直线运动,包括匀速直线运动、匀变速直线运动、自由落体运动等。下面来看这个小实验,判断该物体的运动状态。 实验:(1)演示自由落体运动,该运动的特征是什么?(轨迹是直线) (2)演示平抛运动,该运动的特征是什么?(轨迹是曲线) 这里我们看到一种我们前面没有学过的运动形式,它与我们前面学过的运动形式有本质的区别。前面我们学过的运动的轨迹都是直线,而我们现在看到的这种运动的轨迹是曲线,我们把这种运动称为曲线运动。 概念:轨迹是曲线的运动叫曲线运动。其实曲线运动是比直线运动普遍的运动情形,现在请大家举出一些生活中的曲线运动的例子?(微观世界里如电子绕原子核旋转;宏观世界里如天体运行;生活中如投标抢、掷铁饼、跳高、既远等均为曲线运动) (二)新课教学 1、曲线运动速度的方向 在前面学习直线运动的时候我们已经知道了任何确定的直线运动都有确定的速度方向,这个方向与物体的运动方向相同,现在我们又学习了曲线运动,大家想一想我们该如何确定曲线运动的速度方向?在解决这个问题之前我们先来看几张图片(如图6.1—l、6.1—2)。

高三物理最新教案-2018届高考物理第一轮复习教案3 精品

光的干涉、用双缝干涉测波长、衍射现象 一、知识点梳理 1、光的干涉现象: 频率相同,振动方向一致,相差恒定(步调差恒定)的两束光, 在相遇的区域出现了稳定相间的加强区域和减弱区域的现象。 (1)产生干涉的条件: ①若S 1、S 2光振动情况完全相同,则符合 λδn x d L r r == -=12,(n =0、1、2、3…)时,出现亮条纹; ②若符合2 )12(12λδ+== -=n x d L r r ,((n=0,1,2,3…)时, 出现暗条纹。相邻亮条纹(或相邻暗条纹)之间的中央间距为λd L x = ?。 (2)熟悉条纹特点 中央为明条纹,两边等间距对称分布明暗相间条纹。 2. 用双缝干涉测量光的波长 原理:两个相邻的亮纹或暗条纹的中心间距是Δx =l λ/d 测波长为:λ=d ·Δx /l (1)观察双缝干涉图样: 只改变缝宽,用不同的色光来做,改变屏与缝的间距看条纹间距的变化 单色光:形成明暗相间的条纹。 白光:中央亮条纹的边缘处出现了彩色条纹。这是因为白光是由不同颜色的单色光复 合而成的,而不同色光的波长不同,在狭缝间的距离和狭缝与屏的距离不变的条件下,光波的波长越长,各条纹之间的距离越大,条纹间距与光波的波长成正比。各色光在双缝的中垂线上均为亮条纹,故各色光重合为白色。 (2)测定单色光的波长: 双缝间距是已知的,测屏到双缝的距离l ,测相邻两条亮纹间的距离x ?,测出n 个亮纹间的距离a ,则两个相邻亮条纹间距: 1 -= ?n a x 3.光的色散: 不同的颜色的光,波长不同在双缝干涉实验中,各种颜色的光都会发生干涉现象,用不同色光做实验,条纹间距是不同的,说明:不同颜色的光,波长不同。 含有多种颜色的光被分解为单色光的现象叫光的色散。 图16-1-1

高三物理公开课教案

高三物理课教案 中江中学周光荣 课题:电场力做功和电势能电势电势差 【教学目标】 1.准确记住电势、电势差、电势能等概念。 2.熟练的运用电场力做功与电势能的变化、电势的变化关系。 3.熟练掌握匀强电场中电势差跟电场强度的关系。 4.注意有关电场与运动学的联系方面的思维培养。 【教学重点】 1.电场力做功判断电势能的变化、电势的变化关系。 2.匀强电场中电势差跟电场强度的关系的运用。 【教学难点】 电势和电势差的区别与联系。 【教学过程】 复习知识要点: ) 一.电势能(E P 1.定义:因电场对电荷有作用力而产生的由电荷相对位置决定的能量叫电势能。 2.电势能具有相对性,通常取无穷远处或大地为电势能的零点。 3.电势能大小:电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电场力所做的功 4.电场力做功是电势能变化的量度:电场力对电荷做正功,电荷的电势能减少;电荷克服电场力做功,电荷的电势能增加;电场力做功的多少和电势能的变化数值相等,这是判断电荷电势能如何变化的最有效方法。 二.电势(φ) 1.电势:电场中某点的电荷的电势能跟它的电量的比值,称这一点的电势。 ①表达式:φ= E P /q 单位:伏特(V),且有1V=1J/C。 ②意义:电场中某一点的电势在数值等于单位电荷在那一点所具有的电势能。 ③相对性:电势是相对的,只有选择零电势的位置才能确定电势的值,通常取无限远或地 球的电势为零。 ④标量:只有大小,没有方向,但有正、负之分,这里正负只表示比零电势高还是低。

⑤高低判断:顺着电场线方向电势越来越低。 2.等势面:电场中电势相等的点构成的面。 ①意义:等势面来表示电势的高低。 ②典型电场的等势面:ⅰ匀强电场; ⅱ点电荷电场; ⅲ等量的异种点电荷电场; ⅳ等量的同种点电荷电场。 ③等势面的特点: 1、同一等势面上的任意两点间势面一定跟电场线垂直; 2、电场线总是从电势较高的等势面指向电势较低的等势面。 三.电势差 1.电势差:电场中两点电势之差 ① ②电势差由电场的性质决定,与零电势点选择无关。 2.电场力做功:在电场中AB 两点间移动电荷时,电场力做功等于电量与两点间电势差的乘积。 W AB = q ?U AB 注意: ①该式适用一切电场; ②电场力做功与路径无关 ③利用上述结论计算时,均用绝对值代入,而功的正负,借助于力与移动方向间关系确定。 四.电势差与电场强度关系 1.电场方向是指向电势降低最快的方向。在匀强电场中,电势降低是均匀的。 2.匀强电场中,沿场强方向上的两点间的电势差等于场强和这两点间距离的乘积。 U=E ·d 在匀强电场中,场强在数值上等于沿场强方向每单位距离上降低的电势。 E=U/d 注意:①两式只适用于匀强电场。②d 是沿场方向上的距离。 五.例题分析 多媒体课件展示 【课堂小结】 1、因电场对电荷有作用力而产生的由电荷相对位置决定的能量叫电势能。 2、电场中某点的电荷的电势能跟它的电量的比值,称这一点的电势。 3、电势差:电场中两点电势之差。 4、匀强电场中,沿场强方向上的两点间的电势差等于场强和这两点间距离的乘积。 U=E ·d 【布置作业】 《高考导航》P121-P123 BA AB A B BA B A AB U U U U U U U U -=???-=-=

相关主题
文本预览
相关文档 最新文档