当前位置:文档之家› 励磁调节器过励限制的原理

励磁调节器过励限制的原理

励磁调节器过励限制的原理
励磁调节器过励限制的原理

调节器

以励磁电流过励限制为例,传统的模拟调节器中励磁电流过励限制器是定时限制,初期数字式调节器则改为励磁电流与限制时间一一对应的有级限制。限制曲线不平滑,影响了发电机最大出力和限制器运行的稳定性。河北工业大学电工厂在引进ABB公司产品技术的基础上,开发了新的限制器。用励磁电流过励限制计算转子的允许发热量与实际发热量E的差值,差值小于零则限制器动作;以I2的积分来计算转子的发热。

以E-C计算散热,C为转子散热常数。如果在转子充分冷却前继续发生强励(即二次强励),使得转子再次过热,这时E尚未减至零,进入限制要比第一次快。这样设计的限制器模拟了发电机实际的发热过程,由于限制曲线光滑,只需改变允许发热值就可改变限制曲线,适应性更强。

感性定子电流限制器与励磁电流过励限制器原理相同。用这种理论设计出的励磁电流过励限制器和感性定子电流限制器已经投入工业运行,实践证明,它们完全可以模拟实际的发热和散热过程。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,

以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/fb4312525.html,/

自并励励磁装置

自并励励磁装置 [摘要] 结合上海南市发电厂60MW自并励汽轮发电机组的运行情况,对自并励接线方式,励磁变的选择,自并励的起励、试验电源,保护可靠性等分别予以讨论。 [关键词] 自并励励磁装置探讨 在发电机的各种励磁方式中,自并励方式以其接线简单,可靠性高,造价低,电压响应速度快,灭磁效果好的特点而被广泛应用。随着电子技术的不断发展,大容量可控硅制造水平的逐步成熟,大型汽轮发电机采用自并励励磁方式已成为一种趋势。国外某些公司甚至把这种方式列为大型机组的定型励磁方式。近二十年来,美国、加拿大对新建电站几乎一律采用自并励励磁系统,加拿大还拟将火电厂原交流励磁机励磁系统改为自并励励磁系统。在国内,虽然国产大中型机组大都采用三机励磁方式,但近年来进口的大中型机组大都装备的是自并励励磁系统,对于600MW以上汽轮发电机组,自并励励磁已基本成为定型方式。随着电网的不断扩大,对于大型机组业界人士也越来越倾向于采用自并励方式。因为从国内外运行情况来看,采用自并励励磁和附加励磁控制,已成为改善电力系统稳定性的有效措施。 南市电厂#10发电机(60MW)自基建投运即使用自励半导体励磁系统,具体接线型式为一台励磁变压器并联在发电机机端(主变压器的低压侧),属自并励型式(简称机端励磁)。由于种种原因,该装置自1999年6月19日至2000年2月间,多次发生故障,并经历了一次小系统运行。 本文就对该发电机励磁装置运行、维护谈谈自并励汽轮发电机励磁电源的几个问题: 自并励接线方式,励磁变的选择,自并励的起励、试验电源,保护可靠性等。 1 自并励装置特点 自并励静止励磁系统由励磁变压器、励磁调节装置、功率整流装置、发电机灭磁及过电压保护装置、起励设备及励磁操作设备等部分组成。 以南市电厂#10发电机的WKKL型微机型自并激励磁系统为例,整套装置由两台调节柜(一台运行,一台备用),三台整流柜(正常时单柜运行),一台灭磁电阻柜及一台转子开关柜组成。 自并励静止励磁方式与旧有的励磁方式相比,具有以下几方面的优点。

励磁调节器运行规程

励磁调节器运行规程 1、系统介绍: 本套装置为ABB公司生产的UNITROL5000励磁调节器,为静态励磁,整套系统包括励磁变压器、A VR调节器、可控硅整流柜、励磁开关。 1.1、励磁变压器:由三个单相变压器组成,采用Y/Δ- 1接线,容量 为3 X 2000 KV A。具有温度保护装置,发出告警信号。 1.2、A VR调节器:具有两套功能相同的调节器,每套具有三个通道, 分别为自动通道、手动通道、EGC紧急通道。另外在此柜中还具有LCP控制板、维修屏以及开关和继电器等。 1.2.1、逻辑关系:当A路自动通道故障时,切换到B路自动通道;如果这个通道又发生故障,首先判断A路通道是否完好,若完好便切换到A路,不好便切换到B路的手动通道;在B路通道故障时切换到A路的手动通道,切换不成功便切换到B路的EGC通道。 1.2.2 、LCP 控制板用于本地操作UNITROL5000系统,并显示重要的过程信号和故障信号。具有带LED的16个键,用于系统专门的显示和控制;10个控制键用于运行模式和内置功能以及LCD,LCD为8行显示,每行40个字符。 按此键后,出现8个模拟信号,显示信道号,信号名称,值及单位,黄色灯亮,使用滚动键可显示后面的模拟信号。按此键后,出现四个模拟信号,显示信道号,信号名称,值及单位,黄色灯亮,使用滚动键可显示后面的模拟信号。

清除故障信号,按键后,如有故障,会出现最多8条故障通道。第一个故障总是在第一行,接着发生的故障,以故障编号升叙排列。使用滚动键可显示更多的故障。 确认故障信号。所有报告通道都储存在控制板内,此外,特殊警告通道储存在处理器里。要清除这些通道,可较长时间按下复位键。没有活动的警报,键上的灯熄灭。 ↓# 光标键,可选择显示屏1 –8行或1 – 4行中的某一行。当前行突出显示。 ↓↑滚动键,在模拟信号显示中按动时,信号道(反差显示)及模拟值改变。 ↑↑↓↓翻页键,按动时,信道号每次改变10行,故障号每次改变6行。 打印键,按动可打印1 – 8 行的模拟值。黄色指示灯只 (无打印机) 指令键:励磁断路器接通 指令键:励磁断路器关闭 指令键:启励

自并励静止励磁系统

1 自并励静止励磁系统 potential source static exciter systems 从发电机机端电压源取得功率并使用静止可控整流装置的励磁系统,即电势源静止励磁系统。由励磁变压器、励磁调节装置、功率整流装置、灭磁装置、起励设备、励磁操作设备等组成。 2 励磁调节装置 excitation regulating equipment 实现规定的同步电机励磁调节方式的装置,它一般由自动电压调节器和手动励磁控制单元组成。 3 自动电压调节器 automatic voltage regulator 实现按发电机电压调节及其相关附加功能的环节之总和,也称自动通道。 4 手动励磁控制单元 manual excitation regulator 实现按恒定励磁电流或恒定励磁电压或恒定控制电压调节及其相关附加功能的环节之总和,也称手动通道。 5 强励电压倍数 excitation forcing voltage ratio 励磁系统顶值电压与额定励磁电压之比。 6 强励电流倍数 excitation forcing current ratio 励磁系统顶值电流与额定励磁电流之比。 7 电压静差率 static voltage error 无功调差单元退出,发电机负载从零变化到额定时端电压的变化率,即: 式中:UN——额定负载下的发电机端电压,V; UO——空载时发电机端电压,V。 8 无功调差率 cross current compensation 同步发电机在功率因数等于零的情况下,无功电流从零变化到额定值时,发电机端电压的变化率,即: 式中:U——功率因数等于零、无功电流等于额定无功电流值时的发电机端电压,V; UO——空载时发电机端电压,V。 9 超调量 overshoot 阶跃扰动中,被控量的最大值与最终稳态值之差对于阶跃量之比的百分数。 10 上升时间 rise time 阶跃扰动中,被控量从10%到90%阶跃量的时间。 11 调节时间 settling time 从阶跃信号或起励信号发生起,到被控量达到与最终稳态值之差的绝对值不超过5%稳态改变量的时间。 12 振荡次数 number of oscillation 被控量第一次达到最终稳态值时起,到被控量达到与最终稳态值之差的绝对值不超过5%稳态改变量时,被控量波动的次数。 图 A1 扰动响应曲线 13 阻尼比ζ damping ratio

大型汽轮发电机自并励静止

大型汽轮发电机自并励静止励磁系统技术条件 2004年10月

中华人民共和国电力行业标准 大型汽轮发电机自并励静止励磁系统技术条件 DL/T650—1998 neq IEC34—16—1:1991 neq IEC34—16—3:1996 Specification for potential source static exciter systems for large turbine generators 中华人民共和国电力工业部1998—03—19批准 1998—08—01实施 前言 同步发电机自并励静止励磁系统由于其运行可靠性高、技术和经济性能优越,已成为大型汽轮发电机的主要励磁方式之一。为统一和明确汽轮发电机自并励静止励磁系统的基本技术要求,根据电力工业部科学技术司技综[1996]51号文《关于下达1996年制定、修订电力行业标准计划项目(第二批)的通知》的安排,依据GB/T7409—1997《同步电机励磁系统》的基本原则,参考IEC34—16系列和IEEE Std.421系列标准,在广泛征求各方意见的基础上,结合我国发电机和控制设备设计、制造、运行、维护的实际情况制定了《大型汽轮发电机自并励静止励磁系统技术条件》,为设计选型、调试验收及运行改造提供依据。 电力行业标准《大型汽轮发电机自并励静止励磁系统技术条件》为第一次制定。 本标准的附录A和B是标准的附录。 本标准的附录C是提示的附录。 本标准由浙江省电力工业局提出。 本标准由电力工业部电机标准化技术委员会归口。 本标准起草单位:浙江省电力试验研究所。 主要起草人:竺士章、戚永康、方思立。 本标准由电力工业部电机标准化技术委员会负责解释。 1范围 本标准规定了大型汽轮发电机自并励静止励磁系统的使用条件、基本性能、试验项目、提供用户使用的技术文件、设备上的标志、包装、运输、储存以及保证期等。 本标准适用于200MW及以上汽轮发电机自并励静止励磁系统。200MW以下汽轮发电机自并励静止励磁系统可参照执行。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB1094—1996电力变压器 GB3797—89电控设备第二部分装有电子器件的电控设备 GB/T3859—93半导体变流器 GB4064—83电气设备安全设计导则 GB4208—93外壳防护等级(IP代码) GB6162—85静态继电器及保护装置的电气干扰试验 GB6450—86干式电力变压器 GB/T7064—1996透平型同步电机技术要求 GB/T7409—1997同步电机励磁系统 GB13926—92工业过程测量和控制装置的电磁兼容性

发电机励磁方式及自并励励磁系统

发电机励磁方式及自并励励磁系统发电机静止励磁绻统特点及存在问题的探讨刘志宏湖南华润电力麤碱湟有限公司湖南资兴415000 杨红湖南省电力勘测设计院湖南长溙410007 郭景斌湖南省电力试验研究所湖南长溙410007 摘要自并激静止励磁绻统近年来在国内大型湽轮发电机组中得到越来越广滛的应用。简要说明了该励磁绻统的构成、性能特点和设计选型,分析探讨了采用该绻统后存在的试验、践滢和过电压等问题和影响。关键词自并激励磁绻统践滢过电压 0 引言随着发电机容量的不断增大,对励磁绻统的要湂越来越高。传统的直流励磁机励磁因大电流下的火花问题无滕使用,三机励磁绻统则因绻统复杂、机组轴绻稳定性等问题而受到越来越多的限制;自并激静止励磁绻统以其接线简单、可靠性高、工程造价低、踃节响应速度快、灭磁效果好的特点而得到越来越广滛的应用。特别是随着电子技术的不断发幕和大容量可控硅制造渴平的逐步成熟,大型湽轮发电机采用自并激励磁方式已成为一种趋势。国外某些公司甚至把这种方式列为大型机组的定型励磁方式。自上世纪90年代后期以来,新建国产300MW机组已几乎全部采用自并激静止励磁绻统。我省渴电厂应用较广,如马迹塘、东湟、五强溪、凌津滩等;而火电最先在益阳电厂2×300MW机组上采用,在建的麤碱湟、株洲、耒阳等电厂300MW机组也全部采用这种励磁绻统。1 自并激静止励磁绻统的特点自并激静止励磁绻统由励磁变压器、可控硅功率整流装置、自动励磁踃节装置、发电机灭磁及过电压保护装置、起励设备及励磁操作设备等部分组成。其原理如图1所示。自并激静止励磁方式与旧的励磁方式相比,具有以下几方面的特点:1.1 绻统简单,可靠性高对直流励磁机和三机励磁绻统来说,旋转部分发生的事故在以往励磁绻统事故中占相当大的比例,如直流励磁机产生火花、交流励磁机线圈松动和振动等,而且旋转部分的运行和维护工作量很大。而自并激静止励磁绻统由于取消了旋转部件,溡有了换向器、轴承、转子等,

电压调节器工作电路工作原理

一.发电机的功用 汽车使用的电源有蓄电池和发电机两种。采用交流发电机作为主要电源,蓄电池作为辅助电源。在汽车行驶过程中,由发电机向用电设备提供电源,并向蓄电池充电。蓄电池在汽车启动时提供启动电流,当大电机发出电量不足时,可以协同发电机供电。 二.发电机的分类 1.按磁场绕组搭铁形式分两类 a.外搭铁型(A线路) 磁场绕组的一端(负极)接入调节器,通过调节器后再搭铁。 b.内搭铁型(B线路) 磁场绕组的一段(负极)直接搭铁(和壳体相连)。如下图2-13所示: 2.按整流器结构分四类 a.六管交流发电机(例丰田系列) b.八管交流发电机(例天津夏利轿车所用) c.九管交流发电机(例三菱系列) d.十一管交流发电机(例奥迪、大众汽车用) 三.交流发电机结构 交流发电机一般由转子、定子、整流器、调节器、端盖组成,JF132型交流发电机组件图见图 1.转子 转子的功用是产生旋转的磁场。它由爪极、磁轭、磁场绕组、集电环、转子轴组成,结构图见图

转子轴上压装着两块爪极,两块爪极各有六个鸟嘴形磁极,爪极空腔内装有磁场绕组(转子线圈)和磁轭。 集电环由两个彼此绝缘的铜环组成,集电环压装在转子轴上并与轴绝缘,两个集电环分别与磁场绕组的两端相连。2.定子 定子的功用是产生交流电。它由定子铁心和定子绕组组成。见图 定子铁心由内圈带槽的硅钢片叠成,定子绕组的导线就嵌放在铁心的槽中。定子绕组由三相,三相绕组采用星型接法或三角形(大功率)接法。三相绕组必须按一定要求绕制,才能使之获得频率相同、幅值相等、相位互差120°的三相电动势。 3.整流器、端盖 整流器的作用是将定子绕组的三相交流电变为直流电。 端盖一般用铝合金铸造,一是可有效的防止漏磁,二是铝合金散热性能好。 四.交流发电机的电压调节器 交流发电机的转子由发动机通过皮带驱动旋转的,且发动机和交流发电机的速比为~3左右,因此交流发电机转子的转速变化范围非常大,这样将引起发电机的输出电压发生较大变化,无法满足汽车用电设备的工作要求。 为了满足用电设备恒定电压的要求,交流发电机必须配用电压调节器,使其输出电压在发动机所有工况下几本保持恒定。 1.交流发电机电压调节器按工作原理可分为: a.触点式电压调节器 b.晶体管调节器 c.集成电路调节器

5发电机自并励励磁自动控制系统设计()

作者:Pan Hon glia ng 仅供个人学习 辽宁工业大学

电力系统自动化课程设计(论文)题目:发电机自并励励磁自动控制系统设计(1)院(系):电气工程学院 专业班级:电气XXX _________ 学号:_xxx _______________ 学生姓名: ___________________ 指导教师: ___________________ 起止时间:2013.12.16 —12.29

课程设计(论文)报告地内容及其文本格式 1、课程设计(论文)报告要求用A4纸排版,单面打印,并装订成册,内容包括: ①封面(包括题目、院系、专业班级、学生学号、学生姓名、指导教师姓名、、起止时间等) ②设计(论文)任务及评语 ③中文摘要(黑体小二,居中,不少于200字) ④目录 ⑤正文(设计计算说明书、研究报告、研究论文等) ⑥参考文献 2、课程设计(论文)正文参考字数:2000字周数. 3、封面格式 4、设计(论文)任务及评语格式 5、目录格式 ①标题“目录”(小二号、黑体、居中) 6、正文格式 ①页边距:上2.5cm,下2.5cm,左3cm,右2.5cm,页眉1.5cm,页脚1.75cm,左侧装订; ②字体:一级标题,小二号字、黑体、居中;二级,黑体小三、居左;三级标题,黑体四号;正文文字小四号字、宋体; ③行距:20磅行距; ④页码:底部居中,五号、黑体; 7、参考文献格式 ①标题:“参考文献”,小二,黑体,居中. ②示例:(五号宋体) 期刊类:[序号]作者1,作者2, ... 作者n.文章名.期刊名(版本).岀版年,卷次(期次):页次. 图书类:[序号]作者1,作者2,……作者n.书名.版本.岀版地:岀版社,岀版年:页次.

自并励微机励磁调节器基本工作原理

励磁电流 百科名片 励磁电流 励磁电流就是同步电机转子中流过的电流(有了这个电流,使转子相当于一个电磁铁,有N 极和S极),在正常运行时,这个电流是由外部加在转子上的直流电压产生的。以前这个直流电压是由直流电动机供给,现在大多是由可控硅整流后供给。我们通常把可控硅整流系统称为励磁装置. 目录[隐藏] 励磁电流的调节 自并励微机励磁调节器基本工作原理 CPU控制模块 数据采集模块 显示模块 通信模块 微机励磁调节器软件设计 [编辑本段] 励磁电流的调节 在同步发电机的控制系统中,励磁调节器是其中的重要组成部分。当发电机单机运行时,励磁调节器通过调整发电机的励磁电流来调整发电机的端电压,当电力系统中有多台发电机并联运行时,励磁调节器通过调整励磁电流来合理分配并联运行发电机组间的无功功率,从而提高电力系统的静态和动态稳定性。因此,国内外相关专业人士一直致力于励磁调节器的研究。励磁调节器的发展也由机械式到电磁式,再发展到今天的数字式。目前,数字式励磁调节器的主导产品是以微型计算机为核心构成的,但其造价高,需要较高技术支持,在一些小型机组上推广有一定难度。由此,出现了以MCS-51单片机为核心的励磁调节器[1][2]。MCS-51单片机内部资源较少使得外

围电路复杂,从而影响了整个励磁控制系统的精确性、快速性和稳定性。本文提出了一种基于PIC16F877的同步发电机自并励微机励磁调节器的设计方法。 PIC16F877是美国Microchip公司生产的PIC16F87X系列芯片中功能最为齐全的微控制器。它可以实现在线调试和在线编程,内部带有8路10位A/ D 转换器,8KХ14位FLASH程序存储器,368Х8位RAM,256Х8位的EEPROM,14个中断源和3个定时/ 计数器,片内集成多达15个外围设备模块,因此外围电路大大简化,成本降低。 [编辑本段] 自并励微机励磁调节器基本工作原理 图1为自并励励磁系统的原理接线图。发电机励磁功率取自发电机端,经过励磁变压器LB降压,可控硅整流器KZL整流后给发电机励磁。自动励磁调节器根据装在发电机出口的电压互感器TV和电流互感器TA采集的电压、电流信号以及其它输入信号,按事先确定的调节准则控制触发三相全控整流桥可控硅的移相脉冲,从而调节发电机的励磁电流,使得在单机运行时实现自动稳压,在并网时实现自动调节无功功率,提高电力系统的稳定性。 发电机的线电压UAC和相电流IB分别经电压互感器和电流互感器变送后,经鉴相电路产生电压周期的方波脉冲和电压电流相位差的方波脉冲信号送PIC16F877微控制器,用PIC的计数器测量这两脉冲的宽度,便可得到相位差计数值,即电网的功率因素角[1]。然后通过查表得出相应的功率因素,进一步求出有功功率和无功功率。 控制单元选用一片PIC16F877单片机,因PIC16F877单片机内部有A/D转换功能,从而不用外部A/D模块,这样减少了外部器件,降低了成本,增强了抗干扰能力。PIC单片机根据从输入通道采集的发电机运行状态变量的实时数据,进行控制计算和逻辑判断,求得控制量。在可控硅整流电路中,要求控制电路按照交流电源的相位向可控硅控制极输出一系列的脉冲,才能实现可控硅顺利导通和自然换相。“同步和数字触发控制电路”的作用就是将计算机CPU计算出来的、用数字量表示的可控硅控制角转换为触发脉冲。由功率放大电路将触发脉冲放大后去触发可控硅,从而控制励磁电流。 [编辑本段] CPU控制模块 CPU控制模块是励磁调节器的控制核心,采用美国Microchip 公司生产的PIC1 6F877 单片机。PIC16F877具有独特的RISC(精简指令集) 结构,数据总线和指令总线分离的哈佛总线结构,使指令只有单字长的特性,且允许指令码的位数可多于8 位 的数据位数,这与传统的采用CISC 结构的8 位单片机相比,可以达到2∶1 的代码压缩,速度提高4 倍。PIC16F877内部带有8路10位A/ D 转换器,8KХ14位FLAS

试论发电机自并励励磁系统的特点及问题

试论发电机自并励励磁系统的特点及问题 发表时间:2019-07-09T15:25:57.537Z 来源:《电力设备》2019年第6期作者:薛江辉 [导读] 摘要:发电机自并励励磁系统又称为自并励静止励磁系统,对发电机运行的稳定性、安全性、供电质量有着直接的影响。 (内蒙古京泰发电有限责任公司内蒙古鄂尔多斯市 010300) 摘要:发电机自并励励磁系统又称为自并励静止励磁系统,对发电机运行的稳定性、安全性、供电质量有着直接的影响。基于此,本文首先介绍了发电机自篇【并励励磁系统的特点。其次,分析了目前发电机自并励励磁系统存在的问题。最后,针对这些问题,从设计、选型两个主要方面,分析优化发电机自并励励磁系统的方式。 关键词:发电机; 自并励励磁系统; 励磁功率柜; 励磁调节器; 引言 国家电力系统在1998年颁布了DL/T650—1998《大型汽轮发电机自并励静止励磁系统技术条件》,此后,我国发电机自并励励磁系统的发展一直在这个框架内进行。目前,自并励励磁系统已经全国超过80%的发电厂广泛应用,如大唐临清发电有限责任公司的350MW机组、大唐鲁北发电有限责任公司的330MW机组等。 作为同步发电机的重要组成部分,励磁系统直接影响着发电机的运行特性,同时对电力系统的运行有重要的影响。发电机灭磁是指消灭发电机转子内部储存能量的过程,以加快正常的停机速度。当发电机故障时,通过发电机灭磁可将故障造成的损失降到最低。发电机灭磁一般分为两大类: (1) 发电机正常停机时采用的逆变灭磁; (2) 事故时保护动作跳灭磁开关的灭磁方式。在发电机正常停机过程中,灭磁是一个非常重要的环节。发电机灭磁失败会对发电机与励磁装置的安全运行构成较大的危害,例如产生转子过电压,危及转子绝缘甚至烧毁转子磁极,使转子本体发热,加速转子绝缘的老化,烧毁灭磁开关等。 1 发电机自并励励磁系统的特点 发电机自并励励磁系统主要由 (1) 主变压器; (2) 励磁调节转换装置; (3) 功率整流装置; (4) 发电机消磁装置; (5) 过电压保护装置; (6) 励磁启动装置; (7) 励磁操作控制设备几个主要部分组成。这7个主要装置配合科学、运行良好。因而,目前的发电机自并励励磁系统,主要具有以下几个突出的特点: 第一,稳定性强。发电机自并励励磁系统去掉了原有励磁系统中的旋转部件,结构更加流畅稳定,一旦发生故障,系统可以通过自检装置及时发出警报。 第二,安全性强。发电机自并励励磁系统对上游指令的相应速度快,这大大提高了发电系统与供电系统的运行稳定性与安全性。 第三,运行成本较低。与传统的励磁控制设备系统相比,发电机自并励励磁系统的运行部件减少到了7个,不仅大大提高了系统的轴系稳定性,也降低了系统生产运行的材料成本与电力成本、人工维修成本。 2 发电机自并励励磁系统的问题 目前发电机自并励励磁系统存在的问题,与原有的励磁系统,既有一定的共性,也有很大的差别:一方面,发电机自并励励磁系统的过流保护控制难度较高,受到设备部件缩减的影响,一旦发电机电流超过运行范围,系统将会在短时间内受到比较严重的损害;另一方面,发电机自并励励磁系统的变压器,很少加装外壳和制冷系统,设备在高温状态下容易出现故障,变压器过热将导致抗阻电压增大、荷载电压过载等问题,影响电力生产与电力供应系统的正常运行。 3 优化发电机自并励励磁系统的方式 3.1 发电机自并励励磁系统设计 3.1.1 严格把控发电机自并励励磁系统的应用条件 第一,电力系统故障导致电压不稳、波动较大的情况下,不宜使用发电机自并励励磁系统,避免电压波动过大,对励磁系统的主变压器造成严重影响,导致变压器中的元件损坏,或无法正常发挥励磁功能。第二,位于发电主网震荡中心的发电机,不适合使用发电机自并励励磁系统。这种环境中放置的发电机,电流状况不稳定,容易导致自并励励磁系统电压过低。 3.1.2 优化自并励励磁系统变压器的运行保护 首先,自并励励磁系统在户内使用时,可以不加装保护外壳,但要注意严格监控系统运行中的温度,防止冬季的温度过低,对系统的运行产生影响,必要时要加装制冷系统,如风冷系统、水冷系统,保障系统运行的温度不过高。其次,在户外使用时,技术人员要根据当地的天气状况,合理判断是否要为自并励励磁系统变压器加装保护外壳,尤其是在正午阳光直射的时候,要监测阳光照射对系统运行的影响。最后,技术人员要加强对变压器运行中,额定功率变化的检测,提高系统在高电压环境下的强励能力。 3.1.3 重点解决发电机起励问题 首先,在发电机电压核准之前,发电机自并励励磁系像发电机提供励磁电源,这种情况下,设计人员要根据发电系统的具体需求,建立备用的起励方案。其次,在备用起励方案的设置上,技术人员可以进行以下几方面的尝试: (1) 构建备用的起励回路,利用起励电源对发电机进行励磁,安装智能电压感应装置,当电压恢复到正常电压的50%以上时,起励回路由备用回路调整为正常回路。 (2) 安装备用起励装置。减少发电系统的电压波动,增加发电系统的电容量。最后,在发电机自并励励磁系统第一次投入使用,或周期性大修结束之后的再次启用时,技术人员要对发电机自并励励磁系统进行短路检测与空载试验检测,以控制变压装置的整流电源。 3.1.4 优化励磁功率柜的选择 一方面,励磁功率柜的选择要遵守“容量大”原则。采用可控硅全控桥的方式,选择大电流的励磁功率柜,简化整流桥,降低发电机自并励励磁系统的电阻,简化整个系统的运行元件,保障系统中各个元器件的电压、电流、电阻分布均匀。另一方面,励磁功率柜的选择要遵循“参数高”的原则。对发电机自并励励磁系统进行过电保护,保障励磁系统使用在温度适宜的环境中,采用合理的温度控制手段,保障整流柜均流系数达到要求。 3.2 发电机自并励励磁系统选型 发电机自并励励磁系统运行的稳定性是其最突出的特点,要正常的发挥出这一特性,最关键的是要优化励磁系统的应用条件,保障励磁器运行过程中的电压始终稳定。发电机自并励励磁系统选型主要应注意以下几个问题: (1) 优化过压保护装置的配置; (2) 增强励磁调节器选择的针对性; (3) 严格遵守国家的相关技术指导规范。尤其是GB/T7409—1997《同步电机励磁系统》中的相关要求。

自动调节励磁系统原理简介(广科所)

自动调节励磁系统原理简介 随着电力系统的迅速发展,对励磁系统的静态和动态调节性能以及可靠性等提出了更高的要求。计算机技术、控制理论、电力电子技术的发展也促进了自并励励磁制造技术逐渐趋向于成熟、稳定、可靠。相对其它励磁方式而言,自并励励磁系统具有主回路简单、调节性能优良、可靠性高的优点,已取代励磁机励磁方式和相复励方式,在水电厂得到普遍使用。最近几年,自并励励磁方式也取代了三机励磁方式,成为新建火电厂的首选方案,逐渐在大型汽轮发电机组中推广应用。 1、组成 励磁系统由励磁调节器、功率整流器、灭磁回路、整流变压器及测量用电压互感器、电流互感器等组成。 2、工作原理 自并激励磁系统的励磁电流取自发电机机端,经过整流变压器降压、全控整流桥变流的直流励磁电压,由晶闸管触发脉冲的相位进行控制。一般情况下,这种控制以恒定发电机电压为目的,但当发生过励、欠励、V/F超值时,也起相应的限制作用。恒压自动调节的效果,在发电机并上电网后,表现为随系统电压的变化,机端输出无功功率的自动调节。 一、调节器 励磁系统作为电厂的重要辅机设备,励磁调节器的设计,应对电力系统的变化有较大的适应性,随着计算机技术的发展,励磁调节器已经由模拟式向计算机控制的数字式方向发展,大大增加了励磁系统的可靠性。 1、调节器的控制规律 一般用于励磁调节器的控制规律有:PID+PSS、线性最优控制、非线性最优控制等。关于励磁控制规律,国内外学者普遍认为,励磁调节器的设计,应对电力系统的变化有较大的适应性,而不是在某种条件下最优。同时,励磁调节不仅要考虑阻尼振荡,还必须考虑调压指标等性能要求。由于PID+PSS控制方式有很强的阻尼系统振荡的能力,具有较好的适应性以及很好的维持发电机电压水平的能力,又具有物理概念清晰、现场调试方便的优点,因而在国内外得到普遍应用。我公司的励磁调节器的控制规律也采用PID+PSS控制方式。 国内有些单位也开展了线性最优控制或非线性最优控制规律的研究,并有样机投入工业运行。但到目前为止,还未见到成功应用实例的报道,并且,在现场进行调节器性能的测试时,特别是进行PSS性能测试时还存在着数学模型不够清晰,难以进行参数校正的问题,故在国内的应用还难以推广。 2、调节器通道的冗余 目前,在调节器调节通道的组成上,大多数厂家采用热备用双通道单模冗余结构,即调节器包含两个独立的通道。这两个通道软硬件结构完全相同,调节模式、工作原理完全一致,一套工作,一套备用。这种结构存在一个较大的弱点,那就是单一的工作模式,由于两个通道的完全一致性,同时出现故障的机率比较大。国内曾有多家电厂发生失磁事故,其原因就是调节器的两个通道由于受到干扰而同时死机。 也有少数制造商采用三取二表决型通道,这种冗余结构原理很简单,三个调节通道在反馈、脉冲输出等环节通过软件或硬件比较,选择中间值作为真值。显然,若有两个通道出现问题,表决逻辑就变得混乱了。国内外有学者对其进行过分析,认为这种结构的可靠性远低于热备用双通道单模冗余结构。因此,采用表决器结构的制造商另外加了一个独立的手动通道作为表决器的备用通道,当表决器故障时切换到手动通道运行。这实质上是花费四个通道的成本来获得两个通道的可靠性,得不偿失。国外有些制造商起初也选用过表决型冗余通道,但后来逐渐摈弃不用了。 我公司在90年代初开发了热备用双通道模式冗余结构的励磁调节器,即主通道采用总线工控机为核心的数字式调节器,而备用通道采用以可编程控制器为核心的模数混合式调节器,这两个通道软硬件结构、调节模式、工作原理完全不同,因而被称为双模结构。这种类型的调节器一经推出,即获得用户广泛欢迎,在国内四十多家电厂近百台机组投入运行。 在总结该调节器成功经验的基础上,针对大中型发电机组,我们于97年研制成功微机/微机/模拟三通道双模冗余结构的励磁调节器。 该调节器由两个自动电压调节通道(A、B)和一个手动调节通道(C)组成,这三个通道从测量回路到脉冲输出回路完全独立。A套调节器和B套调节器是以STD总线工控机为核心的数字式调节器,而C套调节器则是基于集成电路的模拟式调节器。以下是这两种不同类型调节模式的对比:

发电机励磁调节器原理解读

发电机励磁调节原理 水轮发电机励磁的自动调节 1 水轮发电机的励磁方式 同步发电机将旋转的机械能转换成为电能,在转换中需要有一个直流磁场。而产生这个磁场的直流电流称为励磁电流。 励磁方式是指发电机获得励磁电流的方式: ?从其它电源获得励磁电流的发电机称为他励发电机; ?从发电机本身获得励磁电流的发电机称为自励发电机。

2由交流励磁机供电的励磁方式 这种励磁方式的发电机(GS采用交流励磁机(G1提供励磁电流。 G1与GS同轴,它输出的交流电流经整流后供GS励磁,因此属于他励方式。 若G1的励磁电流由自身提供,则G1为自励方式; 若G1的励磁电流由另外一台励磁机(称为交流副励磁机G2提供,则G1为他励方式。而G2可以是具有自动恒压装置的交流发电机,并且G2输出的交流电流经整流后供G1励磁。 交流副励磁机 交流 励磁机

励 磁 同步发电机他励他励永磁机励 磁他励励 磁

优点:设备少、结构简单、维护方便;

缺点:在发电机或系统发生短路时,由于电压的大幅下降或消失,导致励磁电流的下降或消失,而此时本应大大增加励磁(即强行励磁来维持电压的。 考虑到现代大型电网多采用封闭母线,且高压电网一般都装有快速保护,认为有足够的可靠性,故采用自并励的机组较多。 ?自复励方式 为了克服自并励方式在发生短路时不能提供较大的励磁缺点,发电机还可采用自复励方式。与自并励方式相比,自复励方式除设有整流变压器外,还设有串联在发电机定子回路的大功率电流互感器(亦称串联变压器。其原理是,当短路故障发生时电压降低,但电流却巨增,则串联变压器的作用是将该电流转换成为励磁电流。因此,这种励磁方式具有两种励磁电流,即整流变和励磁变的励磁电流。

励磁系统励磁调节器技术要求

励磁系统励磁调节器技术要求 4.1.1 自动励磁调节器 4.1.1.1 自动励磁调节器应有两个独立的自动电压调节通道,含各自的电压互感器、测量环节、调节环节、脉冲控制环节、限制环节、电力系统稳定器和工作电源等。两个通道可并列运行或互为热备用。 4.1.1.2 自动励磁调节器的各通道间应实现互相监测,自动跟踪。任一通道故障时均能发出信号。运行的自动电压调节通道任一测量环节、硬件和软件故障均应自动退出并切换到备用通道进行,不应造成发电机停机,稳定运行时通道的切换不应造成发电机无功功率的明显波动。 4.1.1.3 自动励磁调节器应具有在线参数整定功能,各参数及各功能单元的输出量应能显示,设置参数应以十进制表示,时间以秒表示,增益以实际值或标幺值表示。 4.1.1.4 自动励磁调节器应具有在线参数整定功能,各参数及各功能单元的输出量应能显示,设置参数应以十进制表示,时间以秒表示,增益以实际值或标幺值表示。 4.1.1.5 自动励磁调节器电压测量单元的时间常数应小于 30ms。 4.1.1.6 自动励磁调节器直流稳压电源应由两路独立的电源供电,其中一路应取自厂用直流系统。

4.1.1.7 励磁调节器的调压范围和调压速度: a)自动励磁调节时,应能在发电机空载额定电压的 70%-110%范围内稳定平滑的调节; b)手动励磁调节时,上限不低于发电机额定磁场电流的 110%,下限不高于发电机空载磁场电流的 20%; c)发电机空载运行时,自动励磁调节的调压速度应不大 于发电机额定电压的 1%/s,不小于发电机额定电压的 0.3%/s。 4.1.1.8 自动励磁调节器应配置电力系统稳定器(PSS)或具有同样功能的附加控制单元。 a)电力系统稳定器可以采用电功率、频率、转速或其组 合作为附加控制信号,电力系统稳定器信号测量回路 时间常数应不大于 40ms,输入信号应经过隔直环节处 理,当采用转速信号时应具有衰减轴系扭振频率信号 的滤波措施。 b)具有快速调节机械功率作用的大型汽轮发电机组,应 首先选用无反调作用的电力系统稳定器。 c)电力系统稳定器或其他附加控制单元的输出噪声应小 于±0.005p.u.。

发电机自并励励磁自动控制系统方案

辽宁工业大学 电力系统自动化课程设计<论文) 题目:发电机自并励励磁自动控制系统设计<4) 院<系):电气项目学院 专业班级:电气085 学号: 学生姓名: 指导教师:<签字) 起止时间:2018.12.26—2018.01.06

课程设计<论文)任务及评语 院<系):电气项目学院教研室:电气项目及其自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 摘要

同步发电机励磁控制系统承担着调节发电机输出电压、保障同步发电机稳定运行的重要责任。优良的励磁控制系统不仅可以保证发电机运行的可靠性和稳定性,为电网提供合格的电能,而且还可有效地改善电力系统静态与暂态稳定性。要实现这个目的,就必须根据负载的大小和性质随时调节发电机的励磁电流。 本文采用自励系统中接线最简单的自并励励磁系统,针对同步发电机论述了自并励励磁自动控制系统的特点及发展现状,分析了自并励励磁自动控制的原理和实现方法,提出了基于AT89C51单片机的同步发电机自并励自动控制系统的设计思路,对于所设计的单片机最小系统经过经济性与技术性的比较后,选用了按键电平复位电路和内部时钟电路,并在此基础上设计了励磁装置的硬件系统和软件系统。最后又对整个系统进行了MATLAB仿真,以用来对比运用算法所得结果与仿真所得结果是否在误差允许范围内。 关键词:自并励励磁自动控制系统;AT89C51单片机;MATLAB仿真 目录 第1章绪论1 1.1励磁控制系统简况1 1.2本文主要内容1 第2章发电机自并励励磁自动控制系统硬件设计3 2.1发电机自并励励磁自动控制系统总体设计方案3 2.2单片机最小系统设计3 2.3发电机自并励励磁自动控制系统模拟量检测电路设计6 2.4直流稳压电源电路设计7 第3章自并励励磁控制系统软件设计10 3.1软件实现功能总述10 3.2流程图设计10 3.3程序清单12 第4章 MATLAB建模仿真分析13 4.1M ATLAB软件简介13 4.2系统仿真模型的设计13 第5章课程设计总结16

发电机励磁系统现状问题和发展趋势2

发电机励磁系统现状、问题和发展趋势 1、发电机励磁系统国内现状 1.1 管理方面的要求 1.2 有关的标准及参考资料 1.3 励磁系统的种类及应用 2、国内发电机励磁系统存在的问题 2.1 体制管理方面的问题 2.2 设备方面的问题 2.3 由AVR入网检测发现的问题* 3、发电机励磁系统发展趋势 3.1 容量大可靠性高 3.2 现场调试和维护趋向简单化 3.3 与电网的联系更加紧密*

1、发电机励磁系统国内现状 1.1 管理方面的要求 管理方面的要求主要指管理层方面的要求,目前就电力市场而言对于励磁系统主要有以下几方面的检查 (1)并网安全性评价 (2)发电厂安全性评价 (3)发电厂安全性风险评估 (4)技术监督 (5)安全检查 按管理部门划分,上述检查中负责组织和管理的单位又有如下区别:(1)基层电机学会组织(主要由在职员工和有经验的退休专家组成) (2)网局级查评 (3)国网公司级查评 (4)中电联组织的查评 (5)各大电力公司组织的查评 (6)中国电监会组织的查评 1.2 有关的标准及参考资料 面对如此之多的检查和如此之多的行政管理部门,电厂应该如何应对?答案只有一个:抓住根本,修炼内功,以不变应万变。何为根本:标准 1.2.1 基本国标及行标 (1)GB/T 7409.1-2008同步电机励磁系统定义 (2)GB/T 7409.2-2008同步电机励磁系统电力系统研究用模型 (3)GB/T 7409.3-2007同步电机励磁系统大、中型同步发电机励磁系统技术要求(4)DL/T 650-1998 大型汽轮发电机自并励静止励磁系统技术条件 (5)DL/T 843-2003大型汽轮发电机交流励磁机励磁系统技术条件 (6)DL/T 583-2006大中型水轮发电机静止整流励磁系统及装置技术条件 (7)DL/T 491-2008大中型水轮发电机自并励励磁系统及装置运行和检修规程(8)DL/T 1049-2007发电机励磁系统技术监督规程 其中(4)(5)两个标准将合二为一,并进行修改后重新出版 1.2.2 可参考的标准 (1)GB/T 14285-2006继电保护和安全自动装置技术规程 (2)DL490-1992大中型水轮发电机静止整流励磁系统及装置的安装、验收规程(3)DL/T 1040-2007电网运行准则

励磁系统调试报告

发电机励磁系统试验报告 使用单位: 机组编号: 励磁装置型号: 设备出厂编号: 设备出厂日期: 现场投运日期:

广州电器科学研究院 广州擎天电气控制实业有限公司

励磁系统调试报告 使用单位:机组号:设备型号:设备编号:出厂日期:发电机容量:额定发电机电压/电流: 额定励磁电压/电流: 励磁变压器: KVA三相环氧干式变压器 励磁变额定电压: 励磁调节器型号:型调节器 一、操作回路检查 1.励磁柜端子接线检查 检查过柜接线是否与设计图纸相符,确认接线正确。 检查励磁系统对外接线是否正确,确认符合要求。 2.电源回路检查: 厂用AC380V工作电源。

DC-220V电源 检查励磁系统DC24V工作电源。 检查调节器A、B套工控机工作电源。 3.风机开停及转向检查: 4.灭磁开关操作回路检查 5.励磁系统信号回路检查 6.串行通讯口检查 二、开环试验 试验目的:检查励磁调节器工作是否正常,功率整流器是否正常。试验方法:断开励磁装置与励磁变压器及发电机转子的连接,用三相调压器模拟PT电压以及整流桥交流输入电源,以电阻或滑线变阻器作为负载,用小电流方法检查励磁装置。 1.检查励磁系统试验接线,确认接线无误。 2.将调压器电压升到100V,按增磁、减磁按钮,观察负载上

的电压波形是否按照调节规律变化。 功率柜上桥的输出波形正常,无脉冲缺相。 功率柜下桥的输出波形正常,无脉冲缺相。 3.调节器通道切换试验: 人工切换调节器工作通道,切换正常。 模拟A套调节器故障,调节器自动切换到备用通道。 模拟B套调节器故障,调节器自动切换到C通道。 4.励磁系统故障模拟试验 调节器故障 PT故障 起励失败 逆变灭磁失败 功率柜故障 快熔熔断

几种常见的励磁系统介绍

发电机的心脏——励磁系统 发电机励磁系统概述励磁系统是同步发电机的重要组成部分,它是供给同步发电机励磁电源的一套系统。励磁系统一般由两部分组成:(如图一所示)一部分用于向发电机的磁场绕组提供直流电流,以建立直流磁场,通常称作励磁功率输出部分(或称励磁功率单元)。另一部分用于在正常运行或发生故障时调节励磁电流,以满足安全运行的需要,通常称作励磁控制部分(或称励磁控制单元或励磁调节器)。在电力系统的运行中,同步发电机的励磁控制系统起着重要的作用,它不仅控制发电机的端电压,而且还控制发电机无功功率、功率因数和电流等参数。在电力系统正常运行的情况下,维持发电机或系统的电压水平;合理分配发电机间的无功负荷;提高电力系统的静态稳定性和动态稳定性,所以对励磁系统必须满足以下要求: 图一 1、常运行时,能按负荷电流和电压的变化调节(自 动或手动)励磁电流,以维持电压在稳定值水平,并能稳定地分配机组间的无功负荷。 2、应有足够的功率输出,在电力系统发生故障,电压降低时,能迅速地将发电机地励磁电流加大至最大值(即顶值),以实现发动机安全、稳定运行。 3、励磁装置本身应无失灵区,以利于提高系统静态稳定,并且动作应迅速,工作要可靠,调节过程要稳定。我热电分厂现共有三期工程,5台同步发电机采用了3种励磁方式: 1、图二为一期两台QFG-6-2型发电机的励磁系统方框图。 图二

2、图三为二期两台QF2-12-2型发电机的励磁系统方框图。 图三 3、图四为三期一台QF2-12-2型发电机的励磁系统方框图 图四 一、三种发电机励磁系统的组成 一期是交流励磁机旋转整流器的励磁系统,即无刷励磁系统。如图二所示,它的副励磁机是永磁发电机,其磁极是旋转的,电枢是静止的,而交流励磁机正好相反,其电枢、硅整流元件、发电机的励磁绕组都在同一轴上旋转,不需任何滑环与电刷等接触元件,这就实现了无刷励磁。二期是自励直流励磁机励磁系统。如图三所示,发电机转子绕组由专用的直流励磁机DE供电,调整励磁机磁场电阻Rc可改变励磁机励磁电流中的IRC从而达到调整发电机转子电流的目的。三期采用的是静止励磁系统。这类励磁系统不用励磁机,由机端励磁变压器供给整流器电源,经三相全控整流桥控制发电机的励磁电流。 二、励磁电流的产生及输出

发电机自并励励磁自动控制系统电子教案

课程设计(论文)任务及评语

此文档收集于网络,如有侵权请联系网站删除 目录 第1章课程设计目的与要求 (1) 1.1 课程设计目的 (1) 1.2 课程设计的实验环境 (1) 1.3 课程设计的预备知识 (1) 1.4 课程设计要求 (1) 第2章课程设计内容 (2) 2.1发电机励磁自动控制系统的概述 (2) 2.2发电机自动励磁自动控制系统传递函数 (2) 2.3同步发电机励磁自动控制系统特性的分析 (2) 2.3.1线性化分析 (2) 2.3.2稳定性分析 (3) 2.3.3稳态误差分析 (5) 2.3.4根轨迹分析 (5) 2.4 改变励磁控制系统稳定性措施 (8) 第3章课程设计总结..................................................................................................... ..9参考文献......................................................................................................................... ..9

第一章 课程设计目的与要求 1.1 课程设计目的 “电力系统自动化”课程设计是在教学及实验的基础上,对课程所学的理论知识进行深化和提高。因此,要求学生能综合应用所学的理论知识,能够较全面地巩固和应用本课程中所学到的基本理论和基本方法,进行发电机励磁自动控制系统特性分析与计算,加深理解发电机励磁自动控制系统的基本原理,并分析系统的稳定性、稳态误差以及根轨迹的特性。通过这次课程设计培养学生独立思考、独立收集资料、独立设计的能力;培养分析、总结及撰写技术报告的能力。 1.2 课程设计的实验环境 在计算机上绘制相关电路图和编写相关公式,并利用word2000编辑课程设计说明书。 1.3 课程设计的预备知识 熟悉电力系统自动化课程的基础理论和基本知识。 1.4 课程设计要求 独立完成课程设计,说明书应按下列要求书写: 1 、选择合理定态工作点,将系统线性化。 2 、对不同i T 的值分析系统的稳定性,确定p K 的值。 3 、分析系统在单位阶跃函数作用下的稳态误差。 4 、作出对应不同i T 的根轨迹分析稳定性。 5 、提出改善系统稳定性的措施。 6 、对课程设计进行总结 8、 课程设计说明书应层次分明、内容完整、语言通顺、图表整齐规范、数据详实。 9、 课程设计说明书的格式按照教务处文件执行。 10、完成4000字左右说明书。

相关主题
文本预览
相关文档 最新文档