当前位置:文档之家› 指数函数与对数函数的关系

指数函数与对数函数的关系

指数函数与对数函数的关系
指数函数与对数函数的关系

指数函数与对数函数的关系

一、目标认知

学习目标

理解反函数的概念、互为反函数的图象间的关系;

指数函数与对数函数互为反函数的关系.

重点

反函数的概念及互为反函数图象间的关系.

难点

反函数概念.

二、知识要点梳理

知识点一、反函数的概念及互为反函数两函数间的关系

1.反函数概念:

当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数. 函数

的反函数通常用表示.

要点诠释:

(1)对于任意一个函数,不一定总有反函数,只有当确定一个函数的映射是一一映射时,这个

函数才存在反函数;

(2)反函数也是函数,因为它符合函数的定义.

2.互为反函数的图象关系:

关于直线对称;

3.互为反函数的定义域和值域关系:

反函数的定义域与值域是原函数的值域和定义域.

4.求反函数的方法步骤:

(1)由原函数y=f(x)求出它的值域;

(2)由原函数y=f(x)反解出x=f-1(y);

(3)交换x, y改写成y=f-1(x);

(4)用f(x)的值域确定f-1(x)的定义域.

知识点二、指数函数与对数函数的关系

指数函数与对数函数互为反函数.

定义定义域值域图象性质

指数函数y=a x(a>0且

a≠1)叫指数

函数

(-∞,+∞) (0,+∞) (1)图象过点(0,1)

(2)a>1,当x>0,y>1;

当x=0,y=1;

当x<0时0

00,0

当x=0,y=1;

当x<0,y>1。

(3)a>1,y=a x为增函数;

0

对数函数y=log a x(a>0

且a≠1)叫对

数函数

(0,+∞) (-∞,+∞) (1)图象过点(1,0)

(2)a>1时,当x>1,y>0;

当x=1,y=0;

当0

00;

当x=1,y=0;

当x>1,y<0.

(3)a>1,y=log a x为增函数;

0

(1)

①y=a x ②y=b x③y=c x④y=d x则:0

又即:x∈(0,+∞)时,b x

x∈(-∞,0)时,b x>a x>d x>c x

(2)

①y=log a x ②y=log b x ③y=log c x ④y=log d x

则有:0

又即:x∈(1,+∞)时,log a x

x∈(0,1)时,log a x>log b x>0>log c x>log d x

三、规律方法指导

互为反函数与的图象关于直线y=x对称.可知:

1.函数的图象关于直线y=x对称;

2.点A(m,n)在函数的反函数的图象上A(m,n)关于直线y=x 的对称点

B(n,m)在的图象上.

经典例题透析

类型一、求函数的反函数

1.已知f(x)=(0≤x≤4),求f(x)的反函数.

思路点拨:这里要先求f(x)的范围(值域).

解:∵0≤x≤4,∴0≤x2≤16,9≤25-x2≤25,∴3≤y≤5,

∵y=,y2=25-x2,∴x2=25-y2.∵0≤x≤4,∴x=(3≤y≤5)

将x,y互换,∴f(x)的反函数f-1(x)=(3≤x≤5).

2.已知f(x)=,求f-1(x).

思路点拨:求分段函数的反函数问题,应逐段求其反函数,再合并.

解:当x≥0时,y=x+1≥1,∴y∈[1,+∞),∴f-1(x)=x-1 (x≥1);

当x<0时,y=1-x2<1,∴y∈(-∞,1),反解x2=1-y,x=-(y<1),

∴f-1(x)=-(x<1);

∴综上f-1(x)=.

类型二、利用反函数概念解题

3.已知f(x)=(x≥3),求f-1(5).

思路点拨:这里应充分理解和运用反函数的自变量就是原函数的函数值,所求的反函数的函数值就是原函数的自变量这一事实,转化成方程问题.

解:设f-1(5)=x0,则f(x0)=5,即=5 (x0≥3)∴x02+1=5x0-5,x02-5x0+6=0.

解得x0=3或x0=2(舍),∴f-1(5)=3.

举一反三:

【变式1】记函数y=1+3-x的反函数为,则g(10)=( )

A.2 B.-2 C.3 D.-1

(法一)依题意,函数的反函数y=-log3(x-1),因此g(10)=-2.

(法二)依题意,由互为反函数的两个函数的关系,得方程1+3-x=10,解得x=-2,即g(10)=-2.答案B.

4.设点(4,1)既在f(x)=ax2+b (a<0,x>0)的图象上,又在它的反函数图象上,求f(x)解析式.

思路点拨:由前面总结的性质我们知道,点(4,1)在反函数的图象上,则点(1,4)必在原函数的图象上.这样就有了两个用来确定a,b的点,也就有了两个求解a,b的方程.

解:解得.a=-,b=,∴f(x)=-x+.

另:这个题告诉我们,函数的图象若与其反函数的图象相交,交点不一定都在直线y=x 上.

5.已知f(x)=的反函数为f-1(x)=,求a,b,c的值.

思路点拨:注意二者互为反函数,也就是说已知函数f-1(x)=的反函数就是函数f(x).

解:求f-1(x)=的反函数,令f-1(x)=y有yx-3y=2x+5. ∴(y-2)x=3y+5

∴x=(y≠2),f-1(x)的反函数为y=.即=,∴a=3,b=5,c=-2.

类型三、互为反函数图象间关系

6.将y=2x的图象先______,再作关于直线y=x对称的图象,可得到函数y=log2(x +1)的图象( )

A.先向上平行移动一个单位B.先向右平行移动一个单位

C.先向左平行移动一个单位D.先向下平行移动一个单位

解析:本题是关于图象的平移变换和对称变换,可求出解析式或利用几何直观推断.答案:D

总结升华:本题主要考查互为反函数的两个函数的图象的对称关系与函数图象的平移变换等基本知识,以及基本计算技能和几何直观思维能力.

举一反三:

【变式1】函数y=f(x+1)与函数y=f-1(x+1)的图象( )

A.关于直线y=x对称

B.关于直线y=x+1对称

C.关于直线y=x-1对称

D.关于直线y=-x对称

解:y=f(x+1)与y=f-1(x+1)图象是分别将y=f(x),y=f-1(x)的图象向左平移一个单位所得,∵y=f(x)与y=f-1(x)的图象关于直线y=x对称,y=x向左平移一个单位而得y=x+1. 故选B.

【变式2】已知函数y=log2x的反函数是y=f—1(x),则函数y= f—1(1-x)的图象是( )

【答案】由y=log2x得f—1(x)=2x,所以y=f—1(1-x)=21-x,选择C.

【变式3】(2011 四川理7)若是上的奇函数,且当时,,则的反函数的图象大致是()

解:当时,函数单调递减,值域为,此时,

其反函数单调递减且图象在与之间,故选A.

类型四、指数函数和对数函数的综合问题

7.已知函数.

(1)求函数的单调增区间;

(2)求其单调增区间内的反函数.

解:复合函数y=f[g(x)]的单调性与y=f(t),t=g(x)的单调性的关系:同增异减.

(1)函数的定义域{x|x<0或x>2},又t=x2-2x=(x-1)2-1.

∴x(-∞,0),t是x的减函数.而是减函数,

∴函数f(x)在(-∞,0)为增函数.

(2)函数f(x)的增区间为(-∞,0),

令,则.

∴,.

∵x<0,∴.∴.总结升华:研究函数单调性首先要确定定义域;在函数的每个单调区间内存在反函数,因此要注意反函数存在的条件.

学习成果测评

一、选择题

1.(2011 全国理2)函数的反函数为( )

A. B.

C. D.

2.函数的反函数是()

A.B.

C.D.

3.函数的定义域是,则值域是( )

A.R B.C.D.

4.函数,则的定义域是( )

A.R B.C.D.

5.设函数的图象过点,其反函数的图象过点

,则等

于()

A.3 B.4 C.5 D.6

6.将函数的图象向左平移两个单位,再将所得图象关于直线对称后所得图象的函数解析

式为( )

A. B. C.

D.

7.已知函数的定义域是,则函数的定义域是( )

A. B. C. D.

8.函数y=1+a x(0

9.已知函数,f(x)的反函数为,当y≥0时,的图象是

10.方程的实根的个数为( )

A.0 B.1 C.2 D.3

二、填空题

11.求函数的反函数=______________,反函数的定义域是____________,值域

是______.

12.若函数,且)的反函数的图像过点,则________.

13.函数,若此函数的最大值比最小值大1,则

________.

14.函数在上的最大值比最小值大1,则_________.

15.函数的图象过,则函数的反函数过点__________.

三、解答题

16.若函数的定义域为R,求实数的取值范围.

对数指数函数公式全集

C 咨询电话:4006-211-001 WWW r haOfangfa COm 1 指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 a . 1及O ::: a ::: 1两种不同情况。 1、指数函数: 定义:函数y =a x a . 0且a --1叫指数函数。 定义域为R 底数是常数,指数是自变量。 认识。 图象特征 函数性质 (1)图象都位于X 轴上方; (1)X 取任何实数值时,都有 a X A0 ; (2)图象都经过点(0, 1); (2)无论a 取任何正数,X = 0时,y = 1 ; (3) y — 2 , y — 10在第一象限内的纵坐 \ > 0 ,贝U a X A 1 (3)当 a > 1 时,{ →, X 标都大于1,在第二象限内的纵坐标都小于 1, < < 0 ,贝U a <1 X A 0 ,贝U a x V 1 y = — [的图象正好相反; 当 0 ca c1 时,< X £ 0 ,贝U a x A 1 k (4) y =2X , y=10X 的图象自左到右逐渐 (4)当a >1时,y =a x 是增函数, 当0cac1时,y=a x 是减函数。 为什么要求函数 y = a 中的a 必须a . 0且a = 1。 X 因为若a ::;0 时, X 1、对三个指数函数 a = 0 , y = 0 a =1 时,y = 1 =1x 的反函数不存在, y =a x ,y =Iog a X 在

上升,y = f l]的图象逐渐下降。 k2 J ①所有指数函数的图象交叉相交于点(0,1),如y=2x和y=10x相交于(0,1), 的图象在y =2x的图象的上方,当X :::0 ,刚好相反,故有1 0 2. 22及10 ^ ::: 2 ^。 步认识无限个函数的图象。 2、对数: 定义:如果a tl = N(a . 0且a ■■ 1),那么数b就叫做以a为底的对数,记作b = Iog a N (a是底数,N是 真数,log a N是对数式。) 由于N ^a b . 0故log a N中N必须大于0。 当N为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成 比较好办。 解:设Iog 0.32 X ■? 0 时,y = 10 % ②y =2x与y X 的图象关于y轴对称。 ③通过y = 2 X X 三个函数图象,可以画出任意一个函数y = a 示意图,如y =3x的图象,一定位于y =2x和y =IO x两个图象的中间,且过点(0, 1),从而y = X 也由关于y轴的对称性,可得的示意图,即通过有限个函数的图象进 再改写为指数式就

3.2.3指数函数与对数函数的关系教案

3.2.3 指数函数与对数函数的关系 【学习要求】 1.了解反函数的概念及互为反函数图象间的关系; 2.掌握对数函数与指数函数互为反函数. 【学法指导】 通过探究指数函数与对数函数的关系,归纳出互为反函数的概念,通过指数函数图象与对数函数图象的关系,总结出互为反函数的图象间的关系,体会从特殊到一般的思维过程. 填一填:知识要点、记下疑难点 1.当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的 自变量 ,而把这个函数的自变量 作为新的函数的 因变量. 我们称这两个函数 互为反函数. 即y =f(x)的反函数通常用 y =f - 1(x) 表示. 2.对数函数y =log a x 与指数函数y =a x 互为反函数 ,它们的图象关于 直线y =x 对称. 3.互为反函数的图象关于直线 y =x 对称;互为反函数的图象同增同减. 4.当a>1时,在区间[1,+∞)内,指数函数y =a x 随着x 的增加,函数值的增长速度 逐渐加快 ,而对数函数y =log a x 增长的速度 逐渐变得很缓慢. 研一研:问题探究、课堂更高效 [问题情境] 设a 为大于0且不为1的常数,对于等式a t =s,若以t 为自变量可得指数函数y =a x ,若以s 为自变量可得对数函数y =log a x.那么指数函数与对数函数有怎样的关系呢?这就是本节我们要探究的主要问题. 探究点一指数函数与对数函数的关系 导引为了探究这两个函数之间的关系,我们用列表法画出函数y =2x 及y =log 2x 的图象. 问题1函数y =2x 及y =log 2x 的定义域和值域分别是什么,它们的定义域和值域有怎样的关系? 答:函数y =2x 的定义域为R,值域为(0,+∞);函数y =log 2x 的定义域为(0,+∞),值域为R.函数y =2x 的定义域和值域分别是函数y =log 2x 的值域和定义域. 问题2在列表画函数y =2x 的图象时,当x 分别取-3,-2,-1,0,1,2,3这6个数值时,对应的y 值分别是什么? 答:y 值分别是: 18, 14, 1 2 , 1, 2, 4, 8. 问题3在列表画函数y =log 2x 的图象时,当x 分别取18,14,1 2 ,1,2,4,8时,对应的y 值分别是什么? 答:y 值分别是:-3,-2,-1,0,1,2,3. 问题4综合问题2、问题3的结果,你有什么感悟? 答:在列表画y =log 2x 的图象时,可以把y =2x 的对应值表里的x 和y 的数值对换,就得到y =log 2x 的对应值表. 问题5观察画出的函数y =2x 及y =log 2x 的图象,能发现它们的图象有怎样的对称关系? 答:函数y =2x 与y =log 2x 的图象关于直线y =x 对称. 问题6我们说函数y =2x 与y =log 2x 互为反函数,它们的图象关于直线y =x 对称,那么对于一般的指数函数y =a x 与对数函数y =log a x 又如何? 答:对数函数y =log a x 与指数函数y =a x 互为反函数.它们的图象关于直线y =x 对称. 探究点二 互为反函数的概念 问题1对数函数y =log a x 与指数函数y =a x 是一一映射吗?为什么? 答:是一一映射,因为对数函数y =log a x 与指数函数y =a x 都是单调函数,所以不同的x 值总有不同的y 值与之对应,不同的y 值也总有不同的x 值与之对应. 问题2对数函数y =log a x 与指数函数y =a x 互为反函数,更一般地,如何定义互为反函数的概念? 答:当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新 的函数的因变量,我们称这两个函数互为反函数.函数y =f(x)的反函数通常用y =f - 1(x)表示. 问题3 如何求函数y =5x (x ∈R)的反函数? 答:把y 作为自变量,x 作为y 的函数,则x =y 5,y ∈R.通常自变量用x 表示,函数用y 表示,则反函数为y =x 5 ,x ∈R. 例1 写出下列函数的反函数: (1)y =lg x; (2)y =log 1 3 x; (3)y =????23x . 解:(1)y =lg x(x>0)的底数为10,它的反函数为指数函数y =10x (x ∈R). (2)y =log 13x (x>0)的底数为1 3 ,它的反函数为指数函数y =????13x (x ∈R). (3)y =????23x (x ∈R)的底数为23,它的反函数为对数函数y =log 2 3x (x>0). 小结:求给定解析式的函数的反函数的步骤: (1)求出原函数的值域,这就是反函数的定义域; (2)从y =f(x)中解出x; (3)x 、y 互换并注明反函数的定义域. 跟踪训练1 求下列函数的反函数:(1)y =3x -1; (2)y =x 3+1 (x ∈R); (3)y =x +1 (x≥0); (4)y =2x +3 x -1 (x ∈R,x≠1).

指数函数与对数函数高考题

第二章 函数 三 指数函数与对数函数 【考点阐述】指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数. 【考试要求】(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 【考题分类】 (一)选择题(共15题) 1.(安徽卷文7)设 232555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2()5x y =在0x >时是减函数,所以c b >。 【方法总结】根据幂函数与指数函数的单调性直接可以判断出来. 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系 中的图像可能是 【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-11矛盾,选D 。 3.(辽宁卷文10)设525b m ==,且112a b +=,则m = (A (B )10 (C )20 (D )100 【答案】 D

解析:选A.211 log 2log 5log 102,10, m m m m a b +=+==∴= 又0,m m >∴= 4.(全国Ⅰ卷理8文10)设a= 3 log 2,b=In2,c=1 2 5 - ,则 A. a>,所以a=>,所以c,从而错选A,这也 是命题者的用苦良心之处. 【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或 1b a = ,所以a+2b=2 a a + 又0f(1)=1+2 1=3,即a+2b 的取值范围是(3,+∞). 6.(全国Ⅰ卷文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小 题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a + ≥,从而错选D,这也是命 题者的用苦良心之处.

指数函数与对数函数测试题

东山中学指数与对数函数同步练习 一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、下列所给出的函数中,是幂函数的是 ( B ) A .3 x y -= B .3-=x y C .3 2x y = D .13 -=x y 2、下列命题中正确的是 ( D ) A .当0=α时函数α x y =的图象是一条直线 B .幂函数的图象都经过(0,0)和(1,1)点 C .若幂函数αx y =是奇函数,则α x y =是定义域上的增函数 D .幂函数的图象不可能出现在第四象限 3、已知32a =,那么33log 82log 6-用a 表示是 ( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a - 4、2log (2)log log a a a M N M N -=+,则 N M 的值为 ( ) A 、 4 1 B 、4 C 、1 D 、4或1 5、下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .3124 3)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 6、化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 7、已知732log [log (log )]0x =,那么12 x -等于 ( ) A 、 1 3 B C D 8、函数2lg 11y x ?? =- ?+?? 的图像关于 ( )

幂函数、指数函数和对数函数_对数及其运算法则_教案

幂函数、指数函数和对数函数·对数及其运算法则·教案 如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b就叫做以a为底N的对数,记作 logaN=b, 其中a叫做底数,N叫做真数,式子logaN叫做对数式. 练习1 把下列指数式写成对数形式: 练习2 把下列对数形式写成指数形式: 练习3 求下列各式的值: 因为22=4,所以以2为底4的对数等于2. 因为53=125,所以以5为底125的对数等于3. 师:由定义,我们还应注意到对数式logaN=b中字母的取值范围是什么? 生:a>0且a≠1;b∈R;N∈R. 师:N∈R?(这是学生最易出错的地方,应一开始让学生牢牢记住真数大于零.) 生:由于在实数范围内,正数的任何次幂都是正数,因而ab=N中N总是正数. 师:要特别强调的是:零和负数没有对数. 师:定义中为什么规定a>0,a≠1? 生:因为若a<0,则N取某些值时,b可能不存在,如b=log(-2)8不存在;若a=0,则当N不为0时,b不存在,如log02不存在;当N为0时,b可以为任何正数,是不唯一的,即log00有无数个值;若a=1,N 不为1时,b不存在,如log13不存在,N为1时,b可以为任何数,是不唯一的,即log11有无数多个值.因此,我们规定:a>0,a≠1. 师:(板书)对数logaN(a>0且a≠1)在底数a=10时,叫做常用对数,简记lgN;底数a=e时,叫做自然对数,记作lnN,其中e是个无理数,即e≈2.718 28……. 练习4 计算下列对数: lg10000,lg0.01,2log24,3log327,10lg105,5log51125. 师:请同学说出结果,并发现规律,大胆猜想. 生:2log24=4.这是因为log24=2,而22=4. 生:3log327=27.这是因为log327=3,而33=27. 生:10lg105=105. 生:我猜想alogaN=N,所以5log51125=1125. alogaN=N(a>0,a≠1,N>0).(用红笔在字母取值范围下画上曲线) 证明:设指数等式ab=N,则相应的对数等式为logaN=b,所以ab=alogaN=N. 师:你是根据什么证明对数恒等式的? 生:根据对数定义. 师:(分析小结)证明的关键是设指数等式ab=N.因为要证明这个对数恒等式,而现在我们有关对数的知

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结及练习题 一.指数函数 (一)指数及指数幂的运算 n m n m a a = s r s r a a a +=? rs s r a a =)( r r r b a ab =)( (二)指数函数及其性质 1.指数函数的概念:一般地,形如x a y =(0>a 且1≠a )叫做指数函数。 2.指数函数的图象和性质 10<a 6 54321 -1 -4-2 2460 1 6 5 4 3 2 1 -1 -4-2 246 1 定义域 R 定义域 R 值域y >0 值域y >0 在R 上单调递减 在R 上单调递增 非奇非偶函数 非奇非偶函数 定点(0,1) 定点(0,1) 二.对数函数 (一)对数 1.对数的概念:一般地,如果N a x =(0>a 且1≠a ),那么x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做底数,N 叫做真数,N a log 叫做对数式。 2.指数式与对数式的互化 幂值 真数 x N N a a x =?=log 底数 指数 对数

3.两个重要对数 (1)常用对数:以10为底的对数N lg (2)自然对数:以无理数 71828.2=e 为底的对数N ln (二)对数的运算性质(0>a 且1≠a ,0,0>>N M ) ①MN N M a a a log log log =+ ②N M N M a a a log log log =- ③M n M a n a log log = ④换底公式:a b b c c a log log log =(0>c 且1≠c ) 关于换底公式的重要结论:①b m n b a n a m log log = ②1log log =?a b b a (三)对数函数 1.对数函数的概念:形如x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量。 2对数函数的图象及性质 01 32.5 2 1.51 0.5-0.5 -1-1.5-2-2.5 -1 1 23456780 1 1 32.5 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -2.5 -1 1 2345678 1 1 定义域x >0 定义域x >0 值域为R 值域为R 在R 上递减 在R 上递增 定点(1,0) 定点(1,0)

指数函数和对数函数

指数函数和对数函数 知能目标 1. 理解分数指数幂的概念, 掌握有理指数幂的运算性质. 掌握指数函数的概念、图象和性质. 2. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质. 3. 能够运用指数函数和对数函数的性质解决某些简单的实际问题. 综合脉络 1. 以指数函数、对数函数为中心的综合网络 2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据): 0a (N log b N a a b >=?=且)1a ≠ 指数函数与对数函数互为反函数, 它们的图象关于直线x y =对称, 指数函数与对数函数 的性质见下表: 3. 指数函数,对数函数是高考重点之一 指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函 数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性 质并能进行一定的综合运用. (一) 典型例题讲解: 例1.设a >0, f (x)= x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性.

例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 例3. 已知x 满足≤+6x 2a a 4x 2x a a +++)1a ,0a ( ≠>, 函数y =)ax (log x a 1 log 2 a 12 a ? 的值域为]0 ,8 1[-, 求a 的值. (二) 专题测试与练习:

高一指数函数对数函数测试题及答案精编版

高一指数函数对数函数 测试题及答案精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

指数函数和对数函数测试题 一、选择题。 1、已知集合A={y|x y 2log =,x >1},B={y|y=( 21)x ,x >1},则A ∩B=() A.{y|0<y <21}B.{y|0<y <1}C.{y|2 1<y <1}D.φ 2、已知集合M={x|x <3}N={x|1log 2>x }则M ∩N 为() φ.{x|0<x <3}C.{x|1<x <3}D.{x|2<x <3} 3、若函数f(x)=a (x-2)+3(a >0且a ≠1),则f(x)一定过点() A.无法确定 B.(0,3) C.(1,3) D.(2,4) 4、若a=π2log ,b=67log ,c=8.02log ,则() >b >>a >>a >>c >a 5、若函数)(log b x a y +=(a >0且a ≠1)的图象过(-1,0)和(0,1)两点,则a ,b 分别为() =2,b==2,b==2,b==2,b=2 6、函数y=f(x)的图象是函数f(x)=e x +2的图象关于原点对称,则f(x)的表达式为() (x)=(x)=-e x +(x)=(x)=-e -x +2 7、设函数f(x)=x a log (a >0且a ≠1)且f(9)=2,则f -1(2 9log )等于() 2422229log 、若函数f(x)=a 2log log 32++x x b (a ,b ∈R ),f(2009 1)=4,则f(2009)=() 、下列函数中,在其定义域内既是奇函数,又是增函数的是() =-x 2log (x >0)=x 2+x(x ∈R)=3x (x ∈R)=x 3(x ∈R) 10、若f(x)=(2a-1)x 是增函数,则a 的取值范围为() <21B.2 1<a <>≥1 11、若f(x)=|x|(x ∈R),则下列函数说法正确的是() (x)为奇函数(x)奇偶性无法确定 (x)为非奇非偶(x)是偶函数 12、f(x)定义域D={x ∈z|0≤x ≤3},且f(x)=-2x 2+6x 的值域为()A.[0,29]B.[29,+∞]C.[-∞,+2 9]D.[0,4]

指数函数对数函数幂函数增长速度的比较教学设计

【教学设计中学数学】 区县雁塔区 学校西安市航天中学 姓名贾红云 联系方式 邮编710100 《指数函数、幂函数、对数函数增长的比较》教学设计 一、设计理念 《普通高中数学课程标准》明确指出:“学生的数学学习活动,不应该只限于接受、记忆、模仿和练习,高中数学课程还应该倡导自主探索、动手实践、合作交流、阅读自学等信息数学的方式;课程内容的呈现,应注意反映数学发展的规律以及学生的认知规律,体现从具体到抽象,特殊到一般的原则;教学应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉等”。本节课是北师大版高中数学必修Ⅰ第三章第6节内容,本节专门研究指数函数、幂函数、对数函数的增长的比较,目的是探讨不同类型的函数模型,在描述实际增长问题时的不同变化趋势,通过本节课的学习,可以引导学生积极地开展观察、思考和探究活动,利用几何画板这种信息技术工具,可以让学生从动态的角度直观观察指数函数、幂函数、对数函数增长情况的差异,使学生有机会接触一些过去难以接触到的数学知识和数学思想,并为学生提供了学数学、用数学的机会,体现了发展数学应用意识、提高实践能力的新课程理念。 二、教学目标 1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义,理解它们增长的差异性; 2.能借助信息技术,利用函数图像和表格,对几种常见增长类型的函数增长的情况进行比较,体会它们增长的差异; 3.体验指数函数、幂函数、对数函数与现实世界的密切联系及其在刻画实际问题中的作用,体会数学的价值. 三、教学重难点

教学重点:认识指数函数、幂函数、对数函数增长的差异,体会直线上升、指数爆炸、对数增长的含 义。 教学难点:比较指数函数、幂函数、对数函数增长的差异 四、教学准备 ⒈提醒学生带计算器; ⒉制作教学用幻灯片; ⒊安装软件:几何画板 ,准备多媒体演示设备 五、教学过程 ㈠基本环节 ⒈创设情景,引起悬念 杰米和韦伯的故事 一个叫杰米的百万富翁,一天,碰上一件奇怪的事,一个叫韦伯的人对他说,我想和你定个合同,我将在整整一个月中每天给你 10万元,而你第一天只需给我一分钱,而后每一天给我的钱是前一天的两倍。杰米说:“真的?!你说话算数?” 合同开始生效了,杰米欣喜若狂。第一天杰米支出一分钱,收入10万元;第二天,杰米支出2分钱,收入10万元;第三天,杰米支出4分钱,收入10万元;第四天,杰米支出8分钱,收入10万元…..到了第二十天,杰米共得到200万元,而韦伯才得到1048575分,共10000元多点。杰米想:要是合同定两个月、三个月多好! 你愿意自己是杰米还是韦伯? 【设计意图】创设情景,构造问题悬念,激发兴趣,明确学习目标 ⒉复习旧知,提出问题 图1-1 图1-2 图1-3 ⑴ 如图1-1,当a 时,指数函数x y a =是单调 函数,并且对于0x >,当底数a 越大时,其 函数值的增长就越 ; ⑵ 如图1-2当a 时,对数函数log a y x =是单调 函数,并且对1x >时,当底数a 越 时 其函数值的增长就越快; ⑶ 如图1-3当0x >,0n >时,幂函数n y x =是增函数,并且对于1x >,当n 越 时,其函数值

中职数学第册指数函数对数函数测试题

2015级建筑部3月份月考数学测试题 第Ⅰ卷(选择题,共60分) 一、选择题(本大题共20小题,每小题3分,共60分。在每小题所给出的四个选项中,只有一个符合题目要求,不选、多选、错选均不得分) 1、下列函数是幂函数的是( ) A 3+=x y ; B 3 x y =; C x y 3=; D x y 2log = 2、数列-3,3,-3,3,…的一个通项公式是( ) A. n a =3(-1) n+1 B. n a =3(-1)n C. n a =3-(-1)n D. n a =3+(-1)n 3、对数1log 3的值正确的是( ). A. 0 B.1 C. 2 D. 以上都不对 4、将对数式24 1 log 2 -=化成指数式可表示为( ) A.224 1-= B.412 2 =- C.2412 =?? ? ??- D.2412 -=?? ? ?? 5、若指数函数的图像经过点?? ? ??21,1,则其解析式为( ) A.x y 2= B.x y ??? ??=21 C. x y 4= D. x y ??? ??=41 6、下列运算中,正确的是( ) A.5553443=? B.435÷5534= C.55 3 44 3=??? ? ? ? D.0554343=?- 7、已知3log 2log a a >,则a 的取值范围是( ) A 1>a ; B 1a a 或 8、将对数式ln 2x =化为指数式为 ( ) A. 210x = B. x = 2 C. x = e D. x = e 2 9、4 32813?-的计算结果为( )。 A .3 B.9 C.3 1 D.1

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

(完整版)指数函数和对数函数单元测试题及答案

指数函数和对数函数单元测试题 一选择题 1 如果,那么a、b间的关系是【】 A B C D 2 已知,则函数的图象必定不经过【】 A第一象限 B第二象限 C第三象限D第四象限 3 与函数y=x有相同图象的一个函数是【】 A B,且 C D,且 4 已知函数的反函数为,则的解集是【】 A B C D 5已知函数在上是x的减函数,则a的取值范围是【】 A B C D 6 已知函数的值域是,则它的定义域是【】 A B C D 7已知函数在区间是减函数,则实数a的取值范围是【】 A B C D 8 已知,则方程的实数根的个数是【】 A1 B 2 C 3D 4 9 函数的定义域为E,函数的定义域为F,则【】 A B C D 10有下列命题:(1)若,则函数的图象关于y轴对称;(2)若,则函数的图象关于原点对称;(3)函数与的图 象关于x轴对称;(4)函数与函数的图象关于直线对称。其中真命题是【】 A(1)(2) B(1)(2)(3)C(1)(3)(4) D (1)(2)(3)(4)

二填空题 11函数的反函数是______ 。12 的定义域是______ 。 13 函数的单调减区间是________。 14 函数的值域为R,则实数a的取值范围是__________. 三解答题 1 求下列函数的定义域和值域 (1)(2) 2 求下列函数的单调区间 (1)(2) 3 已知函数 (1)求的定义域;(2)讨论的单调性;(3)解不等式。 4 已知函数 (1)证明:在上为增函数;(2)证明:方程=0没有负数根。

参考答案 一选择题BADBC BCBDD 二填空题11121314或 三解答题 1 求下列函数的定义域和值域 (1)(2) 定义域定义域 值域值域且 2 求下列函数的单调区间 (1)(2) 减区间,增区间减区间, 3 已知函数 (1)求的定义域;(2)讨论的单调性;(3)解不等式。解(1),又,所以,所以定义域。 (2)在上单调增。 (3),,即 ,所以,所以解集 2 已知函数 (1)证明:在上为增函数;(2)证明:方程=0没有负数根。

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

《指数函数与对数函数》测试题

《指数函数与对数函数》测试题 一、选择题: 1、已知(10)x f x =,则(5)f =( ) A 、510 B 、10 5 C 、lg10 D 、lg5 2、对于0,1a a >≠,下列说法中,正确的是( ) ①若M N =则log log a a M N =; ②若log log a a M N =则M N =; ③若2 2 log log a a M N =则M N =; ④若M N =则2 2 log log a a M N =。 A 、①②③④ B 、①③ C 、②④ D 、② 3、设集合2 {|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是 ( ) A 、? B 、T C 、S D 、有限集 4、函数22log (1)y x x =+≥的值域为( ) A 、()2,+∞ B 、(),2-∞ C 、[)2,+∞ D 、[)3,+∞ 5、设 1.5 0.90.48 12314,8 ,2y y y -??=== ? ?? ,则( ) A 、312y y y >> B 、213y y y >> C 、132y y y >> D 、123y y y >> 6、在(2)log (5)a b a -=-中,实数a 的取值范围是( ) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a << 7、计算()()2 2 lg 2lg 52lg 2lg 5++?等于( ) A 、0 B 、1 C 、2 D 、3 8、已知3log 2a =,那么33log 82log 6-用a 表示是( ) A 、52a - B 、2a - C 、2 3(1)a a -+ D 、2 31a a -- 9、若210 25x =,则10x -等于( ) A 、15 B 、15- C 、150 D 、1625

对数指数函数公式全集

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 14 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但 y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210,,的图象的 认识。 图象特征与函数性质:

对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及10222--<。 ②y x =2与y x =?? ? ? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ? ? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的 示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =?? ? ? ? 13也由 关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0 故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 求lo g .032524?? ? ? ? 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524?? ? ? ?=x ,再改写为指数式就比较好办。 解:设log .032524?? ? ? ?=x

相关主题
文本预览
相关文档 最新文档