当前位置:文档之家› 锅炉热力计算书

锅炉热力计算书

第一节热力计算汇总1. 煤质资料

2. 受热面结构尺寸

3. 锅炉设计参数

4. 热损失及热负荷(设计煤种)

注:

1. 热负荷按燃料低位热值,不含风热计算。

2. 燃烧器投运层数是从下而上。

5. 介质温度(设计煤种)

6. 烟气温度

7. 烟气平均流速(设计煤种)

8. 吸热量

9. 烟、空气流量(设计煤种)

10. 空气温度(设计煤种)

11. 锅炉设计参数(校核煤种)

12. 热损失及热负荷

注:

1. 热负荷按燃料低位热值,不含风热计算。

2. 燃烧器投运层数是从下而上。

15. 烟气平均流速(校核煤种)

16. 吸热量(校核煤种)

17. 烟、空气流量(校核煤种)

18. 空气温度(校核煤种)

热电厂热力系统计算

热力发电厂课程设计 1.1 设计目的 1. 学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2. 学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3. 提高计算机绘图、制表、数据处理的能力 1.2 原始资料 西安 某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安 地区采暖期 101 天,室外采暖计算温度 –5℃,采暖期室外平均温度 1.0℃,工业用汽 和采暖用汽热负荷参数均为 0.8MPa 、230℃。通过调查统计得到的近期工业热负荷和采暖热 负荷如下表所示: 1.3 计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别 链条炉 煤粉炉 沸腾炉 旋风炉 循环流化床锅炉 锅炉效率 0.72~0.85 0.85~0.90 0.65~ 0.70 0.85 0.85~ 0.90 (2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率 750~ 6000 12000 ~ 25000 5000 汽轮机相对内效率 0.7~0.8 0.75~ 0.85 0.85~0.87 汽轮机机械效率 0.95~0.98 0.97~ 0.99 ~ 0.99 发电机效率 0.93~0.96 0.96~ 0.97 0.98~0.985 3)热电厂内管道效率,取为 0.96。 4)各种热交换器效率,包括高、低压加热器、除氧器,一般取 0.96~0.98。

5)热交换器端温差,取3~7℃。 2%

6)锅炉排污率,一般不超过下列数值: 以化学除盐水或蒸馏水为补给水的供热式电厂 以化学软化水为补给水的供热式电厂5% 7)厂内汽水损失,取锅炉蒸发量的3%。 8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。 9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。 10)生水水温,一般取5~20℃。 11)进入凝汽器的蒸汽干度,取0.88~0.95。 12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。 2、原则性热力系统 2.1 设计热负荷和年持续热负荷曲线 根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见 表2-1 。用户处工业用汽符合总量:采暖期最大为175 t/h, 折算汇总到电厂出口处为166.65 t/h 。 2-1 折算到热电厂出口的工业热负荷,再乘以0.9 的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8 kJ/kg)计算出供热量,见表2-2。根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1 、图2-2。 表2-2 热电厂设计热负荷

锅炉房用水量设计计算

锅炉房用水量设计计算 1、锅炉房用水的组成 通常来说,锅炉房用水主要分为生产用水、生活用水及煤加湿水三类,其中生产用水以循环水为主,主要为锅炉热力网循环系统补水、引风机轴承冷却补水、脱硫除尘用水、离子交换器树脂再生用水、定期排污冷却用水和冲渣用水等。 2、生产用水的核算 ①锅炉热力网循环系统补水 锅炉分为蒸汽锅炉和热水锅炉两种。 蒸汽锅炉的热力网补水很好理解。如:1t/h的蒸汽锅炉,就是1t/h的水产生1t/h的蒸汽,所以用水量很容易计算。环评中,我认为可以忽略“锅炉排污量并扣除凝结水量”这部分水量,直接用产汽量来估算。 这里主要说一下热水锅炉的循环系统补水计算方法。 要知道补水量,先要知道循环用水的量。热水锅炉循环水量计算公式采用《工业锅炉房设计手册》中的经验公式 循环水量=1000×0.86kcal/MW×吸热量(MW)/一次网温度差(℃)热水锅炉补水率较低,通常为1%~2%,主要为热力网损失。根据循环水量和补水率,可以核算出补水量。 ②引风机轴承冷却补水 引风机轴承在运转过程中会发热,因此需要冷却水进行冷却。在有循环水箱时,引风机轴承冷却补水量可按0.5m3/h箱核算。

如果是抛煤机炉,抛煤机及炉排轴的冷却补水量也可按每台锅炉 0.5m3/h计算。 ③脱硫除尘用水 如锅炉房采用的是湿法脱硫,则涉及脱硫除尘用水,此部分用水分为两部分:配制碱液用水和脱硫装置补水。脱硫装置的补水比较复杂,实际工作中,猫姐使用类比法比较多。《烟气脱硫脱硝技术手册》中有很多案例,大家可以根据项目的实际脱硫法与案例进行类比,从而得出用水量。 在此,猫姐举一个例子:某集中供热锅炉房,使用石灰—石膏湿法脱硫工艺,设计脱硫效率85%,脱硫剂石灰用量4t/h。 手册中的“南宁化工集团公司石灰—石膏湿法烟气脱硫工程” 运行试验结果如下: 根据案例中的石灰和用水实测消耗量,类比出本项目的脱硫除尘用水量,见下表1。 表1 南宁化工集团公司与本项目脱硫除尘用水量类比分析表 序号项目南宁化工集团公司本项目 1 脱硫除尘法石灰—石膏法石灰—石膏法 2 除尘效率91%~91.7% ≥98%

供热工程课程设计计算书示例

课程大作业说明书 课程《供热工程》 班级 姓名 学号 指导教师

目录 1工程概况 (11) 1.1工程概况 (11) 1.2设计内容 (11) 2设计依据 (11) 2.1 设计依据 (11) 2.2 设计参数 (11) 3负荷概算 (11) 3.1 用户负荷 (11) 3.2 负荷汇总 (11) 4热交换站设计 (11) 4.1 热交换器 (11) 4.2 蒸汽系统 (11) 4.3 凝结水系统 (11) 4.4 热水供热系统 (11) 4.5补水定压系统 (11) 5室外管网设计 (11) 5.1 管线布置与敷设方式 (11) 5.2 热补偿 (11) 5.3 管材与保温 (11) 5.4 热力入口 (11)

课程作业总结 (11) 参考资料 1 工程概况 1.1 工程概况 本工程某小区供热系统设计,为1-6#楼房采暖提供热源。 各热用户如下: 1.1.2 工程名称:某小区供热系统 1.1.3 地理位置:城市道路以北 1.1.4 热用户:1#住宅、2#住宅、3#住宅、4#公寓、5#公寓、6#公寓 1.2 设计内容 某小区换热站及室外热网方案设计(参见附带图纸)

2设计依据 2.1设计依据 《采暖通风与空调设计规范》GB0019-2003 《城市热力网设计规范》CJJ34-2002 《城镇直埋供热管道工程技术规程》CJJ/T81-98 《公共建筑节能设计标准》50189-2005 《全国民用建筑工程设计技术措施-暖通空调.动力》-2003 《全国民用建筑工程设计技术措施节能专篇-暖通空调.动力》-2007 2.2 设计参数 冬季采暖设计均为水温:80/60oC 3 热负荷概算 3.1 热用户热负荷概算 Qn=qf*F 1#、12100*45=545500(w) 2#、12100*45=544500(w) 3#、12100*45=544500(w) 4#、4000*50=200000(w) 5#、4800*50=240000(w) 6#、5000*55=275000(w) 3.2 热负荷汇总

热力发电厂课程设计计算书

热 力 发 电 厂 课 程 设 计 指导老师:连佳 姓名:陈阔 班级:12-1

600MW 凝汽式机组原则性热力系统热经济性计算 计算数据选择为A3,B2,C1 1.整理原始数据的计算点汽水焓值 已知高压缸汽轮机高压缸进汽节流损失:δp 1=4%,中低压连通管压损δp 3=2%, 则 )(MPa 232.232.24)04.01('p 0=?-=; p ’4=(1-0.02)x0.9405=0.92169; 由主蒸汽参数:p 0=24.2MPa ,t 0=566℃,可得h0=3367.6kJ/kg; 由再热蒸汽参数:热段: p rh =3.602MPa ,t rh =556℃, 冷段:p 'rh =4.002MPa ,t 'rh =301.9℃, 可知h rh =3577.6kJ/kg ,h'rh =2966.9kJ/kg ,q rh =610.7kJ/kg 。 1.2编制汽轮机组各计算点的汽水参数(如表4所示)

1.1绘制汽轮机的汽态线,如图2所示。 1.假设给水泵加压过程为等熵过程; 2.给水泵入口处水的温度和密度与除氧器的出 口水的温度和密度相等; 3.给水泵入口压力为除氧器出口压力与高度差 产生的静压之和。 2.全厂物质平衡计算 已知全厂汽水损失:D l=0.015D b(锅炉蒸发量),锅炉为直流锅炉,无汽包排污。 则计算结果如下表:(表5)

3.计算汽轮机各级回热抽汽量 假设加热器的效率η=1 (1)高压加热器组的计算 由H1,H2,H3的热平衡求α1,α2,α3 063788.0) 3.11068.3051() 10791.1203(111fw 1=--?== ητααq 09067 .06 .9044.2967)6.9043.1106(063788.0/1)1.8791079(1h h -2 12fw 22 1 =--?--?= -= q d w d w )(αηταα154458 .009067.0063788.0212=+=+=αααs 045924 .02 .7825.3375) 2.7826.904(154458.0/1)1.7411.879(h h -3 32s23fw 3=--?--= -= q d d w w )(αηταα200382.0154458.0045924.02s 33=+=+=αααs (2)除氧器H4的计算 进除氧器的份额为α4’; 176 404.0587.4 3187.6) 587.4782.2(200382.0/1)587.4741.3(h h -4 53s34fw 4=--?--= -= q w w d )(’αηταα 进小汽机的份额为 αt 根据水泵的能量平衡计算小汽机的用汽份额αt 1 .31)(4t =-pu mx t h h ηηα 即 056938 .09 .099.0)8.25716.3187(1 .31=??-=t α 0.1011140.0569380.044173t 44=+=+=ααα’ 根据除氧器的物质平衡,求αc4 αc4+α’4+αs3=αfw 则αc4=1-α’4-αs3=0.755442 表6 小汽机参数表

换热站计算说明书

河北建筑工程学院 毕业设计计算说明书 系别:能环学院 专业:建筑环境与设备工程 班级:建环 121 姓名:任少朋 学号: 2012305127 起迄日期:16年02月21日~ 16年06月15日 设计(论文)地点:河北建筑工程学院 指导教师:贾玉贵职称:副教授 2016 年 06 月 15 日

摘要 随着人们生活水平的提高,集中供热被越来越多地采用,采用集中供暖可以减少能量的浪费,提高供热效率,减少环境污染,利于管理.同时采用集中供热可提高供热质量,提高人们的生活质量。 本题目是以张家口市桥西区恒峰热力有限公司集中供热系统M13号热力站供热区域的工程设计、改造为需用背景的实际工程。本工程为张家口市桥西区集中供热工程张家口市检察院换热站,属于原有燃煤锅炉房改造工程。供热区域总建筑面积:110000m2,总热负荷:约6400kw。 本次设计主要有工程概述、热负荷计算、供热方案确定、管道水力计算、系统原理图和平面布置图绘制、设备及附件的选择计算的内容。 除上述内容外,在计算说明书中尚需包括如下一些曲线:供回水温度随室外温度变化曲线,调节曲线。 本次设计要求使用CAD绘出图纸,其中包括设计施工说明、主要设备附件材料表,换热站设备平面布置图、换热站管道平面布置图、换热站流程图及相关剖面图等。 在换热站设计合理,安装质量符合标准和操作维修良好的条件下,换热站能够顺利地运行,对于采暖用户,在非采暖期停止运行期内,可以维修并且排除各种隐患,以满足在采暖期内正常运行的要求。 关键词:供热负荷设备选择计算及布置换热站系统运行板式换热器

目录 摘要 (1) 第一章设计概况 (4) 1.1设计题目 (4) 1.2设计原始资料 (4) 1.2.1 设计地区气象资料 (4) 1.2.2 设计参数资料 (4) 第二章换热站方案的确定 (5) 2.1换热站位置的确定 (5) 2.2换热站建筑平面图的确定 (5) 2.3换热站方案确定 (5) 2.4供热管道的平面布置类型 (5) 2.5管道的布置和敷设 (6) 2.6换热站负荷的计算 (6) 第三章换热站设备的选取 (7) 3.1换热器简介 (7) 3.1.1换热器概述 (7) 3.1.2换热器的分类 (7) 3.2换热器的选取 (9) 3.2.1换热器类型的选取 (9) 3.2.2换热器选型计算 (9) 3.3换热站内管道的水力计算 (10) 3.4循环水泵的选择 (11) 3.4.1循环水泵需满足的条件 (11) 3.4.2循环水泵选择 (11) 3.5补水泵的选择 (12) 3.5.1补水泵需该满足的条件 (12) 3.5.2补水泵的选择 (12) 3.6补水箱的选择 (14)

循环流化床锅炉热力计算

循环流化床锅炉热力计算

循环流化床锅炉热效率计算 我公司75t/h循环流化床锅炉,型号为UG75/3.82-M35,它的热效率计算为:

三、锅炉在稳定状态下,相对于1Kg燃煤的热平衡方程式如下: Q r=Q1+Q2+Q3+Q4+Q5+Q6 (KJ/Kg),相应的百分比热平衡方程式为: 100%=q1+q2+q3+q4+q5+q6 (%) 其中 1、Q r是伴随1Kg燃煤输入锅炉的总热量,KJ/Kg。 Q r= Q ar+h rm+h rs+Q wl 式中Q ar--燃煤的低位发热量,KJ/Kg;是输入锅炉中热量的主要来源。Q ar=12127 KJ/KgJ h rm--燃煤的物理显热量,KJ/Kg;燃煤温度一般低于30℃,这一项热量相对较小。 h rs--相对于1Kg燃煤的入炉石灰石的物理显热量,KJ/Kg;这一项热量相对更小。 Q wl--伴随1Kg燃煤输入锅炉的空气在炉外被加热的热量,KJ/Kg;如果一、二次风入口暖风器未投入,这一部分热量也可不计算在内。

2、Q1是锅炉的有效利用热量,KJ/Kg;在反平衡热效率计算中,是利用其它热损失来求出它的。 3、Q4是机械不完全燃烧热损失量,KJ/Kg。 Q4= Q cc(M hz C hz+M fh C fh+M dh C dh)/M coal 式中Q cc--灰渣中残余碳的发热量,为622 KJ/Kg。 M hz、M fh、M dh--分别为每小时锅炉冷渣器的排渣量、飞灰量和底灰量,分别为15、7、2t/h。 C hz、C fh、C dh--分别每小时锅炉冷渣器的排渣、飞灰和底灰中残余碳含量占冷渣器的排渣、飞灰和底灰量的质量百分比,按2.4%左右。 M coal--锅炉每小时的入炉煤量,为20.125t/h。 所以Q4= Q cc(M hz C hz+M fh C fh+M dh C dh)/M coal =622(15*2.4+7*2+3.5*2.4)/20.125 =1694 KJ/Kg q4= 100Q4/Q r(%) =100*1694/12127=13.9% 4、Q2是排烟热损失量,KJ/Kg。 Q2=(H py-H lk)(1-q4/100) 式中H py--排烟焓值,由排烟温度θpy (135℃)、排烟处的过量空气系数αpy(αpy =21.0/(21.0 - O2py))=1.24和排烟容积比热容C py=1.33 (KJ/(Nm3℃))计算得出,KJ/Kg。 H py=αpy (V gy C gy+ V H2O C H2O)θpy+I fh 由于I fh比较小可忽略不计 =1.24*( 5.05*1.33+0.615*1.51) *135 =1229

关于电站锅炉几种热力计算标准的研究

第18卷第1期现 代 电 力 Vo l.18 N o.1 2001年2月 M ODER N EL ECT R IC PO WER Feb .2001 文章编号:1007-2322(2001)01-0008-07 关于电站锅炉几种热力计算标准的研究 李 伟 王雅勤 (华北电力大学(北京)动能工程系,北京 102206) 摘 要:简要分析了原苏联1957年热力计算标准、1973年热力计算标准和美国CE 锅炉性能设计标准的区别,依据三种标准编制了计算程序,对HG -410/100-9型、HG-670/140-9型和DG-1025/177-2型锅炉分别进行计算,通过对计算结果的比较,初步总结了三种标准对锅炉不同容量的适用性,该项研究对锅炉工程技术人员有一定的参考价值。 关键词:锅炉;热力计算;计算标准;比较;适用性分类号:T K223.21 文献标识码:A 收稿日期:2000-12-20 作者简介:李伟,1977年生,女,硕士,主要从事世界各国电站锅炉热力计算方法的研究;王雅勤,1938年生,女,教授,主要从事锅炉整体CA D 系统的开发与应用。 锅炉热力计算是锅炉整体计算的核心。锅炉水动力计算、受压元件强度计算、通风阻力计算、炉墙热力计算、管壁温度计算、制粉系统热力计算、空气动力计算都要在锅炉热力计算的基础上才能进行。在锅炉设计、运行、技术改造的各个阶段,也都要用到热力计算的数据。然而,我国目前尚没有自己的电站锅炉行业的热力计算标准,锅炉的设计和校核计算大多采用原苏联的标准,其中包括1957年标准和1973年标准。近年来,引进了一些国外的标准,如哈尔滨锅炉厂引进CE 技术、北京锅炉厂引进巴威公司的技术等。 由于时间及技术背景的差异,这些标准的热力计算方法不尽相同,尤其是美国CE 标准和苏联标准的差别较大。作者根据苏联1957年标准、1973年标准及美国CE 标准编制了计算程序,对H G-410/100-9型、HG-670/140-9型、DG-1025/177-2型锅炉分别进行计算,通过对计算结果的比较,初步总结了这三种标准对不同的锅炉容量的适用性,这对于锅炉工程技术人员选用标准有一定的参考价值。 1 前苏联1957年与1973年标准的区别 1.1 炉内传热计算 (1)炉膛出口烟温

锅炉课设热力计算电子版

课程设计任务书 一、课程设计题目: 二、课程设计任务: 1.任务: 2.已知条件: 三、原始资料 1.锅炉结构及设计参数 锅炉型号为SHL10-1.3/350-WⅢ型,如图8-1所示,炉膛内前墙、后墙、炉顶及两侧墙均布置有水冷壁,炉膛后沿烟气流程布置有凝渣管、过热器、对流管束、鳍片式铸铁省煤器和管式空气预热器。锅炉设计给水温度105℃,给水压力1.4MPa,排污率5%,冷空气温度30℃,热空气温度150℃,排烟温度180℃,炉膛出口处负压20Pa。 设计煤种为山西阳泉无烟煤,煤质资料为:C ar=65.65%,H ar=2.64%,O ar=3.19%,N ar=0.99%,S ar=0.51%,M ar=8%,A ar=19.02%,V daf=7.85%,= Q24426kJ/kg。 ar, net 锅炉受热面的设计过量空气系数及漏风系数见表8-8。设计热力计算结果见表8-9。

kJ/kg 10781.5 735.2 2229.4 图8-1 SHL10-1.37/350-W Ⅲ型锅炉本体结构简图 1-炉膛;2-烟窗及凝渣管; 3-过热器;4-对流管束; 5-省煤器,6-烟道门;7-空气预热器;8-风室;9-炉排 四、热力计算步骤 (一)辅助计算

当net ar,ar fh A a 4190 Q ≤6时,飞灰焓fh h 可忽略不计;实际烟气焓值只需要计算设备所处温度环境对应的焓值,不必全部算。

(二)炉膛热力计算 炉膛结构如图8-2所示。 图8-2 炉膛结构 AB=3320mm;BC=2280mm;CD=3850mm;DE=1970mm; EF=3340mm;FG=980mm;GH=1470mm;HI=640mm 要求学生:在图8-2中标出与尺寸相关的结构名称,如炉膛宽度、深度等。 2.炉膛的传热计算

换热站计算及设备选型计算书

换热站计算及设备选型 1、采暖热负荷 a.小区热负荷 低区热负荷:3413kW 高区热负荷:1640kW (单体热量详见单体说明) b. 换热器的选择 1.加热热媒为城市热网提供的110--70℃热水。 2. 换热器高低区各选板式换热器两台; 低区每台板换换热量为:3657*1.5/2=2560KW, 高区每台板换换热量为:1750*1.5/2=1230KW, 当一台换热器出现故障时,另一台换热器满足75%换热量的要求。2.热水循环泵选择 a.低区 (1)水泵两用一备 每台泵的循环流量为:G=1.2*3413/2/10/1.163=176m3/h。 (2)热力站至最远用户距离为180*2m。比摩阻取8mmH2O。 a.管道输送阻力为180*2*8/1000=2.88 mH2O b.单体预留阻力取7 mH2O c.换热器及过滤器阻力取14 mH2O d.系统总阻力为(14+8+2.88)*1.15=27.6mH2O (3)选FLGR125-160型水泵三台,性能如下:

V=192m3/h H=28m 电机功率N=22KW b.高区 (1)水泵两用一备 每台泵的循环流量为:G=1.2*1640/2/10/1.163=85m3/h。 (2)热力站至最远用户距离为200*2m。比摩阻取8mmH2O。 a.管道输送阻力为200*2*8/1000=3.2mH2O b.单体预留阻力取7 mH2O c.换热器及过滤器阻力取14 mH2O d.系统总阻力为(14+7+3.2)*1.15=28.4mH2O (3)选FLGR80-160 I (A)型水泵三台,性能如下: V=93.5m3/h H=28m 电机功率N=11KW 3. 补水泵选择 a.低区 补水量按循环流量的2%确定,流量为:176*2*0.02=7.1 m3/h 定压点计算: 低区是1到15层,考虑到1-6号楼有两层商业,充水高度: 46.2m+4m=50.2m(考虑地下室高度) 定压高度:53m,水泵杨程:59m(考虑地势高差) 补水泵选CK5-12型多级泵(一用一备),水泵性能如下: V=9.6 m3/h H=59m N=3kW

热源热网计算书

热源热网计算书

————————————————————————————————作者: ————————————————————————————————日期: ?

目录 第一章设计参数 (5) 1.1设计地点 (5) 1.2热源参数 (5) 1.3面积热指标参数 (5) 1.4气象参数 (5) 第二章热负荷计算 (6) 2.1面积热指标的确定 (6) 2.2小区采暖热负荷的确定 (6) 2.3热水流量的确定 (7) 第三章供热方案 (8) 3.1供热热源的选取 (8) 3.2供热系统的确定 (8) 3.3管材的选取 (9) 3.4供热管网的布置与敷设 (9) 第四章水力计算 (10) 4.1水力计算步骤 (10) 4.2水力计算过程 (11) 第五章热力设备的计算与选择 (17) 5.1换热器的选取 (17) 5.2循环水泵的选取 (18) 5.3补给水泵的选取 (19) 5.4除污器的选取 (19) 第六章水压图的绘制 (20) 6.1水压图的意义 (20)

6.2水压图的绘制方法 (21) 6.3水压图的绘制过程 (21) 第七章其它附属设备的选取 (22) 7.1保温材料 (22) 7.2水箱的选取 (23) 7.3阀门的选取 (23) 参考文献 (23)

第一章设计参数 1.1设计地点 天津市 1.2热源参数 热源为区域锅炉房,一次网供回水温度为130-80℃,二次网供回水温度为95-70℃。 1.3面积热指标参数 我国《城市热力网设计规范》给出的推荐值,见下表: 单位:W/m2 建 筑 物类型住宅 居 住 区 综 合 学 校 办 公 医院 托儿 所 旅 馆 商 店 食 堂 餐 厅 影剧 院展 览馆 大礼堂 体育馆 面积 热指标40~50 4 5~ 5 5 5 0~ 7 5 5~70 50~ 60 5 5~7 0 1 0 0~1 3 0 80~ 105 100~15 0 1.4气象参数 天津市冬季室外温度为-9℃,冻土层厚度为0.69m。

换热站计算书.doc

鸿玺公馆集中供热换热站系统设计 一、设计方案说明 该换热站热源由武汉市政高温热水供热管网供给。根据前期负荷调查及换热站初步定位结果,计划在该项目本项目换热站定在1#楼2单元地下室二层,换热站面积约为150㎡,梁下净空高度4m 。距离主管道较近,而且主管道接入便利。同时距其他供热点近,有利于二次网的接入。 本次采用两台卧式水水容积式换热机组,参数:低区(-2F —14F)换热量590KW ,高区换热量(15F-30F)858KW 换热站一级网热媒参数为 110/70°c;二级网采暖热媒参数为55°c/45°c 换热站一次侧设计压力:1.6MPa,二次侧采暖设计压力:1.0MPa 。换热站采暖定压方式为变频补水定压,循环水泵变频运行。 换热器的选择与计算 根据设计原则及该换热站的情况 ,选择板式换热器。 α?=∑∑F Q 其中 ∑Q —累计热负荷,W ; ∑F —采暖建筑面积,2 m ; α—面积热指标,2/m W 。 鸿玺公馆换热站供热范围内建筑均为节能建筑,根据《采暖通风空调设计手册》,面积热指标按402/m W 计算。 高区采暖负荷 W 85840214514K Q =?=∑ 低区采暖负荷 W 5904014747K Q =?=∑ 纯逆流情况对数平均温差: C 38457055 110ln ) 4570()55110(ln 0min max min max =-----=???-?= '?t t t t t m 由此可得高区换热器的换热面积: m21.738 *9.0*3500858000 **=='?= m t B K Q F

由此可得低区换热器的换热面积: m 29.438 *9.0*3500589908 **=='?= m t B K Q F 根据已知冷、热流体的流量,初、终温度及流体的比热容决定所需的换热面积。初步估计换热面积,一般先假设传热系数,确定换热器构造,再校核传热系数K 值。实际换热面积取计算面积的1.25倍。 实际换热面积取6.1m 2 1. 分集水器 分集水器流量计算: h g j t t Q G -= 8601 式中 G 2 — 循环水泵的流量 ,h t / j Q — 负担建筑物的总供热量,MW g t — 回水温度,C 0 h t — 供水温度,C 0 可知G=31132kg/h 分集水器长度计算: L=130+125+80+100+80+100+80+100+80+100+120+80*2=1435mm 根据《采暖通风空调设计手册》查表5.5-52 可知低区分集水器D 取219mm 的筒体; 封头高度h 取80mm 循环水给回水管径为:DN1008273?φ 换热器二次网侧管径:DN1006219?φ 一次网侧总管径:DN1256219?φ

供热计算书

目录 第一章供暖系统设计热负荷................................................. 1.1体积热指标法.......................................................... 1.2面积热指标法.......................................................... 1.3城市规划指标法........................................................ 第二章热负荷延续时间图及年耗热量......................................... 2.1热负荷延续时间图...................................................... 2.2年耗热量.............................................................. 第三章供暖方案的确定..................................................... 3.1热源形式的选择........................................................ 3.2热媒种类的选择........................................................ 3.3热媒参数的确定........................................................ 3.4热网系统形式的选择.................................................... 3.4.1枝状管网........................................ 错误!未指定书签。 3.4.2环状管网.......................................................... 3.5供暖系统热用户与热水网路的连接方式.................................... 3.5.1无混合装置的直接连接 (6) 3.5.2装水喷射器的直接连接.............................................. 3.5.3装混合水泵的直接连接.............................................. 3.5.4间接连接.......................................................... 3.6供热管网的敷设方式的选择.............................................. 3.7供热管网系统定压方式的确定............................................ 第四章水力计算 .......................................................... 4.1热水网路水力计算的方法及步骤.......................................... 4.1.1确定热力网各管段流量.............................................. 4.1.2确定热水网路的主干线及其沿程比摩阻................................ 4.1.3支干线、支线水力计算.............................................. 4.1.4环路压力降平衡.................................................... 4.2本设计中某小区热水网路的水力计算...................................... 主干线计算........................................................ 支干线、支线计算.................................................. 第五章水压图的绘制....................................................... 5.1水压图................................................................ 5.2选定静水压曲线位置.................................................... 5.3选定回水管动水压曲线位置.............................................. 5.4选定供水管动水压曲线位置.............................................. 第六章水泵的选择计算..................................................... 6.1热网循环水泵.......................................................... 6.2补给水泵选择 (135)

(完整版)热力计算

1. 水冷壁、锅炉管束、省煤器、过热器、再热器、凝渣管、空气预热器的作用是什么? 水冷壁:(1)吸收炉膛内火焰的热量,是主要蒸发受热面,将烟气冷却到合适的炉膛出口温度。(2)保护炉墙。(3)悬吊敷设炉墙、防止炉壁结渣。凝渣管:是蒸发受热面,进一步降低烟气温度,保护烟气下游密集的过热受热面不结渣堵塞。锅炉管束:是蒸发受热面。过热器:是过热受热面。将锅炉的饱和蒸汽进一步加热到所需过热蒸汽的温度。省煤器:(1)降低排烟温度,提高锅炉效率,节省燃料。(2)充当部分加热受热面或蒸发受热面。空气预热器:(1)降低排烟温度提高锅炉效率。(2)改善燃料着火条件和燃烧过程,降低燃烧不完全损失,进一步提高锅炉效率。(3)提高理论燃烧温度,强化炉膛的辐射传热。(4)热空气用作煤粉锅炉制粉系统的干燥剂和输粉介质。 2. 水冷壁、省煤器、过热器、空气预热器可分为哪几类?各有什么优缺点? 水冷壁可分为光管水冷壁和膜式水冷壁。光管水冷壁优点:制造、安装简单。缺点:保护炉墙的作用小,炉膛漏风严重。膜式水冷壁:优点:对炉墙的保护好,炉墙的重量、厚度大为减少。炉墙只需要保温材料,不用耐火材料,可采用轻型炉墙。水冷壁的金属耗量增加不多。气密性好,大大减少了炉膛漏风,甚至也可采用微正压燃烧,提高锅炉热效率。蓄热能力小,炉膛燃烧室升温快,冷却亦快,可缩短启动和停炉时间。厂内预先组装好才出厂,可缩短安装周期,保证质量。缺点:制造工艺复杂。不允许两相邻管子的金属温度差超过50 度,因要把水冷壁系统制成整体焊接的悬吊框式结构,设计膜式水冷壁时必须保证有足够的膨胀延伸自由,还应保证人孔、检查孔、看火孔以及管子横穿水冷壁等处有绝对的密封性。省煤器:铸铁式省煤器:优点:耐腐蚀、耐磨损。耐内部氧腐蚀、耐外部酸腐蚀。缺点:承压能力低,铸铁省煤器的强度不高,即承压能力低。不能做成沸腾式,否则易发生水击,损坏省煤器;易积灰,表面粗糙,胁制片间易积灰、堵灰;易渗漏,弯头多,法兰连接,易渗水漏水。体积大,重量重,价格贵,铸铁省煤器管壁较厚,笨重。钢管式省煤器:优点:钢管式省煤器可用于任何压力和容量的锅炉,置于不同形状的烟道中。体积小,重量轻,价格低廉。过热器:水平过热器:疏水容易,固定困难。立式放置时刚好相反。空气预热

换热站设计计算书

设计计算书 工程名称 项目名称 计算条件 4 2 1、此站供热面积为 21×10 m ,采暖综合热指标按 60w/㎡计算。换热站为新建换热站,按有人值守站设计。小区供热负荷分高区、中区、低区两个部分,供热最高点位于一高层建筑,最高建筑层高30层,地下一层为汽车库,高区供热面积29000㎡,中区供热面积90500 ㎡,低区供热面积90500 ㎡;采暖形式为散热器采暖,室设计参数为80/60℃,中区设计压力为 1.6MPa,商业设计压力为 1.0MPa,高区设计压力为 1.6MPa。低环高差41.2m,高环高差78.9m。由于换热站在地下室只供本栋楼,二次网阻力损失忽略不计。 2、一次网系统设计参数为130/70℃,设计压力1.6MPa。供热系统的定压方式为补水泵变频定压。设计时,考虑运行温度,运行温度为110/70℃。

计算容 水力计算 一、最不利环路阻力损失计算 (一)、外网总沿程阻力计算: 热力入口至换热站 350m ,取平均比摩阻 60Pa/m ,计算损失: △h =2×350×60=0.042MPa yc (二)、局部阻力计算: 局部阻力取沿程阻力的 30%,即 △h =0.042×30%=0.0126Mpa (三)、换热站阻力损失:∑△h =0.10M Pa ZN (四)、用户压头损失:∑△h =0.05 M Pa YH (五)、总阻力计算: 总阻力损失为: △h =△h +△h +△h +△h YH YC ZN 低 =0.042+0.0126+0.10+0.05=0.2046 M Pa 二、管径选择 (一)一次网管径选择 低环一次网管径计算 供热一次网设计供回水温度 130℃/70℃, 热负荷:60×90500=5430kW 。 则一次网设计流量: G =3.6×5430/(4.2×60)=77.83t/h 运行温度为 110℃/60℃

循环流化床锅炉热力计算.

循环流化床锅炉热效率计算 我公司75t/h循环流化床锅炉,型号为UG75/3.82-M35,它的热效率计算为:

2、Q1是锅炉的有效利用热量,KJ/Kg;在反平衡热效率计算中,是利用其它热损失来求出它的。 3、Q4是机械不完全燃烧热损失量,KJ/Kg。 Q4= Q cc(M hz C hz+M fh C fh+M dh C dh)/M coal 式中Q cc--灰渣中残余碳的发热量,为622 KJ/Kg。 M hz、M fh、M dh--分别为每小时锅炉冷渣器的排渣量、飞灰量和底灰量,分别为15、7、2t/h。 C hz、C fh、C dh--分别每小时锅炉冷渣器的排渣、飞灰和底灰中残余碳含量占冷渣器的排渣、飞灰和底灰量的质量百分比,按2.4%左右。 M coal--锅炉每小时的入炉煤量,为20.125t/h。 所以Q4= Q cc(M hz C hz+M fh C fh+M dh C dh)/M coal =622(15*2.4+7*2+3.5*2.4)/20.125 =1694 KJ/Kg q4= 100Q4/Q r(%) =100*1694/12127=13.9% 4、Q2是排烟热损失量,KJ/Kg。 Q2=(H py-H lk)(1-q4/100) 式中H py--排烟焓值,由排烟温度θpy (135℃)、排烟处的过量空气系数αpy(αpy =21.0/(21.0 - O2py))=1.24和排烟容积比热容C py=1.33 (KJ/(Nm3℃))计算得出,KJ/Kg。 H py=αpy (V gy C gy+ V H2O C H2O)θpy+I fh 由于I fh比较小可忽略不计 =1.24*( 5.05*1.33+0.615*1.51) *135

换热站设备选型计算书

XXX换热站计算书 一、项目概况: XXX换热站总供热面积为17.5万㎡,共8幢楼,其中低区8.2万㎡,最高建筑高度50.9m,高区9.3万㎡,最高建筑100.4m,换热站位于地下二层车库,站房标高-5.8m。本居住小区均为节能建筑,本设计采暖热指标取用32W/㎡。一次侧供/回水温度130/70℃(校核温度 110/70℃),设计压力1.6MPa,二次侧供/回水温度45/35℃,设计压力1.6MPa。 站内建设4个机组1#机组为5,6,7,8号楼高区机组,供热面积约45272㎡,按6万㎡设计;2#机组为为1,2,3,4号楼高区机组,供热面积约47739㎡,按6万㎡设计;3#机组为5,6,7,8号楼低区机组,供热面积约41369㎡,按6万㎡设计;4#机组为1,2,3,4号楼低区机组,供热面积约40516㎡,按6万㎡设计。 二、管径 1.一次网管径: 240×32×3.6/(4.18×40)=165.4m3/h 选取DN250 比摩阻=34pa/m 流速0.63m/s 2.二次网管径: 1#,2#,3#,4#机组:60×32×3.6/(4.18×10)=165.4 m3/h 选取DN250 比摩阻=34pa/m 流速0.63m/s 3.补水管径 补水量0.02×661.6=13.232

选取DN125 比摩阻=10.6pa/m 三、 设备选型 1. 1#机组: 1) 板式换热器: 板换面积按每平方米供400平方米计算,得板式换热器面积150㎡ 采暖热指标按32w/㎡考虑 板片材质:AISI 316L ,板片厚度:0.6mm 板式换热器二次侧压力损失≯3m 板式换热器一次侧压力损失≯5m 2) 循环水泵: 循环水泵扬程为: H=K (H1+H2+H3) 式中:H ——循环水泵扬程(m ) K ——安全系数,取1.10~1.20。 H1——热力站内部压力损失,一般取10~15m H2——最不利环路供回水干管压力损失(m ) H3——最不利环路末端用户压力损失(m ) 站内损失按8米考虑,用户端损失按5米考虑,最不利环路损失经计算为6米得循环水泵扬程为H=1.2×(8+5+6)=22.8m 循环水泵流量为: 310) 21(6.3-?-=t t c Q G 式中:G ——循环水泵总流量(t/h )

热力计算

1.水冷壁、锅炉管束、省煤器、过热器、再热器、凝渣管、空气预热器的作用是什么? 水冷壁:(1)吸收炉膛内火焰的热量,是主要蒸发受热面,将烟气冷却到合适的炉膛出口温度。(2)保护炉墙。(3)悬吊敷设炉墙、防止炉壁结渣。 凝渣管:是蒸发受热面,进一步降低烟气温度,保护烟气下游密集的过热受热面不结渣堵塞。锅炉管束:是蒸发受热面。过热器:是过热受热面。将锅炉的饱和蒸汽进一步加热到所需过热蒸汽的温度。省煤器:(1)降低排烟温度,提高锅炉效率,节省燃料。(2)充当部分加热受热面或蒸发受热面。空气预热器:(1)降低排烟温度提高锅炉效率。(2)改善燃料着火条件和燃烧过程,降低燃烧不完全损失,进一步提高锅炉效率。(3)提高理论燃烧温度,强化炉膛的辐射传热。(4)热空气用作煤粉锅炉制粉系统的干燥剂和输粉介质。 2.水冷壁、省煤器、过热器、空气预热器可分为哪几类?各有什么优缺点? 水冷壁可分为光管水冷壁和膜式水冷壁。光管水冷壁优点:制造、安装简单。缺点:保护炉墙的作用小,炉膛漏风严重。膜式水冷壁:优点:对炉墙的保护好,炉墙的重量、厚度大为减少。炉墙只需要保温材料,不用耐火材料,可采用轻型炉墙。水冷壁的金属耗量增加不多。气密性好,大大减少了炉膛漏风,甚至也可采用微正压燃烧,提高锅炉热效率。蓄热能力小,炉膛燃烧室升温快,冷却亦快,可缩短启动和停炉时间。厂内预先组装好才出厂,可缩短安装周期,保证质量。缺点:制造工艺复杂。不允许两相邻管子的金属温度差超过50度,因要把水冷壁系统制成整体焊接的悬吊框式结构,设计膜式水冷壁时必须保证有足够的膨胀延伸自由,还应保证人孔、检查孔、看火孔以及管子横穿水冷壁等处有绝对的密封性。 省煤器:铸铁式省煤器:优点:耐腐蚀、耐磨损。耐内部氧腐蚀、耐外部酸腐蚀。缺点:承压能力低,铸铁省煤器的强度不高,即承压能力低。不能做成沸腾式,否则易发生水击,损坏省煤器;易积灰,表面粗糙,胁制片间易积灰、堵灰;易渗漏,弯头多,法兰连接,易渗

10吨锅炉计算书

某工业锅炉房工艺设计 原始资料 1.地区:哈尔滨 2.热负荷资料 3.煤质资料 ⑴煤种:烟煤 ⑵煤元素元素分析 C y=55.5%H y=3%O y=3.8%N y=0.9%S y=0.5% A y=26.3%W y=10% 4.水质资料 水源:深水井水压0.3MPa 总硬度:H=4.84mge/L pH=7.8 溶解氧含量:3.5mge/L 5.气象资料 ⑴采暖室外计算温度:-26° ⑵采暖期室外平均温度:-9.5°

⑶采暖天数:179天 ⑷最大冻土层深度:2米 ⑸海拔高度:127.95米、 ⑹大气压力:冬:745.9mmHg 夏:735.9mmHg 一、热负荷计算 1.小时最大计算热负荷 D max=k0(k1D1+k2D2+k3D3+k4D4)k5D5 k0——室外管网散热损失和漏损系数,取1.10 k1——采暖热负荷同时使用系数,取1.0 k2——通风热负荷同时使用系数,取0.8~1.0 k3——生产热负荷同时使用系数,取0.7~0.9 k4——生活热负荷同时使用系数,取0.5 D1——采暖设计热负荷,为5.88t/h D2——通风设计热负荷,为6.2t/h D3——生产最大热负荷,为0.88t/h D4——生活最大热负荷,为0.6t/h 所以;= max D 1.15(0.8?5.88+1.0?6.2+1.1?0.88+0.5?0.6)=14 1 t/h 2.小时平均热负荷 D pj=k0(D pj1+D pj2+D pj3+D pj4)+D pj5 D pj1——采暖小时平均热负荷

D pj1= 1D t t t t w n pj n -- 由原始气象资料查得:t n =18℃ t pj =-9.5℃ t w =-26℃ ∴D pj1= ) 26(18) 5.9(18----*1.7=1.063t/h D pj2——通风小时平均热负荷 由采暖小时平均热负荷得 D pj2=0.875t/h D pj3——生产用热平均热负荷 D pj3=3.5t/h D pj4——生活平均热负荷 D pj4=8 1D 4=8 1*0.9=0.1125 D pj5——锅炉房用热平均热负荷 D pj5=0.4 ∴D pj =1.063+0.875+3.5+0.1125+0.4=5.9505t/h 二、锅炉型号及台数的确定 本设计锅炉最大计算热负荷14t/h 及生产、采暖和生活用均不大于0.6MP ,本设计选用锅炉型号为:QXL10-1.25/95/70-A Ⅱ型锅炉三台,两用一备,负荷率约在80%左右。 主要技术参数如下: 额定供热量:14t/h 额定设计压力: 1.25MPa 供水温度:95℃ 回水温度:70℃ 锅炉受热面:H=390.9m 2 设计效率:η=80%

相关主题
文本预览
相关文档 最新文档