当前位置:文档之家› 数学建模作业习题

数学建模作业习题

数学建模作业习题
数学建模作业习题

数学建模作业习题

1.4 在1.3节“椅子能在不平地面上放稳吗”的假设条件中,将四角连线呈正方形改为呈长方形,其余不变,构造模型求解。

解:在地面建立坐标系设椅子对角线ac 开始与之夹角为0度,用f (x )表示ac 腿与地面的距离和,g (x )表示bd 与之距离和,则可知f (x ),g (x )是x 的连续函数,对任意的x 有f (x )·g (x )=0,起始时f (x )=0,g (x )﹥0.现将椅子旋转180度,a ,c 和b ,d 分别互掉位置,且f (x )先增加后减小为0. g (x )先减小为0后又变为g (x )﹥0。 令h (x )= f (x )-g (x ),有以上条件可知在0与180度之间必有一个位置使得h (x 1)=0,而且f (x 1)·g (x 1)=0,所以可得f (x 1)=g (x 1)=0,可知其为长方形是亦可以放稳。

1.5 模仿1.4节商人过河问题中的状态转移模型,做下面问题:人带着猫、鸡、米过河,船除需要人划之外,最多能载猫、鸡、米之一,而当人不在场时猫吃鱼、鸡吃米,试设计一个安全渡河方案,并使渡河次数尽量最少。 解:人、猫、鸡、米分别记做i=1,2,3,4,当i 在此岸时记x i =1,否则记x i =0,则此岸的状态可用s=(x 1,x 2,x 3,x 4,)表示。记s 的反状态为s '=(1-x 1,1-x 2,1-x 3,1-x 4),允许状态集合S={(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1,),(1,0,1,0)及它们的5个反状态}。

决策为乘船方案,记作d=(u 1,u 2,u 3,u 4),当i 在船上时记做u i =1,否则记做u i =0,允许决策集合为D={(1,1,0,0),(1,0,1,0),(1,0,0,1),(1,0,0,0)}。 记第k 次渡河前此案的状态为s k ,第k 次渡河的决策为d k ,则状态转移律为s k+1=s k +(-1)∧d ·d k ,设计安全过河方案归结为求决策序列d 1,d 2,···,d n ∈D ,是状态s k ∈S 按状态转移律有初始状态s 1=(1,1,1,1,),经n 步到达s n+1=

1.7 说明1.5节中Logistic 模型(9)可以表示为x(t ))

(01t t r m

e x --+=

,其中0t 是

人口增长出现拐点的时刻,并说明0t 与r ,m x 的关系。

解:当0t t =时,2/m x x =,立即可得)

(01)(t t r m e x t x --+=,且.ln 10

0x x x r t m -=

1.8 假定人口增长服从这样的规律:时刻t 的人口为x (t ),t 到t t ?+时间内人口的增量与)(t x x m -成正比(其中m x 为最大容量)。是建立模型并求解。 解:

r x x r dt

dx

m ),(-=为比例系数,0)0(x x =,所以解得 rt m m e x x x t x ---=)()(0。

1.9 回答下列问题:

(1)甲早八点从山下旅店出发,沿一条路径上山,下午五点到达山顶并留宿次日早八点从同一路径下上,下午五点回到旅店,乙说,甲比在两天中午的同一时刻经过路径的同一地点,为什么。

(2)37支球队进行冠军争夺赛,每轮比赛中出场的没两支球队中的胜者及轮空者进入下一轮,直至比赛结束。问共进行多少场比赛,进行多少轮,如果是n

支球队呢。

(3)甲乙两站之间有电车相通,每个十分钟甲乙两站互发一趟车,但发车的时刻不一定相同。甲乙之间有一中站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那辆车,如果发现100天当中约有90天到达甲站约有10天到达乙站,问开往甲乙两站的电车经过丙站的时刻是如何安排的。

(4)某人家住在t市在他乡工作,每天下班后乘火车于六点抵达t市车站,他妻子驾车准时到车站接他回家。一日他提前下班搭早一班火车与五点半到达车站,随即步行回家,他妻子像往常一样驾车前来,在半路上遇见他,即接他回家,如此发现比往常提前了十分钟,问他步行了多长时间。

(5)一男孩和一女孩分别在离家两千米和一千米且方向相反的两所学校上学,每天同时放学分别以四千米每小时和两千米每小时的速度步行回家,一小狗以六千米每小时的速度由男孩处奔向女孩又从女孩处奔向南海,如此往返直到回到家中问小狗走了多少路程。

解:(1)设想有两个人一人上山一人下山,同一天出发,沿同一路径,必定相遇。

(2)36场比赛,因为除冠军外每队都要负一场;六轮比赛,因为两队赛一轮,三十二队赛五轮。n队需赛n-1场,若2∧k-1﹤n≤2∧k,则需要赛n轮。

(3)不妨设从甲到乙经过丙站的时刻表是:8:00,8:10,8:20,···,那么从乙到甲经过丙站的时刻表应该是:8:09,8:19,8:29,···。

(4)步行了25分钟。设想他的妻子驾车遇到他后,先带他去车站,再回家,汽车多行驶了十分钟,于是带他去车站这段路程骑车跑了五分钟,而到车站的时间是6:00,所以妻子驾车遇到他的时刻是5:55.

(5)小狗跑了3千米,因为其一共跑了半小时,所以路程为3千米。

4.2 一家出版社准备在某市建立两个销售代理点,向7个区的大学生售书,每个区的大学生数量(单位:千人)已经表示在图上。每个销售代理点只能向本区

和一个相邻区的大学生售书,这两个销售代理点应该建在何处,才能使所供应的大学生的数量最大?建立该问题的整数线性规划模型并求解。

解:将大学生数量为34,29,42,21,56,18,71的区分别标号为

1,2,3,4,5,6,7区,划出区与区之间的如下相邻关系图:

记i r 为第i 区的大学生人数,用0-1变量ij x =1表示(i ,j )区得大学生由一个销售代理点提供图书(i

j

ij ij x x i ?

}1,0{∈ij x 即 Max

2

675647464534252423131267

56474645342524231312..8974923977638550717663≤++++++++++++++++++++x x x x x x x x x x x t s x x x x x x x x x x x

1

0111

1

1

11

67476756465645254746453424242313252423121312or x x x x x x x x x x x x x x x x x x x x x x x =≤+≤++≤++≤++++≤++≤+++≤+ 用LINDO 求解得到:最优解为14725==x x (其他为0),最优值为177人。

4.3 某储蓄所每天的营业时间是上午9:00到下午5:00.根据经验,每天不同时9:00到下午5:00工作,但中午12:00到下午2:00之间必须安排一个小时的午餐时间。储蓄所每天雇佣不超过三名的半时服务员,每个半时服务员必须连续工

作四小时,报酬为40元。问该储蓄所应如何雇佣全时和半时服务员?如果不能雇佣半时服务员,每天至少增加多少费用?如果雇佣半时服务员的数量没有限制,每天可以减少多少费用? 解:设储蓄所每天雇佣的全时服务员中以12:00到1:00为午餐时间的有

1x 名,以1:00到2:00为午餐时间的有2x 名;半时服务员中从

9:00,10:00,11:00,12;00,1:00开始工作的分别为54321,,,,y y y y y 名,列出模型

,,,,,,88656434..404040404010010054321215432154215432154321432123212121211215432121≥≥++++≥+++≥++++≥++++≥++++≥++++≥+++≥++++++++y y y y y x x y y y y y y y x x y y y x x y y y y x y y y y x y y y x x y y x x y x x t s y y y y y x x Min

且为整数,

求到最优解,1,0,2,0,0,4,35432121=======y y y y y x x 最小费用为820元。 如果不能雇佣半时服务员,则最优解为

0,0,0,0,0,6,55432121=======y y y y y x x ,最小费用为1100元,每天至少增

加280元。

如果雇佣的半时服务员的数量没有限制,则最优解为

,8,2,0,0,4,0,05432121=======y y y y y x x 最小费用为560元,每天减少260

元。

4.4 一家保姆服务公司专门向雇主提供保姆服务,根据估计,下一年的需求是:春季6000人日,夏季7500人日,秋季5500人日,冬季9000人日。公司新招聘的保姆必须经过5天培训才能上岗,每个保姆每季度工作(包括培训)65天,保姆从公司得到报酬而不是从雇主那里得到报酬,每人每月800元,春季开始时公司有120名保姆,每个季度结束后将有15%的保姆自动辞职。

(1)如果如果公司不允许解雇保姆,请你为公司制定下一年的招聘计划,哪些季度的需求增加不影响招聘计划?可以增加多少? (2)如果公司允许在每个季度结束后解雇保姆,请你为公司制定下一年的招聘计划。

解:(1)设4个季度开始时公司新招聘的保姆数量分别为4321,,,x x x x 人,4个季度开始时保姆总数量分别为4321,,,S S S S 人,以本年度付出的总报酬最少为

目标,则模型为

,,,,,,,85.085.085.01205900065555006557500655600065..432143214

3432321211443322114321≥+=+=+=+=+≥+≥+≥+≥+++S S S S x x x x x S S x S S x S S x S x S x S x S x S t s S S S MinS

用LINDO 求解得到:

4个季度开始时公司新招聘的保姆数量分别为0,15,0,59人。

春季和秋季需求的增加不影响招聘计划,可分别增加1800和936人日。 (2)设4个季度开始时公司新招聘的保姆数量分别为4321,,,x x x x 人,4个季度结束时解雇保姆的数量分别是4321,,,y y y y ,4个季度开始时保姆总数量分别为

4321,,,S S S S 人,以本年度付出的总报酬最少为目标,则模型为

,,,,,,,,,,85.085.085.01205900065555006557500655600065..432132143213

434232312121

1443322114321≥-+=-+=-+=+=+≥+≥+≥+≥+++S S S S y y y x x x x y x S S y x S S y x S S x S x S x S x S x S t s S S S MinS

用LINDO 求解可得到,第二个季度开始招聘15人,结束时解雇15人,第四季度开始时招聘72人。

4.6 某公司将四种不同的含硫液体原料(分别记为甲、乙、丙、丁)混合生产两种产品(分别记为A 、B )。按照生产工艺的要求,原料甲、乙、丁必须首先倒入混合池中混合,混合后的液体在分别与原料丙混合生产A 、B ,已知原料甲、乙、丙、丁的含硫量分别是3,1,2,1(%),进货价格分别为6,16,10,15(千元\吨);产品A 、B 的含硫量分别不能超过2.5,1.5(%),售价分别为9,15(千元\吨),根据市场信息,原料甲乙的供应没有限制,原料丁的供应最多为50吨;产品A 、B 的市场需求量分别为100,200吨,问应如何安排生产?

解:设11,z y 分别是产品A 中来自混合池和原料丙的吨数,22,z y 分别是产品

B 中来自混合池和原料丙的吨数;混合池中原料甲、乙、丁所占比例分别为

421,,x x x ,优化目标是总利润最大,即

2124211421)1015()109()1516615()151669(z z y x x x y x x x Max -+-+---+---

约束条件为:

(1)原料最大供应量限制:50)(214≤+y y x

(2)产品最大需求量限制:200,1002211≤+≤+z y z y (3)产品最大含硫量限制: 对产品A ,

5.22)3(1

11

1421≤++++z y z y x x x ,

对产品B ,类似可得05.0)5.13(22321≤+-++z y x x x 。 (4)其他限制:0,,,,,,,12121421321≥=++z z y y x x x x x x 。

用LINDO 求解得到结果为:,100,5.02242====z y x x 其余为0,目标函数值为450. 4.7 某钢管零售商从钢管厂进货,将钢管按照客户的要求切割后售出,从钢管厂进货时得到的原料钢管长度都是1850mm 。现有一客户需要15根290mm ,28根315mm 、21根350mm 和30根455mm 的钢管。为了简化生产过程,规定所使用的切割模式不超过四种,使用频率最高的一种切割模式按一根原料钢管价格的1/10增加费用,是用次之的切割模式按一根原料钢管价格的2/10增加费用,以此类推,且每种切割模式下的切割次数不能太多(一根原料钢管最多生产5根产品)。此外为了减少余料浪费,每种切割模式下的余料浪费不能超过100mm 。为了使总费用最少,应该如何下料?

解: 由于所有可能的切割模式很多,故不再用枚举切割模式的方法建模,而是建立整数非线性规划模型。

记b=(290,315,350,455)为四种产品的长度,n=(15,28,21,30)为四种产品的需求量。设第i 种切割模式下没根原料钢管生产四种产品的数量分别为,,,,4321i i i i r r r r 该模式使用i x 次,即使用该模式切割i x 根原料钢管(i=1,2,3,4)。且切割模式次序是按照使用频率从高到低排列的。 约束条件为

(1) 产品数量:∑=≥4

1i j ji i n r x )4,3,2,1(=j

(2) 切割模式:引入0-1变量1=i y 表示使用第i 种模式,0=i y 表示不使用(i=1,2,3,4),

∑=≤≤4

118501750j i ji j i y r b y (i=1,2,3,4)

∑=≤≤4

1

5j i ji i y r y (i=1,2,3,4)

i i i y x y 30≤≤ (i=1,2,3,4) i i y y ≤+1 (i=1,2,3) i i x x ≤+1 (i=1,2,3)

(3) 为了减少搜索空间引入的约束:使用原料钢管不可能少于【∑=4

11850/j j j n b 】;

一根原料钢管最多生产5根产品,使用的原料钢管不可能少于【∑=4

1

5/j j n 】。所以

∑∑∑====≥41

4

1

41

19]}5/[],1850/max {[j j j j j I i n n b x

优化目标为

)1.0(4

1i i i y i x Min ∑=??+

用LINDO 求解得到:只使用三种切割模式,分别使用9,7,3(次);每根原料钢管用第一种模式生产四种产品各1,2,0,2(根),用第二种模式生产四种产品各0,1,3,1(根),第三种模式生产四种产品各2,1,0,2(根);目标函数值为19.6.

7.1 对于7.1节蛛网模型讨论下列问题:

(1)因为一个时间段上市的商品不能立即售完,其数量就会将影响到下一阶段的价格,所以第k+1时段的价格1+k y 由第k+1和第k 时段的数量1+k x 和k x 决定。如果仍设1+k x 只取决于k y ,给出稳定平衡的条件,并与7.1节进行比较。 (2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和

1-k y 确定。是分析稳定平衡的条件是否还会放宽。

解:简单地假设1+k y 由1+k x 和k x 的平均值决定,模型为

),(0

),2

(

0010101>-=->-+-=-++-ββααy y x x x x x y y k k k

k k 得01)1(222x x x x k k k αβαβαβ+=++++,与7.1节(B )的结果相同,平衡点稳定的条件仍为2<αβ。

(2)设1+k x 也由1,+k k y y 的平均值决定,模型为

),2(0),2

(

01

010101>-+=->-+-=--+++ββααy y y x x x x x y y k k k k

k k

得c c x x x x k k k k ,24123=++++++αβαβαβ由00,,,y x βα决定,其特征方程为

02423=+++αβαβλαβλλ。该方程的所有特征根1||<λ的条件下仍为2<αβ。

7.5 在7.4节按年龄分组的种群增长模型中,设一群动物的最高年龄为15岁,每五岁一组,分成三个年龄组,各组的繁殖率为3,4,0321===b b b ,存活率为

,4/1,2/121==s s 开始时三组各有1000只,求十五年后各组分别有多少只,以及

时间充分长以后种群的增长率和 按年龄组的分布。

解:15年后各组分别由14375只、1375只、875只。固有增长率是1.5.稳定的按年龄组的分布为T )18/1,3/1,1(。

王春阳 1012101213

数学建模典型例题

一、人体重变化 某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克?天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。 一、问题分析 人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存的热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重的变化是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重的变化量为W(t+△t)-W(t); 身体一天内的热量的剩余为(10467-5038-69*W(t)) 将其乘以△t即为一小段时间内剩下的热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt; 四、模型求解 d(5429-69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即: W(t)=5429/69-(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i 的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)ij

数学模型第三版课后习题答案.doc

《数学模型》作业解答 第七章( 2008 年 12 月 4 日) 1.对于节蛛网模型讨论下列问题: ( 1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第 k 1时段的价格y k 1由第k 1 和第 k 时段的数量x k 1和x k决定,如果仍设x k 1仍只取

决于 y k ,给出稳定平衡的条件,并与节的结果进行比较 . ( 2)若除了 y k 1 由 x k 1 和 x k 决定之外, x k 1 也由前两个时段的价格 析稳定平衡的条件是否还会放宽 . 解:( 1)由题设条件可得需求函数、供应函数分别为: y k 1 f x k 1 x k ) ( 2 x k 1 h( y k ) 在 P 0 (x 0 , y 0 ) 点附近用直线来近似曲线 f , h ,得到 y k 1 y 0 ( x k 1 x k x 0 ), 2 x k 1 x 0 ( y k y 0 ) , 由( 2)得 x k 2 x 0 ( y k 1 y 0 ) ( 1)代入( 3)得 x k 2 x 0 ( x k 1x k x 0 ) 2 2x k 2 x k 1 x k 2x 0 2 x 0 对应齐次方程的特征方程为 2 2 ( ) 2 8 特征根为 1, 2 4 y k 和 y k 1 确定 . 试分 (1) ( 2) (3) 当 8 时,则有特征根在单位圆外,设 8 ,则

1,2 ( ) 2 ( ) 2 8 42 2 4 1,2 1 2 即平衡稳定的条件为 2与 P 207 的结果一致 . ( 2)此时需求函数、供应函数在 P 0 (x 0 , y 0 ) 处附近的直线近似表达式分别为: y k 1 y 0 ( x k 1 x k x 0 ), ( 4) 2 x k 1 x 0 ( y k y k 1 y 0 ) , ( 5) 2 由( 5)得, (x x 0 ) β(y y y k 1 y 0 ) ( 6 ) 2 k 3 k 2 将( 4)代入( 6),得 2( x k 3 x 0 ) ( x k 2 x k 1 x 0 ) ( x k 1 x k x 0 ) 2 2 4 x k 3x k 2 2 x k 1 x k 4 x 0 4 x 0 对应齐次方程的特征方程为 4 3 2 2 0 (7) 代数方程( 7 )无正实根,且 αβ , , 2 4 不是( 7)的根 . 设( 7)的三个非零根分 别为 1, 2, 3,则 1 2 3 4 1 2 2 3 3 1 2 1 2 3 4 对( 7)作变换: , 则 12 3 q 0, p 其中 p 1 (2 2 2 ), q 1(833 2 2 ) 4 12 4 123 6

数学建模大作业

兰州交通大学 数学建模大作业 学院:机电工程学院 班级:车辆093 学号:200903812 姓名:刘键学号:200903813 姓名:杨海斌学号:200903814 姓名:彭福泰学号:200903815 姓名:程二永学号:200903816 姓名:屈辉

高速公路问题 1 实验案例 (2) 1.1 高速公路问题(简化) (2) 1.1.1 问题分析 (3) 1.1.2 变量说明 (3) 1.1.3 模型假设 (3) 1.1.4 模型建立 (3) 1.1.5 模型求解 (4) 1.1.6 求解模型的程序 (4) 1实验案例 1.1 高速公路问题(简化) A城和B城之间准备建一条高速公路,B城位于A城正南20公里和正东30公里交汇处,它们之间有东西走向连绵起伏的山脉。公路造价与地形特点有关,图4.2.4给出了整个地区的大致地貌情况,显示可分为三条沿东西方向的地形带。 你的任务是建立一个数学模型,在给定三种地形上每公里的建造费用的情况下,确定最便宜的路线。图中直线AB显然是路径最短的,但不一定最便宜。而路径ARSB过山地的路段最短,但是否是最好的路径呢? A B 图8.2 高速公路修建地段

1.1.1 问题分析 在建设高速公路时,总是希望建造费用最小。如果要建造的起点、终点在同一地貌 中,那么最佳路线则是两点间连接的线段,这样费用则最省。因此本问题是一个典型的最优化问题,以建造费用最小为目标,需要做出的决策则是确定在各个地貌交界处的汇合点。 1.1.2 变量说明 i x :在第i 个汇合点上的横坐标(以左下角为直角坐标原点),i =1,2,…,4;x 5=30(指目的地B 点的横坐标) x=[x 1,x 2,x 3,x 4]T l i :第i 段南北方向的长度(i =1,2, (5) S i :在第i 段上地所建公路的长度(i =1,2, (5) 由问题分析可知, () ()() () 2 542552 432442 322332212 222 1211x x l S x x l S x x l S x x l S x l S -+=-+=-+=-+=+= C 1:平原每公里的造价(单位:万元/公里) C 2:高地每公里的造价(单位:万元/公里) C 3:高山每公里的造价(单位:万元/公里) 1.1.3 模型假设 1、 假设在相同地貌中修建高速公路,建造费用与公路长度成正比; 2、 假设在相同地貌中修建高速公路在一条直线上。在理论上,可以使得建造费用最少, 当然实际中一般达不到。 1.1.4 模型建立 在A 城与B 城之间建造一条高速公路的问题可以转化为下面的非线性规划模型。优化目标是在A 城与B 城之间建造高速公路的费用。 () 4,3,2,1300. .)(min 5142332211=≤≤++++=i x t s S C S C S C S C S C x f i

数学建模作业——实验1

数学建模作业——实验1 学院:软件学院 姓名: 学号: 班级:软件工程2015级 GCT班 邮箱: 电话: 日期:2016年5月10日

基本实验 1.椅子放平问题 依照1.2.1节中的“椅子问题”的方法,将假设中的“四腿长相同并且四脚连线呈正方形”,改为“四腿长相同并且四脚连线呈长方形”,其余假设不变,问椅子还能放平吗?如果能,请证明;如果不能,请举出相应的例子。 答:能放平,证明如下: 如上图,以椅子的中心点建立坐标,O为原点,A、B、C、D为椅子四脚的初始位置,通过旋转椅子到A’、B’、C’、D’,旋转的角度为α,记A、B两脚,C、D两脚距离地面的距离为f(α)和g(α),由于椅子的四脚在任何位置至少有3脚着地,且f(α)、g(α)是α的连续函数,则f(α)和g(α)至少有一个的值为0,即f(α)g(α)=0,f(α)≥ 0,g(α)≥0,若f(0)>0,g(0)=0,

则一定存在α’∈(0,π),使得 f(α’)=g(α’)=0 令α=π(即椅子旋转180°,AB 边与CD 边互换),则 f(π)=0,g(π)>0 定义h(α)=f(α)-g(α),得到 h(0)=f(0)-g(0)>0 h(π)=f(π)-g(π)<0 根据连续函数的零点定理,则存在α’∈(0,π),使得 h(α’)=f(α’)-g(α’)=0 结合条件f(α’)g(α’)=0,从而得到 f(α’)=g(α’)=0,即四脚着地,椅子放平。 2. 过河问题 依照1.2.2节中的“商人安全过河”的方法,完成下面的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米之一,而当人不在场时,猫要吃鸡、鸡要吃米,试设计一个安全过河的方案,并使渡河的次数尽量的少。 答:用i =1,2,3,4分别代表人,猫,鸡,米。1=i x 在此岸,0=i x 在对岸,()4321,,,x x x x s =此岸状态,()43211,1,1,1x x x x D ----=对岸状态。安全状态集合为 :

数学建模习题

4 美术馆悬挂着一副高h 的画,画的下边比一个观众的眼睛高d ,这个观众站在距离墙多 远的距离才是最佳视角? 假设:人与墙的距离为x x d = αtan x h d += +)tan(βα ))tan((tan αβαβ-+= α βαα βαt a n )t a n (1t a n )t a n (?++-+= x h d x d x h +?+= 1 x h d d x h )(+?+ = ∵ab b a 2≥+ 当b a =时 ab b a 2=+ ∴) (2tan h d d h +?= β

8. 细菌生长繁殖速度之快、以及数量之大是难以琢磨的.而有些细菌是有益的、更多 的是疾病之源.下面记录了某种细菌的繁殖数据,研究: (1)开始时细菌的个数是多少? (2)如果细菌以过去的速度继续增长,一个月后细菌的个数是多少? 细菌繁殖过程记录数据表1-2 假设:(1),一个月是30天,天数为x,开始时细菌的个数为k。 (2),细菌的生长环境(包括温度,湿度,空气含量等)保持不变;细菌在生长过程中没有大量死亡的特殊情况; x (1) y* e k 由上表公式得出开始时细菌的个数约是401个 带入公式(1)算出一个月后细菌的个数:

30 0.1969456 * y 401.573190 * 82 e 得出一个月后细菌的个数约是65266个。

2. 在超市购物时你注意到大包装商品比小包装商品便宜这种想象了吗.比如洁银牙膏50克装的每支1.50元,120克装的每支3.00元,二者单位的重量的价格比是1.2:1,试用比例方法构造模型解释这个现象. (1)分析商品的价格C 与商品重量W 的关系.价格由生产成本、包装成本和其它成本等决定,这些成本中有的与重量W 成正比,有的与表面积成正比,还有与W 无关的因素。 (2)给出单位重量价格C 与W 的关系。画出它的简图,说明W 越大C 越小,但是随着W 的增加C 减小的程度变小。解释实际意义是什么。 (1) 假设:商品几何相似相对长度为L ,质量为W ,体积为V ,表面积为S 。 因为:生产成本与重量W 成正比,与体积V 成正比,与长度3 L 成正比。 包装成本与表面积S 成正比,与长度2 L 成正比,与体积32V 成正比,与重量3 2W 成正比。 所以:33 221k w k w k C ++= 又∵w C c = ∴133 121--++=w k w k k c ( 321,,k k k 为大于零的常数) (2) 单位重量价格: w c C = ∵ 2 334 23 1----='w k w k c >0 3337 229 4 --+=''w k w k c >0 ∴图像为单调递减且上凹。

数学建模期末大作业

数学建模期末大作业论文 题目:A题美好的一天 组长:何曦(2014112739) 组员:李颖(2014112747)张楚良(2014112740) 班级:交通工程三班 指导老师:陈崇双

美好的一天 摘要 关键字:Dijkstra算法多目标规划有向赋权图 MATLAB SPSS

1 问题的重述 Hello!大家好,我是没头脑,住在西南宇宙大学巨偏远的新校区(节点22)。明天我一个外地同学来找我玩,TA叫不高兴,是个镁铝\帅锅,期待ing。我想陪TA在城里转转,当然是去些不怎么花钱的地方啦~~。目前想到的有林湾步行街(节点76)、郫郫公园(节点91),大川博物院(节点72)。交通嘛,只坐公交车好了,反正公交比较发达,你能想出来的路线都有车啊。另外,进城顺便办两件事,去老校区财务处一趟(节点50),还要去新东方(节点34)找我们宿舍老三,他抽奖中了两张电影票,我要霸占过来明晚吃了饭跟TA一起看。电影院嘛,TASHIWODE电影院(节点54)不错,比较便宜哈。我攒了很久的钱,订了明晚开心面馆(节点63)的烛光晚餐,额哈哈,为了TA,破费一下也是可以的哈。哦,对了,老三说了,他明天一整天都上课,只有中午休息的时候能接见我给我票。 我主要是想请教一下各位大神: 1)明天我应该怎么安排路线才能够让花在坐车上的时间最少? 2)考虑到可能堵车啊,TA比较没耐心啊,因为TA叫不高兴嘛。尤其是堵车啊,等车啊,这种事,万一影响了气氛就悲剧了。我感觉路口越密的地方越容易堵,如果考虑这个,又应该怎么安排路线呢? 3)我们城比较挫啊,连地图也没有,Z老师搞地图测绘的,他有地图,跟他要他不给,只给了我一个破表格(见附件,一个文件有两页啊),说“你自己画吧”。帮我画一张地图吧,最好能标明我们要去的那几个地方和比较省时的路线啊,拜托了~ 2 问题的分析 2.1 对问题一的分析 问题一要求安排路线使得坐车花费的时间最少。 对于问题一,假设公交车的速度维持不变,要使花费的时间最少,则将问题转化为对最短路径的求解。求解最短路径使用Dijkstra算法很容易进行求解,在运用MATLAB编程,得到最优的一条路径,则这条路径所对应的时间即为最少用时。 2.2 对问题二的分析 问题二要求在考虑堵车的情况下,路口越密越容易发生拥堵,安排路线是乘车时间最短。 对于问题二,在问题的基础上增加了附加因素,即公交车的速度会因道路的密集程度而发生改变,从而问题一建立的基本Dijkstra算法对于问题二就不再适用了,因此对问题一的基本Dijkstra算法进行改进,并结合蚁群算法的机理与特点,运用MATLAB求解出最短路径,保证了花费时间的最少性。 2.3 对问题三的分析 问题三要求根据提供的附件,画出一张地图,标明要去的那几个地方和比较省时的路线。 对于问题三,在问题一和问题二的基础上,根据求解的结果,运用SPSS软件画出地图。

数学建模作业

郑重声明: 本作业仅供参考,可能会有错误,请自己甄别。 应用运筹学作业 6.某工厂生产A,B,C,D四种产品,加工这些产品一般需要经刨、磨、钻、镗四道工序,每种产品在各工序加工时所需设备台时如表1-18所示,设每月工作25天,每天工作8小时,且该厂有刨床、磨床、钻床、镗床各一台。问:如何安排生产,才能使月利润最大?又如A,B,C,D四种产品,每月最大的销售量分别为300件、350件、200件和400件,则该问题的线性规划问题又该如何? 1234 四种产品的数量,则得目标函数: Max=(200?150)x1+(130?100)x2+(150?120)x3+(230?200)x4 =50x1+30x2+30x3+30x4 生产四种产品所用时间: (0.3+0.9+0.7+0.4)x1+(0.5+0.5+0.5+0.5)x2+(0.2+0.7+0.4+ 0.8)x3+(0.4+0.8+0.6+0.7)x4≤25×8 即:2.3x1+2.0x2+2.1x3+2.5x4≤200 又产品数量不可能为负,所以:x i≥0(i=1,2,3,4) 综上,该问题的线性规划模型如下: Max Z=50x1+30x2+30x3+30x4 S.T.{2.3x1+2.0x2+2.1x3+2.5x4≤200 x i≥0(i=1,2,3,4) 下求解目标函数的最优解: max=50*x1+30*x2+30*x3+30*x4; 2.3*x1+2.0*x2+2.1*x3+2.5*x4<200; Global optimal solution found. Objective value: 4347.826 Total solver iterations: 0 Variable Value Reduced Cost X1 86.95652 0.000000 X2 0.000000 13.47826 X3 0.000000 15.65217

数学建模典型例题(二)

6 小行星的轨道模型 问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:1.4959787×1011m ).在5个不同的时间对小行星作了5次观察,测得轨道上5个点的坐标数据如表6.1. 表6.1 坐标数据 由Kepler (开普勒)第一定律知,小行星轨道为一椭圆.现需要建立椭圆的方程以供研究(注:椭圆的一般方程可表示为 012225423221=+++++y a x a y a xy a x a . 问题分析与建立模型 天文学家确定小行星运动的轨道时,他的依据是轨道上五个点的坐标数据: (x 1, y 1), (x 2, y 2), (x 3, y 3), (x 4, y 4), (x 5, y 5). 由Kepler 第一定律知,小行星轨道为一椭圆.而椭圆属于二次曲线,二次曲线的一般方程为012225423221=+++++y a x a y a xy a x a .为了确定方程中的五个待定 系数,将五个点的坐标分别代入上面的方程,得 ???? ?????-=++++-=++++-=++++-=++++-=++++.122212221222122212225554253552251454424344224 135342 3333223125242 232222211514213112211y a x a y a y x a x a , y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a 这是一个包含五个未知数的线性方程组,写成矩阵

数学建模习题及答案课后习题

第一部分课后习题 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学生 们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。 (2)2.1节中的Q值方法。 (3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗。 如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。 (4)你能提出其他的方法吗。用你的方法分配上面的名额。 2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g 装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。解释实际意义是什么。 3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部 只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 先用机理分析建立模型,再用数据确定参数 4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应 多大(如图)。若知道管道长度,需用多长布条(可考虑两端的影响)。如果管道是其他形状呢。

数学建模论文大作业-打车软件竞争问题

打车软件的竞争问题 班级:电子科学与技术1102班组员: 二零一四年五月

打车软件的竞争问题 摘要:随着打车软件的日趋火热,越来越多的出行者使用打车软件预约出租车。基于移动互联网的打车软件相对于已往的传统的统一出租车电招平台庞杂的预定流程,显示出了很大的便捷优势,这种约车新形式服务正在悄然改变人们传统打车模式,它的新颖性、神奇性、创新性、高效性以及便利性在一定程度上迎合了人们现代化的生活方式。消费者每次使用打车软件预约出租车,被使用的软件公司都会给予司机和消费者相应的补贴,而且随着竞争的升级,补贴的力度越来越大。打车软件给一部分人带来了便捷,同时也带来了很多的社会问题,如拒载、爽约、空车不停等。正是这些争议性问题使得人们对这种新事物的出现产生一些疑虑。因此,国内一些城市开始对这类打车软件紧急进行“叫停”,使得目前这些打车软件的发展陷入迷茫状态。 本文通过建立科学的数学模型,论述了打车软件目前发展模式和存在的问题,并阐述了如何对打车软件进行安全管理与标准化的建议;同时,通过模型分析讨论了打车软件之间的竞争问题;最后指出打车软件企业需要不断地完善自己的软件产品,提高用户体验,使打车软件更符合出租车营运行业市场的需求。 关键词:打车软件;软件补贴;竞争;发展前景

一、打车软件市场发展状况 随着移动互联网的飞速发展,打车软件开始变得异常的火热,开始成为了越来越多的年轻时尚人士出行必备的工具。随着竞争的深入,各家打车软件公司依托于背后强大的母公司支撑和金元的后盾,开始了现金补贴的营销战略,消费者每次使用打车软件预约出租车,被使用的软件公司都会给予司机和消费者相应的补贴,而且随着竞争的升级,补贴的力度越来越大。如表1所示。 表1 补贴政策 时间事件 1月10日 嘀嘀打车软件在32个城市开通微信支付,使用微信支付,乘客车费立减10元、 司机立奖10元。 1月20日“快的打车”和支付宝宣布,乘客车费返现10元,司机奖励10元。 1月21日快的和支付宝再次提升力度,司机奖励增至15元。 2月10日嘀嘀打车宣布对乘客补贴降至5元。 2月10日快的打车表示奖励不变,乘客每单仍可得到10元奖励。 2月17日嘀嘀打车宣布,乘客奖10元,每天3次;北京、上海、深圳、杭州的司机每单奖10元,每天10单,其他城市的司机每天前5单每单奖5元,后5单每单奖10元。新乘客首单立减15元,新司机首单立奖50元。 2月17日支付宝和快的也宣布,乘客每单立减11元。司机北京每天奖10单,高峰期每单奖11元(每天5笔),非高峰期每单奖5元(每天5笔);上海、杭州、广州、深圳每天奖10单。 2月18日 嘀嘀打车开启“游戏补贴”模式:使用嘀嘀打车并且微信支付每次能随机获得 12至20元不等的补贴,每天3次。 2月18日快的打车表示每单最少给乘客减免13元,每天2次。 随之而来的是出租车行业的怪相:出租车司机的主要收入变成了软件公司的补贴,一个司机一个月保守的收入增加都在800~1800元;而消费者打车的费用也同样基本变由打车软件承担,有些短途的打车变成了免费甚至还赚钱。与此同时,问题和矛盾也出现了:不使用打车软件的消费者无法打到车,拒载、空车不停等投诉也比比皆是;司机开车时频频使用手机看打车软件,也产生了潜在交通

数学建模作业

习 题 1 1. 请编写绘制以下图形的MA TLAB 命令,并展示绘得的图形. (1) 221x y +=、224x y +=分别是椭圆2241x y +=的内切圆和外切圆. (2) 指数函数x y e =和对数函数ln y x =的图像关于直线y=x 对称. (3) 黎曼函数 1, (0)(0,1) 0 , (0,1), 0,1 q x p q q x y x x x =>∈?=? ∈=?当为既约分数且当为无理数且或者 的图像(要求分母q 的最大值由键盘输入). 3. 两个人玩双骰子游戏,一个人掷骰子,另一个人打赌掷骰子者不能掷出所需点数,输赢的规则如下:如果第一次掷出3或11点,打赌者赢;如果第一次掷出2、7或12点,打赌者输;如果第一次掷出4、5、6、8、9或10点,记住这个点数,继续掷骰子,如果不能在掷出7点之前再次掷出该点数,则打赌者赢. 请模拟双骰子游戏,要求写出算法和程序,估计打赌者赢的概率. 你能从理论上计算出打赌者赢的精确概率吗?请问随着试验次数的增加,这些概率收敛吗?

4. 根据表1.14的数据,完成下列数据拟合问题: (1) 如果用指数增长模型0()0()e r t t x t x -=模拟美国人口从1790年至2000年的变化过程,请用MATLAB 统计工具箱的函数nlinfit 计算指数增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r ; (ii) 取定0t =1790,拟合待定参数0x 和r ; (iii) 拟合待定参数0t 、0x 和r . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. (2) 通过变量替换,可以将属于非线性模型的指数增长模型转化成线性模型,并用MA TLAB 函数polyfit 进行计算,请说明转化成线性模型的详细过程,然后写出程序,给出拟合参数和误差平方和的计算结果,并展示拟合效果图. (3) 请分析指数增长模型非线性拟合和线性化拟合的结果有何区别?原因是什么? (4) 如果用阻滞增长模型00 () 00()()e r t t Nx x t x N x --= +-模拟美国人口从1790年至2000年的变化过程,请用MA TLAB 统计工具箱的函数nlinfit 计算阻滞增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r 和N ; (ii) 取定0t =1790,拟合待定参数0x 、r 和N ; (iii) 拟合待定参数0t 、0x 、r 和N . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. 年份 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890

数学建模创新思维大作业

数学建模创新思维课大作业 一、使用MATLAB 求解一下问题,请贴出代码. 1. cos 1000x mx y e =,求''y >>clear >>clc >> syms x m; >> y=exp(x)*cos(m*x/1000); >> dfdx2=diff(y,x,2) dfdx2 = exp(x)*cos((m*x)/1000) - (m*exp(x)*sin((m*x)/1000))/500 - (m^2*exp(x)*cos((m*x)/1000))/1000000 >> L=simplify(dfdx2) L = -(exp(x)*(2000*m*sin((m*x)/1000) - 1000000*cos((m*x)/1000) + m^2*cos((m*x)/1000)))/1000000 2.计算22 1100x y e dxdy +?? >> clear >> clc; >> syms x y >> L=int(int(exp(x^2+y^2),x,0,1),y,0,1) L = (pi*erfi(1)^2)/4 3. 计算4 224x dx m x +? >> clear; >> syms x m; >> f=x^4/(m^2+4*x^2); >> intf=int(f,x) intf =

(m^3*atan((2*x)/m))/32 - (m^2*x)/16 + x^3/12 >> L=simplify(intf) L = (m^3*atan((2*x)/m))/32 - (m^2*x)/16 + x^3/12 4. (10)cos ,x y e mx y =求 >> clear; >> syms x m; >> y=exp(x)*cos(m*x); >> L=diff(y,x,10); >> L=simplify(L) L = -exp(x)*(10*m*sin(m*x) - cos(m*x) + 45*m^2*cos(m*x) - 210*m^4*cos(m*x) + 210*m^6*cos(m*x) - 45*m^8*cos(m*x) + m^10*cos(m*x) - 120*m^3*sin(m*x) + 252*m^5*sin(m*x) - 120*m^7*sin(m*x) + 10*m^9*sin(m*x)) 5. 0x =的泰勒展式(最高次幂为4). >> clear; >> syms m x; >> y=sqrt(m/1000.0+x); >> y1=taylor(y,x,'order',5); >> L=simplify(y1) L = (10^(1/2)*(m^4 + 500*m^3*x - 125000*m^2*x^2 + 62500000*m*x^3 - 39062500000*x^4))/(100*m^(7/2)) 6. Fibonacci 数列{}n x 的定义是121,1x x ==12,(3,4, )n n n x x x n --=+=用循环语句编程 给出该数列的前20项(要求将结果用向量的形式给出)。 >> x=[1,1]; >> for n=3:20

2003全国大学生数学建模竞赛B题优秀论文(出题人亲作)

2003高教社杯全国大学生数学建模竞赛 B 题参考答案 注意:以下答案是命题人给出的,仅供参考。各评阅组应根据对题目的理解及学生的解答,自主地进行评阅。 问题分析: 本题目与典型的运输问题明显有以下不同: 1. 运输矿石与岩石两种物资; 2. 产量大于销量的不平衡运输; 3. 在品位约束下矿石要搭配运输; 4. 产地、销地均有单位时间的流量限制; 5. 运输车辆每次都是满载,154吨/车次; 6. 铲位数多于铲车数意味着最优的选择不多于7个产地; 7. 最后求出各条路线上的派出车辆数及安排。 运输问题对应着线性规划,以上第1、2、3、4条可通过变量设计、调整约束条件实现; 第5条使其变为整数线性规划;第6条用线性模型实现的一种办法,是从1207 10 C 个整数规划中取最优的即得到最佳物流;对第7条由最佳物流算出各条路线上的最少派出车辆数(整数),再给出具体安排即完成全部计算。 对于这个实际问题,要求快速算法,计算含50个变量的整数规划比较困难。另外,这是一个二层规划,第二层是组合优化,如果求最优解计算量较大,现成的各种算法都无能为力。于是问题变为找一个寻求近优解的近似解法,例如可用启发式方法求解。 调用120次整数规划可用三种方法避免:(1)先不考虑电铲数量约束运行整数线性规划,再对解中运量最少的几个铲位进行筛选;(2)在整数线性规划的铲车约束中调用sign 函数来实现;(3)增加10个0-1变量来标志各个铲位是否有产量。 这是一个多目标规划,第一问的目标有两层:第一层是总运量(吨公里)最小,第二层是出动卡车数最少,从而实现运输成本最小。第二问的目标有:岩石产量最大;矿石产量最大;运量最小,三者的重要性应按此序。 合理的假设主要有: 1. 卡车在一个班次中不应发生等待或熄火后再启动的情况; 2. 在铲位或卸点处因两条路线(及以上)造成的冲突时,只要平均时间能完成任务即 可,不进行排时讨论; 3. 空载与重载的速度都是28km/h ,耗油相差却很大,因此总运量只考虑重载运量; 4. 卡车可提前退出系统。 符号:x ij ~ 从i 号铲位到j 号卸点的石料运量 单位 吨; c ij ~ 从i 号铲位到j 号卸点的距离 公里; T ij ~ 从i 号铲位到j 号卸点路线上运行一个周期平均所需时间 分; A ij ~ 从i 号铲位到j 号卸点最多能同时运行的卡车数 辆; B ij ~ 从i 号铲位到j 号卸点路线上一辆车最多可以运行的次数 次; p i ~ i 号铲位的矿石铁含量。 % p =(30,28,29,32,31,33,32,31,33,31) q j ~ j 号卸点任务需求 吨 q =(1.2,1.3,1.3,1.9,1.3)*10000

数学建模例题及解析

。 例1差分方程—-资金的时间价值 问题1:抵押贷款买房——从一则广告谈起 每家人家都希望有一套(甚至一栋)属于自己的住房,但又没有足够的资金一次买下,这就产生了贷款买房的问题。先看一下下面的广告(这是1991年1月1日某大城市晚报上登的一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心的是:如果一次付款买这栋房要多少钱呢?银行贷款的利息是多少呢?为什么每个月要付1200元呢?是怎样算出来的?因为人们都知道,若知道了房价(一次付款买房的价格),如果自己只能支付一部分款,那就要把其余的款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说的房子作出决策了。现在我们来进行数学建模。由于本问题比较简单无需太多的抽象和简化。 a。明确变量、参数,显然下面的量是要考虑的: 需要借多少钱,用记; 月利率(贷款通常按复利计)用R记; 每月还多少钱用x记; 借期记为N个月。 b.建立变量之间的明确的数学关系。若用记第k个月时尚欠的款数,则一个月后(加上利息后)欠款 , 不过我们又还了x元所以总的欠款为 k=0,1,2,3, 而一开始的借款为.所以我们的数学模型可表述如下 (1) c. (1)的求解。由

(2)这就是之间的显式关系。 d.针对广告中的情形我们来看(1)和(2)中哪些量是已知的。N=5年=60个月,已知;每月还款x=1200元,已知A.即一次性付款购买价减去70000元后剩下的要另外去借的款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策的困难.然而,由(2)可知60个月后还清,即,从而得 (3) A和x之间的关系式,如果我们已经知道银(3)表示N=60,x=1200给定时0 A。例如,若R=0.01,则由(3)可算得行的贷款利息R,就可以算出0 53946元。如果该房地产公司说一次性付款的房价大于70000十53946=123946元的话,你就应自己去银行借款。事实上,利用图形计算器或Mathematica这样的 数学软件可把(3)的图形画出来,从而可以进行估算决策。以下我们进一步考虑下面两个问题。 注1问题1标题中“抵押贷款”的意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子的产权)作抵押,即万一你还不出钱了,就没收你的不动产。 例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清。假设这对

2015年数学建模作业题

数学模型课程期末大作业题 要求: 1)选题方式:共53题,每个同学做一题,你要做的题目编号是你的学号mod52所得的值+1。(例如:你的学号为119084157,则你要做的题为mod(119084157,52)+1=50)。 2)该类题目基本为优划问题,要求提交一篇完整格式的建模论文,文字使用小四号宋体,公式用word的公式编辑器编写,正文中不得出现程序以及程序冗长的输出结果,程序以附录形式附在论文的后面,若为规划求解必须用lingo 集合形式编程,其它可用Matlab或Mathmatica编写。 3)论文以纸质文档提交,同时要交一份文章和程序电子文档,由班长统一收上来,我要验证程序。 1、生产安排问题 某厂拥有4台磨床,2台立式钻床,3台卧式钻床,一台镗床和一台刨床,用以生产7种产品,记作p1至p7。工厂收益规定作产品售价减去原材料费用之余。每种产品单件的收益及所需各机床的加工工时(以小时计)列于下表(表1): 表 到6月底每种产品有存货50件。 工厂每周工作6天,每天2班,每班8小时。 不需要考虑排队等待加工的问题。 在工厂计划问题中,各台机床的停工维修不是规定了月份,而是选择最合

适的月份维修。除了磨床外,每月机床在这6个月中的一个月中必须停工维修;6个月中4台磨床只有2台需要维修。扩展工厂计划模型,以使可作上述灵活安排维修时间的决策。停工时间的这种灵活性价值若何? 注意,可假设每月仅有24个工作日。 5、生产计划 某厂有4台磨床,2台立钻,3台水平钻,1台镗床和1台刨床,用来生产7种产品,已知生产单位各种产品所需的有关设备台时以及它们的利润如表所示: 台镗床,4月—1台立钻,5月—1台磨床和1台立钻,6月—1台刨床和1台水平钻,被维修的设备在当月内不能安排生产。又知从1月到6月份市场对上述7种产品最大需求量如表所示: 量均不得超过100件。现在无库存,要求6月末各种产品各贮存50件。若该厂每月工作24天,每天两班,每班8小时,假定不考虑产品在各种设备上的加工顺序,要求: (a)该厂如何安排计划,使总利润最大; (b)在什么价格的条件下,该厂可考虑租用或购买有关的设备。 34、瓶颈机器上的任务排序 在工厂车间中,经常会出现整个车间的生产能力取决于一台机器的情况(例如,仅有一台的某型号机床,生产线上速度最慢的机器等)。这台机器就称为关键机器或瓶颈机器。此时很重要的一点就是尽可能地优化此机器将要处理的任务计划。

数学建模作业43950

题目: 某种电子系统由三种元件组成,为了使系统正常运转,每个元件都必须工作良好,如果一个或多个元件安装备用件将会提高系统的可靠性,已知系统运转的可靠性为各元件可靠性的乘积,而每一个元件的可靠性是备用元件函数,具体数值见下表。 若全部备用件费用限制为150元,重量限制为20公斤,问每个元件安装多少备用件可使系统可靠性达到极大值? 要求:①作出全局最优解 ②列出这个问题的整数规划模型

假设:系统在运转过程中相互间没有影响,并且系统在增加备用件后 可靠性可以相互叠加。 建模: 设原件1,2,3需要的备用件各为x,y,z,可靠性为p分别为xp,yp,zp,整 个设备的可靠性为p,则由题意可得到: p=xp*yp*zp; 2x+4y+6z<=20; 20x+30y+40z<=150; x,y,z均为整数; 求出适当的x,y,z使p的值最大。 运用穷举法,编写C++程序如下: #include void main() { using namespace std; int x=0,y=0,z=0;//备à?用??零¢?件t数oy目? double xp[6]={0.5,0.6,0.7,0.8,0.9,1},yp[4]={0.6,0.75,0.95,1},zp[3]={0.7,0.9,1}; double p=0,temp=0;//可¨|靠?性? int i=0,j=0,k=0; cout<<"x\ty\tz\tp\n"; for(i=0;i<6;i++) { y=0; for(j=0;j<4;j++) { z=0; for(k=0;k<3;k++) {if((x+2*y+3*z<=10)&&(2*x+3*y+4*z<=15)) {temp=p; p=xp[x]*yp[y]*zp[z]; cout<

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

数学建模模拟试题及答案.pdf

数学建模模拟试题及答案 一、填空题(每题5分,共20分) 1. 若,, x z z y ∝∝则y 与x 的函数关系是. 2. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 . 3. 马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了 4. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型. 二、分析判断题(每小题15分,满分30分) 1. 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种. 2. 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是 ),m l /m g (100/56 又过两个小时,含量降为),m l /m g (100/40试判断,当事故发生时,司 机是否违反了酒精含量的规定(不超过80/100)m l /m g (. (提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ?+内酒精浓度的改变量为 t t kC t C t t C ??=??+)()()( 其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.) 三、计算题(每题25分,满分50分) 1. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位.试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答: (1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况.

相关主题
文本预览
相关文档 最新文档