当前位置:文档之家› 透射电镜衍射分析

透射电镜衍射分析

透射电镜衍射分析
透射电镜衍射分析

x=11.5,y=-11

------------------------------------------------------------------------------------------------------

Spot# d-Spacing (nm) Rec. Pos.(1/nm) Degrees to Spot 1 Degrees to x-axis Amplitude

1 0.3664 2.729 0.00 -55.9

2 14390.14

2 0.3661 2.731 75.40 19.48 17901.69

3 0.235

4 4.248 37.87 -18.0

5 5874.48

可能的面网

面网12(-101)(101)(11-1)(1-11)(-111)(111)

面网3(200)(210)(2-10)

x=28,y=4.5

------------------------------------------------------------------------------------------------------

Spot# d-Spacing (nm) Rec. Pos.(1/nm) Degrees to Spot 1 Degrees to x-axis Amplitude

1 0.3699 2.704 0.00 -51.20 15551.82

2 0.343

3 2.913 77.90 26.70 15433.70

3 0.2282 4.383 40.38 -10.82 14414.40

可能的面网

面网12(-101)(101)(11-1)(1-11)(-111)(111)(-120)(120)

面网3(210)(2-10)(12-2)(1-22)(-122)(122)(032)(03-2)

所以面网1为(101)面网2为(11-1)面网3为(210)

晶带轴为(-120)

多晶衍射

yxl3

------------------------------------------------------------------------------------------------------

Spot# d-Spacing (nm) Rec. Pos.(1/nm) Degrees to Spot 1 Degrees to x-axis Amplitude

1 0.3899 2.565 0.00 87.39 348.87

2 0.3438 2.909 17.09 104.48 416.44

3 0.2739 3.652 23.31 110.70 401.84

4 0.1948 5.133 25.42 112.81 253.74

5 0.1697 5.894 27.01 114.40 259.83

6 0.1455 6.875 34.88 122.2

7 231.83

TEM-透射电镜习题答案及总结

电子背散射衍射:当入射电子束在晶体样品中产生散射时,在晶体内向空间所有方向发射散射电子波。如果这些散射电子波河晶体中某一晶面之间恰好符合布拉格衍射条件将发生衍射,这就是电子背散射衍射。 二、简答 1、透射电镜主要由几大系统构成各系统之间关系如何 答:三大系统:电子光学系统,真空系统,供电系统。 其中电子光学系统是其核心。其他系统为辅助系统。 2、照明系统的作用是什么它应满足什么要求 答:照明系统由电子枪、聚光镜和相应的平移对中、倾斜调节装置组成。它的作用是提供一束亮度高、照明孔经角小、平行度好、束流稳定的照明源。它应满足明场和暗场成像需求。 3、成像系统的主要构成及其特点、作用是什么 答:主要由物镜、物镜光栏、选区光栏、中间镜和投影镜组成. 1)物镜:强励磁短焦透镜(f=1-3mm),放大倍数100—300倍。 作用:形成第一幅放大像 2)物镜光栏:装在物镜背焦面,直径20—120um,无磁金属制成。 作用:a.提高像衬度,b.减小孔经角,从而减小像差。C.进行暗场成像3)选区光栏:装在物镜像平面上,直径20-400um, 作用:对样品进行微区衍射分析。 4)中间镜:弱压短透镜,长焦,放大倍数可调节0—20倍 作用a.控制电镜总放大倍数。B.成像/衍射模式选择。 5)投影镜:短焦、强磁透镜,进一步放大中间镜的像。投影镜内孔径较小,使电子束进入投影镜孔径角很小。 小孔径角有两个特点: a.景深大,改变中间镜放大倍数,使总倍数变化大,也不影响图象清晰度。 焦深长,放宽对荧光屏和底片平面严格位置要求。 4、分别说明成像操作与衍射操作时各级透镜(像平面与物平面)之间的相对位置关系,并 画出光路图。 答:如果把中间镜的物平面和物镜的像平面重合,则在荧光屏上得到一幅放大像,这就是电子显微镜中的成像操作,如图(a)所示。如果把中间镜的物平面和物镜的后焦面重合,则在荧光屏上得到一幅电子衍射花样,这就是电子显微镜中的电子衍射操作,如图(b)所示。

透射电镜的选区电子衍射

透射电子显微镜的选区衍射 摘要:本文主要是以透射电子显微镜的选区电子衍射为主题来说明透射电镜在材料学中的应用。 关键词:透射电镜;电子衍射谱;选区电子衍射;应用 Selected-Area Electron Diffraction of TEM Abstract: The Selected-Area Electron Diffraction of TEM is mainly talked about in this paper, And it tell us the application of the TEM in materials science. Key words:Transmission electron microscope; Electron diffraction spectrum; Selected-Area Electron Diffraction; application 1.透射电镜的电子衍射概论 透射电镜的电子衍射是透射电镜的一个重要应用,而透射电镜广泛应用于断裂失效分析、产品缺陷原因分析、镀层结构和厚度分析、涂料层次与厚度分析、材料表面磨损和腐蚀分析、耐火材料的结构与蚀损分析[1]中。透射电镜的电子衍射能够在同一试样上将形貌观察与结构分析结合起来[2]。这就使得电子衍射在应用中有着举足轻重的地位。 在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点。另外,由于二次衍射等原因会使电子衍射花样变得更加复杂。 选区衍射的特点是能把晶体试样的像与衍射图对照进行分析,从而得出有用的晶体学数据,例如微小沉淀相的结构、取向及惯习面,各种晶体缺陷的几何学特征等[3]。2.选区电子衍射的原理及特点 2.1选区电子衍射的原理 为了得到晶体中某一个微区的电子衍射花样,一般用选区衍射的方法,将选区光阑放置在物镜像平面(中间镜成像模式时的物平面),而不是直接放在样品处。 选区电子衍射借助设置在物镜像平面的选区光阑,可以对产生衍射的样品区域进行选择,并对选区范围的大小加以限制,从而实现形貌观察和电子衍射的微观对应。选区电子衍射的基本原理[4]见图4-1。选区光阑用于挡住光阑孔以外的电子束,只允许光阑孔以内视场所对应的样品微区的成像电子束通过。使得在荧光屏上观察到的电子衍射花样,它仅来自于选区范围内的晶体的贡献。实际上,选区形貌观察和电子衍射花样不能完全对应,也就是说选区衍射存在一定误差,所选区域以外样品晶体对衍

透射电镜的明场像和暗场像的成像原理

透射电子显微镜是一种具有高分辨率、高放大倍数的电子光学仪器,被广泛应用于材料科学等研究领域。透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏上而形成所观察的图像。在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。 明暗场成像原理:晶体薄膜样品明暗场像的衬度(即不同区域的亮暗差别),是由于样品相应的不同部位结构或取向的差别导致衍射强度的差异而形成的,因此称其为衍射衬度,以衍射衬度机制为主而形成的图像称为衍衬像。如果只允许透射束通过物镜光栏成像,称其为明场像;如果只允许某支衍射束通过物镜光栏成像,则称为暗场像。有关明暗场成像的光路原理参见图2-1。就衍射衬度而言,样品中不同部位结构或取向的差别,实际上表现在满足或偏离布喇格条件程度上的差别。满足布喇格条件的区域,衍射束强度较高,而透射束强度相对较弱,用透射束成明场像该区域呈暗衬度;反之,偏离布喇格条件的区域,衍射束强度较弱,透射束强度相对较高,该区域在明场像中显示亮衬度。而暗场像中的衬度则与选择哪支衍射束成像有关。如果在一个晶粒内,在双光束衍射条件下,明场像与暗场像的衬度恰好相反。 a) 明场成像 b) 中心暗场成像 明暗场成像是透射电镜最基本也是最常用的技术方法,其操作比较容易,这里仅对暗场像操作及其要点简单介绍如下: (1) 在明场像下寻找感兴趣的视场。 (2) 插入选区光栏围住所选择的视场。

(3) 按“衍射”按钮转入衍射操作方式,取出物镜光栏,此时荧光屏上将显示选区域内晶体产生的衍射花样。为获得较强的衍射束,可适当的倾转样品调整其取向。 (4) 倾斜入射电子束方向,使用于成像的衍射束与电镜光铀平行,此时该衍射斑点应位于荧光屏中心。 (5) 插入物镜光栏套住荧光屏中心的衍射斑点,转入成像操作方式,取出选区光栏。此时,荧光屏上显示的图像即为该衍射束形成的暗场像。(衍射使用选区光阑,成像使用物镜光阑) 通过倾斜入射束方向,把成像的衍射束调整至光轴方向,这样可以减小球差,获得高质量的图像。用这种方式形成的暗场像称为中心暗场像。在倾斜入射束时,应将透射斑移至原强衍射斑(hkl)位置,而(hkl)弱衍射斑相应地移至荧光屏中心,而变成强衍射斑点,这一点应该在操作时引起注意。 利用暗场像观测析出相的尺寸、空间形态及其在基体中的分布,是衍衬分析工作中一种常用的实验技术。 利用层错明暗场像外侧条纹的衬度,可以判定层错的性质。 2-2 显示钨合金晶粒形貌的衍衬像 a) 明场像 b) 暗场像

透射电镜电子衍射在晶体结构分析中的应用

透射电镜电子衍射在晶体结构分析中的应用 晶体材料由于具有有序结构而表现出许多独特的性质,成为特定的功能材料,制成器件广泛应用于微电子、自动控制、计算通讯、生物医疗等领域。功能晶体材料的的微观结构决定其性能,因此对其微观结构的解析一直是科学研究的热点之一。研究晶体结构通常的方法是X-射线单晶衍射技术(SXRD, Single crystal X-ray diffraction)和X-射线粉末衍射技术(PXRD, Powder X-ray diffraction),科学家们应用此两项技术已经解析了数目非常庞大的晶体结构。然而X-射线衍射技术对于解析的晶体大小有限制,即使是应用同步辐射光源也只能解析大于微米级的晶体,无法对纳米晶体的结构进行解析。相对于X-射线,电子束由于具有更短的波长以及更强的衍射,因此电子衍射应用于纳米晶体的结构分析具有特别的意义,透射电镜不仅可对纳米晶体进行高分辨成像而且可进行电子衍射分析,已成为纳米晶体材料不可或缺的研究方法,包括判断纳米结构的生长方向、解析纳米晶体的晶胞参数及原子的排列结构等。 1、判断已知纳米结构的生长方向 在研究晶体结构时,很多情况下需要判断其优势生长面及生长方向,尤其是纳米线、纳米带等。晶体的电子衍射图是一个二维倒易平面的放大,同时透射电镜又能得到形貌,分别相当于倒易空间像与正空间像,正空间的一个晶面族(hkl)可用倒空间的一个倒易点hkl来表示,正空间的一个晶带[uvw]可用倒空间的一个倒易面(uvw)*来表示,对应关系如图1所示,在透射电镜中,电子束沿晶带轴的反方向入射到晶体中,受晶面族(h1k1l1)的衍射产生衍射斑(h1k1l1),那么衍射斑与透射斑的连线垂直于晶面族(h1k1l1),据此可判断晶体的优势生长面及生长方向。具体的方法是:首先拍摄形貌像,并且在同一位置做电子衍射,在形貌像上找出优势生长面,与电子衍射花样对照,找出与透射斑连线垂直于此晶面的透射斑,并进行标定,根据晶面指数换算出生长方向。如图2所示是判断一维纳米线的生长方向,首先对电子衍射进行标定,纳米线的优势生长面为与纳米线垂直的面,在电子衍射图上找出与此面垂直的透射斑与衍射斑的连线,确定优势生长面是(0-11)面,由于该物质是四方晶系,根据四方晶系的正倒易转换矩阵,将(0-11)

TEM 分析中电子衍射花样标定

TEM分析中电子衍射花样的标定原理 第一节 电子衍射的原理 1.1 电子衍射谱的种类 在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。 上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。 在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产

生原理。电子衍射花样产生的原理与X 射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。 1.2 电子衍射谱的成像原理 在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。 Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer(夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。 小孔的直接衍射成像(不加透镜)就是一个典型的Fresnel(菲涅尔)衍射(近场衍射)现象。在电镜的图像模式下,经常可以观察到圆孔的菲涅尔环。 Fraunhofer(夫朗和费)衍射是远场衍射,它是平面波在与障碍物相互作用后发生的衍射。严格地讲,光束之间要发生衍射,必须有互相叠加,平行光严格意义上是不能叠加的,所以在没有透镜的前提下,夫朗和费衍射只是一种理论上的概念。但是在很多情况下,可以将衍射当成夫朗和费衍射来处理,X射线衍射就是这样一种情况。虽然X射线是照射在晶体中的不同晶面上,但是由于晶面间距的值远远小于厄瓦尔德球(X射线波长的倒数),即使测试时衍射仪的半径跟晶面间距比也是一个非常大的值,所以X射线衍射可以当成夫朗和费衍射处理,因为此时不同晶面上的X射线叠加在一点上时,它们

第一节 电子衍射的原理

第一节电子衍射的原理 1.1 电子衍射谱的种类 在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。 上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c 是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。 在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产生原理。电子衍射花样产生的原理与X 射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。

1.2 电子衍射谱的成像原理 在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。 Fresnel (菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer(夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。 小孔的直接衍射成像(不加透镜)就是一个典型的Fresnel(菲涅尔)衍射(近场衍射)现象。在电镜的图像模式下,经常可以观察到圆孔的菲涅尔环。 Fraunhofer(夫朗和费)衍射是远场衍射,它是平面波在与障碍物相互作用后发生的衍射。严格地讲,光束之间要发生衍射,必须有互相叠加,平行光严格意义上是不能叠加的,所以在没有透镜的前提下,夫朗和费衍射只是一种理论上的概念。但是在很多情况下,可以将衍射当成夫朗和费衍射来处理,X射线衍射就是这样一种情况。虽然X射线是照射在晶体中的不同晶面上,但是由于晶面间距的值远远小于厄瓦尔德球(X射线波长的倒数),即使测试时衍射仪的半径跟晶面间距比也是一个非常大的值,所以X射线衍射可以当成夫朗和费衍射处理,因为此时不同晶面上的X射线叠加在一点上时,它们的衍射角仍然会非常接近布拉格角。

TEM的衍射花样分析

版面很多网友由于刚接触TEM的衍射花样,所以有一些基础问题觉得需要这里讲一下,简单衍射花样的标定,所谓简单,就是各个晶系里面的单晶衍射花样,没有缺陷,没有超结构,没有厚样品造成的高阶劳埃带,只是物质的纯相造成的衍射花样。有了这个基础,理解了一些,往下才能做的扎实。 1. 一般的物质衍射花样都是已知的物质,顶多也就是已知的几种里面的一个。所以在确定哪几个物种之后,去找一下相关物质的PDF卡片,网上有一个软件PCPDFWIN,可以方便查讯电子版的PDF卡,下载位置,看看这个帖子,24楼里面我提到了下载的具体目录: https://www.doczj.com/doc/fd19009457.html,/bbs/shtml/20060418/398715/ 2. 找到了相应的PDF卡,那么就是要测量衍射花样了。衍射花样的拍摄要严格按照操作规程来,尤其要注意在拍摄时样品聚焦尽量准确。另外,无论底片拍摄还是CCD拍摄,一定要保证用标准样品做了校正。 3. 接下来就是测量衍射点对应的d值。对于底片来说就是测量衍射点到中心透射斑的实际距离R,然后根据d = (L×电子波长)/R,其中L是相机常数,底片上写着,单位是cm,电子波长一般的电镜书上都有,200 kV电镜是0.00251 nm。代入计算即可得到相应的d值。选取两个相邻且最靠近中心斑点的衍射点,二衍射斑点以夹角接近或者等于90度为好。选取测量d值之后,二者同中心斑点连线的夹角也要测量一下。对于CCD相机拍摄的衍射花样,对应的都有标尺,d值测量就是量取衍射点到透射斑的距离后取倒数即可。角度测量可以通过量取衍射点到中心斑连线对应control对话框的R值(角度),二者相减即得。 4. 将计算的d值和PDF卡相对应,看最接近哪个面的数值,querida说过,这个测量会有一定的误差,有相近值时,需要通过夹角来确定。方法是,选取两个比较可能的面,然后代入相应晶系对应的公式,计算夹角,如果和测量值很接近,就算是找对了。Ustb版主说过,计算值和测量值应该相差很小,0.1-0.2度的范围。 至于计算两个面夹角的公式,可以去找郭可信先生写的那本《电子衍射图在晶体学中的应用》,Page104-105上有具体的公式,其中的hkl值都是你要计算的面对应的值,abc是你确定晶相的晶胞参数,PDF卡上都有,r1*r2*分别指的是两个面的d值倒数。 5. 确定了两个方向的衍射点,那么接下来就是确定投射方向,也就是面的法线方向是什么带轴,这个querida朋友已经写了,我这里引用一下: “FFT后的一个斑点对应这正空间一族晶面,这一族晶面和这个斑点的矢量方向垂直,当一张图片上任意不在同一直线上的2个斑点知道后,那么入射电子束也就是带轴的方向就知道了,具体可用

TEM透射电镜衍射斑点标定深入浅出

TEM透射电镜衍射斑点标定深入浅出 衍射斑点的标定目的是什么呢?这是大家首先遇到的问题。作为骨灰级的TEM爱好者,我告诉你,目前段位的虫友可以通过衍射标定达到以下两个目的:1装X。2辅助进行物相鉴定。 装X是很容易理解的,目前的文章要是少了透射实验那也是被别人甩了好几条街,审稿人没兴趣,同行看不起,很没面子。因为凡涉及到TEM都显得高大上。也许第二个目的才是大家真正关心的问题。注意我这里说的是“辅助”进行物相鉴定,之所以是“辅助”是由于物相鉴定是一个相当复杂的且技术含量高的工作。鉴定的难度来源于以下几个方面。1、微观层面的物相太小,如果用打能谱分析元素的办法,很可能打到的区域会有偏离或区域偏大,能谱的结果不够准确。2、物相太小又无法做XRD(X射线衍射,照顾一下小白虫友)。3、通过相貌观查判断,这个太主观,而且经验要求极高,不从事个十来年的研究很难做出准确的推断。所以物相鉴定非常困难,不能凭借上面一种手段给出有说服力的证明。所以就有了多种手段辅助联合证明提升说服力的策略。衍射斑点标定也是众多辅助手段中的一种,它也不能作为鉴定物相一招制敌的法宝,是因为,标定过程中会引入多种误差(拍摄系统误差,测量误差,计算误差),没法百分百保证标定的精度,所以结果也就是在误差范围内参考。看了这些,你是不是感觉很泄气,不过没关系,圈内人士都会有一个约定俗称的共识,也就是说,只要你从多个方面联合这证明物相,达到80%的说服力,也就默认你的证明是对的了。审稿人也一般确实这么做的。 接下来的问题是我该怎么标定我的衍射斑点呢?这是一个大问题,咱先从宏观上对这个问题进行把握。打一个简单的比方,警察要查找犯罪嫌疑人是谁,在犯罪现场找到了作案者的小拇指的指纹,要查到此人的信息就需要将该小拇指指纹拿到公安局的数据库中进行比对,一旦该小拇指与其中一个人的小拇指指纹对上了,很可能就是这个人作案。衍射斑点标定的过程与此相同,也是利用物相留下的衍射斑点得到晶面数据,再和标准物相库进行对比,在物相库里面如果有比较吻合的晶面数据,就很可能是这个物相了。

透射电镜衍射分析

x=11.5,y=-11 ------------------------------------------------------------------------------------------------------ Spot# d-Spacing (nm) Rec. Pos.(1/nm) Degrees to Spot 1 Degrees to x-axis Amplitude 1 0.3664 2.729 0.00 -55.9 2 14390.14 2 0.3661 2.731 75.40 19.48 17901.69 3 0.235 4 4.248 37.87 -18.0 5 5874.48 可能的面网 面网12(-101)(101)(11-1)(1-11)(-111)(111) 面网3(200)(210)(2-10) x=28,y=4.5 ------------------------------------------------------------------------------------------------------ Spot# d-Spacing (nm) Rec. Pos.(1/nm) Degrees to Spot 1 Degrees to x-axis Amplitude 1 0.3699 2.704 0.00 -51.20 15551.82 2 0.343 3 2.913 77.90 26.70 15433.70 3 0.2282 4.383 40.38 -10.82 14414.40

可能的面网 面网12(-101)(101)(11-1)(1-11)(-111)(111)(-120)(120) 面网3(210)(2-10)(12-2)(1-22)(-122)(122)(032)(03-2) 所以面网1为(101)面网2为(11-1)面网3为(210) 晶带轴为(-120) 多晶衍射 yxl3 ------------------------------------------------------------------------------------------------------ Spot# d-Spacing (nm) Rec. Pos.(1/nm) Degrees to Spot 1 Degrees to x-axis Amplitude 1 0.3899 2.565 0.00 87.39 348.87 2 0.3438 2.909 17.09 104.48 416.44 3 0.2739 3.652 23.31 110.70 401.84 4 0.1948 5.133 25.42 112.81 253.74 5 0.1697 5.894 27.01 114.40 259.83 6 0.1455 6.875 34.88 122.2 7 231.83

相关主题
文本预览
相关文档 最新文档