当前位置:文档之家› OSPF多区域原理与配置

OSPF多区域原理与配置

OSPF多区域原理与配置
OSPF多区域原理与配置

OSPF多区域原理与配置

【OSPF三种配置方法】

1、network 192.168.1.0 0.0.0.255 area0

2、network 0.0.0.0 255.255.255.255 area0

3、network 192.168.1.1 0.0.0.0 area0

【OSPF通信量分三类】

域内通信量:LSA1、LSA2

域间通信量:LSA3

外部通信量:LSA4、LSA5、LSA7

a)标准区域允许‘域内’‘域间’及‘外部’通信量。LSA为(1.2.3.4.5)

b)末梢区域不允许‘外部’通信量存在,允许‘域内’‘域间’通信量及一条默认路由。LSA为(1.2.3)

c)完全末梢只允许‘域内’通信量及一条默认路由。LSA为(1.2)

d)非纯末梢不允许其他区域的外部通信量,允许‘域内’‘域间’及‘本区域’外部通信量。LSA为(1.2.3.7)

e)完全非纯末梢只允许本区域内部,本区域外部通信量及一条默认路由存

在,不允许区域间及其他区域外部通信量存在。LSA为(1.2.7)

表-LSA类型

一、OSPF的多区域

【使用OSPF协议经常遇到的问题】

?在大型网络中,网络结构的变化是时常发生的,因些OSPF路由器就会经常运行SPF算法来重新计算路由信息,大量消耗路由器的CPU和内存资源?在OSPF网络中,随着多条路径的增加,路由表变得越来越庞大,每一次路径的改变都使路由器不得不花大量的时间和资源去重新计算路由表,路由器就会越来越低效

?包含完整网络结构信息的链路状态数据库也会越来越大,这将有可能使路

由器CPU和内存资源彻底耗尽,从而导致路由器的崩溃

【解决OSPF协议的以上问题】

OSPF允许把大型区域划分成多个更易管理的小型区域。这些小型区域可以交

换路由汇总信息,而不是每一个路由的细节

(1)、生成OSPF多区的原因

1、生成OSPF多区域的原因

改善网络的可扩展性

快速收敛

2、OSPF区域的容量

?单个区域所支持路由器的范围大约是30~200

?一些区域包含25台都有可能会显多了,而另一些区域却可以容纳多于500台的路由器

【对于和区域相关的通信量定义了下面三种类型】

域内通信量(Intra-AreaTraffic):指单个区域内路由器之间交换的数据包构成的

通信量

域间通信量(Inter-AreaTraffic):指由不同区域的路由器之间交换的数据包构成

的通信量

外部通信量(External-Traffic):指由OSPF区域内的路由器与OSPF区域外或另一

个自治系统内的路由器之间交换的数据包构成的通信量

【分层路由的优势】

?降低了SPF运算的频率

?减少了路由表

?减小了链路状态更新报文(LSU)的流量

(2)、路由器的类型

内部路由器(Internal Router):指所有接口都属于同一个区域的路由器区域边界路由器(Areea BorderRouter):指连接一个或多个区域到骨干区域的路

由器,并且这些路由器会作为夫域间通信量的路由网关。ABR路由器至少有一个接口是属于骨干区域的,而且必须为每一个与之相连的区域维

护不同的链路状数据库

自治系统边界路由器(Autonomous SystemBoudary Router,ASBR):可以认为是

OSPF域外部的通信量进入OSPF域的网关路由器,也就是说,ASBR路由器是用来把其他路由选择协议学习到的路由通过路由选择重分配的方式

注入到OSPF域的路由器

(3)、区域的类型

?非骨干区域为做优化处理成为标准区域,经过优化配置后,可以分为四种末梢

?类型:骨干区域、标准区域、末梢区域、完全末梢区域、非纯末梢区域、完全非纯末梢区域

?运行OSPF的整个区域属于一个自治系统(AS),除了AS的路由都属于外部路由

1、骨干区域Area0

该区域的ID一定为0,它是连接所有其他区域的核心域,相当于交换网络的汇聚层

2、标准区域

?该区域可以接收各种链路状态信息和汇总的路由通告

?没有特殊定义的区域就是标准区域

二、链路状态数据库

(1)、链路状态数据库的组成

?每台路由器都创建了由每个接口,对应的相邻节点和速率组成的数据库

?链路状态数据库中的每个条目都称为LSA(链路状态通告)

(2、)链路状态通告

LSA有六种类型:LSA1、LSA2、LSA3、LSA4、LAS5、LAS7

LSA1(路由器LSA:Router LSA):每一台运行OSPF路由协议的路由器都会产生

路由器的LSA通告,这些LSA通告只会在始发它们的区域内部进行泛洪LSA2(网络LSA:Network LSA):每一个地址网络(广播型和NBMA)中的指定路

由器(DR)都将会产生网络LSA通告。它仅仅在产生这条网络LSA的区域内部进行泛洪

LSA3(网络汇总LSA:Network Summary LSA):是由ABR路由器发出的。ABR路

路器将发送汇总LSA到一个区域,用来通告该区域外部的目的地址

三、0SPF多区域配置

(1)、配置多区域OSPF

没有特殊的命令来生成ABR,只要一台路由器的两个接口被配置到不同的区

域,那么这笞路由器就会成为ABR

R1(config)# router ospf 1

network10.0.0.0 255.255.255.255 area 0

R2(config)# router ospf 1

network10.0.0.0 0.255.255.255 area 0

network10.2.0.0 0.255.255.255 area 1

(注意:ospf 1是进程号,R1和R2的进程号不一定要一样)(2)、OSPF多区域配置的验证及OSPF路由表

1、OSPF常用的检查命令

2、OSPF路由表

(O:代表OSPF区域内的路由;O |A:代表OSPF区域间的路由)

区域内路径(Intra-area Path):是指在路由器所在的区域内就可以到达目的地

的路径

区域间路径(Inter-area Path):是指在其他区域但仍在OSPF自治系统内的目

的地路径,打上了IA标志的条目就是区域间路径

3、路由器对路由条目的选择

?路由器只把最优的路由条目添加到自己的路由表中

?路由器在选择路由条目并将其添加到路由表中时,使用两个参数:

Metrics(度量值):代表距离,由度量值来确定寻路时的最优路径

Distance Metric(管理距离):是指一种路由协议的路由可信度

OSPF路由协议中的度量值为接口代价(Cost)

RIP路由协议中度量值代表距离/跳数

OSPF协议的管理距离默认是110,度量值是接口代价

RIP协议的管理距离是120,度量值是跳数

静态路由的管理距离是1,度量值是0

【路由器对路由条目的选择过程】

a)当路由器收到相同目的地址的的路由条目时,首先比较管理距离,选择管理距离小的路由条目添加到路由表中

b)如果管理距离相同,则比较度量值,选择度量值小的路由条目添加到路由表中

c)当收到目的地址,度量值和管理距离值都相同的路由条目时,路由表中会形成负载均衡的路由条目

d)当线路出现故障时,管理距离小的路由失效,管理距离大的路由为最佳路由,会被路由器选入路由表中

四、Stub区域及配置

(1)、LSA4和LSA5

1、LSA4

ASBR汇总LSA(ASBR Summary LSA):也是由ASBR路由器始发的

2、LSA5

自治系统外部LSA(Autonomous SystemExternal LSA):也称为外部LSA,始发于ASBR路由器,用来通告到达OSPF自治系统外部的目的地或者OSPF 自治系统外部的默认路由的LSA

(2)、末梢区域和完全末梢区域

?stub区域内不能有自治系统边界路由器(ASBR)

?stub区域允许LSA1、LSA2、LSA3类型,禁止LSA4、LSA5、LSA7进入stub区域

?Totally Stubby(完全末梢)允许LSA1、LSA2和一个默认路由,禁止其他型进入

【满足以下四个条件的区域可以被认定为stub或者Totally Stubby区域】

a)只有一个默认路由作为其他区域的出口

b)区域不能作为虚链路的穿越区域

c)stub区域里无自治统边界路由器(ASBR)

d)不是骨干区域Area 0

《注意》:

配置成NSSA区域的路由器也不能和其他非NSSA区域的路由器形成邻接关系

(3)、配置末梢区域和完全末梢区域

?配置末梢区域要求在本区域中所有路由器上都配置末梢命令

?配置完全末梢区域要求在本区域中ABR上配置完全末梢命令,在其他路由

器上配置末梢命令

【配置Stub Area】

Router(config-router)# area area-id stub

如:Router(config-router)#area 1 stub

【配置Totally Stubby Area】

Router(config-router)# area area-id stub no-summary 如:Router(config-router)# area 1 stub no-summary

思科OSPF的多区域配置及优化

思科OSPF的多区域配置及优化 实验拓扑如上图所示 各路由器配置接口IP地址,并均启用环回口,各路由器启用如图中的路由协议 更改R3、R4的接口优先级为0,使得R2成为DR 在R5上启用多个环回口,用于做路由汇总,配置如下: Loopback0 5.5.5.5 Loopback1 172.5.1.1

Loopback2 172.5.2.1 Loopback3 172.5.3.1 在R9上启用多个环回口,用于做路由汇总,配置如下: Loopback0 9.9.9.9 Loopback1 172.16.1.1 Loopback2 172.16.2.1 Loopback3

172.16.3.1 在R8上将EIGRP10的路由重发布到OSPF中,配置如下: router ospf 10 log-adjacency-changes redistribute eigrp 10 metric-type 1 subnets 在R8上使用ip default-network命令,给EIGRP10添加默认路由,配置如下: interface Loopback1 ipaddress 192.168.8.1 255.255.255.0 router eigrp 10

network 192.168.8.0 //将环回口所在的主类网段宣告进EIGRP中network 192.168.89.0 noauto-summary ip default-network 192.168.8.0 指定环回口所在网段为默认路由 在R4上将RIP的路由重发布到OSPF中,配置如下:router ospf 10

OSPF多区域原理与配置

OSPF多区域原理与配置 【OSPF三种配置方法】 1、network 192.168.1.0 0.0.0.255 area0 2、network 0.0.0.0 255.255.255.255 area0 3、network 192.168.1.1 0.0.0.0 area0 【OSPF通信量分三类】 域内通信量:LSA1、LSA2 域间通信量:LSA3 外部通信量:LSA4、LSA5、LSA7 a)标准区域允许‘域内’‘域间’及‘外部’通信量。LSA为(1.2.3.4.5) b)末梢区域不允许‘外部’通信量存在,允许‘域内’‘域间’通信量及一条默认路由。LSA为(1.2.3) c)完全末梢只允许‘域内’通信量及一条默认路由。LSA为(1.2) d)非纯末梢不允许其他区域的外部通信量,允许‘域内’‘域间’及‘本区域’外部通信量。LSA为(1.2.3.7) e)完全非纯末梢只允许本区域内部,本区域外部通信量及一条默认路由存

在,不允许区域间及其他区域外部通信量存在。LSA为(1.2.7) 表-LSA类型 一、OSPF的多区域 【使用OSPF协议经常遇到的问题】 ?在大型网络中,网络结构的变化是时常发生的,因些OSPF路由器就会经常运行SPF算法来重新计算路由信息,大量消耗路由器的CPU和内存资源?在OSPF网络中,随着多条路径的增加,路由表变得越来越庞大,每一次路径的改变都使路由器不得不花大量的时间和资源去重新计算路由表,路由器就会越来越低效 ?包含完整网络结构信息的链路状态数据库也会越来越大,这将有可能使路

由器CPU和内存资源彻底耗尽,从而导致路由器的崩溃 【解决OSPF协议的以上问题】 OSPF允许把大型区域划分成多个更易管理的小型区域。这些小型区域可以交 换路由汇总信息,而不是每一个路由的细节 (1)、生成OSPF多区的原因 1、生成OSPF多区域的原因 改善网络的可扩展性 快速收敛 2、OSPF区域的容量 ?单个区域所支持路由器的范围大约是30~200 ?一些区域包含25台都有可能会显多了,而另一些区域却可以容纳多于500台的路由器 【对于和区域相关的通信量定义了下面三种类型】 域内通信量(Intra-AreaTraffic):指单个区域内路由器之间交换的数据包构成的

2019年OSPF多区域原理和配置

OSPF多区域配置和原理 一、OSPF协议是链路状态路由协议,它是一个开放的标准。 优点: 1、它应用在大多数的路由器上。 2、用SPF(最短路径优先算法),提供环路自由的拓扑结构。 3、通过触发更新,提供快速收敛。 4、是无类的路由协议,允许分等级的划分可变长子网掩码。 缺点: 1、需要更多的内存来调整拓扑结构。 2、需要额外的CPU 来处理运行SPF算法。 3、对于一个大的网络,需要小心的把网络划分适当的层次,通过 把路由器划分到不同的区域里。 4、它配置起来更复杂,更难排除故障。 二、OSPF 用COST(成本)作为计量值。 三、OSPF中分类的路由器: 内部路由器:是指所有接口都在一个区域的路由器。 区域边界路由器(ABR):是指连接一个或多个区域到骨干区域的路由器,并且这些路由器会作为域间通信量的路由网关。ABR路由器总是至少有一个 接口是属于骨干区域的。 自治系统边界路由器(ASBR):是OSPF域外部的通信量进入OSPF域的网关路由器。 四、一个OSPF路由器与DR交换信息用多播地址:与BDR与其他路由器交换信息用多播地址:只涉及一个区域的OSPF路由配置。 1、配置IP地址 Router1配置 Router1(config)# Router1(config)#inter f1/0 Router1(config-if)#ip add shut

Router1(config)#inter f0/0 Router1(config-if)#ip add shut Router1(config)#inter f0/1 Router1(config-if)#ip add shut Router2配置 Router2(config)#inter f0/0 Router2(config-if)#ip add shut Router2(config)#inter f0/1 Router2(config-if)#ip add shut Router3配置 Router(config)#inter f0/1 Router(config-if)#ip add shut Router(config)#inter f0/0 Router(config-if)#ip add shut Router4配置 Router4(config)#inter f0/1 Router4(config-if)#ip add shut Router4(config)#inter f1/0 Router4(config-if)#ip add shut Router4(config)#inter f0/0 Router4(config-if)#ip add shut 2、OSPF配置 Router1配置 Router1(config)#router ospf 10 Router1(config-router)#network 0.0.0.255 area 0 Router1(config-router)#network 0.0.0.255 area 0 Router1(config-router)#network 0.0.0.255 area 0 Router1(config-router)# Router2配置 Router2(config)#route ospf 10 ^ Router2(config-router)#network 0.0.0.255 area 0 Router2(config-router)#network 0.0.0.255 area 1

大型企业网络配置系列课程详解(二) --OSPF多区域配置与相关概念的理解

大型企业网络配置系列课程详解(二) --OSPF多区域配置与相关概念的理解 试验目的: 1、使用OSPF划分多区域改善网络的可扩展性,其次减少各LSA通告 的范围,达到区域内部快速收敛。 2、通过配置末梢区域(Stub Area)、完全末梢区域(Totally Stubb y Area)以及非纯末梢区域(NSSA)达到各区域部分LSA通告的减少,从而减少区域内部路由器的路由表条目,增大路由器查找路由表的速度,从而减少了对路由器cpu以及内存的消耗,优化网络结构。3、通过配置路由重分发,让不同自治系统之间能够互相通信,其次结合 NSSA达到区域内部路由器条目的减少,从而减少了对路由器cpu以及内存的消耗,优化网络结构。 4、通过对试验结果的分析能够更清楚理解配置末梢区域、完全末梢区域 以及非纯末梢区域所达到的效果。 试验网络拓扑: 试验步骤:

一、根据网络拓扑图配置各个路由器接口的IP地址(注意端口的激活,非标准网络子网的划分),下面是以R1为例,其它的类似。 二、根据网络拓扑图指定的Loopback信息配置各个路由器loopback 接口的地址(用作路由器Router ID的标识符,在路由器上便于查看邻居的路由信息),当然如果试验需要过多的网络,Loopback接口也可以模拟外部网络。比如说,做路由器地址汇总的时候就会用到。同样以R1为例,其他的类似。 三、基本工作做完之后,开始配置OSPF,各个路由器进程号表示为(R 1:10,R2:20……),其次将相连的网段。首先启用路由器OSPF的进程号,然后将相应的网段都发布出去,注意:每个接口对应那个区域,在写的时候就写那个区域,不可混同。 R1的具体配置:

OSPF多区域

多区域 OSPF OSPF MultiArea 【实验目的】 了解和掌握ospf的原理,熟悉ospf多域配置步骤。懂得如何配置Vitrul links,Transit area, Stub Area ,Totally Stubby Area, Not-so-stubby area(nssa)。 【实验原理】 了解Internal router,Backbone router,Area Border Router (ABR), Autonomous System Boundary Router (ASBR) 以及各种类型链路通告的不同之处,优化ospf网络。 【实验拓扑】 【实验设备】 路由器五台, 串行线,用于配置路由的主机 【实验内容】 1、按图示配置端口,用ping检查各端口间连通性 (A/B,E/F用于virtul links实验; C的lo地址在用于验证external route summarization D的lo地址加入area 8,为验证interarea summarization; A/F的lo 地址在nssa时才加入)建议配置好各个neighber的vty,可以用一台终端观察整个拓扑。 (config)#enable password cisco (config)#line vty 0 4 (config-line)#Login (config-line)#Password cisco 利用terminal monitor可在telnet上看到debug输出 2、在各个路由器启动ospf进程,注意area的分布 Router(config)#router ospf * Router(config-router)#network *.*.*.* *.*.*.* area * 查看ABR/ASBR/DR/BDR。 show ip ospf show ip ospf interface show ip ospf neighbor show ip ospf neighbor detail

华为ospf多区域配置

OSPF多区域配置 1.规划网络拓扑图如下: 文字说明: a.R1 与R2 作为末梢区域area 1 b.R2 与R3 作为主区域area 0 c.R3 与R4 作为末梢区域area 2 d.R1 上连接交换机LSW3,LSW3上拥有vlan 8,g0/0/1与g/0/2属于vlan 8 e.R1还直连一个主机,网段为192.168.7.0 网段。 2.配置: R1: sys Enter system view, return user view with Ctrl+Z. [Huawei]un in en Info: Information center is disabled. [Huawei]sysname R1 [R1]int e0/0/0 [R1-Ethernet0/0/0]ip add 12.1.1.1 30 [R1-Ethernet0/0/0]q [R1]int e0/0/1 [R1-Ethernet0/0/1]ip add 192.168.8.1 24 [R1-Ethernet0/0/1]q [R1]int g0/0/0 [R1-GigabitEthernet0/0/0]ip add 192.168.7.1 24 [R1-GigabitEthernet0/0/0]q [R1]int loop [R1]int LoopBack 0 [R1-LoopBack0]ip add 1.1.1.1 24

[R1-LoopBack0]q [R1]int loopback 1 [R1-LoopBack1]ip add 192.168.1.1 24 [R1-LoopBack1]q [R1]ospf 10 [R1-ospf-10]area 1 [R1-ospf-10-area-0.0.0.1]network 12.1.1.0 0.0.0.3 [R1-ospf-10-area-0.0.0.1]network 1.1.1.0 0.0.0.255 [R1-ospf-10-area-0.0.0.1]network 192.168.1.0 0.0.0.255 [R1-ospf-10-area-0.0.0.1]network 192.168.8.0 0.0.0.255 //为了能让192.168.8.0网段能够到达2.2.2.2 [R1-ospf-10-area-0.0.0.1]network 192.168.7.0 0.0.0.255 //为了能让192.168.7.0网段能够到达2.2.2.2 [R1-ospf-10-area-0.0.0.1]q [R1-ospf-10]q [R1]ip route-static 192.168.0.0 255.255.255.0 12.1.1.2 [R1]ip route-static 192.168.0.0 255.255.255.0 192.168.8.254 [R1] R2: [R2]int e0/0/0 [R2-Ethernet0/0/0]ip add 12.1.1.2 30 [R2-Ethernet0/0/0]int e0/0/1 [R2-Ethernet0/0/1]ip add 23.1.1.1 30 [R2-Ethernet0/0/1]q [R2]int loopback 0 [R2-LoopBack0]ip add 2.2.2.2 24 [R2-LoopBack0]q [R2]int loopback 1 [R2-LoopBack1]ip add 192.168.2.1 24 [R2-LoopBack1]q [R2]ospf 10 [R2-ospf-10]area 1 [R2-ospf-10-area-0.0.0.1]network 12.1.1.0 0.0.0.3 [R2-ospf-10-area-0.0.0.1]q [R2-ospf-10]area 0 [R2-ospf-10-area-0.0.0.0]network 23.1.1.0 0.0.0.3 [R2-ospf-10-area-0.0.0.0]network 2.2.2.0 0.0.0.255 [R2-ospf-10-area-0.0.0.0]network 192.168.2.0 0.0.0.255 [R2-ospf-10-area-0.0.0.0]q

OSPF多区域配置与汇总

R1的详细配置 Router>en Router#conf t Router(config)#int lo0 Router(config-if)#ip add 1.1.1.1 255.255.255.0 Router(config-if)#exit Router(config)#int s0/0 Router(config-if)#ip add 12.12.12.1 255.255.255.0 Router(config-if)#no shut Router(config-if)#clock rate 64000 Router(config-if)#clock rate 64000 S0/0 S0/0 S0/1 S0/1 S0/0 S0/0 12.12..12.0/24 23.23.23.0/24 34.34.34.0/24 R1 R2 R4 R3 1 2 2 3 3 4 Area 0 Area 1 Lo0:2.2.2.2/24 Lo0:3.3.3.3/24 R4: Lo0:4.4.4.4/24 Lo10:10.1.0.4/24 Lo11:10.1.1.4/24 Lo12:10.1.2.4/24 Lo13:10.1.3.4/24 R1: Lo0:1.1.1.1/24 Lo10:172.16.0.1/24 Lo11:172.16.1.1/24 Lo12:172.16.2.1/24 Lo13:172.16.3.1/24

Router(config)#int lo1 Router(config-if)#ip add 172.16.1.1 255.255.255.0 Router(config-if)#exit Router(config)#int lo2 Router(config-if)#ip add 172.16.2.1 255.255.255.0 Router(config-if)#exit Router(config)#int lo3 Router(config-if)#ip add 172.16.3.1 255.255.255.0 Router(config-if)#exit Router(config)#int lo4 Router(config-if)#ip add 172.16.4.1 255.255.255.0 Router(config-if)#exit Router#conf t Router(config)#router ospf 1 Router(config-router)#exit Router(config)#router rip Router(config-router)#ve Router(config-router)#version 2 Router(config-router)#no au Router(config-router)#no auto-summary Router(config-router)#net 12.0.0.0 Router(config-router)#net 172.16.0.0

华为eNSP 多区域ospf协议

多区域ospf协议 网络拓扑图: 路由器1配置: # aaa authentication-scheme default authorization-scheme default accounting-scheme default domain default domain default_admin local-user admin password cipher %$%$K8m.Nt84DZ}e#<0`8bmE3Uw}%$%$ local-user admin service-type http # firewall zone Local priority 15 # interface GigabitEthernet0/0/0 ip address 172.16.1.254 255.255.255.0 # interface GigabitEthernet0/0/1 ip address 10.1.1.1 255.255.255.252 # interface NULL0 # ospf 1

area 0.0.0.0 network 172.16.1.0 0.0.0.255 area 0.0.0.1 network 10.1.1.0 0.0.0.3 vlink-peer 10.1.1.2 # 路由器2配置: # aaa authentication-scheme default authorization-scheme default accounting-scheme default domain default domain default_admin local-user admin password cipher %$%$K8m.Nt84DZ}e#<0`8bmE3Uw}%$%$ local-user admin service-type http # firewall zone Local priority 15 # interface GigabitEthernet0/0/0 ip address 10.1.1.2 255.255.255.252 # interface GigabitEthernet0/0/1 ip address 172.16.2.254 255.255.255.0 # interface NULL0 # ospf 1 area 0.0.0.0 network 172.16.2.0 0.0.0.255 area 0.0.0.1 network 10.1.1.0 0.0.0.3 # user-interface con 0 authentication-mode password user-interface vty 0 4 user-interface vty 16 20 # wlan a c

Ospfstub区域路由配置

Ospfstub路由分析 如下图所示,R2为ABR路由器,R1将直连路由重分布进ospf,在此主要测试ospf stub 以及no-summary等命令的使用技巧。 R1(config-router)#do show run | b router routerospf 1 router-id 1.1.1.1 redistribute connected subnets network 1.1.1.1 0.0.0.0 area 0 network 192.1.1.1 0.0.0.0 area 0 1.没有配置stub区域,查看R3上的路由 R2(config-router)#do show run | b route routerospf 1 router-id 2.2.2.2 network 2.2.2.2 0.0.0.0 area 0 network 192.1.1.2 0.0.0.0 area 0 network 193.1.1.1 0.0.0.0 area 1 R3(config-router)#do show ip route Gateway of last resort is not set 1.0.0.0/32 is subnetted, 1 subnets O IA 1.1.1.1 [110/66] via 193.1.1.1, 00:00:07, Serial0/0 2.0.0.0/32 is subnetted, 1 subnets O IA 2.2.2.2 [110/65] via 193.1.1.1, 00:00:07, Serial0/0 3.0.0.0/32 is subnetted, 1 subnets C 3.3.3.3 is directly connected, Loopback0 10.0.0.0/24 is subnetted, 4 subnets O E2 10.213.4.0 [110/20] via 193.1.1.1, 00:00:07, Serial0/0 O E2 10.213.3.0 [110/20] via 193.1.1.1, 00:00:07, Serial0/0 O E2 10.213.2.0 [110/20] via 193.1.1.1, 00:00:07, Serial0/0 O E2 10.213.1.0 [110/20] via 193.1.1.1, 00:00:07, Serial0/0

多区域OSPF配置实例

多区域OSPF配置实例 多区域配置OSPF网络大型服务 【实验环境】 BENET公司总部位于北京,在上海和广州拥有分公司,现希望把三个地方的办公网络用OSPF连接起来,希望你为他们实现这个办公网络的搭建! 【实验目的】 按照现有拓扑图的规划,配置多区域的OSPF在他的上面配置末梢区域(Stub Area)和完全末梢区域(Totally Stublly Area) 以及知道为什么要换分多区域的原因? 【实验拓扑】

【实验步骤】 网络拓扑图的具体布线: Router1 S0/0 <----> Router2 S0/0 Router2 S1/0 <----> Router3 S0/0 Router3 E1/0 <----> Router4 E0/0 第一步:配置路由器的回环地址和接口的IP地址; (1) 、配置Router1的回环地址和接口的IP地址; (2)、配置Router2的回环地址和接口的IP地址;(注意:在Router2上配置回环地址是根据情况而定的;Router2是属于Area2是属于骨干区域,但同时它也是一个ABR路由器;所以要配置两个接口的IP地址;因为R2是区域边界系统路由器(ABR)所以在它上面要配置两个接口的IP地址)!

(3)、配置Router3的回环地址和接口的IP地址(他和Router2一样是一个ABR路由器又是Area0所以要配置两个接口的IP地址;而回环地址就在这里不在做具体的介绍了;因为R3是区域边界路由器(ABR)所以在它上面要配置两个接口的IP地址) (4)、配置Router4的回环地址和接口的IP地址;(他和Router2一样是一个ABR路由器又是Area0所以要配置两个接口的IP地址;而回环地址就在这里不在做具体的介绍了) (1)、在Router1上配置OSPF进程以及宣告他所在的末梢区域(Stub Area)(注意:宣告OSPF的进程和宣告RIP的进程的配置是不一样的,在配置OSPF时他的进程号时本地路由器的进程号,他是来标识一台路由器的多个OSPF的进程的;) 末梢区域(Stub Area )他是一个不允许自治系统外部LSA通告在其内进行泛洪的区域。他是不需要学习5类和4类的LSA;如果在没有学习到5类的时候那么4类的也不必要的,因此这些端口也将会被阻塞。

锐捷实训91路由器动态路由协议OSPF多区域的配置

实训9 路由器动态路由协议OSPF 多区域的配置(1) 实验目的: 掌握多区域OSPF配置技术 实训技术原理: OSPF开放式最短路径优先协议,是目前网络中应用最广泛的路由协议之一。 (1)自治系统(Autonomous System) 一组使用相同路由协议交换路由信息的路由器,缩写为AS。 (2) 骨干区域(Backbone Area) OSPF 划分区域之后,并非所有的区域都是平等的关系。其中有一个区域是与众不同的,它的区域号(Area ID)是0,通常被称为骨干区域。骨干区域负责区域之间的路由,非骨干区域之间的路由信息必须通过骨干区域来转发。对此,OSPF 有两个规定:1,所有非骨干区域必须与骨干区域保持连通;2,骨干区域自身也必须保持连通。但在实际应用中,可能会因为各方面条件的限制,无法满足这个要求。这时可以通过配置OSPF 虚连接(Virtual Link)予以解决。 (3) 虚连接(Virtual Link) 虚连接是指在两台ABR 之间通过一个非骨干区域而建立的一条逻辑上的连接通道。它的两端必须是ABR,而且必须在两端同时配置方可生效。为虚连接两端提供一条非骨干区域内部路由的区域称为传输区(Transit Area)。 (4)区域边界路由器ABR(Area Border Router) 该类路由器可以同时属于两个以上的区域,但其中一个必须是骨干区域。ABR 用来连接骨干区域和非骨干区域,它与骨干区域之间既可以是物理连接,也可以是逻辑上的连接。 实验内容: 构建OSPF多区域连接到骨干区域上 实验拓扑: 中所有的路由器都运行OSPF,并将整个自治系统划分为3 个区域。其中Router A 和Router B 作为ABR 来转发区域之间的路由。配置完成后,每台路由器都应学到AS 内的到所有网段的路由。

实验十六-OSPF多区域的配置

实验十六OSPF多区域的配置 当某大型企业整个路由协议都是OSPF时,为了减少路由表中的路由条目,提高路由器的路由效率,可以将整个网络划分为若干个区域,实现分层管理。 一、实验目的 1.了解OSPF多区域的工作原理 2.掌握OSPF多区域的配置命令 二、原理概述 OSPF是典型的链路状态路由协议,采用最短路径优先的算法来进行最佳路由的计算,OSPF把网络划分为不同层次的区域,成为一个路由域。一个路由域也可以看成是一个自治系统,在同一个路由域中,所有的OSPF路由器都维护一个相同的描述这个域结构的数据库,该数据库中存放的是该域中相应链路的状态信息,路由器正是通过这个数据库计算出OSPF 路由表;对于每一个路由域,其网络拓扑结构在路由域外是不可见的,同样,每一个区域内的路由器对陆游与外的其余网络结构也是不可见的;这意味着OSPF路由域中的网络链路状态的广播报文被区域的边界挡住了,这有利于减少链路状态数据包在全网范围内的广播。 OSPF多区域路由协议中存在一个骨干区域,该区域包括了属于该区域所有的路由器,骨干区域必须是连接的,同时其它区域必须与骨干区域直接相连。骨干区域的区域标识符一般为0,主要作用是在其它区域间传递路由信息。当某区域的路由信息对外广播时,先传递到骨干区域,再由骨干区域传递给其它区域。 OSPF将链路状态广播数据包传送给某一区域的所有路由器,OSPF提供了不同的网络通过同一种TCP/IP交换网络信息的途径,主要具备以下几个特点: 1.用增量方式更新路由表,即只更新变化的路由表项,节约带宽资源。 2.支持可变长子网掩码。 3.支持CIDR以及路由聚合。 4.支持路由信息验证。 5.路由器用整个网络的拓扑结构的信息,路由收敛快速。 三、实验内容 配置OSPF协议使得不同子网之间能够相互连通,图1中的R2和R3为边界路由器。 四、实验环境 2811系列的路由器四台,2960系列的交换机四台(路由器之间利用DCE的连接,路由器和主机之间利用交叉线连接)串行通信线和以太网通信线若干,PC机六台。实验拓扑图如图7-12所示。

JunOS OSPF多区域

1.1JunOS OSPF多区域 1、所有的路由器用loopback口作为router-id 2、所有的路由器的loopback口能被其他设备学习到,并ping通。 3、在area0 中的路由器的loopback应该使用lsa3的形式在area1中泛洪。 4、T1上的172.16.12.0/24要以域内的路由通告,但不许建立邻居。 手动指定router-id: set r3 routing-options router-id 10.0.3.3 show route protocol ospf | match /32 Show ospf database logicalrouter r5 route lsa-id 10.0.3.5 run show route protocol ospf logical-router r6 | match /32 配置以R3为例: [edit logical-routers r3] root# show | display set set logical-routers r3 interfaces em1 unit 23 vlan-id 23 set logical-routers r3 interfaces em1 unit 23 family inet address 10.0.4.1/30 set logical-routers r3 interfaces em1 unit 34 vlan-id 34 set logical-routers r3 interfaces em1 unit 34 family inet address 10.0.2.5/30 set logical-routers r3 interfaces em1 unit 35 vlan-id 35 set logical-routers r3 interfaces em1 unit 35 family inet address 10.0.2.2/30 set logical-routers r3 interfaces em2 unit 13 vlan-id 13 set logical-routers r3 interfaces em2 unit 13 family inet address 10.0.4.13/30

OSPF多区域配置与汇总

R1的详细配置 Router>en Router#conf t Router(config)#int lo0 Router(config-if)#ip add 1.1.1.1 255.255.255.0 Router(config-if)#exit Router(config)#int s0/0 Router(config-if)#ip add 12.12.12.1 255.255.255.0 Router(config-if)#no shut Router(config-if)#clock rate 64000 Router(config-if)#clock rate 64000 S0/0 S0/0 S0/1 S0/1 S0/0 S0/0 12.12..12.0/24 23.23.23.0/24 34.34.34.0/24 R1 R2 R4 R3 1 2 2 3 3 4 Area 0 Area 1 Lo0:2.2.2.2/24 Lo0:3.3.3.3/24 R4: Lo0:4.4.4.4/24 Lo10:10.1.0.4/24 Lo11:10.1.1.4/24 Lo12:10.1.2.4/24 Lo13:10.1.3.4/24 R1: Lo0:1.1.1.1/24 Lo10:172.16.0.1/24 Lo11:172.16.1.1/24 Lo12:172.16.2.1/24 Lo13:172.16.3.1/24

Router(config)#int lo1 Router(config-if)#ip add 172.16.1.1 255.255.255.0 Router(config-if)#exit Router(config)#int lo2 Router(config-if)#ip add 172.16.2.1 255.255.255.0 Router(config-if)#exit Router(config)#int lo3 Router(config-if)#ip add 172.16.3.1 255.255.255.0 Router(config-if)#exit Router(config)#int lo4 Router(config-if)#ip add 172.16.4.1 255.255.255.0 Router(config-if)#exit Router#conf t Router(config)#router ospf 1 Router(config-router)#exit Router(config)#router rip Router(config-router)#ve Router(config-router)#version 2 Router(config-router)#no au Router(config-router)#no auto-summary Router(config-router)#net 12.0.0.0 Router(config-router)#net 172.16.0.0

最新实验4-3:配置多区域OSPF和P2MP、P2P帧中继

实验4-3:配置多区域O S P F和P2M P、 P2P帧中继

实验4-3:配置多区域OSPF和P2MP、P2P帧中继 【实验目的】: 在本次实验中,你将在复杂的帧中继网络中配置OSPF。 在完成本次实验之后,你需要完成下列任务: ?使用点对多点网络类型配置OSPF ?使用点对点网络类型配置OSPF ?连接核心中的其他设备 【实验拓扑】: 注意:图中x为所在机架编号,y为路由器编号。 【实验帮助】: 如果出现任何问题,可以向在值的辅导老师提出并请求提供帮助。 【命令列表】: 命令描述 (config)#default interface s0 恢复S0接口到默认配置 (config-subif)#frame-relay interface-dlci 122 给点对点连接指定DLCI (config)#internface s0/0.1 multipoint | point- to-point 创建一个点对点(点对多点)子接口 (config-subif)#ip ospf network Point-to-multipoint 强制指定OSPF接口类型为点对多点。缺省是NBMA。

【任务一】:配置OSPF多区域和帧中继网络点对多点、点对点 实验过程: 第一步:在边界路由器,创建一个多点子接口s0.1。你将使用这个为OSPF点对多点网络类型去连接帧中继网络。 第二步:更改子接口s0.1的OSPF网络类型为点对多点(缺省的帧中继多点子接口网络类型是非广播(NBMA) 第三步:分配IP地址172.31.xx.y/24到s0.1接口,x是你的机架号,y是你的路由器编号。例如:P3R2,这个IP地址是172.31.33.2/24。 第四步:因为我们的帧中继没有使用帧中继反向ARP,我们需要手动的映着这个远程地址到本地DLCI 号。在边界路由器创建一个新的帧中继映射语句到路由器BBR2的IP地址172.31.xx.4使用DLCI号 2xy,这儿x是机架号,y是你的路由器编号。不要放记添加broadcast参数。 例如:P3R2,这个帧中继映射语句应该是: frame-relay map ip 172.31.33.4 232 broadcast P3R1,这个帧中继映射语句应该是: frame-relay map ip 172.31.33.4 231 broadcast 第五步:在边界路由器上接活S0接口。 第六步:在边界路由器上,在OSPF进程下添加新的network语句声明172.31.xx.0这个网段运行在Area 0,同时使用ip ospf network point-to-multipoint命令修改S0.1接口的网络类型。 第七步:在边界路由器,使用适当的show命令检查OSPF邻居状态。在点对多点网络类型下这里是否有DR/BDR? 你的路由器输出应该与下列类似: P1R1#sh ip os nei Neighbor ID Pri State Dead Time Address Interface 172.31.11.4 1 FULL/BDR 00:01:55 172.31.11.4 Serial0.1 172.31.1.3 100 FULL/DR 00:01:54 172.31.1.3 Serial0 10.1.0.2 0 FULL/ - 00:00:35 10.1.0.2 Serial1 10.200.200.13 1 FULL/DR 00:00:37 10.1.1.3 Ethernet0 P1R1# 第八步:显示边界路由器PxR1和PxR2的路由表,验证他们是正确的学习了核心的OSPF路由。 从边界路由器PING BBR2路由器的以太网接口10.254.0.2,以验证与核心建立了正确的连接。你的输出应该与下列类似: router#ping 10.254.0.2

1ospf多区域原理与配置

1,ospf邻接关系 当两个运行ospf路由器的ospf路由信息达到一致时,这两个路由器就处于完全邻接状态。但是ospf邻接关系是如何建立的呢? 2,完全邻接关系的建立 Ospf路由协议依靠五种不同类型的数据包来标识他们的邻居以及更新链路状态路由信息: a)Hello包:发现和维护邻接关系,并保证邻居间的双向通信,包含router id b)DBD数据库描述包:描述每台ospf路由器的链路状态库的内容。 c)LSR链路状态请求包:请求链路状态数据库的部分内容。 d)LSU链路状态更新包:传送链路状态数据通告LSA给邻接路由器。 e)LSAck链路状态确认包:确认邻居发过来的lsa已经收到。 其中DBD和LSR报文用于建立邻接关系,LSU和LSAck报文用于实现ospf可靠的更新机制。 3,建立邻接关系需要满足的条件 当两台路由器共享一条数据链路时,如果可以成功协商hello报文中的某些参数,则他们就能形成邻接关系,建立邻接关系中需要满足的条件: Area ID相同。 Hello interval(间隔)和dead interval (就是丢弃hello包)相同。 Stub区域标记相同。 4,ospf的网络类型 根据路由器接口类型的不同,在建立邻接关系时,ospf路由器执行的操作也略有不同,因此ospf协议定义了四种网络类型: 点到点网络(point-to-point):连接单独的一对路由器,ospf目的地址也总是保留d 类地址224.0.0.5 广播多址网络(broadcast):ospf路由器会一个指定路由器DR和一个备份指定路由器BDR,这里DR和BDR使用组播方式和allspfrouter沟通。 非广播多址网络(NBMA):ATM机,同样需要选举DR和BDR. 点到多点网络(point-to-multipoint):它是NBMA网络的一个特殊配置,不需要dr 和bdr。 5,Ospf多址网络中的DR和BDR DR的作用: DR同网络中的其他路由器建立连接关系。因为链路状态数据库是通过邻接关系建立进行同步的,DR在这个同步过程中起着核心的作用。 管理这个多址网络上的泛洪过程。 为了减少减少邻接关系建立的混乱和网络资源的占用,所有的路由器只与DR建立邻接关系,也只与DR互相交换链路状态信息,DR将会把从非DR收集到的完整的链路状态信息以组播的方式下发到224.0.0.5,其他与DR建立邻接关系的路由器就会收到这个网络内完整的链路信息。但是为了加强网络的冗余性,增加了BDR(backup designated router)。

OSPF多区域配置实验报告

实验名称:OSPF多区域的配置 实验目的: (1):掌握OSPF多区域基本配置方法 (2):实现全网互通性 (3):通过更改优先级实现路由器对不同路径的选择实验拓扑图: 实验步骤: (1):设置IP地址 R0: Router(config)#hostname R0 R0(config)#interface f0/1 QQ:1487192104 邮箱:1487192104@https://www.doczj.com/doc/0116273259.html,

R0(config-if)#ip address 10.0.2.254 255.255.255.0 R0(config-if)#ip address 10.0.2.254 255.255.255.0 R2: Router(config)#hostname R2 R2(config)#interface f0/0 R2(config-if)#ip address 20.0.0.254 255.255.255.0 R3: Router(config)#hostname R3 R3(config)#interface s1/1 R3(config-if)#ip address 40.0.0.2 255.255.255.0 R3(config-if)#no shutdown (2):进入ospf及区域的划分 R0: Router(config-if)#exit Router(config)#router ospf 100 Router(config-router)#router-id 1.1.1.1 Router(config-router)#network 10.0.1.1 0.0.0.255 area 0 QQ:1487192104 邮箱:1487192104@https://www.doczj.com/doc/0116273259.html,

相关主题
文本预览
相关文档 最新文档