当前位置:文档之家› 基因沉默与RNAi技术

基因沉默与RNAi技术

基因沉默与RNAi技术
基因沉默与RNAi技术

基因沉默与RNAi技术

定义:基因沉默双是指链RNA被特异的核酸酶降解,产生干扰小RNA(siRNA),这些siRNA 与同源的靶RNA互补结合,特异性酶降解靶RNA,从而抑制、下调基因表达。

RNA干扰是指在进化过程中高度保守的、由双链RNA诱发的、同源mRNA高效特异性降解的现象。由双链引发的植物RNA沉默,主要有转录水平的基因沉默(TGS)和转录后水平的基因沉默(PTGS)两类:TGS是指由于DNA修饰或染色体异染色质化等原因使基因不能正常转录;PTGS是启动了细胞质靶mRNA序列特异性的降解机制。有时转基因会同时导致TGS和PTGS。

基因沉默是一种RNA干扰技术。

RNA干扰是由双链RNA 引发的转录后基因静默机制。其原理是:RNaseIII核酶家族的Dicer,与双链RNA结合,将其剪切成21 - 25nt及3'端突出的小干扰RNA (small interfering RNA

,siRNA),随后siRNA与RNA诱导沉默复合物(RNA - induced silencing complex

,RISC结合,解旋成单链,活化的RISC受已成单链的siRNA引导,序列特异性地结合在靶mRNA上并将其切断,引发靶mRNA的特异性分解,从而阻断相应基因表达的转录后基因沉默机制.

一、基因沉默的分类及其机制

(一)转录水平基因沉默

转录水平基因沉默是指对基因专一的细胞核

RNA合成的失活,

它的发生主要是由于基因无法被顺利转录成相应的RNA而导致基因沉默。转录水平基因沉默可以通过有性世代传递,表现为减数分裂的可遗传性。引起转录水平基因沉默的机制主要有以下几种:

1.基因及其启动子甲基化

甲基化是活体细胞中最常见的一种DNA共价修饰形式,通常发生在DNA的CG序列的碱基上,该区碱基甲基化往往导致转录受抑制,该区甲基化的频率

在人类及高等植物中分别可达4%和36%。[4]

近来的研究表明,发生在转基因启动子5'端的甲基化是造成转录水平基因沉默的主要原因。虽然转基因的甲基化可延伸至转基因的3'端,但甲基化过程均是从启动子区域开始的。从所报道的转基因沉默例子来看,几乎所有的转基因沉默现象与转基因及其启动子的甲基化有关。

2.同源基因间的反式失活

反式失活主要是由于拥有同源序列的沉默位点和其他位点的DNA的相互作用而引起的基因沉默。通过顺式作用而甲基化并失活的基因能作为一种"沉默子",对其他与之分离的具有同源性的靶基因施加一种反式作用,使具有同源序列的靶基因发生甲基化并导致失活。反式失活的靶基因既可以与沉默基因是等位基因,也可以是非等位基因。

3.后成修饰作用导致的基因沉默

后成修饰作用是指转基因的序列和碱基组成不发生改变,但是其功能却在个体发育的某一阶段受到细胞因子的修饰作用后而关闭。这种修饰作用所造成的转基因沉默是可以随着修饰作用的解除而被消除。后成修饰作用导致的转基因沉默与受体植物的核型构成有关。

4.重复序列

外源基因如果以多拷贝形式整合到同一位点上,形成首尾相连的正向重复或头对头、尾对尾的反向重复,则不能表达,而且拷贝数越多,基因沉默现象越严重。这种重复序列诱导的基

因沉默与在真菌中发现的重复序列诱导的点突变相类似,均可能是重复序列间自发配对,甲基化酶特异性识别这种配对结构而使其甲基化,从而抑制其表达。

5.位置效应

位置效应是指基因在基因组中的位置对其表达的影响。当外源基因整合到高度甲基化、转录活性低的异染色质区域时,外源基因一般表现沉默,这说明毗邻DNA的甲基化和异染色质化对插入的外源基因影响很大,可能导致外源基因在转录水平上失活。如果转基因插入转录不活跃区域或异染色质区域,转基因通常会融人该区域的染色质结构,使转基因进行很低水平的转录,或使转基因发生异染色质化而导致转基因沉默。

(二)转录后水平基因沉默

转录后水平基因沉默是指基因在细胞核能稳定转录,但在细胞质里却无相应稳定态mRNA存在的

现象。与转录水平基因沉默不同,转录后水平基因沉默具有逆转性,即受抑制基因通过减数分裂可以恢复表达活性,表现为减数分裂不可遗传性。目前发现主要有以下几种转录后水平基因沉默现象。

1.共抑制

共抑制是最常见的转录后水平基因沉默。这一现象首先由Napoli在转CHS基因的矮牵牛花中发现。共抑制现象普遍存在于转基因植物中。共抑制的发生是由于外源基因编码区与受体细胞基因间存在同源性而导致外源基因与源基因的表达同时受到抑制。具有同源性的外基因和源基因在细胞核的转录速率很高,但在细胞质无mRNA积累,是典型的转录后水平基因沉默。若导入的外源基因与源基因无序列同源性,外源基因自身也常常会发生转录后水平基因沉默。有关研究发现,共抑制的产生不仅同、外源基因间编码区的同源性有关,还与控制外源基因的启动子的强度等因素有关。

2.基因压制

Cogoni等在粗糙脉抱霉的转化实验中发现,外源基因可以抑制自身和相应源基因的表达,他们把这一现象定为基因压制。Cogoni等是以类萝卜素生物合成基因albino-1作为视觉报道基因来研究基因压制的。他们发现,基因压制是可逆的,而且这种逆转会伴随有外源拷贝的丢失。基因压制发生在转录后水平,导致已复制的稳定态mRNA大量减少。

3.RNA干扰RNA干扰是1998年Fire首次在秀丽线虫中发现

并证明属于转录后水平的基因沉默。

利用小片段双链RNA可以特异性地降解相应序列的mRNA,从而特异性地阻断相应基因的表达。RNA干扰广泛存在于从真菌到植物、从无脊椎动物到哺乳动物的各种生物中。RNAi的作用机制目前尚不完全清楚,学者们在线虫、果蝇、植物和动物卵细胞的RNAi实验中,最近相继发现了一些与RNAi作用相关的酶和蛋白,如dsR-NA特异性核酸切酶、RNA依赖性RNA聚合酶、Argonaute蛋白等。

现已初步阐明RNAi的作用机制如下:各种dsRNA通过各种转染技术转入细胞,较长dsRNA被Dicer的RNA酶Ⅲ样特异性核酸切酶切割产生21~23nt的小干扰

RNA,siRNA两条单链末端为5'-磷酸和3′-羟基,且3′端都有2~3个突出的核苷酸。核酸外切酶、ATP、解旋酶与Arg-onaute蛋白相连进而与siRNA一起形成具有多个亚单元的RNA诱导的沉默复合体RISC中的解旋酶应用ATP解开siRNA双链,使其反义链互补结合到靶向的mRNA上与之相匹配的特异性序列,RISC中的核酸酶降解mRNA,从而使目的基因沉默,产生RNAi现象。siRNA也能与RISC和mRNA联系在一起,在解开siRNA的双链后,反义RNA链能作为双

链RNA合成的一个引物以mRNA为模板,在RISC中的RdRP的作用下形成新的dsRNA,再次被Dicer识别并切断,形成新的siRNA再循环,作用于另外的靶向mRNA。这种不断放大的瀑布式作用形成大量新的siRNA,使siRNA在短时间迅速并有效地抑制mRNA翻译形成蛋白质或多肽,从而有效地抑制靶向基因蛋白质或多肽的合成。

onaute蛋白相连进而与siRNA一起形成具有多个亚单元的RNA诱导的沉默复合体RISC中的解旋酶应用ATP解开siRNA双链,使其反义链互补结合到靶向的mRNA

上与之相匹配的特异性序列,RISC中的核酸酶降解mRNA,从而使目的基因沉默,产生RNAi现象。siRNA也能与RISC和mRNA联系在一起,在解开siRNA的双链后,反义RNA链能作为双链RNA合成的一个引物以mRNA为模板,在RISC中的RdRP的作用下形成新的dsRNA,再次被Dicer识别并切断,形成新的siRNA再循环,作用于另外的靶向mRNA。这种不断放大的瀑布式作用形成大量新的siRNA,使siRNA在短时间迅速并有效地抑制mRNA翻译形成蛋白质或多肽,从而有效地抑制靶向基因蛋白质或多肽的合成。

二、基因沉默的相关实验技术及其进展

目前在基因沉默中主要是RNA干扰的实验技术应用较多,根据靶dsRNA合成的方法可将RNAi技术分为3种。

1.体外化学合成法

最为经典的方法,共分4个步骤:

(1)化学合成dsRNA;(2)将dsRNA导入宿主细胞;(3)检测靶基因抑制效率;(4)功能研究。其中,dsRNA合成成本很高,dsRNA转入宿主细胞效率及其在宿主细胞中的稳定性均不确定。

2.体外转录法

这种方法采用T7RNA聚合酶,以先合成的DNA链为模板反转录合成dsRNA,从而使合成dbRNA的成本大大降低,但这种方法与化学合成法有相同的缺点。

3.体载体合成法

这是近年来迅速发展起来,克服了前两种方法缺点的新技术。它是2002年Paddison等首先报道的利用载体在细胞体稳定地表达siRNA,从而抑制哺乳动物细胞靶基因表达的方法。

其基本思路如下:细胞存在RNAplymeraseⅢ,它可以识别U6启动子,从而使启动子后的基因转录成RNA。当模板连续出现3~5个"T"

碱基时,转录就会终止。根据这一机制,可以设计一种能表达RNA的质粒,其组成包括4部分:(1)常用质粒的基本序列;(2)U6启动子,位于克隆位点的上游;(3)克隆位点;(4)RNAi模板序列(DNA)。这部分序列具有如下特点:含RNAi序列,对哺乳动物而言,通常为21~23个核苷酸;发夹结构环状部分,通常有4~7个核苷酸;靶序列的反向互补序列;3~5个核

苷酸"T"

。将具有如上结构的质粒导入细胞,体的RNAplymeraseⅢ就可以合成一条RNA链,这条RNA链可以通过两端的21个左右的核苷酸反向互补特性而形成发夹样双链结构,从而起到基因抑制作用。这种技术操作简便,成本低,与直接导入siRNA相比,DNA质粒更易导入细胞,

而且质粒导入细胞后存在时间长且稳定,对靶基因的表达抑制效率高,便于进行较长时间的基因功能研究,因而成为一种热门技术。近年来多位作者几乎同时报道了利用上述载体技

术成功地抑制哺乳动物细胞基因表达的实验。除质粒载体外,现已有成功地采用逆转录病毒载体和腺病毒载体将表达siRNA的DNA模板序列转移入哺乳动物细胞的报道。

三、基因沉默的应用前景

抗肿瘤

RNAi具有特异、高效的特点,因此可用于一些肿瘤的治疗。最近Lin等把针对bcl2基因的mRNAcDNA杂交体转染到人前列腺癌细胞中,产生长时期阻抑表达效应,此效应与体外培养的前列腺癌细胞中的RNAi相似,进而说明哺乳动物中可以发生RNAi。Milner教授应用RNAi技术特异性地成功沉默了感染HPV的宫颈癌细胞中的HPV基因,宫颈细胞的V53和RB蛋白恢复正常功能,从而恢复了宫颈细胞正常的防御功能,使已感染HPV的宫颈癌细胞遭遇自杀,而对其他健康细胞的正常生长和生物学行为无影响。可以预见此技术也可应用于与HBV感染相关的肝细胞性肝癌的基因治疗。有学者认为,应用RNAi技术抑制肿瘤细胞中血管生长因子如血管生成素an-gi1、angi2、angi3及VEGF等或其受体的表达,以及抑制肿瘤细胞中如癌基因bcl2、RAS、p53等突变基因及其蛋白的表达而不影响非突变基因的表达,可达到很好的抗肿瘤生长及抗肿瘤转移的目的。

2.抗病毒斯坦福医学院的研究者把dsRNA放进小鼠的肝细胞,dsRNA被小鼠体的核酸酶分解成许多siRNA,研究发现siRNA具有高度专一性,会与小鼠体的丙型肝炎病毒的mRNA相结合,使mRNA分解并失去翻译蛋白质的功能。斯坦福医学院运用此技术来治疗丙型肝炎的研究,已从体外试管实验阶段推进至体的动物实验,且在小鼠身上,看到丙型肝炎病毒被阻断的

明显效果。

RNA干扰实验

⒈转染试剂对照(监控转染及培养条件对结果的影响);

⒉nonsense siRNA对照(监控外源核酸本身对结果的影响);

⒊positive siRNA对照(监控假阴性);

⒋技术重复对照(也叫off-target 对照,也就是利用至少2个靶点的siRNA同时实验,2个siRNA互为off-target control,当两者的表型相同时,才有可能是特异性的knockdown效应);

⒌rescue 对照(knockdown之后做超表达,看是否有性状的逆转,这也是为了说明knockdown 的特异性);6.全表达组扫描对照(就是转录/表达芯片扫描,以最终确定表型不是由于off-target造成)。

实际实验中,全表达组扫描对照很少有文献涉及。其它几个对照中,1,2两种对照即所谓的空白细胞对照、NC对照,基本是所有杂志都要求具备的。4,5两种对照,主要是为了解决off-target效应,选做一种即可,一般建议选5,涉及的实验即所谓的"RNA干扰回复实验",RNA干扰效率的检测(体外)

一般应该从mRNA水平、蛋白质水平、细胞表型水平三个层次来检测干扰效率。

mRNA水平:RT-PCR、Real-time PCR;蛋白质水平:Western-blot、ELISA、免疫组化;细胞表型水平:MTT、克隆形成实验、流式细胞检测、细胞小室实验等。RNA干扰效率在动物模型上的进一步验证(体)动物模型实验可以采取"体法"和"体外法"。

体法,即先做裸鼠成瘤模型,再将质粒或病毒导入裸鼠,检测RNA干扰效果。此法操作复杂,对质粒和病毒产品的质和量要求都较高,但是比较贴近实际,说服力较显著。体外法,即先将质粒或病毒导入肿瘤细胞,再将肿瘤细胞导入动物体,然后检测RNA干扰效果。此法操作较简单,对质粒和病毒产品的质量要求较低,所以为大多数文献所采用。建议采用此方法来进行动物模型水平的实验。

RNAi在探索基因功能中的应用

基因表达的分析技术

第二篇细胞的遗传物质 第三章基因表达的分析技术 生物性状的表现均是通过基因表达调控实现的。对基因结构与基因表达调控进行研究,是揭示生命本质的必经之路。在基因组研究的过程中,逐步建立起一系列行之有效的技术。针对不同的研究内容,可建立不同的研究路线。 第一节PCR技术 聚合酶链反应(polymerase chain reaction,PCR)技术是一种体外核酸扩增技术,具有特异、敏感、产率高、快速、简便等突出优点。。PCR技术日斟完善,成为分子生物学和分子遗传学研究的最重要的技术。应用PCR技术可以使特定的基因或DNA片段在很短的时间内体外扩增数十万至百万倍。扩增的片段可以直接通过电泳观察,并作进一步的分析。 一、实验原理 PCR是根据DNA变性复性的原理,通过特异性引物,完成特异片段扩增。第一,按照欲检测的DNA的5'和3'端的碱基顺序各合成一段长约18~24个碱基的寡核苷酸序列作为引物(primer)。引物设计需要根据以下原则:①引物的长度保持在18~24bp之间,引物过短将影响产物的特异性,而引物过长将影响产物的合成效率;②GC含量应保持在45~60%之间;③5'和3'端的引物间不能形成互补。第二,将待检测的DNA变性后,加入四种单核苷酸(dNTP)、引物和耐热DNA聚合酶以及缓冲液。通过95℃变性,在进入较低的温度使引物与待扩增的DNA链复性结合,然后在聚合酶的作用下,体系中的脱氧核苷酸与模板DNA链互补配对,不断延伸合成新互补链,最终使一条DNA双链合成为两条双链。通过变性(92~95℃)→复性(40~60℃)→引物延伸(65~72℃)的顺序循环20至40个周期,就可以得到大量的DNA片段。理论上循环20周期可使DNA扩增100余万倍。

基因沉默与RNAi技术

基因沉默与RNAi技术 定义:基因沉默双是指链RNA被特异的核酸酶降解,产生干扰小RNA(siRNA),这些siRNA 与同源的靶RNA互补结合,特异性酶降解靶RNA,从而抑制、下调基因表达。 RNA干扰是指在进化过程中高度保守的、由双链RNA诱发的、同源mRNA高效特异性降解的现象。由双链引发的植物RNA沉默,主要有转录水平的基因沉默(TGS)和转录后水平的基因沉默(PTGS)两类:TGS是指由于DNA修饰或染色体异染色质化等原因使基因不能正常转录;PTGS是启动了细胞质靶mRNA序列特异性的降解机制。有时转基因会同时导致TGS和PTGS。 基因沉默是一种RNA干扰技术。 RNA干扰是由双链RNA 引发的转录后基因静默机制。其原理是:RNaseIII核酶家族的Dicer,与双链RNA结合,将其剪切成21 - 25nt及3'端突出的小干扰RNA (small interfering RNA ,siRNA),随后siRNA与RNA诱导沉默复合物(RNA - induced silencing complex ,RISC结合,解旋成单链,活化的RISC受已成单链的siRNA引导,序列特异性地结合在靶mRNA上并将其切断,引发靶mRNA的特异性分解,从而阻断相应基因表达的转录后基因沉默机制. 一、基因沉默的分类及其机制 (一)转录水平基因沉默 转录水平基因沉默是指对基因专一的细胞核 RNA合成的失活, 它的发生主要是由于基因无法被顺利转录成相应的RNA而导致基因沉默。转录水平基因沉默可以通过有性世代传递,表现为减数分裂的可遗传性。引起转录水平基因沉默的机制主要有以下几种: 1.基因及其启动子甲基化 甲基化是活体细胞中最常见的一种DNA共价修饰形式,通常发生在DNA的CG序列的碱基上,该区碱基甲基化往往导致转录受抑制,该区甲基化的频率 在人类及高等植物中分别可达4%和36%。[4] 近来的研究表明,发生在转基因启动子5'端的甲基化是造成转录水平基因沉默的主要原因。虽然转基因的甲基化可延伸至转基因的3'端,但甲基化过程均是从启动子区域开始的。从所报道的转基因沉默例子来看,几乎所有的转基因沉默现象与转基因及其启动子的甲基化有关。 2.同源基因间的反式失活 反式失活主要是由于拥有同源序列的沉默位点和其他位点的DNA的相互作用而引起的基因沉默。通过顺式作用而甲基化并失活的基因能作为一种"沉默子",对其他与之分离的具有同源性的靶基因施加一种反式作用,使具有同源序列的靶基因发生甲基化并导致失活。反式失活的靶基因既可以与沉默基因是等位基因,也可以是非等位基因。 3.后成修饰作用导致的基因沉默 后成修饰作用是指转基因的序列和碱基组成不发生改变,但是其功能却在个体发育的某一阶段受到细胞因子的修饰作用后而关闭。这种修饰作用所造成的转基因沉默是可以随着修饰作用的解除而被消除。后成修饰作用导致的转基因沉默与受体植物的核型构成有关。 4.重复序列 外源基因如果以多拷贝形式整合到同一位点上,形成首尾相连的正向重复或头对头、尾对尾的反向重复,则不能表达,而且拷贝数越多,基因沉默现象越严重。这种重复序列诱导的基

基因表达的检测的几种方法

基因表达检测的最终技术目标是能确定所关注的任何组织、细胞的 RNA的绝对表达量。可以先从样本中抽提RNA,再标记RNA, 然后将这些标记物作探针与芯片杂交,就可得出原始样本中不同 RNA的量。然而用于杂交的某个特定基因的RNA的量与在一个 相应杂交反应中的信号强度之间的关系十分复杂,它取决于多种 因素,包括标记方法、杂交条件、目的基因的特征和序列。所以 芯片的方法最好用于检验两个或多个样本中的某种RNA的相对 表达量。样本之间某个基因表达的差异性(包括表达的时间、空 间特性及受干扰时的改变)是基因表达最重要的,而了解RNA 的绝对表达丰度只为进一步的应用或多或少地起一些作用。 基因表达的检测有几种方法。经典的方法(仍然重要)是根据在 细胞或生物体中所观察到的生物化学或表型的变化来决定某一 特定基因是否表达。随着大分子分离技术的进步使得特异的基因 产物或蛋白分子的识别和分离成为可能。随着重组DNA技术的 运用,现在有可能检测.分析任何基因的转录产物。目前有好几 种方法广泛应用于于研究特定RNA分子。这些方法包括原位杂交.NORTHERN凝胶分析.打点或印迹打点.S-1核酸酶分 析和RNA酶保护研究。这里描述RT-PCR从RNA水平上检查 基因表达的应用。8 f3 f- |2 L) K) b7 ]- ~- | RT-PCR检测基因表达的问题讨论

关于RT-PCR技术方法的描述参见PCR技术应用进展,在此主要讨论它在应用中的问题。理论上1μL细胞质总RNA对稀有mRNA扩增是足够了(每个细胞有1个或几个拷贝)。1μL差不多相当于50-100,000个典型哺乳动物细胞的细胞质中所含RNA的数量,靶分子的数量通常大于50,000,因此扩增是很容易的。该方法所能检测的最低靶分子的数量可能与通常的DNAPCR相同;例如它能检测出单个RNA分子。当已知量的转录RNA(用T7RNA聚合酶体外合成)经一系列稀释,实验结果表明通过PCR的方法可检测出10个分子或低于10个分子,这是反映其灵敏度的一个实例。用此技术现已从不到1个philadelphia染色体阳性细胞株K562中检测到了白血病特异的MRNA的转录子。因此没必要分离polyA+RNA,RNA/PCR法有足够的灵敏度来满足绝大多数实验条件的需要。 7 H+ F& _* S6 W( a8 p: [, @- d, { 将PCR缓冲液同时用于反转录酶反应和PCR反应,可简化实验步骤。我们发现整个反应过程皆用PCR缓冲液的结果相当于或优于先用反转录缓冲液合成CDNA,然后PCR缓冲液进行PCR扩增循环。当然,值得注意的是PCR缓冲液并不最适合第一条DNA链的合成。我们对不同的缓冲液用于大片段DNA 合成是否成功还没有进行过严格的研究。

基因沉默

基因沉默 摘要随着基因技术的迅速发展和广泛应用,在转基因技术实践中首先暴露出来的外源基因不能按照预期设想进行表达的问题越来越显得普遍,而人们对基因沉默现象的不断深入研究和探索,不仅揭示出了基因沉默的发生机制,也在一定程度上推动了新技术的产生和应用,这不仅推动了基因研究领域的发展,更在遗传群体构建、疾病治疗等方面建立了新方法、新体系,为生物学技术的发展做出了贡献。 关键字基因沉默分类机理应用 1.引言 基因沉默(Gene Silencing),又称为基因沉寂,是真核生物细胞基因表达调节过程中的一种特殊生理现象,是指细胞基因在表达过程中受到各种因素的综合作用而导致基因部分区段发生“沉寂”现象,从而失去转录活性并不予表达或表达减少。该现象最先于1986年Peerbolte在转基因植物研究中所发现,随后科学家在线虫、真菌、水螅、果蝇以及哺乳动物中陆续发现了基因沉默现象的存在。 转基因沉默是基因沉默现象最为频发和常见的,这也是转基因为何在受体难以百分之百全部表达的因素之一,其基本特征是导入并整合到受体基因组的外源基因在当代或后代中表达活性受到抑制。研究发现,其主要原因是由于转基因之间或转基因与内源基因之间存在着序列同源性,因此转基因沉默又被称为同源性依赖的基因沉默(homology-dependent gene silencing)。 根据沃森-克里克的核酸碱基互补配对模型,基因沉默可能涉及到DNA-DNA、DNA-RNA以及RNA-RNA三种不同形式的核酸分子之间的互作,简单地说就是插入的外源DNA或自身基因区段在核内高浓度的RNA作用下,能够与内源反向DNA 或者RNA进行碱基互补配对,并且在核内被重新甲基化,进而导致基因沉默;而另一种可能则是内源基因与转基因转录生成的RNA之间互补配对生成可被RNases酶性降解的双链RNA(dsRNA),其水解直接导致基因的不表达,即基因沉默效果。从染色体水平上看,基因沉默现象的实质是形成异染色质(Heterochromation)的过程,检查发现被沉寂的基因区段往往呈现出高浓缩状态,显然,这在一定程度上也决定了被沉寂基因的难表达性。实验早已证明,在高度浓缩的基因区段,正常的DNA转录活动是难以进行并维持的,换言之,即一旦形成异染色质进入高度浓缩状态,那么相应区段的基因片段就必然因为不能被

基因沉默

《细胞》:不依赖于RNAi的基因沉默机制被发现 来自瑞士日内瓦大学细胞生物学系的研究人员发现了一种不依赖于RNAi(RNA干扰)的基因沉默机制,这为进一步揭示生物体中基因沉默的多样化,以及功能作用提供了重要信息。这一研究成果公布在最新一期的《细胞》(Cell)杂志上。 RNA沉默存在两种既有联系又有区别的途径:siRNA(small interference RNA)途径和miRNA(microRNA)途径。siRNA途径是由dsRNA(double-stranded RNA)引发的,dsRNA被一种RNaseⅢ家族的内切核酸酶(RNA- induced silencing complex,Dicer)切割成21-26nt长的siRNA,通过siRNA指导形成RISC蛋白复合物(RNA-induced silencing complex)降解与siRNA序列互补的mRNA而引发RNA沉默。而miRNA途径中miRNA是含量丰富的不编码小RNA(21-24个核苷酸),由Dicer酶切割内源性表达的短发夹结构RNA(hairpin RNA,hpRNA)形成。miRNA同样可以与蛋白因子形成RISC蛋白复合物,可以结合并切割特异的mRNA而引发RNA沉默。尽管引发沉默的来源不同,但siRNA 和miRNA都参与构成结构相似的RISC,在作用方式上二者有很大的相似性。 在最近的一项研究中,来自加州大学河畔分校的研究人员发现了一种新的小RNAs分子,而这些小RNAs与近期的研究热点PIWI-interacting RNAs (piRNAs)和repeat-associated siRNAs (rasiRNAs)也不相同,这说明了小RNA家族和小RNA介导的基因调控远比之前预想的复杂。同样在这篇文章中,研究人员也发现基因沉默机制包含有多种途径,他们最新发现酿酒酵母中,反义RNA稳定(Antisense RNA Stabilization)能通过组蛋白去乙酰化引起转录基因沉默。在之前的研究中,酿酒酵母全基因组研究分析揭示出其转录本中包含了大量的反义RNA(antisense RNAs),以及由外切酶体元件(exosome component)Rrp6调控的基因间转录(intergenic transcripts)。通过进一步研究,瑞士的研究人员发现当缺失了Rrp6的功能后,两个PHO84反义转录就会变得稳定,并且抑制了PHO84基因的转录。有趣的是,研究人员在野生型中也发现了同样的现象:在时间性老化(chronological aging)的过程中Rrp6功能缺失也能稳定PHO84反义转录。上位性和染色质免疫共沉(Epistasis and chromatin immunoprecipitation)实验结果说明Rrp6功能的缺失与PHO84基因以及邻近基因的Hda1组蛋白去乙酰化的补充有关,但是组蛋白的去乙酰化受限于PHO84基因,这又说明Hda1活性依赖于反义RNA。因此敲除反义产物,即使是在缺失Rrp6的条件下也会阻碍PHO84基因抑制。这些数据表明反义转录的稳定通过不同于转录干扰的一种机制导致了PHO84基因抑制,而Rrp6功能调节则通过RNA依赖性表观遗传修饰调控基因。 基因沉寂 基因沉寂(Gene Silencing) 也可以被称为“基因沉默”。基因沉寂是真核生物细胞基因表达调节的一种重要手段。在染色体水平,基因沉寂实际上是形成异染色质(Heterochromatin)的过程,被沉寂的基因区段呈高浓缩状态。 定义RNAi与转录后基因沉默(post-transcriptional gene silencing and transgene silencing)在分子层次上被证实是同一种现象。 原理基因沉寂需要经历不同的反应过程才能实现,包括组蛋白N端结构域的赖氨酸残基的去乙酰基化加工、甲基化修饰(由甲基转移酶催化,修饰可以是一价、二价和三价甲基化修饰,后者又被称为'过度’甲基化修饰(Hypermethylation) ) 、以及和甲基化修饰的组蛋白结合的蛋白质(MBP)形成“异染色质”,在上述过程中,除了部分组蛋白的N端尾部结构域需要去乙酰化、甲基化修饰之外,有时也许要在其他的组蛋白N端尾部结构域的赖氨酸或精氨酸残基上相应地进行乙酰化修饰,尽管各种修饰的最终结果会导致相应区段的基因“沉寂”失去转录活性。 作用这个“原则”就是目前尚没有真正完全清楚的“组蛋白密码”(Histone Code)。能够

第十六章基因表达的调节控制以及现代生物学技术

第十六章基因表达的调节控制以及现代生物学技术 一:填空题 1.正调控和负调控是基因表达的两种最基本的调节形式,其中原核细胞常用________________调控,而真核细胞常用________________调控模式。 2.操纵子由________________、________________和________________三种成分组成。 3.与阻遏蛋白结合的DNA序列通常被称为________________。 4.β-半乳糖甘酶基因的表达受到________________和________________两种机制的调节。 5.葡萄糖效应是指________________。 6.ticRNA是指________________;micRNA是指________________。 7.大肠杆菌细胞内参与His合成有关酶的基因表达受到________________和________________两种机制的调节。 8.________________或________________可诱导原核细胞出现严谨反应。 9.________________和________________被称为魔斑分子,它作为________________酶的别构效应物调节此酶的活性。 10.鼠伤寒沙门氏菌两种鞭毛蛋白表达之间的转换是通过________________机制实现的。 11.哺乳动物细胞对氨基蝶呤产生抗性,是因为细胞内的DHFR基因经历了________________。 12.在胚系细胞之中,抗体重链的基因可分为________________、________________、________________和 ________________四个区域。 13.在基因表达的调控之中,________________和________________与________________和________________之间的相互作用十分重要。 14.女性两条X染色体只有一条X染色体具有转录的活性是因为________________和________________。 15.乳糖操纵子的天然诱导物是________________,实验室里常用________________作为乳糖操纵子的安慰诱导物诱导β-半乳糖苷酶的产生。 16.基因扩增或基因放大是指________________,它是通过局部DNA的来实现,________________扩增可导致细胞癌变。 17.SPO1噬菌体通过________________级联调节早、中和晚期基因在不同时间内的表达。 18.存在于反式作用因子上负责激活基因转录的结构花色通常有________________、________________和 ________________三种形式。 19.真核细胞核基质的主要成分是________________。 20.组蛋白可经历________________、________________和________________修饰而调节基因的表达。 21.原核细胞DNA的甲基化位点主要是在________________序列上,真核细胞核DNA的甲基化位点则主要是在________________序列上。 22.反式作用因子通常通过________________、________________和________________键与相应的顺式作用因子结合。 23.PCR即是________________。 24.人类基因组计划的主要内容是________________。 25.Southern blotting、Northern blotting和Western blotting分别被用来检测________________、________________和________________。 26.________________是应用于蛋白质工程中的最主要的手段。 27.RFLP即是________________。 28.噬菌体展示(Phage display)技术中常用的噬菌体是________________。 29.基因工程需要的最常用的工具酶包括________________、________________和________________等。 30.基因克隆的载体通常是由________________、________________和________________改造而来。 31.可使用________________和________________方法获得原核细胞的启动子序列。 32.体外转录通常需要使用________________、________________或________________RNA聚合酶。 33.脉冲场凝胶电泳(Pulsed field gel electrophoresis)被用来分离________________。 34.第一个使用体细胞克隆出来的哺乳动物是________________。 35.一种基因的启动子序列与启动子的一致序列越相近,该基因的转录效率就越________________。 36.基因敲除(Gene knockout)即是________________,它是研究________________的好方法。 二:是非题 1.[ ]原核细胞与真核细胞的基因表达调节的主要发生在转录水平上。 2.[ ]衰减子这种调控模式不可能出现在真核细胞。 3.[ ]操纵子结构是原核细胞特有的。 4.[ ]某些蛋白质既可以作为阻遏蛋白又可以作为激活蛋白参与基因表达的调控。 5.[ ]转录因子都具有负责与DNA结合的结构花色。 6.[ ]某些反式作用因子通过亮氨酸拉链这种结构花色与DNA结合。 7.[ ]真核细胞的基因转录也具有抗终止作用。 8.[ ]真核细胞核的三类基因的转录都受到增强子的调节。 9.[ ]某一个基因的转录活性越强,则该基因所处的DNA序列对Ⅰ就越敏感。

基因表达技术

基因表达技术 https://www.doczj.com/doc/035153626.html, 2007年5月16日09:43 生物技术世界 目前,基因表达已经成为生物学、医学和药物开发研究中的主流技术。基因表达就是基因转录及翻译的过程。广义来说,基因表达有两类:分析型和功能型。前者是指检测和定量基因,尤其是在比较两个样本时,如处理/非处理,疾病/正常。功能型的基因表达,目的是获得一定数量的蛋白质。Invitrogen公司的JudyMacemon称,在她的顾客中,对研究基因功能的基因表达/敲除感兴趣的人是采用基因表达制造蛋白质的人的两倍。 cDNA过度表达优势大 经典的基因表达操作常对病变细胞或组织、以及用药治疗之后的情况进行比较。为了验证某种化合物对基因的效果,研究人员用siRNA或反义化合物返回去做敲除试验。这些技术可以让基因或者基因组表现出特殊的沉默现象。OpenBioSystems公司的PaulTodd博士指出,虽然基因敲除很流行,但它不是证实基因性能的唯一方法。 Todd博士把cDNA过度表达称之为基因敲除的“合理逆转”。siRNA是让基因沉默,以确定基因下游的效应,而cDNA 引入许多目标基因的复制样本,引起基因及其下游产物都超表达。很多时候,从cDNA获得的信息要比siRNA的信息要更好,Todd认为这与设计无关。 采用siRNA方法,研究人员必须确定短寡聚核苷酸序列,该方法可以最佳方式敲除目标基因。并非所有的寡聚物都能发挥效用,因此,就无法做到把所有基因的反应都准确预测出来。通常要敲除20~80%的序列,采用cDNA会出现过表达现象,这样就可以提供足够的目标基因用于插入。Todd认为,cDNA可以确保产生更多的信使RNA,也就会产生更多的蛋白质或下游产物。 cDNA优于siRNA的主要优势在于前者具有更广泛的潜在应用范围,可以用股票的短期销售或者是长期交易进行比喻。短期销售只可能赚到原来的股票价格,然而,长期购买,股票可能会翻两倍或者是三倍。siRNA试验的信号只限制于基因原始状态的性能,因为可能从最高水平降低为零。cDNA能正调节一个基因的性能,而且,把目标基因与绿色荧光蛋白相融合,可以直接观察到在活细胞中产生的蛋白质及其分布位置。 基因表达在药物发现上有许多应用。在最近纽约科学院的一次会议上,Avalon制药公司副总裁PaulYoung向大家

基因沉默

RNA干扰基因沉默 基因沉默(gene silencing)是指生物体中特定基因由于种种原因不表达。一方面,基因沉默是遗传修饰生物(genetically modified organisms)实用化和商品化的巨大障碍,另一方面,基因沉默是植物抗病毒的一个本能反应,为用抗病毒基因植物工程育种提供了具有较大潜在实用价值的策略——RNA介导的病毒抗性(RNA-mediated virus resistance,RMVR)。

转基因植物和转基因动物中往往会遇到这样的情况,外源基因存在于生物体内,并未丢失或损伤,但该基因不表达或表达量极低,这种现象称为基因沉默。 转基因沉默分为转录水平的沉默(TGS)和转录后水平的沉默(PTGS)。TGS是指转基因在细胞核内RNA合成受到了阻止导致基因沉默,PTGS是指 RNAi——基因沉默指南 基因沉寂(Gene Silencing) 也可以被称为“基因沉默”。基因沉寂是真核生物细胞基因表达调节的一种重要手段。在染色体水平,基因沉寂实际上是形成以染色质(Heterochromatin)的过程,被沉寂的基因区段呈高浓缩状态。 基因沉寂需要经历不同的反应过程才能实现,包括组蛋白N端结构域的赖氨酸残基的去乙酰基化加工、甲基化修饰(由甲基转移酶催化,修饰可以是一价、二价和三价甲基化修饰,后者又被称为'过度’甲基化修饰(Hypermethylation) ) 、以及和甲基化修饰的组蛋白结合的蛋白质(MBP)形成“异染色质”,在上述过程中,除了部分组蛋白的N端尾部结构域需要去乙酰化、甲基化修饰之外,有时也许要在其他的组蛋白N端尾部结构域的赖氨酸或精氨酸残基上相应地进行乙酰化修饰,尽管各种修饰的最终结果会导致相应区段的基因“沉寂”失去转录活性。这个“原则”就是目前尚没有真正完全清楚的“组蛋白密码”(Histone Code)。

引起基因沉默的原因

引起基因沉默的原因 研究表明,引起基因沉默的原因很多,转基因的拷贝数和构型、在植物上的整合位点、转基因的转录水平等都与沉默有关,外界环境如过高的温度、过强的光照也会增加基因沉默发生的几率和产生时间,此外,外源基因的表达还受植物发育因子(如亲本年龄)的影响。因此,植物转基因沉默的作用机制可能不是单一的,而是各种机制共同作用的结果,是植物本身的防御系统和外界环境因素协同作用的产物。转基因沉默可以发生在染色体DNA水平、转录水平和转录后水平三种不同的层次上。 1.染色体DNA水平的转基因沉默 发生在染色体DNA水平的转基因沉默叫做位置效应(positioneffect)。当导入的外源基因随机地插入到宿主基因组时,如果被导入到转录活跃区,就有可能进行高水平的转录,如果外源基因插入转录不活跃区,则只能进行低水平的转录或不能转录。 按照染色质高级结构组织的环状结构模型,核基质结合区(matrixattachmentregions,MARs)作为边界元件与核基质结合,使两个MAR之间的基因片段被界定成一个独立的染色质环(1oop),并作为隔离子(insulator)阻挡邻近染色质区的顺式调控元件对环内基因的影响,使位于染色体环内的基因可作为一独立的表达调控单位而存在。MAR可能使转基因在受体基因组整合

后形成独立的环状结构,从而提高转基因的表达水平并减少转基因在不同株系表达差异 2.转录水平的基因沉默 发生在转录水平上的转基因沉默叫做转录失活。反向重复的基因或转基因可以进行异位配对,配对的DNA作为信号,使DNA异染色质化或从头甲基化,这样转录过程就会受到抑制。此外,DNA-RNA协同(association)也是造成转录水平基因沉默的原因之一。 (1)转移基因及其启动子甲基化甲基化是活细胞中最常见的一种DNA其价修饰形式,它通常发生在DNA的GC和CN G序列的C碱基上,C甲基化的频率在哺乳动物及高等植物中部比较高。甲基化修饰在基因表达、植物细胞分化以及系统发育中起着重要的调节作用。然而,从所报道的转基因沉默的例子来看,几乎所有的转基因沉默现象都与转基因及其启动子的甲基化有关。而发生在DNA的CG和CNG序列上的甲基化并不是植物中转基因转录水平沉默起始的前提,但C碱基甲基化对维持基因沉默是必需的。 (2)多拷贝重复基因多拷贝重复基因序列整合进基因组后,无论正、反都容易形成异位配对,引起基因组防御系统的识别而被甲基化或异染色质化失活。 (3)染色体包装转导基因在染色体上的遗传位点相同,但受染色体包装的影响,产生沉默。当转导基因由染色体区域的正常位点包装到另一区域的位点时,其与转录因子的接触机会就会发

人工微RNA定向基因沉默

人工miRNA定向基因沉默 摘要:描述一个基因的功能通常包括对功能丧失等位基因的详细的分析。在模式植物例如拟 南芥和水稻中,插入序列索引的收集为潜在无效等位基因分析提供了很大帮助,而这些都可以 通过网站(e.g., https://www.doczj.com/doc/035153626.html,)容易的获取。然而,这对于非模式生物是不可能的,要研 究非模式生物,需要敲除大量的同系物,而且部分缺失基因功能或者调节缺失基因功能不容易 应用,然而当无效等位基因是致死的时,这种方法却很有效。采用定向基因沉默技术的转基因 途径可以替换无效等位基因,也可以用于基因功能的精细研究,例如,通过组织特异性的和可 诱导的基因沉默。 这一章将阐述人工miRNA的产生以及人工miRNA(amiRNAs)作为基因沉默工具在不同植物定向 1.六寡核苷酸:两个是对载体普遍的(A 和B,表一),四个是特异修饰的。 它们的序列是amiRNA设计程序的输出结果。 2.模板质粒:PRS300(包括Arabidopsis athMIR319a)或者PNW55(包括水 稻osa-MIR528) 3.进行PCR,琼脂糖凝胶电泳,以及凝胶提取所需的装置和化学试剂。

图三,构建amiRNA前体的模版质粒——aMIRNA。(a)Plasmid pRS300包含pBluescript SK中的osa-MIR528前体(通过SmaI位点克隆)。(b)质粒pNW55包含pBluescript KS中的osa-MIR528前体(也是通过SmaI克隆)。质粒全部序列是在http://wmd3. https://www.doczj.com/doc/035153626.html,.可获取的。缩写:A,B,寡核苷酸结核位点;T3,T7 :RNA聚合酶/寡核苷酸结合位点;Amp:氨苄青霉素抗性基因;MCS:多克隆位点。aMIRNA的大小和围绕区域在图四中指示。 图四,图示产生aMIRNA前体的PCR反应。(a)为有寡核苷酸结合位点的模版质粒(图三);(b)PCR扩增(a)(b)(c),(c)(a)(b)(c)通过PCR融合产生(d)(d)只有中央部分编码aMIRNA 前体,在底部的图中已列出。缩写:Ath:拟南芥;Osa:栽培稻;A, B, I, II, III, IV:寡核苷酸识别物;MCS:多克隆位点;a), (b), (c), (d):PCR片段。 3.2.2寡核苷酸要产生一个aMIRNA的转基因,需要六个PCR寡核苷酸引物。四个引物

基因表达与具体分析技术

基因表达及其分析技术 生命现象的奥秘隐藏在基因组中,对基因组的解码一直是现代生命科学的主流。基因组学研究可以说是当今生命科学领域炙手可热的方向。从DNA 测序到SNP、拷贝数变异(copy number variation , CNV )等DNA多态性分析,到DNA甲基化修饰等表观遗传学研究,生命过程的遗传基础不断被解析。 基因组研究的重要性自然不言而喻。应该说,DNA 测序技术在基因组研究中功不可没,从Sanger测序技术到目前盛行的新一代测序技术(Next Generation Seque ncing NGS)到即将走到前台的单分子测序技术,测序技术是基因组解析最重要的主流技术。而基因组测序、基因组多态性分析、DNA 甲基化修饰等表观遗传分析等在基因组研究中是最前沿的课题。但是基因组研究终究类似“基因算命”,再清晰的序列信息也无法真正说明一个基因的功能,基因功能的最后鉴定还得依赖转录组学和蛋白组学,而转录作为基因发挥功能的第一步,对基因功能解析就变得至关重要。声称特定基因、特定SNP、特定CNV、特定DNA修饰等与某种表型有关,最终需要转基因、基因敲除、突变、RNAi、中和抗体等 技术验证,并必不可少要结合基因转录、翻译和蛋白修饰等数据。 基因实现功能的第一步就是转录为mRNA 或非编码RNA ,转录组学主要研究基因转录为RNA 的过程。在转录研究中,下面几点是必须考虑的: 1,基因是否转录(基因是否表达)及基因表达水平高低(基因是低丰度表达还是中、高丰度表达)。特定基因有时候在一个细胞中只有一个拷贝的表达,而表达量会随细胞类型不同或发育、生长阶段不同或生理、病理状态不同而改变。因此任何基因表达检测技术,其是否科学,就是要看能否检测到低丰度表达基因,能否检测到基因丰度的变化尤其是微弱变化,线性范围是否宽广等。这方面的误区在于,很多人过分强调特定技术能否检测到低丰度基因的表达,忽视了特定技术能否检测到基因表达丰度微弱的改变。 如果关注全基因组表达信息,那么目前最经典的技术就是全基因组表达谱芯片技术,这种基因芯片设计了数据库中所有已知基因、EST和预测基因、EST 的已知转录本的探针,用来分析全基因组中已知基因、预测基因的已知转录本的表达信息。在利用基因芯片进行转录研究时,应该选择能检测低丰度表达基因的芯片技术,选择可以反映基因表达微弱变化并且线性范围广的技术,比如

沉默基因

沉默基因 定义:基因沉默(gene silencing)是指生物体中特定基因由于种种原因不表达。 一方面,基因沉默是遗传修饰生物(genetically modified organisms)实用化和商品化的巨大障碍,另一方面,基因沉默是植物抗病毒的一个本能反应,为用抗病毒基因植物工程育种提供了具有较大潜在实用价值的策略——RNA介导的病毒抗性(RNA-mediated virus resistance,RMVR)。 转基因植物和转基因动物中往往会遇到这样的情况,外源基因存在于生物体内,并未丢失或损伤,但该基因不表达或表达量极低,这种现象称为基因沉默。 基因沉寂(Gene Silencing) 也可以被称为“基因沉默”。基因沉寂是真核生物细胞基因表达调节的一种重要手段。在染色体水平,基因沉寂实际上是形成以染色质(Heterochromatin)的过程,被沉寂的基因区段呈高浓缩状态。 基因沉寂需要经历不同的反应过程才能实现,包括组蛋白N端结构域的赖氨酸残基的去乙酰基化加工、甲基化修饰(由甲基转移酶催化,修饰可以是一价、二价和三价甲基化修饰,后者又被称为'过度?甲基化修饰(Hypermethylation) ) 、以及和甲基化修饰的组蛋白结合的蛋白质(MBP)形成“异染色质”,在上述过程中,除了部分组蛋白的N端尾部结构域需要去乙酰化、甲基化修饰之外,有时也许要在其他的组蛋白N端尾部结构域的赖氨酸或精氨酸残基上相应地进行乙酰化修饰,尽管各种修饰的最终结果会导致相应区段的基因“沉寂”失去转录活性。这个“原则”就是目前尚没有真正完全清楚的“组蛋白密码”(Histone Code)。能够与甲基化组蛋白结合的蛋白质有sir1/2/3/4,这是一组被称为"Silencing Informative Rep ressor"的蛋白,其中,Sir2就是上文中的“去乙酰化”酶,而Sir1/3/4则负责与甲基化修饰的组蛋白结合"沉寂”相应的染色质为异染色质。 此外,基因沉寂也和DNA的甲基化修饰有关,比如在真核生物基因组中的许多基因的5…端分布有长约1KB( 千碱基对)的“CpG"岛序列(CpG island),其中的“C"芳香环5位可被甲基化修饰,之后,与甲基化修饰的DNA结合蛋白形成“沉寂"区段,使其下游基因不能表达;另外,非编码的RNA分子(non-coding RNA)也参与“基因沉默”过程。这一类型常见于含有重复DNA序列的染色质区,如着丝粒部位的基因沉寂就需要非编码RNA分子的参与。简言之,基因沉寂或者基因沉默是涉及组蛋白甲基化、去乙酰化、乙酰化,DNA的甲基化修饰,甲基化修饰组蛋白结合蛋白Sir2/3/4,甲基化DNA结合蛋白,非编码RNA等等在内的一系列复杂组分的生理反应过程。基因沉寂导致相应区段内的遗传信息不能被转录。 分类:发生在染色体DNA水平上的转基因沉默叫做位置沉默; 发生在RNA转录水平上的转基因沉默叫做转录沉默; 发生在转录后水平的转基因沉默叫做共抑沉默。 发生因素:位置效应、DNA甲基化、重复序列诱发基因沉默、共抑制。 首次发现:基因沉默现象首先在转基因植物中发现,接着和线虫、真菌、昆虫、原生动物以及才鼠中陆续发现。大量的研究表明,环境因子、发育因子、DNA修饰、组蛋 白乙酰化程度、基因拷贝数、位置效应、生物的保护性限制修饰以及基因的过度转 录等都与基因沉默有关。 发生机制:基因沉默发生在两种水平上,一种是由于DNA甲基化、异染色质化以及位置效应等引起的转录水平上的基因沉默(tran-scriptional gene silencing,TGS),另一种是转录后基因沉默(post-transcriptional gene silen-cing,PTGS),即在基因转录后的水平上通过对靶标RNA进行特异性降解而使基因失活。在这两种水平上引起的基因沉默都与基因的同源性有关,称为同源依赖性的基因沉默(homology-dependent gene silencing,HDGS)。PTGS在多种生物中有共性,对PTGS的激活和与其相关的RNA降解调控过程有了初步的认识。也发现植物病毒在转基因植物和非转基因植物中都能和转基因一样诱发转录后基因沉

真菌基因(簇)的沉默及其激活机理

食品微生物课程论文 题目真菌基因(簇)的沉默及其激活机理 姓名费鹏学号2013309010006 专业食品科学评分 指导教师陈福生职称教授 中国·武汉 二○一三年十二月

真菌基因(簇)的沉默及其激活机理 摘要:真菌一直是人类获得各种抗生素、氨基酸、天然活性成分等的宝贵资源和天然加工厂。自从1986年Peerbolte发现基因沉默现象以来,如何利用真菌基因(簇)的沉默与激活一直是人们研究的热点。对真菌基因(簇)的沉默及其激活机理的深入研究不仅丰富和推动了真核生物表观遗传学的内容和发展,也极大地促进了真菌系统进化的研究和转基因沉默和激活问题的解决。本文介绍了真菌基因(簇)的沉默现象和机理,同时也对其激活方法与机理进行了综述。 关键词:真菌;基因沉默;基因激活 Abstract: Fungus has always been the precious resources and nature factory of various antibiotics, amino acids, natural active ingredients and so on for humans. Taking advantage of the fungus gene silencing and activation has attracted worldwide view since Peerbolte discovered gene silence in 1986. The in-depth study of the mechanism of fungus gene silencing and activation not only enriches and promotes epigenetics of eucaryon, but also greatly promotes the phylogenetic study of fungi and the research of taking advantage of the gene silencing and activation. This paper introduced the phenomenon and mechanism of fungus gene silencing and activation. Keywords: fungus; gene silencing; gene activation 基因沉默(gene silencing) 是指生物体中特定基因由于种种原因不表达[1],是生物细胞基因表达调节的一种重要手段。这种现象是Peerbolte 在1986 年首先在转基因植物中发现的,他发现导入并整合进受体基因组中的外源基因在当代转化体或其后代中表达受抑制[2]。后来,人们在线虫、真菌、昆虫、原生动物、果蝇、斑马鱼及老鼠中也陆续发现了基因沉默现象。 基因沉默一般发生在2种水平上,即:转录水平的基因沉默(transcriptional gene silencing,TGS)和转录后水平的基因沉默(post-transcriptional gene silencing,PTGS)[3]。两者统称为同源依赖型基因沉默(homology dependent gene silencing,HDGS),是指外源基因进入宿主细胞而不能正常表达的现象。TGS一般只发生

基因表达谱分析技术

基因表达谱分析技术 1微阵列技术(microarray) 这是近年来发展起来的可用于大规模快速检测基因差别表达、基因组表达谱、DNA序列多态性、致病基因或疾病相关基因的一项新的基因功能研究技术。其原理基本是利用光导化学合成、照相平板印刷以及固相表面化学合成等技术,在固相表面合成成千上万个寡核苷酸“探针”(cDNA、ESTs或基因特异的寡核苷酸),并与放射性同位素或荧光物标记的来自不同细胞、组织或整个器官的DNA或mRNA反转录生成的第一链cDNA进行杂交,然后用特殊的检测系统对每个杂交点进行定量分析。其优点是可以同时对大量基因,甚至整个基因组的基因表达进行对比分析。包括cDNA芯片(cDNA microarray)和DNA芯片(DNA chips)。 cDNA芯片使用的载体可以是尼龙膜,也可以是玻片。当使用尼龙膜时,目前的技术水平可以将20000份材料点在一张12cm×18cm的膜上。尼龙膜上所点的一般是编好顺序的变性了的双链cDNA片段。要得到基因表达情况的数据,只需要将未知的样品与其杂交即可。杂交的结果表示这一样品中基因的表达模式,而比较两份不同样品的杂交结果就可以得到在不同样品中表达模式存在差异的基因。杂交使用的探针一般为mRNA的反转录产物,标记探针使用32PdATP。如果使用玻片为载体,点阵的密度要高于尼龙膜。杂交时使用两种不同颜色的荧光标记不同的两份样品,然后将两份样品混合起来与一张芯片杂交。洗去未杂交的探针以后,能够结合标记cDNA的点受到激发后会发出荧光。通过扫描装置可以检测各个点发出荧光的强度。对每一个点而言,所发出的两种不同荧光的强度的比值,就代表它在不同样品中的丰度。一般来讲,显示出来的图像中,黄色的点表示在不同的样品中丰度的差异不大,红色和绿色的点代表在不同样品中其丰度各不相同。使用尼龙膜为载体制作cDNA芯片进行研究的费用要比玻片低,因为尼龙膜可以重复杂交。检测两种不同的组织或相同组织在不同条件下基因表达的差异,只需要使用少量的尼龙膜。但是利用玻片制作的cDNA芯片灵敏度更高,而且可以使用2种探针同时与芯片杂交,从而降低了因为杂交操作带来的差异;缺点是无法重复使用还必须使用更为复杂的仪器。 Guo等(2004)将包含104个重组子的cDNA文库点在芯片上,用于检测拟南芥叶片衰老时的基因表达模式,得到大约6200差异表达的ESTs,对应2491个非重复基因。其中有134个基因编码转录因子,182个基因预测参与信号传导,如MAPK级联传导路径。Li等(2006)设计高密度的寡核苷酸tiling microarray方法,检测籼稻全基因组转录表达情况。芯片上包含13,078,888个36-mer寡核苷酸探针,基于籼稻全基因组shot-gun测序的序列合成,大约81.9%(35,970)的基因发生转录事件。Hu等(2006)用含有60,000寡核苷酸探针(代表水稻全部预测表达基因)的芯片检测抗旱转基因植株(过量表达SNAC1水稻)中基因的表达情况,揭示大量的逆境相关基因都是上升表达的。 2基因表达系列分析(Serial analysis of gene expression,SAGE) 基因表达系列分析(SAGE)是一种转录物水平上研究细胞或组织基因表达模式的快速、有效的技术,也是一种高通量的功能基因组研究方法,它可以同时将不同基因的表达情况进行量化研究(Velculescu et al.,1995)。SAGE的基本原理是:每一条mRNA序列都可以用它包含的9bp的小片段(TAG)代替,因此考查这些TAGs出现的频率就能知道每一种mRNA 的丰度。首先利用生物素标记的oligo(dT)引物将mRNA反转录成双链cDNA,然后利用NlaIII 酶切双链cDNA。NlaIII酶的识别位点只有4bp,因此cDNA都被切成几十bp的小片段。带有生物素标记的小片段cDNA被分离出来,平均分成2份。这2份cDNA分别跟2个接头连接,2个接头中均有一个FokI酶切位点。FokI是一种II S型核酸内切酶,其识别位点不对称,切割位点位于识别位点下游9bp且不依赖于特异的DNA序列。FokI酶切分成2份的cDNA之

相关主题
文本预览
相关文档 最新文档