当前位置:文档之家› 钙铝硅系微晶玻璃微观结构与力学性能研究_任祥忠

钙铝硅系微晶玻璃微观结构与力学性能研究_任祥忠

钙铝硅系微晶玻璃微观结构与力学性能研究_任祥忠
钙铝硅系微晶玻璃微观结构与力学性能研究_任祥忠

微晶玻璃

二硅酸锂微晶玻璃材料综述 何志龙-3112007045 (金属材料强度国家重点实验室, 西安交通大学材料科学与工程学院,西安710049) 摘要:微晶玻璃以其优异的力学、化学、生物等性能,在国防、航空、建筑、电子、光学、化工、机械及医疗等领域作为结构材料、技术材料、光学材料、电绝缘材料等而获得广泛应用,吸引了许多研究者的关注。本文在参考学习了诸多相关文献的基础上,对微晶玻璃材料的制备、性能、应用及研究进展进行了论述,列举了人们在该领域取得的重要研究进展,以及微晶玻璃材料领域存在的研究难题。 关键词:晶化,微晶玻璃,综述,非均匀成核 1 研究背景与意义 自从1957年,美国康宁公司著名玻璃化学家S.D.Stookey研制出第一种微晶玻璃以来,微晶玻璃就凭借其组分广泛、性能优异、品种繁多而著称。由于析出的晶粒尺寸可控,与界面结合强度高,抗弯强度可以达到200MPa以上,大量微晶玻璃体系涌现出来,它们的形成机制也得到大量深入研究。 微晶玻璃又称玻璃陶瓷,它是将某些特定组成的基础玻璃,在一定温度下进行控制晶化,制得的一种同时含有微晶相和玻璃相的多晶固体材料。在热处理过程中,基础玻璃内部产生晶核及晶体长大,因为析出的晶体非常小,被称作微晶玻璃。 微晶玻璃既不同于陶瓷,也不同于玻璃。微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或易产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的。微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1-0.5μm)和残余玻璃组成的复相;而玻璃则是非晶态或无定形体。微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。 2 微晶玻璃分类 按照基础玻璃的组成,微晶玻璃主要有以下四大类: (1)硅酸盐类微晶玻璃 由碱金属、碱土金属的硅酸盐晶相组成,主晶相有:透辉石、顽辉石、硅灰石、二硅酸锂等,这些晶相的种类影响微晶玻璃的性能。其中,最早研究的矿渣微晶玻璃和光敏微晶玻璃属此类。

锂资源及其开发利用综述

锂资源及其开发利用综述 胡经国 金属锂(Li)是稀有金属家族的重要成员,21世纪的能源新贵,也是工业制造的高精材料,被誉为21世纪金属元素明星。地球上,陆地硬岩、盐湖卤水、海水锂资源丰富。锂和锂盐产品具有广泛而重要的用途。锂资源的开发利用具有广阔的发展前景。本文拟综述锂资源及其开发利用简况,作为科普作品奉献给读者。 锂和锂盐的应用 稀有金属锂(Li)能够成为21世纪金属元素明星,是因为它具有三大特性:轻、软、高能量。锂是金属元素中最轻的元素,比重仅为0.534。金属锂呈银白色,是一种既轻又软的高能量金属,因而锂和锂盐产品具有广泛而重要的用途。 锂和锂盐主要应用领域是可控热核聚变反应堆、现代信息产业和锂电池等。现已涉及人们日常生活领域,如电视机、电脑、洗衣机、电冰箱、厨房用品等。并有可能成为开发新能源的重要材料。 利用锂的可控热核聚变反应堆发电,具有效力高、价格低、安全易控制、放射性危害小等优点。用1克锂能释放出3400千瓦小时的能量。 把氢氧化锂加到电池中,可以提高电池寿命5~10倍。锂电池常被用在人造心脏起搏器上,可十几年不更换电池。 锂被专家称为“金属味精”。在其它金属中加入适量的锂,就能改善这些金属的性能。例如,锂铝、锂镁等轻合金,具有加工性能好、延展性大、抗腐蚀性强、抗高速离子、穿透能力大等特性,被广泛用于人造卫星、宇宙飞船、高速飞机的结构制造。又如,用碳酸锂制造的微晶玻璃,其强度超过了不锈钢。再如,溴化锂可以代替污染大气的制冷剂氟利昂,制冷效果能提高15%。 用锂和锂化物制成的高能燃料,具有燃烧温度高、速度快等优点,是火箭、飞机、潜艇等的必备燃料。 锂盐还可用作化肥。锂盐化肥能防止农作物腐烂和黑锈病。 锂盐还可用于陶瓷、润滑油、医药、橡胶等多种产品的制造。 世界上应用最多的锂矿物是碳酸锂和锂铝硅酸盐矿物。它们主要用于玻璃

微晶玻璃 第一章

1 绪论 1.1 微晶玻璃的定义 1.1.1 定义及特性 微晶玻璃(glass-ceramic)又称玻璃陶瓷,是将特定组成的基础玻璃,在加热过程中通过控制晶化而制得的一类含有大量微晶相及玻璃相的多晶固体材料。 玻璃是一种非晶态固体,从热力学观点看,它是一种亚稳态,较之晶态具有较高的内能,在一定的条件下,可转变为结晶态。从动力学观点看,玻璃熔体在冷却过程中,黏度的快速增加抑制了晶核的形成和长大,使其难以转变为晶态。微晶玻璃就是人们充分利用玻璃在热力学上的有利条件而获得的新材料。 微晶玻璃既不同于陶瓷,也不同于玻璃。微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或已产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的。微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1~0.5μm)和残余玻璃组成的复相材料;而玻璃则是非晶态或无定形体。另外微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。 尽管微晶玻璃的结构、性能及生产方法与玻璃和陶瓷都有一定的区别,但是微晶玻璃既有玻璃的基本性能,又具有陶瓷的多相特征,集中了玻璃和陶瓷的特点,成为一类独特的新型材料。 微晶玻璃具有很多优异的性能,其性能指标往往优于同类玻璃和陶瓷。如热膨胀系数可在很大范围内调整(甚至可以制得零膨胀甚至是负膨胀的微晶玻璃);机械强度高;硬度大,耐磨性能好;具有良好的化学稳定性和热稳定性,能适应恶劣的使用环境;软化温度高,即使在高温环境下也能保持较高的机械强度;电绝缘性能优良,介电损耗小、介电常数稳定;与相同力学性能的金属材料相比,其密度小但质地致密,不透水、不透气等。并且微晶玻璃还可以通过组成的设计来获取特殊的光学、电学、磁学、热学和生物等功能,从而可作为各种技术材料、结构材料或其他特殊材料而获得广泛的应用。 微晶玻璃的性能主要决定于微晶相的种类、晶粒尺寸和数量、残余玻璃相的性质和数量。以上诸因素,又取决于原始玻璃的组成及热处理制度。热处理制度不但决定微晶体的尺寸和数量,而且在某些系统中导致主晶相的变化,从而使材料性能发生显著变化。另外,晶核剂的使用是否适当,对玻璃的微晶化也起着关键作用。微晶玻璃的原始组成不同,其主晶相的种类不同,如硅灰石、β-石英、β-锂辉石、氟金云母、尖晶石等。因此通过调整基础玻璃成分和工艺制度,就可以制得各种符合性能要求的微晶玻璃。 1.1.2 微晶玻璃的种类 目前,问世的微晶玻璃种类繁多,分类方法也有所不同。通常按微晶化原理分为光敏微晶玻璃和热敏微晶玻璃;按基础玻璃的组成分为硅酸盐系统、铝硅酸盐系统、硼硅酸盐系统、硼酸盐和磷酸盐系统;按所用原料分为技术微晶玻璃(用一般的玻璃原料)和矿渣微晶玻璃(用工矿业废渣等为原料);按外观分为透明微晶玻璃和不透明微晶玻璃;按性能又可分为耐高温、耐腐蚀、耐热冲击、高强度、低膨胀、零膨胀、低介电损耗、易机械加工以及易化学蚀刻等微晶玻璃以及压电微晶玻璃、生物微晶玻璃等。表1-1列出了常用微晶玻璃的基础组成、主晶相及其主要特性。 表1-1常用微晶玻璃的组成、主晶相及主要特性

铝合金 特性

纯铝的强度低,不宜用来制作承受载荷的结构零件。向铝中加入适量的硅、铜、镁、锰等合金元素,可制成强度较高的铝合金,若在经冷变形强化或热处理,可进一步提高强度。 根据铝合金的成分和生产工艺特点,通常分为形变与铸造铝合金两大类.工业上应用的主要有铝-锰,铝-镁,铝-镁-铜,铝-镁-硅-铜,铝-锌-镁-铜等合金.变形铝合金也叫熟铝合金,据其成分和性能特点又分为防锈铝,硬铝,超硬铝,锻铝和 特殊铝等五种. 铝合金是纯铝加入一些合金元素制成的,如铝—锰合金、铝—铜合金、铝—铜—镁系硬铝合金、铝—锌—镁—铜系超硬铝合金。铝合金比纯铝具有更好的物理力学性能:易加工、耐久性高、适用范围广、装饰效果好、花色丰富。铝合金分为防锈铝、硬铝、超硬铝等种类,各种类均有各自的使用范围,并有各自的代号,以供使用者选用。 铝合金基本常识 一、分类:展伸材料分非热处理合金及热处理合金 1.1 非热处理合金:纯铝—1000系,铝锰系合金—3000系,铝矽系合金—4000系,铝镁系合金—5000系。 1.2 热处理合金:铝铜镁系合金—2000系,铝镁矽系合金—6000系,铝锌镁系合金—7000系。 二、合金编号:我国目前通用的是美国铝业协会〈Aluminium Association〉的编号。兹举 例说明如下:1070-H14(纯铝)

2017-T4(热处理合金) 3004-H32(非热处理合金) 2.1第一位数:表示主要添加合金元素。 1:纯铝 2:主要添加合金元素为铜 3:主要添加合金元素为锰或锰与镁 4:主要添加合金元素为矽 5:主要添加合金元素为镁 6:主要添加合金元素为矽与镁 7:主要添加合金元素为锌与镁 8:不属於上列合金系的新合金 2.2第二位数:表示原合金中主要添加合金元素含量或杂质成分含量经修改的合金。 0:表原合金 1:表原合金经第一次修改 2:表原合金经第二次修改 2.3第三及四位数: 纯铝:表示原合金 合金:表示个别合金的代号 "-″:后面的Hn或Tn表示加工硬化的状态或热处理状态的鍊度符号-Hn :表示非热处理合金的鍊度符号 -Tn :表示热处理合金的鍊度符号 2 铝及铝合金的热处理 一、鍊度符号:若添加合金元素尚不足於完全符合要求,尚须藉冷加工、淬水、时效

锂铝硅玻璃二次强化分析

锂铝硅玻璃化学强化分析报告 1.锂铝硅玻璃发展 目前智能手机已经占据手机市场主要份额,且显示屏占比越来越高,碎屏成为手机使用最常见的破坏原因。此外各大手机厂商都有降低保护屏玻璃厚度的强烈列需求。随着柔性屏的出现,高强度曲面玻璃保护屏也成为新的需求,高铝硅玻璃的抗摔性越难越满足用户需求。 2016年中美国康宁公司推出第五代Gorilla玻璃GG5,为锂铝硅玻璃,同年中国电子旗下彩虹玻璃联合深圳东丽华科技推出凯丽6锂铝硅玻璃,旭硝子推出DT-star锂铝硅玻璃,肖特推出新肖特锂铝硅玻璃,国内旭虹光电也计划在2019年11月推出锂铝硅玻璃。目前锂铝硅玻璃已经在手机终端市场得到普遍应用,并在终端测试整机跌落跌落性能是高铝硅玻璃将近2倍,整机跌落面跌高度以1m为标准。其化学强化后性能也远超高铝硅玻璃。锂铝硅玻璃是化学强化保护玻璃发展新的趋势。 2.锂铝硅玻璃结构和强化原理 锂铝硅玻璃在骨干网络上与高铝硅相似,但在组成上同时引入Na、Li两种碱金属离子,可分步或同时进行K?—Na?、Na?—Li?二元离子交换,形成复合压应力层。 由于Li?半径更小,更容易在网络结构中迁移和交换,目前锂铝

硅玻璃化学离子交换的强化方法一般分两步进行:(1)第一步在以KNO3为质量分数60%以上的混合熔盐中进行离子交换,以Na?—Li?交换为主,获得具有极深的最大压应力层,DOL>120um;(2)第二步,在以KNO3质量分数为90%以上的混合盐浴中进行离子交换,以K?—Na?交换为主,获得较高的表面压应力。两步完成后,玻璃表面就形成了较厚的复合压应力层。锂铝硅玻璃交换过程如下图所示: 3.锂铝硅玻璃强化性能 美国康宁公司所研制的第 5 代大猩猩玻璃不同于前4代,其为含 Li2O 的锂铝硅酸盐( Li2O-Na2O-Al2O3-SiO2 )玻璃体系。其适用于二步法化学强化工艺,DOL大于100μm,比第4代产品的DOL(75um)明显改善。 彩虹集团联合深圳东丽华科技有限公司紧跟康宁公司的GG5盖 板玻璃开发了一款类似产品,在2016年10月试制成功,产品命名为凯丽6(GL KAILLY?6,简称GK6),是中国第一款商用锂铝硅酸盐屏幕保护玻璃,锂铝硅酸盐结构与钠铝硅酸盐结构类似,因其同时含有

微晶玻璃

微晶玻璃 摘要:本文介绍了微晶玻璃与普通玻璃和陶瓷的区别,通过分析组成将其分类。 同时描述了微晶玻璃的制备,性质,应用,浅析其发展趋势。 关键词:微晶玻璃组成制备性能应用 Abstract:This paper introduces the difference between microcrystalline glass and common glass and ceramics. Through the analysis of composition classified microcrystalline glass. At the same time, also describe microcrystalline glass’s preparation, property and application. Analysisthe trend of its development. Keywords: Microcrystalline glass preparation property application trend 1 前言 微晶玻璃又称微晶玉石或陶瓷玻璃,是综合玻璃,是一种外国刚刚开发的新型的建筑材料,它的学名叫做玻璃水晶。微晶玻璃和我们常见的玻璃看起来大不相同。它具有玻璃和陶瓷的双重特性,普通玻璃内部的原子排列是没有规则的,这也是玻璃易碎的原因之一。而微晶玻璃象陶瓷一样,由晶体组成,也就是说,它的原子排列是有规律的。所以,微晶玻璃比陶瓷的亮度高,比玻璃韧性强。但晶玻璃既不同于陶瓷,也不同于玻璃。微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或已产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的[1]。微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1~0.5μm)和残余玻璃组成的复相材料;而玻璃则是非晶态或无定形体。另外微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。 2分类及其组成 目前,问世的微晶玻璃种类繁多,分类方法也有所不同。通常按微晶化原理分为光敏微晶玻璃和热敏微晶玻璃;按基础玻璃的组成分为硅酸盐系统、铝硅酸盐系统、硼硅酸盐系统、硼酸盐和磷酸盐系统;按所用原料分为技术微晶玻璃(用一般的玻璃原料)和矿渣微晶玻璃(用工矿业废渣等为原料);按外观分为透明微晶玻璃和不透明微晶玻璃;按性能又可分为耐高温、耐腐蚀、耐热冲击、高强度、低膨胀、零膨胀、低介电损耗、易机械加工以及易化学蚀刻等微晶玻璃以及压电微晶玻璃、生物微晶玻璃等 晶玻璃的组成在很大程度上决定其结构和性能。按照化学组成微晶玻璃主要分为四类:硅酸盐微晶玻璃,铝硅酸盐微晶玻璃,氟硅酸盐微晶玻璃,磷酸盐微晶玻璃。 2.1 硅酸盐微晶玻璃 简单硅酸盐微晶玻璃主要由碱金属和碱土金属的硅酸盐晶相组成,这些晶相的性能也决定了微晶玻璃的性能。研究最早的光敏微晶玻璃和矿渣微晶玻璃属于 这类微晶玻璃。光敏微晶玻璃中析出的主要晶相为二硅酸锂(Li 2Si 2 O 5 ),这种晶 体具有沿某些晶面或晶格方向生长而成的树枝状形貌,实质上是一种骨架结构。

微晶玻璃

海南大学2012-2013学年度第2学期《功能材料学》论文 题目:微晶玻璃的光学应用 姓名: 学号: 20100607310014 学院:材料与化工学院 专业班级: 10理科实验班

微晶玻璃的光学应用 刘涛 20100607310014 摘要:微晶玻璃也叫做玻璃陶瓷,是玻璃经过晶化处理得到的部分结晶态的物质,它兼具玻璃和陶瓷的优良性质,比陶瓷的亮度高,比玻璃韧性强,因而广泛用于建筑、航天等各个领域。中国稀土资源丰富,由于稀土离子特殊的4f电子层结构使其具有许多优越的性能,目前稀土发光材料引起了全世界的广泛关注。微晶玻璃的高透过性和优越的机械性能使其能够做为稀土元素的良好基质,制成的稀土掺杂发光微晶玻璃广泛应用于荧光设备、激光、波导激光、上转换材料等领域,具有重要的现实意义。 关键词:微晶玻璃稀土元素光学应用 一、固体发光过程 发光是物体不经过热阶段而将其内部以某种方式吸收的能量直接转换为非平衡辐射的现象。当物质受到外界能量(如光照、外加电场或电子束轰击等)的激发后,吸收外界能量而处于激发态,它在跃迁返回基态的过程中,吸收的能量会通过光或热的形式释放出来,如果这部分能量以光的电磁波形式辐射出来,即为发光。图1所示即为发光的过程[1]: 图1:发光的过程示意图 激活剂A吸收激发光的能量被激发(EXC),由基态A变为激发态A*,然后又回到基态(R),并发出光(EM)[2]。 二、发光材料的应用及稀土掺杂微晶玻璃的优点

发光材料在人们日常生活中有着重要的应用,从照明、显像到医学、放射学等领域,无不存在着发光材料的身影。在发光材料的发展中,稀土掺杂的发光材料格外引人注目,由于稀土离子特殊的4f电子层结构,决定其具有许多优越的性能:物理化学性质稳定、耐高温、可承受大功率电子束、高能辐射和强紫外光的作用;荧光寿命宽泛,可以跨越纳秒到毫秒6个数量级;发光颜色度纯、转换效率高、发射波长分布区域宽等。这些优异的性能使得稀土发光材料广泛应用于荧光设备、激光、波导激光、上转换材料等领域[3]。 稀土掺杂的基质材料一般为晶体,也可以是非晶态玻璃材料,晶体和玻璃作为稀土掺杂发光材料的基质各有优缺点,发光玻璃保证了发光光材料的稳定性,但是与同组成的晶体材料相比,发光玻璃的发光强度弱,转换效率也比较低[4],而微晶玻璃作为一种晶态和非晶态共存的材料,兼具了晶体发光材料优异的发光性能及玻璃材料的优异特性,其内部晶相能够保持发光晶体材料原有的发光性能,其熔制时的液体状态亦能够保证其均匀性,微晶玻璃亦具有良好的稳定性及可加工性,具有重要的研究价值。 三、微晶玻璃的分类、制备及显微结构 1、微晶玻璃的分类 按照玻璃陶瓷的化学组成来讲,玻璃陶瓷分为四大类:硅酸盐玻璃陶瓷、铝硅酸盐玻璃陶瓷、氟硅酸盐玻璃陶瓷、磷酸盐玻璃陶瓷[12] 。 1.1 硅酸盐玻璃陶瓷 硅酸盐玻璃陶瓷主要是由碱金属和碱土金属两部分组成,主晶相为硅酸盐,晶相可以决定玻璃陶瓷的性能[13]。硅酸盐玻璃陶瓷可分为两种:光敏玻璃陶瓷和 矿渣玻璃陶瓷。光敏玻璃陶瓷是以二硅酸锂(Li 2Si 2 O 5 )为主晶相的,这种晶体是 一种骨架结构[14],形貌像树枝,因为它的晶体生长方向是沿某些晶面,或者晶格 方向。而矿渣玻璃陶瓷主晶相则为硅灰石(CaSiO 3)和透辉石[Ca Mg(SiO 3 ) 2 ]。透 辉石因为其结构的特殊性,比硅灰石更加耐磨,耐腐烛,强度也更高。 1.2 铝硅酸盐玻璃陶瓷 铝硅酸盐玻璃陶瓷包括Li 2O—Al 2 O 3 —SiO 2 系统、MgO—Al 2 O 3 —SiO 2 系统、Na 2 O

铝合金的典型机械性能

铝合金的典型机械性能(Typical Mechanical Properties) 铝合金牌号 及状态拉伸强度(25°C MPa)屈服强度(25°C MPa)硬度500kg力10mm球延伸率 1.6mm(1/16in)厚度 5052-H112 175 195 60 12 5083-H112 180 211 65 14 6061-T651 310 276 95 12 7050-T7451 510 455 135 10 7075-T651 572 503 150 11 2024-T351 470 325 120 20 铝合金的典型物理性能(Typical Physical Properties) 铝合金牌号及状态热膨胀系数 (20-100℃) μm/m?k熔点范围 (℃)电导率20℃(68℉) (%IACS) 电阻率20℃(68℉) Ωmm2/m 密度(20℃)(g/cm3) 2024-T351 23.2 500-635 30 0.058 2.82 5052-H112 23.8 607-650 35 0.050 2.72 5083-H112 23.4 570-640 29 0.059 2.72 6061-T651 23.6 580-650 43 0.040 2.73 7050-T7451 23.5 490-630 41 0.0415 2.82 7075-T651 23.6 475-635 33 0.0515 2.82 铝合金的化学成份(Chemical Composition Limit Of Aluminum ) 合金 牌号硅Si 铁Fe 铜Cu 锰Mn 镁Mg 铬Cr 锌Zn 钛Ti 其它铝 每个合计最小值 2024 23.2 0.5 3.8-4.9 0.3-0.9 1.2-1.8 0.1 0.25 0.15 0.05 0.15 余量5052 25 0.4 0.1 0.1 2.2-2.8 0.15-0.35 0.1 -- 0.05 0.15 余量5083 23.8 0.4 0.1 0.3-1.0 4.0-4.9 0.05-0.25 0.25 0.15 0.05 0.15 余量6061 23.6 0.7 0.15-0.4 0.15 0.8-1.2 0.04-0.35 0.25 0.15 0.05 0.15 余 量 7050 23.5 0.15 20.-2.6 0.1 1.9-2.6 0.04 5.7-6.7 0.06 0.05 0.15 余量7075 23.6 0.5 1.2-2.0 0.3 2.1-2.9 0.18-0.28 5.1-6.1 0.2 0.05 0.15 余 量 美铝典型应用领域 用途 2024 5052 5083 6061 7050 7075 农业 -- ● -- ● -- -- 航空器● -- -- ●●● 模具 -- ● -- ● -- ● 机械设备●● -- ●●● 五金零件 -- -- -- ● -- -- 建筑 -- ● -- ● -- --

微晶玻璃的耐磨性研究

(申请工学硕士学位论文) 钙铝硅系微晶玻璃结构 与耐磨性的研究 培养单位:材料学院 专业名称:材料学 研 究 生:钮 锋 指导老师:何 峰 教 授 2005年5月 钙 铝 硅系 微晶 玻 璃结 构 与耐 磨性 的研究 钮 锋 武 汉理 工 大 学

分类号密级 UDC 学校代码 10497 学 位 论 文 题 目 钙铝硅系微晶玻璃结构与耐磨性的研究 英 文 Research of Microstructure and Wear-Resistance 题 目on the CaO-Al2O3-SiO2 Glass-ceramics 研究生姓名 钮 锋 姓名 何峰 职称 教授 学位 硕士 指导教师 单位名称 武汉理工大学材料学院 邮编 430070 申请学位级别 硕士 学科专业名称 材料学 论文提交日期 论文答辩日期 学位授予单位 武汉理工大学 学位授予日期 答辩委员会主席 评阅人 刘继翔 汤李缨 2005年 6 月

摘 要 近年来,随着CaO-Al2O3-SiO2系统微晶玻璃产业的发展,以及装饰装修的兴起,已经有大量建筑物应用了建筑装饰微晶玻璃。但是使用后发现,微晶玻璃装饰板材表面会出现的“划伤”现象,失去其原有的装饰效果,使其应用范围受到限制。 本课题就以β-硅灰石为主要晶相的微晶玻璃(CaO-Al2O3-SiO2系统)为研究对象,利用烧结法制备微晶玻璃,采用调整基础玻璃配方组成CaO和Al2O3,来调节析出晶体的种类大小及其含量,研究不同晶相含量与微晶玻璃耐磨性能的关系,并分析其对其微观结构、硬度等力学性能的影响。此外,还采用直接加入增韧剂ZrO2的方法,研究加入ZrO2对微晶玻璃结构、耐磨性能的影响。同时还研究了ZrO2对微晶玻璃烧结析晶的影响。 实验中采用磨料磨损的方式。以60目和130目的锆英砂和100目的SiC作为磨料,在道瑞式耐磨性试验机上测试微晶玻璃的耐磨性能,并通过观察试样磨损后的表面微观形貌,来分析其磨损的机理。 实验结果表明:CaO的引入有利于微晶玻璃的析晶,从而提高了材料的耐磨性能;Al2O3的引入虽然降低玻璃的结晶倾向,但是可以使玻璃体更加致密,并提高了玻璃相的力学性能,综合两种作用,微晶玻璃整体的耐磨性得到了一定程度的提高;ZrO2的引入会提高玻璃的粘度,使其烧结收缩率下降,不利于微晶玻璃的烧结。然而ZrO2对微晶玻璃的析晶有一定的促进作用,并且其具有的增韧效果,可以提高微晶玻璃的耐磨性能。 在磨损试验中,对于锆英砂磨料,颗粒越大,磨损量越高;对于不同的磨料,锆英砂和SiC,锆英砂硬度高于SiC,其磨损量也远大于SiC。在小颗粒松散磨料的低磨损区,磨损机理主要是微观切削磨损机理,表面有明显的犁沟或者印痕。在大颗粒的高磨损区,磨损行为包含多种机理,表面的磨损形貌也很复杂。 关键词:微晶玻璃耐磨性能增韧磨损机理

微晶玻璃

微晶玻璃(CRYSTOE and NEOPARIES)又称微晶玉石或陶瓷玻璃。是综合玻璃,是一种外国刚刚开发的新型的建筑材料,它的学名叫做玻璃水晶。微晶玻璃和我们常见的玻璃看起来大不相同。它具有玻璃和陶瓷的双重特性,普通玻璃内部的原子排列是没有规则的,这也是玻璃易碎的原因之一。而微晶玻璃象陶瓷一样,由晶体组成,也就是说,它的原子排列是有规律的。所以,微晶玻璃比陶瓷的亮度高,比玻璃韧性强。 现在,我们做一个微晶玻璃与天然石材的对比实验。我们把墨水分别倒在大理石和微晶玻璃上,稍等片刻,微晶玻璃上的墨汁可以轻易的擦掉,而大理石上的墨迹却留了下来。这是为什么呢?大理石、花岗岩等天然石材表面粗糙,可以藏污纳垢,微晶玻璃就没有这种问题。大家都知道,大理石的主要成分是碳酸钙,用它做成建筑物,很容易与空气中的水和二氧化碳发生化学反应,这就是大理石建筑物日久变色的原因,而微晶玻璃几乎不与空气发生反应,所以可以历久长新。专家介 微晶玻璃陶瓷复合板材[1] 绍说,这项发明的突破点主要有两个,分别是原料的配比和工艺的设计。其中,工艺的设计是技术的关键。置备微晶玻璃首先要把原材料按照比例配好,放到窑炉里烧熔,等全部融化之后,把熔液倒在冰冷的铁板上,这叫做淬火,淬火之后,原料已经变成了一块晶莹的玻璃,这一步是烧结的过程。现在,我们把玻璃捣碎,装入模具,抹平,再次放入窑炉,这次煅烧使它的原子排列规则化,是从普通玻璃到微晶玻璃的过程。 一般的废渣土中都含有制作微晶玻璃的大多数成分,我们通过电脑检测,确定现有原料的化学组成,添加所缺部分,大大降低了成本。微晶玻璃利用废渣、废土做原材料,有利于环境治理,可以变废为宝,与各地环保工作同步进行。 低膨胀系数的微晶玻璃可用于激光导航陀螺、光学望远镜等重要科技领域,我国目前生产激光导航陀螺所用微晶玻璃基本依赖进口,日前,厦门航空工业有限公司称已研制出可适用激光导航陀螺的微晶玻璃,质量可与德国等进口玻璃相媲美。 微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优于天石材和陶瓷,可用于建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。是具有发展前途的21世纪的新型材料。 目前建筑用微晶玻璃均采用烧结法,而且不加入晶核剂。它的基本原理是,玻璃是一种非晶态固体,从热力学观点看,它处于一种亚稳状态,较之晶体有较高的内能,所以在一定条件下,可以转化为结晶态。从动力学观点来看,玻璃熔体在

结构用铝合金材料力学性能

附录A 结构用铝合金材料力学性能 常见结构用铝合金板、带材力学性能(标准值)可按表A-1采用,结构用铝合金棒、管、型材力学性能(标准值)可按表A-2采用。结构用铝合金板、带、棒、管、型材的化学成分可按表A-3采用。 表A-1 结构用铝合金板、带材力学性能标准值

注:1. 伸长率标准值中,A适用于厚度不大于12.5mm的板材,A适用于厚度大于12.5mm的板材。502. 表中焊接折减系数的数值适用于材料焊接后存放的环境温度大于10℃,存放时间大于3d(6XXX系列)或30d(7XXX系列)的情况。 3. 表中焊接折减系数的数值适用于厚度不超过15mm的MIG焊,以及3xxx系列、5xxx系列合金和8011A合金厚度不超

过6mm的TIG焊。对于6xxx系列和7xxx系列合金厚度不超过6mm的TIG焊,焊接折减系数的数值必须乘以0.8。当厚度超过上述规定,如无试验结果或国内外相关规范规定,3xxx系列、5xxx系列合金和8011A合金焊接折减系数的数值必须乘以0.9,6xxx系列和7xxx系列合金焊接折减系数的数值必须乘状态不需进行上述折减。O焊)。对于TIG(0.64焊)或MIG(0.8以. 表A-2 结构用铝合金棒、管、型材力学性能标准值

适用于厚度(或直的板(或棒)材,A注:1. 伸长率标准值中,A适用于厚度(或直径)不大于12.5mm50 12.5mm的板(或棒)材。径)大于系6XXX(2. 表中焊接折减系数的数值适用于材料焊接后存放的环境温度大于10℃,存放时间大于3d 系列)的情况。列)或30d(7XXX8011A系列合金和MIG焊,以及3xxx系列、5xxx3. 表中焊接折减系数的数值适用于厚度不超过15mm的焊接折减系数的7xxx系列合金厚度不超过6mmTIG焊,合金厚度不超过6mm的TIG焊。对于6xxx系列和系列合。当厚度超过上述规定,如无试验结果或国内外相关规范规定,3xxx系列、5xxx的数值必须乘以0.8系列合金焊接折减系数的数值必须乘0.9,6xxx系列和7xxx金和8011A合金焊接折减系数的数值必须乘以TIG焊)。对于O状态不需进行上述折减。以0.8(MIG焊)或0.64(

材料力学性能静拉伸试验报告

静拉伸试验 一、实验目的 1、测45#钢的屈服强度s σ、抗拉强度m R 、断后伸长率δ和断面收缩率ψ。 2、测定铝合金的屈服强度s σ、抗拉强度m R 、断后伸长率δ和断面收缩率ψ。 3、观察并分析两种材料在拉伸过程中的各种现象。 二、使用设备 微机控制电子万能试验机、0.02mm 游标卡尺、试验分化器 三、试样 本试样采用经过机加工直径为10mm 左右的圆形截面比例试样,试样成分分别为铝合金和45#,各有数支。 四、实验原理 按照我国目前执行的国家 GB/T 228—2002标准—《金属材料 室温拉伸试验方法》的规定,在室温1035℃℃的范围内进行试验。将试样安装在试验机的夹头当中,然后开动试验机,使试样受到缓慢增加的拉力(一般应变速率应≤0.1m/s ),直到拉断为止,并且利用试验机的自动绘图装置绘出材料的拉伸图。 试验机自动绘图装置绘出的拉伸变形L ?主要是整个试样,而不仅仅是标距部分的伸长,还包括机器的弹性变形和试样在夹头中的滑动等因素,由于试样开始受力时,头部在头内的滑动较大,故绘出的拉伸图最初一段是曲线。 塑性材料与脆性材料的区别: (1)塑性材料: 脆性材料是指断后伸长率5%δ≥的材料,其从开始承受拉力直至试样被拉断,变形都比较大。塑性材料在发生断裂时,会发生明显的塑性变形,也会出现屈服和颈缩等现象; (2)脆性材料: 脆性材料是指断后伸长率5%δ<的材料,其从开始承受拉力直至试样被拉断,变形都很小。并且,大多数脆性材料在拉伸时的应力—应变曲线上都没有明显的直线段,几乎没有塑性变形,在断裂前不会出现明显的征兆,不会出现屈服和颈缩等现象,只有断裂时的应力值—强度极限。 脆性材料在承受拉力、变形记小时,就可以达到m F 而突然发生断裂,其抗拉强度也远远 小于45钢的抗拉强度。同样,由公式0m m R F S =即可得到其抗拉强度,而根据公式,10 l l l δ-=。 五、实验步骤 1、试样准备 用笔在试样间距0L (10cm )处标记一下。用游标尺测量出中间横截面的平均直径,并且测出试样在拉伸前的一个总长度L 。 2、试验机准备:

【CN109942194A】一种无氟高韧性钙镁铝硅微晶玻璃及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910336840.8 (22)申请日 2019.04.25 (71)申请人 济南大学 地址 250022 山东省济南市市中区南辛庄 西路336号 (72)发明人 康俊峰 陈志延 岳云龙 屈雅  丁帅凯  (74)专利代理机构 济南誉丰专利代理事务所 (普通合伙企业) 37240 代理人 李茜 (51)Int.Cl. C03C 10/00(2006.01) C03B 5/16(2006.01) C03B 13/00(2006.01) (54)发明名称 一种无氟高韧性钙镁铝硅微晶玻璃及其制 备方法 (57)摘要 本发明涉及一种具有高韧性的微晶玻璃及 其制备方法,所述微晶玻璃为无氟配方,配合料 组成按重量百分比计含有如下成分:CaO 18%- 30%,MgO 5%-10%,Al 2O 315%-30%,SiO 250%-65%, MoO 30.01%-0.1%,碳粉0.1%-1%,K 2O+Na 2O 0%-2%。 本发明采用压延法制备微晶玻璃,其特点在于, 所得微晶玻璃除了具有很高的强度和硬度意外, 同时具备很高的断裂韧性1.9-2.5 MPa m 1/2,从 而提高了微晶玻璃的可加工性能和抗冲击性能, 大大拓展了微晶玻璃的应用领域。权利要求书1页 说明书4页CN 109942194 A 2019.06.28 C N 109942194 A

1.一种高韧性微晶玻璃,其特征在于:所述微晶玻璃的配合料按重量百分比计含有如下组分: CaO 18%-30%; MgO 5%-10%; Al2O3 15%-30%; SiO2 50%-65%; MoO3 0.01%-0.1%; 碳粉0. 1%-1% 任意比例混合的Na2O和K2O 0%-2%。 2.根据权利要求1所述微晶玻璃,其特征在于:MoO3和碳粉的重量比为1:5 ~1:10,优选1: 8。 3.根据权利要求1所述微晶玻璃,其特征在于:CaO和Al2O3的重量比为3: 5 ~7:3,优选5: 4。 4.根据权利要求1-3所述微晶玻璃,其特征在于:SiO2由石英砂引入;Al2O3可由工业氢氧化铝或工业氧化铝引入;CaO可由石灰石或重钙粉引入;Na2O由钠长石引入;K2O由钾长石引入。 5.根据权利要求1-4所述微晶玻璃,其特征在于:其主晶相为CaAl2Si2O8,晶相含量为25-40%。 6.根据权利要求1-5所述微晶玻璃,其特征在于:其断裂韧性为1.9-2.5 MPa m1/2。 7.根据权利要求1-6任意一项所述的微晶玻璃的制备方法,其特征在于:其包括如下步骤: (1)配料:按照上述组成配比准备原料,将原料粉磨、混合均匀; (2)熔化成型:将均匀的的配合料加入池窑熔融,熔化温度为1450℃-1560℃;玻璃液经 料道降温,进入压延机温度为1050℃ ~1150℃,出压延辊温度约为850℃ ~ 950℃,形成玻璃 板; (3)退火:将上述玻璃板经过渡辊台送入退火窑,在800-850℃下冷却退火0.5-1 h,退火完成后,以40-60 ℃/h的降温速率至室温,得到基础玻璃板; (4)热处理:将基础玻璃板升温至1000-1100 ℃,升温速率为80-100℃/h,保温1.5-3h 晶化,然后进行退火,得到微晶玻璃板; (5)经切割和抛光后得到合格的微晶玻璃板材。 权 利 要 求 书1/1页 2 CN 109942194 A

钙镁铝硅系微晶玻璃析晶性能

沈阳建筑大学 毕业论文 毕业论文题目CaO对CaO-MgO-Al2O3-SiO2系微晶玻璃析晶性能的影响研究学院专业班级材料学院无机非金属工程10-04班 学生姓名陈肖性别女 指导教师徐长伟职称教授 年月日

目录 摘要 ................................................................................................................................... I Abstract .............................................................................................................................. II 目录 (1) 第一章绪论 (4) 1.1微晶玻璃概述 (4) 1.1.1微晶玻璃及其显微结构 (4) 1.1.2微晶玻璃研究现状及发展趋势 (6) 1.2 CAS系微晶玻璃的概述 (7) 1.2.1烧结法CAS系微晶玻璃的制备工艺 (7) 1.2.2微晶玻璃的烧结过程分析 (7) 1.3 CMAS系微晶玻璃的概述 (8) 1.4尾矿微晶玻璃研究现状和发展趋势 (9) 1.5建筑微晶玻璃的制备方法 (10) 1.6微晶玻璃中的氧化钙(CaO)的概述 (12) 1.6.1氧化钙(CaO)的结构 (12) 1.6.2氧化钙(CaO)的性能特点 (12) 1.6.3氧化钙(CaO)的应用 (12) 1.7微晶玻璃的热处理制度的概述 (13) 1.7.1一次烧结法概述 (13) 1.7.2一次烧结法与传统方法比较 (13) 1.8选题依据及研究内容 (14) 1.8.1选题依据 (14) 1.8.2研究内容 (14) 第二章试验原材料与方案设计 (16) 2.1实验原材料 (16) 2.2实验设备 (19) 2.3实验理论依据 (20) 2.4实验流程 (20)

微晶玻璃 第四章

4性能 如前所述,玻璃是一种具有无规则结构的非晶态固体,或称玻璃态物质,从热力学观点出发,它是一种亚稳态,较之晶态具有较高的内能,在一定条件下可转变为结晶态(多晶体)。对玻璃控制晶化而制得的微晶玻璃具有突破的力学、热学及电学性能。 材料的外在性能取决于它的内在结构。微晶玻璃也不例外,微晶玻璃的结构取决于晶相和玻璃相的组成、晶体的种类、晶粒的尺寸的大小、晶相的多少以及残留玻璃相的种类及数量。值得注意的是这种残留玻璃相的组成,通常和它的母体玻璃组成并不一样,因为它缺少了那些参与晶相形成所需的氧化物。 微晶玻璃结构的一个显著特征是拥有极细的晶粒尺寸和致密的结构,并且晶相是均匀分布和杂乱取向的。可以说微晶玻璃具有几乎是理想的多晶固体结构。其中晶相和残留玻璃相的比例可以有很大不同,当晶相的体积分数较小时,微晶玻璃为含孤立晶体的连续玻璃基体结构,此时玻璃相的性质将强烈地影响微晶玻璃的性质;当晶相的体积分数与玻璃相大致相等时,就会形成网络结构;当晶相的体积分数较大时,玻璃即在相邻晶体间形成薄膜层,这时微晶玻璃的性质主要取决于主晶相的物理化学性质。 因此微晶玻璃性能既取决于晶相和玻璃相的化学组成、形貌以及其相界面的性质,又取决于它们的晶化工艺。因为晶体的种类由原始玻璃组成决定,而晶化工艺亦即热处理制度却在很大程度上影响着析出晶体的数量和晶粒尺寸的大小。 ①主晶相的种类不同主晶相的微晶玻璃,其性能差别很大。如主晶相为堇青石(2Mg O·2Al2O3·5SiO2)的微晶玻璃具有优良的介电性、热稳定性和抗热震性以及高强度和绝缘性;主晶相为β-石英固溶体的微晶玻璃具有热膨胀系数低和透明及半透明性能;主晶相为霞石(NaAlSiO4)的微晶玻璃具有高的热膨胀系数,在其表面喷涂低膨胀微晶玻璃釉料后,可以作为强化材料。通过选取不同的原始玻璃组成及热处理制度,可以得到不同的主晶相,得到不同性能的微晶玻璃,满足不同的需要。 ②晶粒尺寸的大小微晶玻璃的光学性质、力学性质,是随晶粒尺寸大小的变化而变化的。如Li2O-Al2O3-SiO2系统微晶玻璃可分为超低膨胀透明微晶玻璃和不透明微晶玻璃,以及中、低膨胀的微晶玻璃三种,其透明度主要与晶粒尺寸的大小有关。 ③晶相、玻璃相的数量微晶玻璃中晶相的含量变化时,会影响到玻璃的各种性质,如力学性质、电学性质、热学性质等。又如微晶玻璃的密度,由于析出晶体的种类及最终结晶相与玻璃相的比例不同,可以在2.3~6.0g/cm3很大范围内变动;再比如微晶玻璃的热膨胀系数会随着微晶玻璃的晶相含量的增加而降低。 4.1密度 密度是物质单位体积所具有的质量。微晶玻璃的密度主要取决于构成晶相和玻璃相的原子的质量,也与原子堆积紧密程度以及配位数有关,是表征微晶玻璃结构的一个标志。微晶玻璃的密度是其中晶相和玻璃相密度共同作用的结果。然而,通常大多数微晶玻璃的密度还是由主晶相的密度所决定的。所以,不同类型的微晶玻璃材料其密度值也不相同。 4.1.1玻璃、陶瓷与微晶玻璃密度的比较 微晶玻璃的密度和玻璃或陶瓷的密度都在大致相同的范围内,如表4-1所示。但是基础玻璃和微晶玻璃的密度还是有很大的差别的,这是因为玻璃的热处理的过程中通常会产生体积变化,这些改变有正向的、负向的或基本不变,但这种体积的改变一般不会超过3%。微晶玻璃的密度是其中所含的各种晶相以及玻璃相密度的综合体现。 表4-1 玻璃、陶瓷与微晶玻璃三种材料的密度

微晶玻璃

微晶玻璃的生产制备 1.微晶玻璃概述 新型微晶材料的开发研制最先起于美国,亚洲的日本紧随其后,成为目前世界上新型微晶材料的生产大国,此后西欧和亚太地区的经济发达国家不甘落后,也加紧开发研制。而我国则起步于上世纪的八十年代初,经过二十年的开发,微晶材料的生产工艺基本上已趋于成熟,进入了实用阶段。它主要用做建筑装饰材料、飞机、火箭、卫星等结构材料,医疗、化工等防腐材料以及军事上,如激光制导材料等。 微晶玻璃是新型微晶材料的一种,它是通过基础玻璃或其它材料在加热过程中进行控制晶化而得到的一种中含有大量微晶体和玻璃体的复合固体材料。更具体说,它是在高达1500℃高温条件下,从含特殊成份的玻璃液中析出的特殊晶相及硅灰石晶体和玻璃相结合致密整体结晶材料。其颜色多种多样。生产方法可分为烧结法、压延法、浇铸法。产品按配方可分为两大类,一类是矿渣类。所用原料为矿渣、石英砂、长石、石灰石、萤石、白云石、滑石等;第二类为泥沙类。所用原料为泥沙、石英砂、长石、纯碱、石灰石、白云石、重晶石、萤石等。 由于微晶玻璃是硅灰石相和玻璃相相结合的致密整体结晶材料,颜色上是以金属氧化物为着色剂,因而其表面特征既有陶瓷的特征,又与天然石材极其相似,加之材料形状多为板材,因而许多人又将其称作为微晶板材、微晶石材、微晶玉石、玻璃陶瓷、结晶化玻璃或人造石材等等。由于其结构极为致密并用作表面装饰材料。因此,又有人将其归为实体面材。与建筑陶瓷及天然石材制品相比,由于微晶玻璃具有特定性能的晶相析出。因而,在机械强度、表面硬度、热膨胀性能、耐酸碱及抗腐蚀等方面具有一些独特的优点。 1.1微晶玻璃的分类 微晶玻璃可按不同的标准分类,从外观看,有透明微晶玻璃和不透明微晶玻璃;按微晶化原理可分为光敏微晶玻璃和热敏微晶玻璃;按照性能分为耐高温、耐热冲击、高强度、耐磨、易机械加工、易化学蚀刻、耐腐蚀、低膨胀、零膨胀、低介电损失、强介电性、强磁性和生物相容等种类;按基础玻璃组成可分为硅酸盐、铝硅酸盐、硼硅酸盐、硼酸盐及磷酸盐等五大类;按所用材料则分为技术微晶玻璃和矿渣微晶玻璃两类。 2.微晶玻璃的性质及应用 2.1力学性质 (1)机械强度,微晶玻璃的机械强度比一般玻璃、陶瓷材料以及某些金属材料高很多。抗压强度为0.59~1.02GPa,弯曲强度为88.2~220.5GPa,拉伸强度为49~137.2MPa;特殊的或增强的微晶玻璃,弯曲强度高达411.6~548.5MPa。微

铝合金 特性

(1)铝硅系合金,也叫“硅铝明”或“矽铝明”。有良好铸造性能和耐磨性能,热胀系数小,在铸造铝合金中品种最多,用量最大的合金,含硅量在10%~25%。有时添加0.2%~0.6%镁的硅铝合金,广泛用于结构件,如壳体、缸体、箱体和框架等。有时添加适量的铜和镁,能提高合金的力学性能和耐热性。此类合金广泛用于制造活塞等部件。 (2)铝铜合金,含铜4.5%~5.3%合金强化效果最佳,适当加入锰和钛能显著提高室温、高温强度和铸造性能。主要用于制作承受大的动、静载荷和形状不复杂的砂型铸件。 (3)铝镁合金,密度最小 (2.55g/cm3),强度最高(355MPa左右)的铸造铝合金,含镁12%,强化效果最佳。合金在大气和海水中的抗腐蚀性能好,室温下有良好的综合力学性能和可切削性,可用于作雷达底座、飞机的发动机机匣、螺旋桨、起落架等零件,也可作装饰材料。 (4)铝锌系合金,为改善性能常加入硅、镁元素,常称为“锌硅铝明”。在铸造条件下,该合金有淬火作用,即“自行淬火”。不经热处理就可使用,以变质热处理后,铸件有较高的强度。经稳定化处理后,尺寸稳定,常用于制作模型、型板及设备支架等。 以铝为基的合金总称。主要合金元素有铜、硅、镁、锌、锰,次要合金元素有镍、铁、钛、铬、锂等。 铝合金密度低,但比强度高,接近或超过优质钢,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,工业上广泛使用,使用量仅次于钢。 铝合金分两大类:铸造铝合金,在铸态下使用;变形铝合金,能承受压力加工,力学性能高于铸态。可加工成各种形态、规格的铝合金材。主要用于制造航空器材、日常生活用品、建筑用门窗等。

铝合金按加工方法可以分为变形铝合金 和铸造铝合金。变形铝合金又分为不可热处理强化型铝合金和可热处理强化型铝 合金。不可热处理强化型不能通过热处理来提高机械性能,只能通过冷加工变形来实现强化,它主要包括高纯铝、工业高纯铝、工业纯铝以及防锈铝等。可热处理强化型铝合金可以通过淬火和时效等热处 理手段来提高机械性能,它可分为硬铝、锻铝、超硬铝和特殊铝合金等。 铝合金可以采用热处理获得良好的机械 性能,物理性能和抗腐蚀性能。 铸造铝合金按化学成分可分为铝硅合金,铝铜合金,铝镁合金和铝锌合金。 纯铝产品】 [编辑本段] 纯铝分冶炼品和压力加工品两类,前者以化学成份Al表示,后者用汉语拼音LG (铝、工业用的)表示。 【压力加工铝合金】 [编辑本段] 铝合金压力加工产品分为防锈(LF)、硬质(LY)、锻造(LD)、超硬(LC)、包覆(LB)、特殊(LT)及钎焊(LQ)等七类。常用铝合金材料的状态为退火(M 焖火)、硬化(Y)、热轧(R)等三种。 【铝材】 [编辑本段] 铝和铝合金经加工成一定形状的材料统 称铝材,包括板材、带材、箔材、管材、棒材、线材、型材等。 【铸造铝合金】 [编辑本段] 铸造铝合金(ZL)按成分中铝以外的主要元素硅、铜、镁、锌分为四类,代号编码分别为100、200、300、400。

相关主题
文本预览
相关文档 最新文档