当前位置:文档之家› 圆环链力学特性研究

圆环链力学特性研究

圆环链力学特性研究
圆环链力学特性研究

竹子的力学特性

选题:从力学观点分析竹子的力学特征 徐锴,材料1302,2013012057 【摘要】本文通过分析竹子的材料和构造,说明竹子的强度特性。并通过该种特性进行一些实际应用设计,本文选用建筑中的应用。 【关键词】竹子,强度,建筑,可持续发展 1、收集的常识【1】: (1)竹,禾本科,竹木质化,有明显的节,节间常中空,高大、生长迅速,竹枝杆挺拔,修长。(2)分布于热带、亚热带至温带地区,其中东亚、东南亚和印度洋及太平洋岛屿上分布最集中,种类也最多。 (3)在竹材研究方面,国内外对竹材的物理性质研究的较多,研究重点主要集中在密度、吸水率及干缩性等方面。密度在很大程度上决定着竹材的力学性质,密度主要取决于纤维含量、纤维直径及细胞壁厚度,密度随纤维含量增加而增加。 2、分析竹子强度特性【2】 相比较于钢材,竹子体轻,但是硬度大。根据实验测定, 竹材的形变量非常小, 弹性和韧性却很高, 顺纹抗拉强度170M Pa, 顺纹抗压强度达80M Pa。特别是刚竹, 其顺纹抗拉强度最高竟达280M Pa, 几乎相当于同样截面尺寸材的一半。虽然钢材的抗拉强度为一般竹材的2.5~3倍,但若按单位重量计算抗拉能力,则竹材要比钢材强2~3倍。 3、竹强度大的力学分析 3.1 空心圆截面的强度分析【4】

(1)根据化工设备机械基础的弯曲强度理论【4】, 杆件强度主要指标是弯曲应力。弯曲强度条件为 ][W M max max σσ≤=。 要提高杆件的强度, 除了合理安排受力, 降低M max 的数值以外, 主要是采用合理的截面形状, 尽量提高抗弯截面模量W 的数值, 充分利用材料。,实心圆截面和空心圆截面的抗弯截面模量分别是 3d 321W π=实)1(32 1W 43απ-=D 空 式中, d 是实心杆直径, D 是空心杆外径, 1D 是空心杆内径。2 1D D = α为空心杆内、外径比值, 当空心杆和实心杆的截面积相同时 )(2122D -D 4 1d 41ππ=或212D -D d = 则11-1-1D 32 1d 321W W 22433>+==α ααππ)(空实 (1)根据以上分析, 空心圆截面杆的抗弯强度比同样截面积的实心杆大; 并且空心圆截面杆内、外直径的比值α越大,其抗弯强度也随之增大。 例如, 当α= 0。 7 时, 它的抗弯强度比同样重量的实心圆截面大2倍。 因为, 杆件抗弯时从正应力的分布规律可知在杆截面上离中性轴越远, 正应力越大, 而中性轴附近的应力很小, 这样其材料的性能未能充分发挥作用。 若将实心圆截面改为空心圆截面, 也就是将材料移置到离中性轴较远处, 却可大大提高抗弯强度。 (2)在风荷载下,竹子主要抵抗的是弯矩和剪力。对于抗弯,边缘最大正应力与截面的截面惯性矩I 成反比,而I 随截面半径增大而增大,故空心结构形成的大半径有利于降低边缘最大正应力提高抗弯能力。 3.2 材料分布的强度分析 (1)由于边缘的正应力最大,故将优质材料布置在边缘是最优化的结构布置,竹子就做到了这点:竹壁自外而内,分为竹青、竹肉和竹黄三个部分,竹子的表面呈现出青色的叫竹青,由抗拉强度很高的纤维质构成。 (2)对于抗剪,竹节又起到了关键的作用。坚硬实心的竹节将竹身分成小段的区格,在每个区格的端部提供可靠的变形约束,从而也能大大提高竹子的抗剪力能力。 3.3 阶梯状变截面的强度分析 (1)竹子在风载作用下各段抵抗弯曲变形能力基本相同, 相当于阶梯状变截面杆, 是一种近似的“等强度杆”。 (2)因为在风力作用下, 沿杆自上而下各截面的弯矩越来越大。 竹子根部所受弯矩最大, 因而根部最粗, 自下而上各截面弯矩越来越小, 竹子也就越来越细。 (3)另外, 竹节不仅能够增强竹子的抗弯强度, 同时,能大大地提高竹子横向的抗挤压和抗剪切的能力。 4、竹子最为建筑用材在实际中的应用 4.1 背景: 中国是世界上最大的产竹国。竹子生长快,成材早产量高、用途广。据竹材研究者介绍,竹子的生长速度非常快,比其他木材的生长速度都要快。竹子最快的生长速度是24小时长长

运动生物力学—第三章 骨、关节、肌肉的生物力学讲解

系年级班第次课时间 内容目标内容提要:生命在于运动。人体的运动的特点是,在意识控制下,一方面遵循力学的普遍规律,另一方面具有其特殊的复杂性。本章从力学结构及运动对这些运动器官的影响两个方面介绍骨、关节、肌肉的生物力学特性。 教学目标:使学生理解骨、关节、肌肉的生物力学特性。掌握运动对骨、关节、肌肉的生物力学特性影响。 教学 重点 重点掌握肌肉的力学特性,为正确分析人体动作奠定理论基础。 参考资料 与仪器等 讲稿提纲 第三章骨、关节、肌肉的生物力学 第一节骨的生物力学 一、骨的生物力学特征 二、运动对骨的力学性能的影响 第二节关节生物力学 一、关节的生物力学特征 二、运动对关节力学性能的影响 第三节肌肉生物力学 一.骨骼肌的力学特性 二.运动对肌肉力学性能的影响

讲稿内容 第三章骨、关节、肌肉的生物力学 第一节骨的生物力学 人体共有206块骨,其功能是对人体起支持、运动和保护的作用。骨的外部形态和内部结构不论是从解剖学还是生物力学的角度来看,都是十分复杂的。这种复杂性是由骨的功能适应性所决定的。骨的功能适应性,是指对所担负工作的适应能力。从力学观点来看,骨是理想的等强度优化结构。它不仅在一些不变的外力环境下能表现出承受负荷(力)的优越性,而且在外力条件发生变化时,能通过内部调整,以有利的新的结构的形式来适应新的外部环境。 一、骨的生物力学特征 (一)骨对外力作用的反应 1.骨对简单(单纯)外力作用的反应 (1)拉伸:拉伸载荷是自骨的表面向外施加相等而反向的载荷,在骨内部产生拉应力和拉应变。例,单杠悬垂时上肢骨的受力。 (2)压缩:压缩载荷为加于骨表面的向内而反向的载荷,在骨内部产生压应力和压应变。例,举重举起后上肢和下肢骨的受力。 (3)弯曲:使骨沿其轴线发生弯曲的载荷称为弯曲载荷。在弯曲负荷下,骨骼内不同时产生拉应力(凸侧)和压应力(凹侧)。在最外侧,拉应力和压应力最大,向内逐渐减小,在应力为零的交界处会出现一个不受力作用的“中性轴“。例,负重弯举(杠铃)时前臂的受力。 (4)剪切:标准的剪切载荷是一对大小相等,方向相反,作用线相距很近的力的作用,有使骨发生错动(剪切)的趋势(图3-1),在骨骼内部的剪切面产生剪应力。例,人体运动小腿制动时,股骨髁在胫骨平台上的滑动产生剪应

材料力学答案第二章

第二章 拉伸、压缩与剪切 第二章答案 2.1 求图示各杆指定截面的轴力,并作轴力图。 40kN 50kN 25kN (a ) 4 4F R F N 4 40kN 3 F N 3 25kN 2F N 2 20kN 11 F N 1 解: F R =5kN F N 4 =F R =5 kN F N 3 =F R +40=45 kN F N 2 =-25+20=-5 kN F N 1 =20kN 45kN 5kN 20kN 5kN

(b) 1 10kN 6kN F N 1 =10 kN F N 2 =10-10=0 F N 3 =6 kN 1—1截面: 2—2截面: 3—3截面:10kN F N 1 1 1 10kN 10kN 2 2 F N 2 6kN 3 3 F N 3 2.2 图示一面积为100mm 200mm的矩形截面杆,受拉力F = 20kN的作用,试求:(1)

6 π = θ的斜截面m-m 上的应力;(2)最大正应力max σ和最大剪应力max τ的大小及其作用面的方位角。 解: 320101MPa 0.10.2 P A σ?===?2 303cos 14 σσα==?=3013sin600.433MPa 2 22 σ τ= = ?=max 1MPa σσ==max 0.5MPa 2 σ τ= =F 2.3 图示一正方形截面的阶梯形混凝土柱。设重力加速度g = 9.8m/s 2, 混凝土的密度为 33m /kg 1004.2?=ρ,F = 100kN ,许用应力[]MPa 2=σ。试根据强度条件选择截面宽度a 和b 。

b a 解: 2 4, a ρ?3 42 2.0410ρ=??11 [] a σσ=0.228m a ≥ = =22 342424431001021040.2282104a b b ρρ=?+?=??+???+???2[], b σσ≥0.398m 398mm b ≥ == 2.4 在图示杆系中,AC 和BC 两杆的材料相同,且抗拉和抗压许用应力相等,同为[]σ。BC 杆保持水平,长度为l ,AC 杆的长度可随θ角的大小而变。为使杆系使用的材料最省,试求夹角θ的值。

填料塔的基本特点

填料塔的基本特点 一、填料塔结构 填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。在填料的上方安装填料压板,以限制填料随上升气流的运动。液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。 二、填料的类型及性能评价 填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料; 填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优; 2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低; 3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。 三、填料塔设计基本步骤 1.根据给定的设计条件,合理地选择填料; 2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸; 3.计算填料层的压降; 4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。 四、填料塔设计 1.填料的选择 填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。应尽量选用技术资料齐备,适用性能成熟的新型填料。对性能相近的填料,应根据它的特点进行技术经济评价,使所选用的填料既能满足生产要求,又能使设备的投资和操作费最低。 (1)填料种类的选择 填料的传质效率要高:传质效率即分离效率,一般以每个理论级当量填料层高度表示,即HETP值; 填料的通量要大:在同样的液体负荷下,在保证具有较高传质效率的前提下,应选择具有较高泛点气速或气相动能因子的填料; 填料层的压降要低:填料层压降越低,塔的动力消耗越低,操作费越小;对热敏性物系尤为重要; 填料抗污堵性能强,拆装、检修方便。 (2)填料规格的选择

材料力学答案解析第二章

第二章 拉伸、压缩与剪切 第二章答案 2.1 求图示各杆指定截面的轴力,并作轴力图。 40kN 50kN 25kN (a ) 4 4F R F N 4 40kN 3 F N 3 25kN 2F N 2 20kN 11 F N 1 解: F R =5kN F N 4 =F R =5 kN F N 3 =F R +40=45 kN F N 2 =-25+20=-5 kN F N 1 =20kN 45kN 5kN 20kN 5kN

(b) 1 10kN 6kN F N 1 =10 kN F N 2 =10-10=0 F N 3 =6 kN 1—1截面: 2—2截面: 3—3截面:10kN F N 1 1 1 10kN 10kN 2 2 F N 2 6kN 3 3 F N 3 2.2 图示一面积为100mm 200mm的矩形截面杆,受拉力F = 20kN的作用,试求:(1)

6 π = θ的斜截面m-m 上的应力;(2)最大正应力max σ和最大剪应力max τ的大小及其作用面的方位角。 解: 320101MPa 0.10.2 P A σ?===?2 303cos 14 σσα==?=3013sin600.433MPa 2 22 σ τ= = ?=max 1MPa σσ==max 0.5MPa 2 σ τ= =F 2.3 图示一正方形截面的阶梯形混凝土柱。设重力加速度g = 9.8m/s 2, 混凝土的密度为 33m /kg 1004.2?=ρ,F = 100kN ,许用应力[]MPa 2=σ。试根据强度条件选择截面宽度a 和b 。

b a 解: 2 4, a ρ?3 42 2.0410ρ=??11 [] a σσ=0.228m a ≥ = =22 342424431001021040.2282104a b b ρρ=?+?=??+???+???2[], b σσ≥0.398m 398mm b ≥ == 2.4 在图示杆系中,AC 和BC 两杆的材料相同,且抗拉和抗压许用应力相等,同为[]σ。BC 杆保持水平,长度为l ,AC 杆的长度可随θ角的大小而变。为使杆系使用的材料最省,试求夹角θ的值。

定性分析竹子的力学特性(红色推荐)

定性分析竹子的力学特性 结12,高鸣,2001010132 初次见到竹子的人大概都为竹子如此之细却能长那么高而感到惊讶,尤其是竹子多生长在南方,而且最茂密的季节是夏季,很难想象竹子在南方夏天的狂风骤雨中如何屹立不倒。笔者试图通过自己有限的一点知识,从竹子的结构出发浅谈竹子的受力优点。 先看一下竹子的结构有哪些特点。竹子的断面是圆环形,中空,一般直径6厘米,壁厚0.5厘米,大约每隔15厘米有一个实心坚硬的竹节。 对于空心固体的受力性能,意大利科学家伽利略曾经做过专门的研究,这里摘录如下:“人类的技艺(技术)和大自然都在尽情地利用这种空心的固体。这种物质可以不增加重量而大大增加它的强度,这一点不难在鸟的骨头上和芦苇上看到,它们的重量很小,但是有极大的抗弯力和抗断力,麦秆所支持的麦穗重量,要超过整株麦茎的重量,假如与麦秆同样重量的物质却生成实心的而不是空心的,它的抗弯和抗断力就要大大减低。”“实际上也曾经发现并且用实验证实了,空心的棒以及木头和金属的管子,要比同样长短同样重量的实心物体更加牢固,当然,实心的要比空心的细一些。人类的技艺就把这个观察到的结果应用到制造各种东西上,把某些东西制成空心的,使它们又坚固又轻巧。” 竹子在自然界中主要受自重荷载和风荷载。在自重荷载下(无风时),竹子相当于一根受压杆,根据欧拉公式,临界荷载:2 2)(l EI F Pcr μπ= ,对于竹子,E 是它的材料性能, 取决于竹纤维的强度,生长在土地上长度系数2=μ, 这些都是常数。除去长度因素外,还和截面抗弯刚度Pcr F EI 成正比。显然,在同样的重量下,把截面作成空心圆环对于提高抗弯刚度EI 是最有利的。计算表明,假如把竹子做成实心的,则其抗弯能力是原来的1/10。因此,竹子特有的空心圆环形的截面保证了它的受压整体稳定性,从而能提高其生长高度。那么竹子如何保证受压局部稳定性呢?竹节的作用此时就体现了。竹节所起到的作用与箱形截面柱中横向加劲肋是一样的,从而保证了竹子的受压局部稳定性。同时,竹节的存在也保证了竹子的抗扭能力,避免竹子发生扭转失稳。 在风荷载下,竹子主要抵抗的是弯矩和剪力。对于抗弯,边缘最大正应力与截面截面惯性矩I 成反比,而I 随截面半径增大而增大,故空心结构形成的大半径有利于降低边缘最大正应力提高抗弯能力。同时,由于边缘的正应力最大,故将优质材料布置在边缘是最优化的结构布置,竹子就做到了这点。竹壁自外而内,分为竹青、竹肉和竹黄三个部分,竹子的表面呈现出青色的叫竹青,由抗拉强度很高的纤维质构成。对于抗剪,竹节又起到了很关键的作用。坚硬实心的竹节将竹身分成小段小段的区格,在每个区格的端部提供可靠的变形约束,从而也能大大提高竹子的抗剪能力。举个例子,农业上小麦减产主要原因之一“倒伏”,就是小麦返青拔节时,由于雨水过多,生长迅速而拔节快,形成节与节之间间距大,减低了麦秆的抗剪能力,头重脚轻杆软倒伏于地。 从上面的分析可以看出,竹子的结构特点十分符合它在自然界中的受力需要。自然界中的许多动植物身上都有许多这样的特点,这些都是生物在进化过程中逐渐产生的有利于其生存的特点,受力优越性便是其中之一。

第二章 金属材料力学性能基本知识及钢材的脆化

金属材料力学性能基本知识 及钢材的脆化 金属材料是现代工业、农业、国防以及科学技术各个领域应用最广泛的工程材料,这不仅是由于其来源丰富,生产工艺简单、成熟,而且还因为它具有优良的性能。 通常所指的金属材料性能包括以下两个方面: 1.使用性能即为了保证机械零件、设备、结构件等能正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等),化学性能(耐蚀性、热稳定性等)。使用性能决定了材料的应用范围,使用安全可靠性和使用寿命。 2 工艺性能即材料在被制成机械零件、设备、结构件的过程中适应各种冷、热加工的性能,例如锻造,焊接,热处理,压力加工,切削加工等方面的性能。工艺性能对制造成本、生成效率、产品质量有重要影响。 1.1材料力学基本知识 金属材料在加工和使用过程中都要承受不同形式外力的作用,当外力达到或超过某一限度时,材料就会发生变形以至断裂。材料在外力作用下所表现的一些性能称为材料的力学性能。锅炉压力容器材料的力学性能指标主要有强度、硬度、塑性、韧性等这些性能指标可以通过力学性能试验测定。 1.1.1强度 金属的强度是指金属抵抗永久变形和断裂的能力。材料强度指标可以通过拉伸试验测 出。把一定尺寸和形状的金属试样(图1~2)装夹在试验机上,然后对试样逐渐施加拉伸载荷,直至把试样拉断为止。根据试样在拉伸过程中承受的载荷和产生的变形量之间的关系,可绘出该金属的拉伸曲线(图1—3)。在拉伸曲线上可以得到该材料强度性能的一些数据。图1—3所示的曲线,其纵坐标是载荷P(也可换算为应力d),横坐标是伸长量AL(也可换算为应变e)。所以曲线称为P—AL曲线或一一s曲线。图中曲线A是低碳钢的拉伸曲线,分析曲线A,可以将拉伸过程分为四个阶段:

材料力学第二章

材料力学-第二章

————————————————————————————————作者:————————————————————————————————日期:

2005年注册岩土工程师考前辅导精讲班 材料力学 第四讲截面的几何性质 【内容提要】 本节主要了解静矩和形心、极惯性矩和惯性积的概念,熟悉简单图形静矩、形心、惯性矩和惯性积的计算,掌握其计算公式。掌握惯性矩和惯性积平行移轴公式的应用,熟练掌握有一对称轴的组合截面惯性矩的计算方法。准确理解形心主轴和形心主惯性矩的概念,熟悉常见组合截面形心主惯性矩的计算步骤。 【重点、难点】 重点掌握平行移轴公式的应用,形心主轴概念的理解和有一对称轴的组合截面惯性矩的计算步骤和方法 一、静矩与形心 (一)定义 设任意截面如图4-1所示,其面积为A,为截面所在平面内的任意直角坐标系。c 为截面形心,其坐标为,。则 截面对z轴的静矩 截面对轴的静矩 截面形心的位置 (二)特征 1.静矩是对一定的轴而言的,同一截面对不同轴的静矩值不同。静矩可能为

正,可能为负,也可能为零。 2.静矩的量纲为长度的三次方.即。单位为或。 3.通过截面形心的坐标称为形心轴。截面对任一形心轴的静矩为零;反之,若截面对某轴的静矩为零,则该轴必通过截面之形心。 4.若截面有对称轴,则截面对于对称轴的静矩必为零,截面的形心一定在该对称轴上。 5.组合截面(由若干简单截面或标准型材截面所组成)对某一轴的静矩,等于其组成部分对同一轴的静矩之代数和(图4-2),即 合截面的形心坐标为:

二、惯性矩惯性积 (一)定义 设任意截面如图4-3所示,其面积为A,为截面所在平面内任意直角坐标系。则

荔枝果核力学特性分析及试验

万方数据

万方数据

万方数据

荔枝果核力学特性分析及试验 作者:程红胜, 李长友, Cheng Hongsheng, Li Changyou 作者单位:华南农业大学,工程学院,广州,510642 刊名: 农机化研究 英文刊名:JOURNAL OF AGRICULTURAL MECHANIZATION RESEARCH 年,卷(期):2009,31(12) 被引用次数:1次 参考文献(12条) 1.刘燕群中国荔枝产业发展现状、问题及对策[期刊论文]-世界农业 2008(03) 2.徐秉业;罗学富接触力学 1992 3.Mohsenin N N Physical properties of plant and animal materials 1970 4.王泽南;单明彻水果机械特性及损伤的研究 1986(03) 5.吴德光;蒋小明农产品压缩试验研究及其应用(Ⅰ)-压缩试验方法 1990(03) 6.周祖锷农业物料学 1994 7.戴晓红荔枝加工机结构设计原理分析[期刊论文]-包装与食品机械 1997(02) 8.王旭东荔枝去核机的设计[期刊论文]-农业机械学报 2005(09) 9.张林泉荔枝剥壳设备的研制[期刊论文]-包装与食品机械 2004(06) 10.陈震荔枝力学特性参数测试研究[期刊论文]-农机化研究 2008(09) 11.王旭东;朱立学;刘江清荔枝物理参数和机械特性的试验研究[期刊论文]-农机化研究 2007(12) 12.袁沛元;蔡长河荔枝加工现状与技术探讨[期刊论文]-中国热带农业 2005(25) 本文读者也读过(10条) 1.贾彦丽.温陟良.吕瑞江.段玉春.智福军.JIA Yan-li.WEN She-liang.LU Rui-jiang.DUAN Yu-chun.ZHI Fu-jun 无核小枣果核发育的解剖学研究[期刊论文]-华北农学报2007,22(z2) 2.陈震.徐凤英.李长友.卢顺成.CHEN Zhen.XU Feng-ying.LI Chang-you.LU Shun-cheng荔枝力学特性参数测试研究[期刊论文]-农机化研究2008(9) 3.陈震.李长友.洪英荔枝力学特性分析与测试[会议论文]- 4.宋慧芝.王俊.陈琦峰.严志权.Song Huizhi.Wang Jun.CHEN Qifeng.Yan Zhiquan梨动力学特性有限元分析[期刊论文]-农业机械学报2005,36(6) 5.徐永春.陈震农业物料力学测试平台系统设计[期刊论文]-现代农业装备2004(9) 6.张洋.王德成.王光辉.刘德旺.王书茂牧草种子机械化加工工艺的分析[会议论文]- 7.刘建军.宋建农.陆建伟.彭樟林.彭何欢.LIU Jian-jun.SONG Jian-nong.LU Jian-wei.PENG Zhang-lin.PENG He-huan大蒜物理力学特性的试验研究[期刊论文]-农机化研究2008(2) 8.杨晨升.马小愚.Yang Chensheng.Ma Xiaoyu农业物料动态力学特性的试验研究[期刊论文]-农机化研究2009,31(4) 9.刘圣勇.王淮东.康艳.李文雅.苏超杰.袁超.朱长河.LIU Sheng-yong.WANG Huai-dong.KANG Yan.LI Wen-ya.SU Chao-jie.YUAN Chao.ZHU Chang-he玉米秸秆成型燃料结渣特性试验与分析[期刊论文]-河南农业大学学报2006,40(6) 10.刘圣勇.李文雅.苏超杰玉米秸秆成型燃料结渣特性实验与分析[会议论文]-2006 引证文献(1条) 1.陈燕.蔡伟亮.邹湘军.徐凤英荔枝整果压缩力学特性试验[期刊论文]-安徽农业科学 2010(29)

08填料塔流体力学特性曲线测定

实验八填料塔流体力学特性曲线测定 一、实验目的 1.了解填料吸收塔的结构和吸收操作流程; 2. 测定不同喷林密度下气体流速和压强降的关系曲线; 3. 测定不同不同喷林密度下的载点和泛点气速; 4. 观察持液和液泛现象。 二、实验装置 图1所示装置用于测定填料塔流体力学特性时,关停CO2管路即可。填料塔是一内径为90mm的塔体,塔内装填填料采用φ8×6mm瓷拉西环,水由水泵输送,流经转子流量计至塔顶,从塔顶喷林而下,最后从塔底流回水槽。空气由风机吸入,风机为旋涡风机,输入功率为250W,转速为2800/min,风压为10.5KPa,风量为26m3/h。通过转子流量计后到进口管,最后在塔顶排空。 空气和水的流量均由转子流量计测量,通过床层的压强降由差压计测定。 图1填料塔流体力学特性曲线测定工艺流程图

填料塔流体力学特性包括压强降和液泛规律。计算填料塔需用动力时,必须知道压强降的大小。而确定吸收塔的气、液负载量时,则必须了解液泛的规律,所以测量流体力学性能是吸收实验的一项内容。 实验可用空气与水进行。在各种喷淋量下,逐步增大气速,记录必要的数据直至刚出现液泛时止。测量结果经整理后标绘在双对数坐标纸上。 气体通过填料层时压降ΔP与气速u及填料特性(形状,尺寸)有关:ΔP∝u1.5~2.0(u空塔气速)。 气液两相逆流通过填料层时,气体的压降ΔP除与气速u和填料特性有关外,还取决于喷淋密度等因素。 在一定喷淋密度下,当气速较小时ΔP∝u1.5~2.0但比无喷淋时的ΔP值高。当气速增加到一定值时。气液间的摩擦力开始牵制液体向下流动。液膜增厚,气流通道变小。阻力增加较快,此时㏒ΔP~㏒u关系曲线上出现一个拐点,称为泛点。当喷淋密度增加时,压力降增加,载点与泛点的气速下降。一般填料塔的设计均应在泛点以下操作。(对于一般乱堆填料当每米高的填料层压降值为200~250mmH2o左右时即产生液泛)。如果要求压降很稳定。则宜在载点以下,但因为很多场合下没有明显载点,难以准确确定之。而泛点以后则已有较准确的关联式。因此塔的设计中一般均先计算泛点速度WF然后乘以负荷因子(一般为0.6~0.8)作为实际气速。泛点气速关联式: ㏒ 式中:W F—泛点空速气速,m/s; g —重力加速度,9.81m/s2; a/ε3—干填料因子,m-1; r G,r L —气相,液相密度,kg/m3; u L—液相粘度,CP。

填料塔流体力学性能及传质

实验五 填料塔流体力学性能及传质 一、实验任务 1、 了解吸收塔的流程和结构; 2、 测量填料塔的流体力学特性; 3、 测定吸收系数。 二、基本原理 1、 流体力学性质 a 、 填料塔的流体力学特性包括压降和泛点,知道压降的大小,可以确定吸收塔 所需的动力,而泛点是生产操作中的重要的控制因素。因此,填料塔的流体力学特性测定的目的,是为填料塔选择适宜的操作条件提供依据。 流体力学特性测定时,使用的是空气和水。 b 、 气体通过干填料时,流体流动引起的压降和湍流流动引起的压降规律相一致。 在对数坐标纸上作 ~p u ?关系曲线,为一直线,如图(1)所示,斜率为1.8~2次幂,当有喷淋量时,低气速时(c 点以前)压降也正在于气速的1.8~2次幂,但大于同一气速下干填料的压降(线2中bc 段)。随气速增加,出现载点,出现载点(c 点),持液量增大, ~p u ?线向上弯曲,斜率变陡(cd 段),到达泡点(d 点)后,在几乎不变的气速下,压降持续增大,出现液泛。 固定液体喷淋密度,记下塔内现象,空气流量、压降数。 日期: 设备型号: 大气压力: 填料高度: 水温: 气温 2T : 空气流量计算状态 1T 、 1P : 塔平均内径D : 水流量L : 空气流量: 压强降:

换算公式: / 00/Q Q Q γ==Ω 0T -----273K 0P =760mmHg 0r -----空气密度 1.293Kg/m 3 Ω -----塔截面积 2 4 D π Ω= 以气速G /为横坐标,压降 2P ?为纵坐标,作压降曲线,找寻载液点和液泛点。 2、 传质系数的测定 总体积传质系数Kga 是在单位时间内,单位填料体积吸收的溶质量,又是反映填料吸收塔性能的主要参数,是设计填料层高度的重要依据。 本实验是用水吸收空气---氨混合气体水中的氨,为使气液两相平衡关系服从亨利定律混合气中氨的浓度应少于10%。 吸收过程可有用下列方程表示。 y G K G F = y K ----以气相摩尔比差为推动力的总传质系数 G------单位时间吸收的组分量(Kg/时) F-------气液两相接触面积(米2) m Y ?-----平均传质推动力 (1)G――可以通过测量气相进、出口浓度和惰性气体流量获得 ()b a G V Y Y =- V――惰性气体流量[Kg /时] a Y 、 b Y ――进出塔气相组成,以摩尔比表示[ m ol m ol 组分载体] (2)两相接触面积 2 14 F aV a D X π == 填料 Z――填料层高度[米] V――塔中填料的全部面积 r D ――塔内径[米] a ――填料的单位面积的有效表面积[米2/米3 ]一般a 并不等于干填料的比表面at ,而应乘以填料的表面效率 η,即 a at η= η――可根据最小润湿分率查下图表。

材料力学第二章习题【含答案】

浙江科技学院2015-2016学年第一学期考试试卷 A 卷 考试科目材料力学考试方式闭完成时限 2 小时拟题人陈梦涛审核人批准人2015 年9 月17 日建工学院2014 年级土木工程专业 一、单项选择题(每小题3分,计30分) 1. 对于塑性材料来说,胡克定律(Hooke's law)使用的范围是。 A. p σσ <; B. p σσ >; C. s σσ <; D. s σσ > 2.实心圆截面杆直径为D,受拉伸时的绝对变形为mm l1 = ?。仅当直径变为2D时,绝对变形l?为。 A.1mm B.1/2 mm C.1/4 mm D.2mm 3. 下列有关受压柱截面核心的说法中,正确的是。 A.当压力P作用在截面核心内时,柱中只有拉应力。 B.当压力P作用在截面核心内时,柱中只有压应力。 C.当压力P作用在截面核心外时,柱中只有压应力。 D.当压力P作用在截面核心外时,柱中只有拉应力。 4. 构件的强度、刚度和稳定性。 A.只与材料的力学性质有关; B.只与构件的形状尺寸关; C.与二者都有关; D.与二者都无关。 5. 如右图所示,设虚线表示为单元体变形后的形状,则该单元体的剪 应变为。 A. α; B.π/2-α; C.π/2-2α; D.2α 6. 图示一杆件的拉压刚度为EA,在图示外力作用下其 应变能U的下列表达式是。 7.应力-应变曲线的纵、横坐标分别为σ=FN /A,ε=△L / L,其中。 A.A 和L 均为初始值; B.A 和L 均为瞬时值; C.A 为初始值,L 为瞬时值; D.A 为瞬时值,L 均为初始值。 8. 设一阶梯形杆的轴力沿杆轴是变化的,则发生破坏的截面上。 题5图 题6图

填料塔流体力学计算说明书

GBL-T5102丝网波纹填料塔内件设计说明书 2.1设计方案的确定 根据用户要求,本设计采用BX(500)丝网波纹填料塔进行分离。BX(500)的相关参数见第4节。 2.2水力性能的计算 2.2.1填料塔上段 (1)喷淋密度 32248454 3.0168/3.1410431.4S L m m h S L ?===?? (2)泛点气速 118420.213lg ()()()F l l v A K l g v l w u a w νρρμρρε??=-????? 112 840.23403353785000.3044lg ()()0.30 1.759.811024.50.90.30440.451042.5()F u ??=-????? u F =5.44m/s (3)空塔气速 3.62/u m s == = (4) 液泛率 3.6266.5%5.44 F u u = = (5)持液量 质量 m=4033×0.042=169.386Kg 体积

3169.3960.162481042.5 V m == 填料体积 2 '34.154224V H m D π== 持液量 V/V ’=0.16248/4.15422=0.039112 m 3/ m 3 (6)压降 △P=2.7×5×10=135Pa (7)操作弹性 由所选液体分布器:308个小孔直径为2mm ,布液管直径为20mm ,分配管及液位管直径130mm 当分配管内液流速最大0.3m/s 时,求得最大允许流量 2 max 1042.5360014936.250.3Kg/h 40.13Q π ?==??? 而填料允许最小喷淋密度为1 m 3/(m 2h)时 2min 1042.536001604.761Kg/h 4 1.4Q π??==?? 液相负荷上限 4845×1.2=5814 Kg/h <Qmax 液相负荷下限 4845×0.5=2422.5 Kg/h >Qmin 操作弹性为 14936.75/1604.76=9.3 所以设计合理。 2.2.2中段 (1)液泛气速 112840.23458759325000.3044lg ()()0.30 1.759.8160210.90.3044()0.451021()F u ??=-?????

材料力学第二章习题

材料力学第二章习题

习 题 2.1试画出图示各杆的轴力图 题2.1图 2.2 图示中段开槽的杆件,两端受轴向载荷P 作用,试计算截面1 - 1和截面2 – 2上的正应力。已 知: ,mm b 20=,mm b 100=,mm t 4=。 题2.2图 2.3 图示等直杆的横截面直径mm d 50=,轴向载荷 。 ( 1 ) 计算互相垂直的截面AB 和BC 上正应力和切应力; ( 2 ) 计算杆内的最大正应力和最大切应力。 2.4图示为胶合而成的等截面轴向拉杆,杆的强度由胶缝控制,已知胶的许用切应力[]τ为许用正应力[]σ的1/2。问α为何值时,胶缝处的切应力和

正应力同时达到各自的许用应力。 2.5图示用绳索起吊重物,已知重物, 绳索直径。许用应力,试校核绳索的强度。绳索的直径应多大更经济。 , 2.6冷镦机的曲柄滑块机构如图所示。镦压工件时连杆接近水平位置,镦压力P=1100KN。连杆矩形截面的高度h与宽度b之比为:h/b=1.4。材料为45钢,许用应力【 】=58MPa,试确定截面尺寸h及b。 2.7图示结构杆1与杆2由同一种材料制成,其

许用应力[σ]=100MPa。杆1横截面面积A1=300mm2,杆2横截面面积A2=200mm2,CE=0.5m, ED=1.5m。试按杆1,杆2的强度确定许可载荷[F]。 2.8杆长,横截面积均相同的两杆,一为钢杆另一为灰铸铁杆。欲组装成图示等边三角架。已知 杆长=0.5m,杆的横截面积A=400mm2,钢的许用应力【σ】=160MPa,灰铸铁的许用拉应力 =30MPa,许用压应力=90MPa。试问如何安装较为合理?求这时的最大许可载荷[F]。 2.9图示桁架,由圆截面杆1与杆2组成,并在节点A承受外力F=80kN作用。杆 1,杆2的直径分别为d1=30mm和 d2=20mm,两杆的材料相同,屈服极 限σs=320MPa,安全系数n s=2.0。试校核桁架的强度。 2.9图

填料塔流体力学特性与吸收系数的测定

实验一填料塔流体力学特性与吸收系数的测定 一、实验目的: 1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。 2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。 二、实验内容: 1.测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2.固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度以下,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。 3.进行纯水吸收混合气体中的二氧化碳、用空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。 三、实验原理: 气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ?与气速u 的关系如图1所示: 图1 填料层的P ?~u 关系 当液体喷淋量00=L 时,干填料的P ?~u 的关系是直线,如图中的直线0 。当有一定的喷淋量时,P ?~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P ?~u 关系分为三个区段:既恒持液量区、载液区及液泛区。

传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 若气液平衡关系遵循享利定律,即平衡曲线为直线,可用解析法解得填料层高度的计算式,亦即可采用下列平均推动力法计算填料层的高度或液相传质单元高度: Am A A L sL C C C aS K V h ?-?= 2 1 (11) S K V h H h N L sL L L α== (12) 式中m A C .?为液相平均推动力,即 其中:1110A A C Hp Hy p *==, 2220A A C Hp Hy p * ==,0P 为大气压。 二氧化碳的溶解度常数: E M H w w 1 ? = ρ13--??Pa m koml (14) 式中:w ρ——水的密度, ;3-?m kg w M ——水的摩尔质量, 1-?kmol kg ; E ——二氧化碳在水中的享利系数(见表1),Pa 。 因本实验采用的物系不仅遵循亨利定律,而且气膜阻力可以不计,在此情况下,整个传质过程阻力都集中于液膜,即属液膜控制过程,则液侧体积传质膜系数等于液相体积传质总系数,亦即 Am A A sL L l C C C hS V a K a k ?-?= =2 1 表1 二氧化碳在水中的亨利系数 E ×10-5,kPa

材料力学-第二章

2005年注册岩土工程师考前辅导精讲班 材料力学 第四讲截面的几何性质 【内容提要】 本节主要了解静矩和形心、极惯性矩和惯性积的概念,熟悉简单图形静矩、形心、惯性矩和惯性积的计算,掌握其计算公式。掌握惯性矩和惯性积平行移轴公式的应用,熟练掌握有一对称轴的组合截面惯性矩的计算方法。准确理解形心主轴和形心主惯性矩的概念,熟悉常见组合截面形心主惯性矩的计算步骤。 【重点、难点】 重点掌握平行移轴公式的应用,形心主轴概念的理解和有一对称轴的组合截面惯性矩的计算步骤和方法 一、静矩与形心 (一)定义 设任意截面如图4-1所示,其面积为A,为截面所在平面内的任意直角坐标系。c 为截面形心,其坐标为,。则 截面对z轴的静矩 截面对轴的静矩 截面形心的位置 (二)特征 1.静矩是对一定的轴而言的,同一截面对不同轴的静矩值不同。静矩可能为正,可能为负,也可能为零。 2.静矩的量纲为长度的三次方.即。单位为或。

3.通过截面形心的坐标称为形心轴。截面对任一形心轴的静矩为零;反之,若截面对某轴的静矩为零,则该轴必通过截面之形心。 4.若截面有对称轴,则截面对于对称轴的静矩必为零,截面的形心一定在该对称轴上。 5.组合截面(由若干简单截面或标准型材截面所组成)对某一轴的静矩,等于其组成部分对同一轴的静矩之代数和(图4-2),即 合截面的形心坐标为: 图4-1

二、惯性矩惯性积 (一)定义 设任意截面如图4-3所示,其面积为A,为截面所在平面内任意直角坐标系。则

截面对轴的惯性矩 截面对y 轴的惯性矩 截面对0点的极惯性矩 截面对轴的惯性积 (二)特征 1.惯性矩是对某一坐标轴而言的.惯性积是对某一对坐标轴而言的,同一截面对不同的坐标轴,其数值不同。极惯性矩是对点(称为极点)而言的,同一截面对不同的点,其值也不相同。惯性矩。极惯性矩恒为正值,而惯性积可能为正,可能为负,也可能为零。2.惯性矩、惯性积、极惯性矩的量纲均为长度的四次方,即。,单位为m4或mm4 3.对某一点的极惯性矩恒等于以该点为原点的任一对直角坐标轴的惯性矩之和。即 4.惯性积是对某一对直角坐标的.若该对坐标中有一轴为截面的对称轴,则截面对这一对坐标轴的惯性积必为零;但截面对某一对坐标轴的惯性积为零,则这对坐标中不一定有截面的对称轴。 5.组合截面对某一轴的惯性矩等于其组成部分对同一轴的惯性矩之和。即 组合截面对某一对坐标轴的惯性积,等于其组成部分对同一对坐标轴的惯性积之和,即组合截面对某一点的极惯性矩,等于其组成部分对同一点极惯性矩之和,即

填料塔的原理及结构,一看就懂!

填料塔的原理及结构,一看就懂! 填料塔(Packing Column)是塔设备的一种。塔内填充适当高度的填料,以增加两种流体间的接触表面。例如应用于气体吸收时,液体由塔的上部通过分布器进入,沿填料表面下降。气体则由塔的下部通过填料孔隙逆流而上,与液体密切接触而相互作用。结构较简单,检修较方便。广泛应用于气体吸收、蒸馏、萃取等操作。 1填料塔的结构 ◆填料层:提供气液接触的场所。 ◆液体分布器:均匀分布液体,以避免发生沟流现象。 ◆液体再分布器:避免壁流现象发生。 ◆支撑板:支撑填料层,使气体均匀分布。 ◆除沫器:防止塔顶气体出口处夹带液体。

气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。 填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 2填料塔的附件 填料塔的附件有填料支撑装置、液体分布装置、液体再分布器、除沫装置、填料压紧装置这五种。 ⑴填料支撑装置 主要用途是支撑塔内的填料,同时又能保证气液两相顺利通过。若设计不当,填料塔的液泛可能首先在填料支撑装置上发生。 对填料支撑装置的要求:

◆对于普通填料,支撑装置的自由截面积应不低于全塔面积的50%,并且要大于填料层的自由截面积; ◆具有足够的机械强度、刚度; ◆结构要合理,利于气液两相均匀分布,阻力小,便于拆装。 ⑵液体分布装置 液体在填料塔内均匀分布,可以增大填料的润湿表面积。以提高分离效率,因此液体的初始分布十分重要。 常用的液体分布装置有:莲蓬式、盘式、齿槽式及多孔环管式分布器等。 液体分布器的性能主要由分布器的布液点密度(即单位面积上的布液点数),各布液点均匀性,各布液点上液相组成的均匀性决定,设计液体分布器主要是决定这些参数的结构尺寸。

填料塔内的流体力学特性

(1) 填料塔内的流体力学特性 填料塔内气液两种流体逆向流动时具有一定的特性,即假定给液量保持不变,在逆流情况下,气体的流速达到一定值时,就发生所谓液体的泛滥现象,此时液体停止下降,且开始随同上逸的气体被吹出塔外,此时气体的流速称为“泛点”。若在对数坐标上标出压强降△P 对气体空塔速度U 的关系,并以不同的液体喷淋量(L )作为第三参数,可以画出如图8-5所示的各种不同的曲线。当喷淋量L =0,即所谓干塔情况,所得关系为一条直线,其斜率为1.8~2.0,即 1.8 2.0P U ?=,这时阻力与气速的关系如同气体高度湍流状态流过真空管道时的情况。当有液体喷淋时,所得的关系就不再是一条直线,而是由三条线段组成的一条曲线。当气速达到A 点时,液体向下游动受逆向气流的牵制开始明显起来,表现在填料上的滞留液量剧增,气流通过截面不断减小,因此从A 点之后,压强降随空塔气速有较大的增加,图8-6中曲线斜率不断加大,A 点称为“载点”。当气速增加到B 点时,压强降几乎直线上升,表示塔内发生了气泛,称之为“泛点”,此时气体托住液滴,逐渐使液滴形成连续相,气体反变成分散相,吸收操作无法正常进行。 填料塔只能在泛点下操作。有的学者认为开始拦液之点(载点)为吸收填料塔的最大可允许的操作情况。而实际最经济的操作速度,最好相当于载点速度的80%左右或泛点速度的50%~70%。 (2)泛液速度(f v ) 通过上面分析,不难了解在决定吸收塔的操作情况或塔径的设计上,都必须首先确定可允许的最大气流速度,即在泛点时的空塔气速。从实验数据刊出,泛点时的空塔气速f v 与流体物性、液气流量比、填料充填方式和填料特性有关。实验结果一般用通用关联图的形式把有关因素关联起来。当前工程设计中最常用的关联图如8-7。

相关主题
文本预览
相关文档 最新文档