当前位置:文档之家› 高三物理万有引力练习

高三物理万有引力练习

高三物理万有引力练习
高三物理万有引力练习

高三物理磁场专项练习

姓名:___________班级:___________考号:___________

一、解答题

1.如图所示,半径r=0.06m的半圆形无场区的圆心在坐标原点O处,半径R=0.1m,磁感应强度大小B=0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m),平行金属板MN的极板长L=0.3m、间距d=0.1m,极板间所加电压U=6.4x102V,其中N极板收集到的粒子全部中和吸收。一位于O处的粒子源向第一、二象限均匀地发射速度为v的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x轴正方向,已知粒子在磁

场中的运动半径R0=0.08m,若粒子重力不计、比荷q

m

=108C/kg、不计粒子间的相互作用力及电场的边缘效应。

sin53°=0.8,cos53°=0.6。

(1)求粒子的发射速度v的大小;

(2)若粒子在O点入射方向与x轴负方向夹角为37°,求它打出磁场时的坐标:(3)N板收集到的粒子占所有发射粒子的比例η。

2.如图,平面直角坐标系中,在,y>0及y<-3

2

L区域存在场强大小相同,方向相反均平行于y轴的匀强电

场,在-3

2

L<y<0区域存在方向垂直于xOy平面纸面向外的匀强磁场,一质量为m,电荷量为q的带正电粒

子,经过y轴上的点P1(0,L)时的速率为v0,方向沿x轴正方向,然后经过x轴上的点P2(3

2

L,0)进入

磁场。在磁场中的运转半径R=5

2

L(不计粒子重力),求:

(1)粒子到达P2点时的速度大小和方向;

(2)E

B

(3)粒子第一次从磁场下边界穿出位置的横坐标;(4)粒子从P1点出发后做周期性运动的周期。3.如图所示,左侧正方形区域ABCD有竖直方向的匀强电场和垂直纸面方向的磁场,右侧正方形区域CEFG 有电场,一质量为m,带电量为+q的小球,从距A点正上方高为L的O点静止释放进入左侧正方形区域后做匀速圆周运动,从C点水平进入右侧正方形区域CEFG.已知正方形区域的边长均为L,重力加速度为g,求:(1)左侧正方形区域的电场强度E1和磁场的磁感应强度B;

(2)若在右侧正方形区域内加竖直向下的匀强电场,能使小球恰好从F点飞出,求该电场场强E2的大小;(3)若在右侧正方形区域内加水平向左的匀强电场,场强大小为3

kmg

E

q

(k为正整数),试求小球飞出该区域的位置到G点的距离.

4.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B和B(B的大小未知),第二象限和第三象限内存在沿﹣y方向的匀强电场,x轴上有一点P,其坐标为(L,0)。现使一个电量大小为q、质量为m的带正电粒子从坐标(﹣2a,a)处以沿+x方向的初速度v0出发,该粒子恰好能经原点进入y轴右侧并在随后经过了点P,不计粒子的重力。

(1)求粒子经过原点时的速度;

(2)求磁感应强度B的所有可能取值

(3)求粒子从出发直至到达P点经历时间的所有可能取值。

5.如图所示为一种质谱仪的工作原理图,圆心角为90°的扇形区域OPQ中存在着磁感应强度大小为B、方向垂直纸面向外的匀强磁场,所有带电粒子经加速电压U加速后从小孔C射出,由磁场边界OP上N点垂直OP 进入磁场区域,然后均从边界OQ射出,已知ON=l.

(1) 若由静止开始加速的某种粒子X从边界OQ射出时速度方向与OQ垂直,其轨迹如图中实线所示,求该粒

子的比荷

q

m

(2) 若由静止开始加速的另一种粒子Y比荷是X粒子的

1

4

,求该粒子在磁场区域中运动的时间t;

(3) 由于有些粒子具有垂直于加速电场方向的初速度,导致粒子束以小发散角(纸面内)从C射出,这些粒子在

CN方向上的分速度均相同,求CN长度d调节为多少时,可使一束X粒子从边界OQ射出后能在磁场区域右

侧D点处被全部收集到(点D与C关于∠POQ的角平分线OH对称,部分粒子轨迹如图中虚线所示).

6.如图所示,虚线MN为匀强电场和匀强磁场的分界线,匀强电场场强大小为E方向竖直向下且与边界MN成

=45°角,匀强磁场的磁感应强度为B,方向垂直纸面向外,在电场中有一点P,P点到边界MN的竖直距离为

d。现将一质量为m、电荷量为q的带正电粒子从P处由静止释放(不计粒子所受重力,电场和磁场范围足够

大)。求:

(1)粒子第一次进入磁场时的速度大小;

(2)粒子第一次出磁场处到第二次进磁场处的距离;

(3)若粒子第一次进入磁场后的某时刻,磁感应强度大小突然变为'B,但方向不变,此后粒子恰好被束缚

在该磁场中,则'B的最小值为多少?

7.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,

其原理可简化如下:两束横截面积极小,长度为l-0质子束以初速度v0同时从左、右两侧入口射入加速电场,

出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。已知质子

质量为m,电量为e;加速极板AB、A′B′间电压均为U0,且满足eU0=

3

2

mv02。两磁场磁感应强度相同,半

径均为R,圆心O、O′在质子束的入射方向上,其连线与质子入射方向垂直且距离为H=

7

2

R;整个装置处于

真空中,忽略粒子间的相互作用及相对论效应。

(1)试求质子束经过加速电场加速后(未进入磁场)的速度ν和磁场磁感应强度B;

(2)如果某次实验时将磁场O的圆心往上移了

2

R

,其余条件均不变,质子束能在OO′ 连线的某位置相碰,求

质子束原来的长度l0应该满足的条件。

参考答案

1.(1)6×105m/s;(2)(0,0.18m);(3)29%

【解析】

【详解】

(1)由洛伦兹力充当向心力,即qvB=m

2

v

R

可得:v=6×105m/s;

(2)若粒子在O点入射方向与x轴负方向夹角为37°,作出速度方向的垂线与y轴交于一点Q,根据几何关系可得PQ=

0.06

37

cos

=0.08m,即Q为轨迹圆心的位置;

Q到圆上y轴最高点的距离为0.18m-

0.06

37

sin

=0.08m,故粒子刚好从圆上y轴最高点离开;故它打出磁场时的坐标为(0,0.18m);

(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:

y=

1

2

at2…①

a=

qE

m

=

qU

md

…②

t=

L

v

…③

由①②③解得:y=0.08m

设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα

可知tanα=

4

3

,即α=53°

比例η=

53

180

?

×100%=29%

2.(1)

5

3

v0,与x成53°角;(2)0

4

3

v

;(3)2L;(4)

()

40537

60

L

v

π

+

【解析】

【详解】

(1)如图,粒子从P1到P2做类平抛运动,设到达P2时的y方向的速度为v y,

由运动学规律知

3

2

L=v0t1,

L=

2

y

v

t1

可得t1=

3

2

L

v,

v y=

4

3

v0

故粒子在P2的速度为v22

0y

v v

+=

5

3

v0

设v与x成β角,则tanβ=

y

v

v

=

4

3

,即β=53°;

(2)粒子从P1到P2,根据动能定理知qEL=

1

2

mv2-

1

2

mv02可得

E=

2

8

9

mv

qL

粒子在磁场中做匀速圆周运动,根据qvB=m

2

v

R

解得:B=

mv

qR

=

5

3

5

2

m v

q L

?

?

=0

2

3

mv

qL

解得:0

4

3

v

E

B

=;

(3)粒子在磁场中做圆周运动的圆心为O′,在图中,过P2做v的垂线交y=-

3

2

L直线与Q′点,可得:

P2O′=

3

253

L

cos

=

5

2

L=r

故粒子在磁场中做圆周运动的圆心为O′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子

将垂直于y =-

32

L 直线从M 点穿出磁场,由几何关系知M 的坐标x =

3

2

L +(r -r cos37°)=2L ; (4)粒子运动一个周期的轨迹如上图,粒子从P 1到P 2做类平抛运动:t 1=

32L

v 在磁场中由P 2到M 动时间:t 2=

372360r v π??=0

37120L

v π 从M 运动到N ,a =

qE m =2

89v L

则t 3=v a =

158L

v 则一个周期的时间T =2(t 1+t 2+t 3)=

()0

4053760L

v π+。

3.(1)1mg E q

=,方向竖直向上;B =2)23mg E q =(3)

①L ②2

4L

L k - 【解析】 【详解】

(1)1v =

小球做匀速圆周运动1qE mg = 解得:1mg

E q

=

,方向竖直向上 由几何关系r L =,又2

11v qv B m r

=

解得:B =

(2)在CEFG 区域,小球做类平抛运动, 水平方向:1L v

t =,解得t =竖直方向:2

12

L at =

,解得4a g =

又2

qE mg ma

+=,

解得2

3mg

E

q

=

(3)水平方向:3

qE ma

=,解得a kg

=

竖直方向小球做自由落体运动.

当水平方向减速至零时,用时1

2gL

v

t

a

==

由2

1

2ax v

=,解得

L

x

k

=,

①当k=1时,x=L,小球水平方向恰好到达FG边,此时竖直位移2

1

2

y gt

==L,小球恰好从F点飞出,此时距G点L。

②当k=2,3,4……时,x

1

2

2

y g t

==

2

4L

k

≤L,小球从CG边飞出,此时距

G点

2

4L

L

k

-

4.(12v0,方向:与x轴正方向夹45°斜向下;

(2)磁感应强度B的所有可能取值:0

nmv

B

qL

=n=1、2、3……;

(3)粒子从出发直至到达P点经历时间的所有可能取值:

23

(1)

24

a m m

t k k

v qB qB

ππ

=++-

k=1、2、3……或

23

24

a m m

t n n

v qB qB

ππ

=++n=1、2、3……。

【解析】

【详解】

(1)粒子在电场中做类平抛运动,水平方向:2a=v0t,

竖直方向:2

y v a t =

解得:v y =v 0,tan θ=

y v v =1,θ=45°,

粒子穿过O

点时的速度:0v ==

(2)粒子在第四象限内做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:

2

v qvB m r

= ,

粒子能过P 点,由几何知识得:L =nr cos45° n =1、2、3……, 解得:0

nmv B qL

=

n =1、2、3……; (3)设粒子在第二象限运动时间为t 1,则:t 1=

2a v ; 粒子在第四、第一象限内做圆周运动的周期:12m T qB π=

,2m

T qB

π=,

粒子在下方磁场区域的运动轨迹为1/4圆弧,在上方磁场区域的运动轨迹为3/4圆弧, 若粒子经下方磁场直接到达P 点,则粒子在磁场中的运动时间:t 2=

1

4

T 1, 若粒子经过下方磁场与上方磁场到达P 点,粒子在磁场中的运动时间:t 2=

1

4T 1+34

T 2, 若粒子两次经过下方磁场一次经过上方磁场到达P 点:t 2=2×

1

4T 1+34T 2, 若粒子两次经过下方磁场、两次经过上方磁场到达P 点:t 2=2×1

4T 1+2×34

T 2, ………… 则23(1)

24m

m

t k

k qB

qB

ππ=+- k =1、2、3 (2324)

m

t n

n

qB

qB

ππ=+ n =1、2、3…… 粒子从出发到P 点经过的时间:t =t 1+t 2,

解得:

023(1)24a m m t k k v qB qB

ππ=

++- k =1、2、3…… 或02324a m m t n n v qB qB

ππ=

++ n =1、2、3……;

5.(1)222=q U m B l (2)2

23Bl U

π(3)l

【解析】 【详解】

(1) 粒子在电场中加速的末速度为0v ,由动能定理可得:2012

qU mv =

在磁场中有牛顿第二定律可得:2

0v qv B m r

=

由几何知识可知,粒子的轨道半径为:r l = 联立以上方程解得:

222=q U m B l

(2) Y 粒子在磁场中的轨迹如图所示:

由(1)可得Y 粒子在磁场中的轨迹半径为:12r l = 由图甲可得:1111

cos 2

r l r θ-=

=

由三角函数可知:

13

π

θ=

所以在磁场中中运动的时间为:2

3

2

m

t

qB

π

π

π

=

联立以上方程解得:

2

2

3

Bl

t

U

π

=

(3) 设发散最远的粒子为a,该粒子的轨迹如图虚线所示:

由题意可得:a0

cos

v v

α=

该粒子的轨迹半径为a r,由牛顿第二定律可得:

2

a

a

a

v

qv B m

r

=得

a

a

mv

r

Bq

=

由0

mv

l

Bq

=联立上式可得cos

a

r a l=

由几何知识可得:

a

tan

sin

sin

4

4

r

d l

α

π

π

α

+

=

??

+

?

??

联立以上方程解得:d l

=

6.(1)

2qEd

m

=

v2)42

CA

x d

=(3)(

'222

B B

=

【解析】

【详解】

(1)设粒子第一次进入磁场时的速度大小为v,由动能定理可得2

1

2

qEd mv

=,

解得

2qEd

v

m

=

(2)粒子在电场和磁场中的运动轨迹如图所示,粒子第一次出磁场到第二次进磁场,两点间距为CA

x

由类平抛规律x vt =,2

12Eq y t m

=

由几何知识可得x=y ,解得2md

t Eq

=

两点间的距离为2CA x vt =,代入数据可得42CA x d =

(3)由2

mv qvB R

=可得mv R qB =,即12mEd R B q =由题意可知,当粒子运动到F 点处改变磁感应强度的大小时,粒子运动的半径又最大值,即

'B 最小,粒子的运动轨迹如图中的虚线圆所示。

设此后粒子做圆周运动的轨迹半径为r ,则有几何关系可知22

r R +=

又因为'mv r qB =

,所以'mv

B qr

=, 代入数据可得('222B B = 7.(1) 02v v =;02mv B eR =(2) 0336

l π++≥ 【解析】 【详解】

解:(1)对于单个质子进入加速电场后,则有:22

0011eU mv mv 22

=

-

又:2003eU mv 2

=

解得:0v 2v =;

根据对称,两束质子会相遇于OO '的中点P ,粒子束由CO 方向射入,根据几何关系可知必定沿OP 方向射出,出射点为D ,过C 、D 点作速度的垂线相交于K ,则K ,则K 点即为轨迹的圆心,如图所示,并可知轨迹半径r=R

根据洛伦磁力提供向心力有:2

v evB m r

=

可得磁场磁感应强度:0

2mv B eR

=

(2)磁场O 的圆心上移了

R

2

,则两束质子的轨迹将不再对称,但是粒子在磁场中运达半径认为R ,对于上方粒子,将不是想着圆心射入,而是从F 点射入磁场,如图所示,E 点是原来C 点位置,连OF 、OD ,并作FK 平行且等于OD ,连KD ,由于OD=OF=FK ,故平行四边形ODKF 为菱形,即KD=KF=R ,故粒子束仍然会从D 点射出,但方向并不沿OD 方向,K 为粒子束的圆心

由于磁场上移了R 2,故sin ∠COF=R

2R

=12,∠COF=π6,∠DOF=∠FKD=π

3

对于下方的粒子,没有任何改变,故两束粒子若相遇,则只可能相遇在D 点,

下方粒子到达C 后最先到达D 点的粒子所需时间为00

(2)

(4)2

224R

R H R R t v v π

π++

-+'==

而上方粒子最后一个到达E 点的试卷比下方粒子中第一个达到C 的时间滞后0

l Δt t = 上方最后的一个粒子从E 点到达D 点所需时间为

(

)0

00

π1

R Rsin 2πR 36t 2v 2v -=

+= 要使两质子束相碰,其运动时间满足t t t '≤+?

联立解得0l ≥

高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析

高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析 一、高中物理精讲专题测试万有引力定律的应用 1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M (4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示) 【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t 【解析】 (1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t (2)小球做平抛运动时在竖直方向上有:h=12 gt 2 , 解得该星球表面的重力加速度为:g=2h/t 2; (3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2 Mm G R 所以该星球的质量为:M=2 gR G = 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v , 由牛顿第二定律得: 2 2Mm v G m R R = 重力等于万有引力,即mg=2Mm G R , 解得该星球的第一宇宙速度为:v = = 2.一颗在赤道平面内飞行的人造地球卫星,其轨道半径为3R .已知R 为地球半径,地球表面处重力加速度为g. (1)求该卫星的运行周期. (2)若卫星在运动方向与地球自转方向相同,且卫星角速度大于地球自转的角速度ω0.某时刻该卫星出现在赤道上某建筑物的正上方,问:至少经过多长时间,它会再一次出现在该建筑物的正上方?

2021届全国高三高考物理第二轮专题练习之万有引力(新人教)

万有引力与航天 1.某人造卫星运动的轨道可近似看作是以地心为中心的圆。由于阻力作用,人造卫星到地心的距离从r1慢慢变到r2,用E k1、E k2分别表示卫星在这两个轨道上的动能,则() A.r1<r2,E k1<E k2B.r1>r2,E k1<E k2 C.r1>r2,E k1>E k2D.r1<r2,E k1>E k2 2.一飞船在某行星表面附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体,要确定该行星的密度,只需要测量() A.飞船的轨道半径 B.飞船的的运行速度 C.飞船的运行周期 D.行星的质量 3.已知引力常量G、月球中心到地球中心的距离R和月球绕地球运行的周期T。仅利用这三个数据,可以估算出的物理量有()A.月球的质量 B.地球的质量 C.地球的半径 D.月球绕地球运行速度的大小 4. 据报道,最近在太阳系外发现了首颗“宜居”行星,起质量约为地球质量的6。4倍一个在地球表面重量为600N的人在这个行星表面的

重量将变为960N ,由此可推知,该行星的半径与地球半径之比约为( ) A 0.5 B 2 C 3.2 D 4 5.根据观察,在土星外层有一个环,为了判断环是土星的连续物还是小卫星群。可测出环中各层的线速度V 与该层到土星中心的距离R 之间的关系。下列判断正确的是: A.若V 与R 成正比,则环为连续物; B.若V 2与R 成正比,则环为小卫星群; C.若V 与R 成反比,则环为连续物; D.若V 2与R 成反比,则环为小卫星群。 6.据报道,我国数据中继卫星“天链一号Ol 星”于2008年4月25日在西昌卫星发射中心发射升空,经过4次变轨控制后,于5月1日成功定点在东经770赤道上空的同步轨道。关于成功定点后的“天链一号01星”,下列说法正确的是 A. 运行速度大于 7.9 km /s B.离地面高度一定,相对地面静止 C. 绕地球运行的角速度比月球绕地球运行的角速度大 D.向心加速度与静止在赤道上物体的向心加速度大小相等 7.火星的质量和半径分别约为地球的101和2 1 ,地球表面的重力加速度为g ,则火星表面的重力加速度约为 A .0.2g B .0.4g C .2.5g D .5g 8.图是“嫦娥一号奔月”示意图,卫星发射后通过自带的小型火箭多次

2019年高考物理试题汇编(万有引力定律)

2019普通高校招生考试试题汇编-万有引力定律 22(2019安徽).(14分) (1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a 的三次方与它 的公转周期T 的二次方成正比,即3 2a k T =,k 是一个对所有行星都相同的常量。将行星绕 太阳的运动按圆周运动处理,请你推导出太阳系中该常量k 的表达式。已知引力常量为G ,太阳的质量为M 太。 (2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立。经测定月地距离为3.84×108m ,月球绕地球运动的周期为2.36×106S ,试计算地球的质M 地。(G=6.67×10-11Nm 2/kg 2,结果保留一位有效数字) 解析:(1)因行星绕太阳作匀速圆周运动,于是轨道的半长轴a 即为轨道半径r 。根据万有引力定律和牛顿第二定律有 2 2 2( )m M G m r r T π=行太 行 ① 于是有 322 4r G M T π =太 ② 即 24G k M π= 太 ③ (2)在月地系统中,设月球绕地球运动的轨道半径为R ,周期为T ,由②式可得 322 4R G M T π =地 ④ 解得 M 地=6×1024 kg ⑤ (M 地=5×1024 kg 也算对) 19(2019全国卷1).我国“嫦娥一号”探月卫星发射后,先在“24小时轨道”上绕地球运行(即绕地球一圈需要24小时);然后,经过两次变轨依次到达“48小时轨道”和“72小时轨道”;最后奔向月球。如果按圆形轨道计算,并忽略卫星质量的变化,则在每次变轨完成后与变轨前相比, A .卫星动能增大,引力势能减小 B .卫星动能增大,引力势能增大 C .卫星动能减小,引力势能减小 D .卫星动能减小,引力势能增大 解析:周期变长,表明轨道半径变大,速度减小,动能减小,引力做负功故引力势能增大选D 12(2019海南).2019年4月10日,我国成功发射第8颗北斗导航卫星,建成以后北斗导航卫星系统将包含多可地球同步卫星,这有助于减少我国对GPS 导航系统的依赖,GPS 由运行周期为12小时的卫星群组成,设北斗星的同步卫星和GPS 导航的轨道半径分别为1R 和

高考物理万有引力定律的应用答题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用答题技巧及练习题(含答案)含解析 一、高中物理精讲专题测试万有引力定律的应用 1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G . (1)求静止轨道卫星的角速度ω; (2)求静止轨道卫星距离地面的高度h 1; (3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由. 【答案】(1)2π=T ω;(2)2 3124GMT h R π (3)h 1= h 2 【解析】 【分析】 (1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度; (3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】 (1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=T ω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:2 1 212π=()()()Mm G m R h R h T ++ 解得:2 312 =4π GMT h R

(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,2 2 22 2=()()()Mm G m R h R h T π++ 解得:2 322 =4GMT h R π - 因此h 1= h 2. 故本题答案是:(1)2π=T ω;(2)2312=4GMT h R π - (3)h 1= h 2 【点睛】 对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量. 2.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8) (1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度. 【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】 (1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a = 又有:sin cos mg mg ma θμθ+= 解得:2 7.5m/s g = (2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有: 2 mv mg R =

高三物理万有引力练习

高三物理磁场专项练习 姓名:___________班级:___________考号:___________ 一、解答题 1.如图所示,半径r=0.06m的半圆形无场区的圆心在坐标原点O处,半径R=0.1m,磁感应强度大小B=0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m),平行金属板MN的极板长L=0.3m、间距d=0.1m,极板间所加电压U=6.4x102V,其中N极板收集到的粒子全部中和吸收。一位于O处的粒子源向第一、二象限均匀地发射速度为v的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x轴正方向,已知粒子在磁 场中的运动半径R0=0.08m,若粒子重力不计、比荷q m =108C/kg、不计粒子间的相互作用力及电场的边缘效应。 sin53°=0.8,cos53°=0.6。 (1)求粒子的发射速度v的大小; (2)若粒子在O点入射方向与x轴负方向夹角为37°,求它打出磁场时的坐标:(3)N板收集到的粒子占所有发射粒子的比例η。 2.如图,平面直角坐标系中,在,y>0及y<-3 2 L区域存在场强大小相同,方向相反均平行于y轴的匀强电 场,在-3 2 L<y<0区域存在方向垂直于xOy平面纸面向外的匀强磁场,一质量为m,电荷量为q的带正电粒 子,经过y轴上的点P1(0,L)时的速率为v0,方向沿x轴正方向,然后经过x轴上的点P2(3 2 L,0)进入 磁场。在磁场中的运转半径R=5 2 L(不计粒子重力),求: (1)粒子到达P2点时的速度大小和方向; (2)E B ; (3)粒子第一次从磁场下边界穿出位置的横坐标;(4)粒子从P1点出发后做周期性运动的周期。3.如图所示,左侧正方形区域ABCD有竖直方向的匀强电场和垂直纸面方向的磁场,右侧正方形区域CEFG 有电场,一质量为m,带电量为+q的小球,从距A点正上方高为L的O点静止释放进入左侧正方形区域后做匀速圆周运动,从C点水平进入右侧正方形区域CEFG.已知正方形区域的边长均为L,重力加速度为g,求:(1)左侧正方形区域的电场强度E1和磁场的磁感应强度B; (2)若在右侧正方形区域内加竖直向下的匀强电场,能使小球恰好从F点飞出,求该电场场强E2的大小;(3)若在右侧正方形区域内加水平向左的匀强电场,场强大小为3 kmg E q (k为正整数),试求小球飞出该区域的位置到G点的距离. 4.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B和B(B的大小未知),第二象限和第三象限内存在沿﹣y方向的匀强电场,x轴上有一点P,其坐标为(L,0)。现使一个电量大小为q、质量为m的带正电粒子从坐标(﹣2a,a)处以沿+x方向的初速度v0出发,该粒子恰好能经原点进入y轴右侧并在随后经过了点P,不计粒子的重力。 (1)求粒子经过原点时的速度; (2)求磁感应强度B的所有可能取值 (3)求粒子从出发直至到达P点经历时间的所有可能取值。

高考物理万有引力定律知识点总结-学生版

万有引力定律知识点总结 一.开普勒行星运动规律: 行星轨道视为圆处理 则3 2r K T =(K 只与中心天体质量M 有关) 二、万有引力定律 (1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比. (2)公式:F =G 2 21r m m ,其中2 211/1067.6kg m N G ??=-,叫做引力常量。 (3)适用条件:此公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物体可视为质点.均匀的球体可视为质点,r 是两球心间的距离. 三.万有引力定律的应用 (1).万有引力=向心力 (一个天体绕另一个天体作圆周运动时,r=R+h ) G M m R h m ()+=2 V R h m R hm T R h 22 2 224()()()+=+=+ωπ 人造地球卫星(只讨论绕地球做匀速圆周运动的人造卫星r GM v = ,r 越大,v 越小;3 r GM = ω,r 越大,ω越小;GM r T 3 24π= ,r 越大,T 越大; 2 n GM a r = , r 越大,n a 越小。 (2)、用万有引力定律求中心星球的质量和密度 求质量:①天体表面任意放一物体重力近似等于万有引力:mg = G M m R 2 →2 gR M G = M ,半径为R ,环绕星球质量为m ,线速 度为v ,公转周期为T ,两星球相距r ,由万有引力定律有:2 222? ? ? ??==T mr r mv r GMm π,可得出中心天 体的质量:23 2 2 4GT r G r v M π== 求密度: 34/3M M V R ρπ== 地面物体的重力加速度:mg = G M m R 2 高空物体的重力加速度:mg ‘‘ = G 2 )(h R Mm + 黄金替换式: 即mg R Mm G =2 从而得出2 gR GM = (g 是表面的重力加速度) 四、三种宇宙速度

高考物理万有引力专题练习

万有引力专题训练 一、 1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律 可知( ) A.太阳位于木星运行轨道的中心 B.火星和木星绕太阳运行的速度大小始终相等 C.火星与木星公转周期之比的平方等于它们的轨道半长轴之比的立方 D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 2.某行星沿椭圆轨道运动,近日点离太阳中心距离为a ,远日点离太阳 心距离为b ,该行星过近日点时的速率为a v ,则过远日点时速率b v 为( ) A. a bv a B.a v b a C.b av a D.a v a b 3.人造卫星A 、B 绕地球做匀速圆周运动,A 卫星的运行周期为3小时, A 的轨道半径为B 的轨道半径的1/4,则B 卫星运行的周期大约是( ) A.12小时 B.24小时 C.36小时 D.48小时 4.如图,0表示地球,P 表示一个绕地球沿椭圆轨道做逆时针方向运动的人造 卫星,AB 为长轴,CD 为短轴.在卫星绕地球运动一周的时间内,从A 到B 的时间为AB t ,同理,从B 到A 、从C 到D 、从D 到C 的时间分别为DC CD BA t t t 、、,下列关系式正确的是( ) A. AB t >BA t B.AB t DC t D. CD t

二、 1.关于万有引力定律的建立,下列说法中正确的是( ) A.卡文迪许仅根据牛顿第三定律推出了行星与太阳间引力大小跟行星与太阳间距离的平方成反比的关系 B.“月—地检验”表明物体在地球上受到地球对它的引力是它在月球上受到月球对它的引力的60倍 C.“月—地检验”表明地面物体所受地球的引力与月球所受地球的引力遵从同样的规律 D.引力常量G 的大小是牛顿根据大量实验数据得出的 2. 设地球自转周期为T,质量为M,引力常量为G.假设地球可视为质量均匀分布的球体,半径为R.同一物体在南极和赤道水平面上静止时所受到的支持力之比 为( ) A.32224R GMT GMT π- B.32224R GMT GMT π+ C.23224GMT R GMT π- D.23224GMT R GMT π+ 3.关于万有引力定律公式2 21r m m G F =,以下说法中正确的是( ) A.公式只适用于星体之间的引力计算,不适用于质量较小的物体 B.当两物体间的距离趋近于零时,万有引力趋近于无穷大 C.两物体间的万有引力也符合牛顿第三定律 D.公式中引力常量G 的值是牛顿规定的 4.下列说法中符合物理史实的是( ) A.伽利略发现了行星的运动规律,开普勒发现了万有引力定律 B.哥白尼创立了“地心说”,“地心说”是错误的,“日心说”是正确的,太阳是宇宙的中心 C.牛顿首次在实验室里较准确地测出了引力常量 D.牛顿将行星与太阳、地球与月球、地球与地面物体之间的引力规律推广到宇宙中的一切物体,得出了万有引力定律 5.(多选)宇宙中存在着由四颗星组成的孤立星系如图所示,一颗母星处在正三角形的中心,三角形的顶点各有一颗质量相等的小星围绕母星做圆周运动.如果两颗小星间的万有引力为F,母星与任意一颗小星间的万有引力为9F.则( ) A.每颗小星受到的万有引力为(2 3+9)F B.每颗小星受到的万有引力为(3+9)F C.母星的质量是每颗小星质量的3倍

(完整版)高中物理万有引力部分知识点总结

高中物理——万有引力与航天 知识点总结 一、开普勒行星运动定律 (1)所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 (2)对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积。 (3)所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。 二、万有引力定律 1.内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比. 2.公式:F=Gm1m2/r^2,其中G=6.67×10-11 N·m2/kg2,称为万有引力常量。 3.适用条件: 严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但

此时r应为两物体重心间的距离。对于均匀的球体,r是两球心间的距离。 三、万有引力定律的应用 1.解决天体(卫星)运动问题的基本思路 (1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式: F=Gm1m2/r^2=mv^2/r=mω2r=m(2π/T)2r (2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=Gm1m2/r^2,gR2=GM. 2.天体质量和密度的估算 通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即G r2(Mm)=m T2(4π2)r,得出天体质量M=GT2(4π2r3). (1)若已知天体的半径R,则天体的密度 ρ=V(M)=πR3(4)=GT2R3(3πr3) (2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=GT2(3π) 可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度. 3.人造卫星 (1)研究人造卫星的基本方法

万有引力定律近几年的高考题

2008年高考题 1.已知太阳到地球与地球到月球的距离的比值约为390,月球绕地球旋转的周期约为27天. 利用上述数据以及日常的天文知识,可估算出太阳对月球与地球对月球的万有引力的比值约 为 A.0.2 B.2 C.20 D.200 2.图是“嫦娥一导奔月”示意图,卫星发射后通过自带的小型火箭多次变轨,进入地月转 移轨道,最终被月球引力捕获,成为绕月卫星,并开展对月球的探测,下列说法正确的是 A .发射“嫦娥一号”的速度必须达到第三宇宙速度 B .在绕月圆轨道上,卫星周期与卫星质量有关 C .卫星受月球的引力与它到月球中心距离的平方成反比 D .在绕月轨道上,卫星受地球的引力大于受月球的引力 3.一探月卫星在地月转移轨道上运行,某一时刻正好处于地心和月心的连线上,卫星在此 处所受地球引力与月球引力之比为4∶1.已知地球与月球的质量之比约为81∶1,则该 处到地心与到月心的距离之比约为 . 4.据报道,我国数据中继卫星“天链一号01星”于2008年4月25日在西昌卫星发射中心 发射升空,经过4次变轨控制后,于5月1日成功定点在东经77 赤道上空的同步轨道。关 于成功定点后的“天链一号01星”,下列说法正确的是 A.运行速度大于7.9 km/s B.离地面高度一定,相对地面静止 C.绕地球运行的角速度比月球绕地球运行的角速度大 D.向心加速度与静止在赤道上物体的向心加速度大小相等 5.有同学这样探究太阳的密度:正午时分让太阳光垂直照射一个当中有小孔的黑纸板,接收 屏上出现一个小圆斑;测量小圆斑的直径和黑纸板到接收屏的距离,可大致推出太阳直径。 他掌握的数据是:太阳光传到地球所需的时间、地球的公转周期、万有引力恒量;在最终得 出太阳密度的过程中,他用到的物理规律是小孔成像规律和( ) A.牛顿第二定律 B.万有引力定律 C.万有引力定律、牛顿第二定律 D. 万有引力定律、牛顿第三定律 6.火星的质量和半径分别约为地球的101和2 1,地球表面的重力加速度为g ,则火星表面的重力加速度约为 A .0.2g B .0.4g C .2.5g D .5g 7.1990年4月25日,科学家将哈勃天文望远镜送上距地球表面约600 km 的高空,使得 人 类对宇宙中星体的观测与研究有了极大的进展。假设哈勃望远镜沿圆轨道绕地球运行。已知 地球半径为6.4×106m ,利用地球同步卫星与地球表面的距离为3.6×107m 这一事实可得到 哈勃望远镜绕地球运行的周期。以下数据中最接近其运行周期的是 A .0.6小时 B .1.6小时 C .4.0小时 D .24小时 8.据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高度200 km,运用周期127分钟。

高考物理万有引力定律专题复习(整理)

考点 1 周期T 、线速度v 、加速度a 与轨道半径r 关系 ①由=2r Mm G r v m 2得=v _____________,所以r 越大,v _______ ②由=2r Mm G r m 2ω 得ω=_______,所以r 越大,ω_______ ③ 越大所以得由 r 22r Mm G a ma r Mm == ④由=2r Mm G r T m 2 )2(π得T=_____,所以r 越大,T _______ 例1.我国研制并成功发射的“嫦娥二号”探测卫星,在距月球表面高度为h 的轨道上做匀速圆周运动,运行的周期为T 。若以R 表示月球的半径,则 A .卫星运行时的向心加速度为2 2π4T R B 。卫星运行时的线速度为 T R π2 C .物体在月球表面自由下落的加速度为22π4T R D .月球的第一宇宙速 度为TR h R R 3 )π2+( 考点2 求中心天体的质量M 与密度 (1) 天体质量M 密度ρ的估算

测出卫星绕中心天体做匀速圆周运动的半径r 和周期T ,由 =2r Mm G r T m 2 )2(π得2324GT r M π= ; =ρ303 4R M V M π==3023 3R GT r π(0R 为中心天体的半径)。 例2.一物体静置在平均密度为ρ的球形天体表面的赤道上。已知万有引力常量为G ,若由于天体自转使物体对天体表面压力怡好为零,则天体自转周期为( ) A .12 4π3G ρ?? ??? B .12 34πG ρ?? ? ?? C .12 πG ρ?? ??? D .1 2 3π G ρ?? ??? 考点3 三大宇宙速度 1.第一宇宙速度:约为s ,是人造卫星在地面附近绕地球做匀速圆周运动所必须具有的速度.(又称环绕速度或最小发射速度) 2.第二宇宙速度:约为s ,当物体的速度等于或大于s 时,卫星就会脱离地球吸引,不再绕地球运动.(又称脱离速度) 3.第三宇宙速度:约为s ,当物体的速度等于或大于s 时,就会脱离太阳的束缚,飞到太阳系以外的宇宙空间去.(逃逸速度) 补充:第一宇宙速度的理解和推导 1.由于在人造卫星的发射过程中,火箭要克服地球的引力做功,所以将卫星发射到离地球越远的轨道,在地面上所需的发射速度就越

高考物理万有引力定律的应用模拟试题及解析

高考物理万有引力定律的应用模拟试题及解析 一、高中物理精讲专题测试万有引力定律的应用 1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求: (1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F R m -(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】 (1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l 在最高点:2 22mv F mg l += ① 在最低点:2 11mv F mg l -= ② 由机械能守恒定律,得 221211222 mv mg l mv =?+ ③ 由①②③,解得1 2 6F F g m -= (2) 2 GMm mg R = 2GMm R =2 mv R 两式联立得:12()6F F R m -

(3)在星球表面:2 GMm mg R = ④ 星球密度:M V ρ= ⑤ 由④⑤,解得12 8F F GmR ρπ-= 点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度. 2.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的 Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为 M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离 为r 时,地球与卫星组成的系统的引力势能为p GMm E r =-(取无穷远处的引力势能为 零),忽略地球自转和喷气后飞船质量的変化,问: (1)在近地轨道Ⅰ上运行时,飞船的动能是多少? (2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度 3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引 力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GM R 【解析】 【分析】 (1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可; (3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能;

2017年高考物理-万有引力定律(讲)-专题练习及答案解析

2017年高考物理专题练习 万有引力定律(讲) 1.(多选)【2016·海南卷】通过观测冥王星的卫星,可以推算出冥王星的质量。假设卫星绕冥王星做匀速圆周运动,除了引力常量外,至少还需要两个物理量才能计算出冥王星的质量。这两个物理量可以是( ) A .卫星的速度和角速度 B .卫星的质量和轨道半径 C .卫星的质量和角速度 D .卫星的运行周期和轨道半径 2.【2015·海南·6】若在某行星和地球上相对于各自水平地面附近相同的高度处、以相同的速率平抛一 物体,它们在水平方向运动的距离之比为27倍,地球的半径为R ,由此可知,该行星的半径为( ) A . 1 R 2 B . 7R 2 C .2R D 3.设地球自转周期为T ,质量为M 。引力常量为G 。假设地球可视为质量均匀分布的球体,半径为R 。同一物体在南极和赤道水平面上静止时所受到的支持力之比为( ) A .2 223GMT GMT 4πR - B .2 223GMT GMT 4πR + C .223 2 GMT 4πR GMT - D .223 2 GMT 4πR GMT + 4.据报道,2016年2月18日嫦娥三号着陆器玉兔号成功自主“醒来”,嫦娥一号卫星系统总指挥兼总设计师叶培建院士介绍说,自2013年12月14日月面软着陆以来,中国嫦娥三号月球探测器创造了全世界在月工作最长记录。假如月球车在月球表面以初速度0v 竖直上抛出一个小球,经时间t 后小球回到出发点,已知月球的半径为R ,引力常量为G ,下列说法正确的是( ) A .月球表面的重力加速度为0 v t B .月球的质量为2 0v R Gt C D 5.(多选)如图所示,ABCD 为菱形的四个顶点,O 为其中心,AC 两点各固定有一个质量为M 的球体,球心分别与AC 两点重合,将一个质量为m 的小球从B 点由静止释放,只考虑M 对m 的引力作用,以下说法正确的有( )

高考物理万有引力与航天真题汇编(含答案)

高考物理万有引力与航天真题汇编(含答案) 一、高中物理精讲专题测试万有引力与航天 1.如图所示,返回式月球软着陆器在完成了对月球表面的考察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加速度为g ,月球的半径为R ,轨道舱到月球中心的距离为r ,引力常量为G ,不考虑月球的自转.求: (1)月球的质量M ; (2)轨道舱绕月飞行的周期T . 【答案】(1)G gR M 2 = (2)2r r T R g π=【解析】 【分析】 月球表面上质量为m 1的物体,根据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞行的周期; 【详解】 解:(1)设月球表面上质量为m 1的物体,其在月球表面有:11 2Mm G m g R = 1 12 Mm G m g R = 月球质量:G gR M 2 = (2)轨道舱绕月球做圆周运动,设轨道舱的质量为m 由牛顿运动定律得: 2 2Mm 2πG m r r T ??= ??? 222()Mm G m r r T π= 解得:2r r T R g π= 2.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求: (1)地球的密度; (2)地球的第一宇宙速度v ; (3)“天宫一号”距离地球表面的高度.

【答案】(1)34g GR ρπ= (2)v gR = (3)22 3 2 4gT R h R π =- 【解析】 (1)在地球表面重力与万有引力相等:2Mm G mg R =, 地球密度: 343 M M R V ρπ= = 解得:34g GR ρπ= (2)第一宇宙速度是近地卫星运行的速度,2 v mg m R = v gR = (3)天宫一号的轨道半径r R h =+, 据万有引力提供圆周运动向心力有:() ()2 2 24Mm G m R h T R h π=++, 解得:22 3 2 4gT R h R π = - 3.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G ) 【答案】 【解析】 设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有 w 1=w 2 ① (1分) r 1+r 2=r ② (1分) 根据万有引力定律和牛顿定律,有 G ③ (3分) G ④ (3分) 联立以上各式解得 ⑤ (2分)

(物理)物理万有引力定律的应用练习题20篇

(物理)物理万有引力定律的应用练习题20篇 一、高中物理精讲专题测试万有引力定律的应用 1.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求: (1)地球的密度; (2)地球的第一宇宙速度v ; (3)“天宫一号”距离地球表面的高度. 【答案】(1)34g GR ρπ= (2)v = h R = 【解析】 (1)在地球表面重力与万有引力相等:2 Mm G mg R =, 地球密度: 343 M M R V ρπ= = 解得:34g GR ρπ= (2)第一宇宙速度是近地卫星运行的速度,2 v mg m R = v =(3)天宫一号的轨道半径r R h =+, 据万有引力提供圆周运动向心力有:() ()2 2 24Mm G m R h T R h π=++, 解得:h R = 2.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求: (1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量; (3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H T π+(2) ()3 22 4R H GT π+(3 【解析】

高考物理万有引力定律知识点总结

高考物理万有引力定律知识点总结 (万有引力定律及其应用 环绕速度 第二宇宙速度 第三宇宙速度) 一.开普勒行星运动规律: 行星轨道视为圆处理 则3 2r K T =(K 只与中心天体质量M 有关) 理解: (1)k 是与太阳质量有关而与行星无关的常量. 由于行星的椭圆轨道都跟圆近似,在 近似的计算中,可以认为行星都是以太阳为圆心做匀速圆周运动,在这种情况下,a 可代表 轨道半径. (2)开普勒第三定律不仅适用于行星,也适用于卫星,只不过此时 a 3 /T 2 =k ′,比值 k ′是由行星的质量所决定的另一常量,与卫星无关. 二、万有引力定律 (1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量 的乘积成正比,跟它们的距离的平方成反比. (2)公式:F =G 221 r m m ,其中2211/1067.6kg m N G ??=-,叫做引力常量。 (3)适用条件:此公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身 的大小时,物体可视为质点.均匀的球体可视为质点,r 是两球心间的距离.一个均匀球体 与球外一个质点间的万有引力也适用,其中r 为球心到质点间的距离. 说明: (1)对万有引力定律公式中各量的意义一定要准确理解,尤其是距离r 的取值,一定要 搞清它是两质点之间的距离. 质量分布均匀的球体间的相互作用力,用万有引力公式计算, 式中的r 是两个球体球心间的距离. (2)不能将公式中r 作纯数学处理而违背物理事实,如认为r→0时,引力F→∞,这是 错误的,因为当物体间的距离r→0时,物体不可以视为质点,所以公式F =Gm 1m 2r 2就不能直接应用计算. (3)物体间的万有引力是一对作用力和反作用力,总是大小相等、方向相反的,遵循牛 顿第三定律,因此谈不上质量大的物体对质量小的物体的引力大于质量小的物体对质量大的 物体的引力,更谈不上相互作用的一对物体间的引力是一对平衡力.

高考物理万有引力与航天及其解题技巧及练习题(含答案)及解析

高考物理万有引力与航天及其解题技巧及练习题(含答案)及解析 一、高中物理精讲专题测试万有引力与航天 1.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8) (1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度. 【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】 (1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a = 又有:sin cos mg mg ma θμθ+= 解得:2 7.5m/s g = (2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有: 2 mv mg R = 3310m/s v gR ==? 2.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月; (2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v . 【答案】(1)22h g t =月 (2)2 2 2hR M Gt =;2hR v t = 【解析】 【分析】 (1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度; (2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】

(物理)高考必刷题物理万有引力定律的应用题

(物理)高考必刷题物理万有引力定律的应用题 一、高中物理精讲专题测试万有引力定律的应用 1.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少? (3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1 )2 ,16(2)速度之比为2 【解析】 【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解; 解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2 Mm G mg R = a 卫星 2 224a GMm m R R T π= 解得2a T =b 卫星2 2 24·4(4)b GMm m R R T π= 解得16b T = (2)卫星做匀速圆周运动,F F =引向, a 卫星2 2a mv GMm R R = 解得a v = b 卫星b 卫星2 2(4)4Mm v G m R R = 解得v b = 所以 2a b V V =

(3)最远的条件22a b T T πππ-= 解得87R t g π= 2.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月; (2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v . 【答案】(1)22h g t =月 (2)2 2 2hR M Gt =;2hR v = 【解析】 【分析】 (1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度; (2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】 (1)月球表面附近的物体做自由落体运动 h =1 2 g 月t 2 月球表面的自由落体加速度大小 g 月=2 2h t (2)若不考虑月球自转的影响 G 2 Mm R =mg 月 月球的质量 2 2 2hR M Gt = 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2 v R 月球的“第一宇宙速度”大小 2hR v g R 月==【点睛】 结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v . 3.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:

2019高考物理试题分类汇编(7)-万有引力与航天(含详解)

2019高考物理试题分类汇编(7)-万有引力与航天(含详解) 1〔2018海南卷〕.2017年4月10日,我国成功发射第8颗北斗导航卫星,建成以后北斗导航卫星系统将包含多可地球同步卫星,这有助于减少我国对GPS 导航系统的依赖,GPS 由运行周期为12小时的卫星群组成,设北斗星的同步卫星和GPS 导航的轨道半径分别为1 R 和 2R ,向心加速度分别为1a 和2a ,那么12:R R _。12:a a =_____4 〔可用根式表 示〕 解析: 122T T =,由2224GMm m R ma R T π==得 :R =,2GM a R =因而 :2 3 1122R T R T ?? == ??? , 2 11224 a R a R -??== ??? 2〔2018广东卷〕.如图6所示,飞船从轨道1变轨至轨道2。假设飞船在两轨道上都做匀速 圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的 A.动能大 B.向心加速度大 C.运行周期长 D.角速度小 答案:CD 3〔2018北京高考卷〕、关于环绕地球卫星的运动,以下说法正 确的选项是 A 、分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期 B 、沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率 C 、在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同 D 、沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合 答案:B 4〔2018山东卷〕.2017年11月3日,“神州八号”飞船与“天宫一号”目标飞行器成功实施了首次交会对接。任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神州九号”交会对接。变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对应的轨道半径分别为R 1、R 2,线速度大小分别为1v 、2 v 。那么12 v v 等于 222 1R R D. 21 R R 答案:B 5〔2018福建卷〕、一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为 v 假设宇 航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的

相关主题
文本预览
相关文档 最新文档