当前位置:文档之家› 光栅尺

光栅尺

光栅尺
光栅尺

几类典型光栅尺的性价比分析和使用要求简介

摘要:本文介绍了光栅尺的基本原理和分类。并列举了实际生产中的几种典型光栅尺,介绍了其技术参数、安装步骤和使用方法,通过比较,得出性价比分析。关键词:光栅尺;技术参数;摩尔纹

Abstract:This paper introduces the basic principle of grating ruler and classification. And enumerates several typical light in actual productio n.Grating ruler, introduces the technical parameters, the installation steps and method of use, by comparison, it is concluded that ratio of analysis.

Keyword: grating ruler;technical parameters;Moore grain

1.光栅尺简介

光栅尺位移传感器(简称光栅尺),是利用光栅的光学原理工作的测量反馈装置。光栅尺位移传感器经常应用于数控机床的闭环伺服系统中,可用作直线位移或者角位移的检测。其测量输出的信号为数字脉冲,具有检测范围大,检测精度高,响应速度快的特点。例如,在数控机床中常用于对刀具和工件的坐标进行检测,来观察和跟踪走刀误差,以起到一个补偿刀具的运动误差的作用。

1.2光栅尺工作原理

光栅尺是通过莫尔条纹原理,通过光电转换,以数字方式表示线性位移量的高精度位移传感器. GBC系列光栅尺是由读数头、主尺和接口组成。玻璃光栅上均匀地刻有透光和小透光的线条,栅线为50线对/mm,其光栅栅距为0.02mm,采用四细分后便可得到分辩率为5μm的计数脉冲。一般的情况下,线条数按所测精度刻制,为了判别出运动方向,线条被刻成相位上相差90°的两路。当读数头运动时,接口电路的光电接收器分别产生A相和B相两路相位相差90°的脉冲波,输出信号再经过数显系统细分处理,分辨率是光栅周期除以信号细分数,经过电子信号细分处理分辨率可为5um或1um 。

1.2.1莫尔条纹

以透射光栅为例,当指示光栅上的线纹和标尺光栅上的线纹之间形成一个小角度θ,并且两个光栅尺刻面相对平行放置时,在光源的照射下,位于几乎垂直的栅纹上形成明暗相间的条纹,这种条纹称为“莫尔条纹”。严格地说莫尔条纹排列的方向是与两片光栅线纹夹角的平分线相垂直,莫尔条纹中两条亮纹或两条暗纹之间的距离称为莫尔条纹的宽度,以W表示。莫尔条纹W=ω /2* sin(θ/2)=ω /θ 。

1.2.2莫尔条纹具特征:

(1)莫尔条纹的变化规律

两片光栅相对移过一个栅距,莫尔条纹移过一个条纹距离。由于光的衍射与

干涉作用,莫尔条纹的变化规律近似正(余)弦函数,变化周期数与光栅相对位移的栅距数同步。

(2)放大作用

在两光栅栅线夹角较小的情况下,莫尔条纹宽度ω和光栅栅距W、栅线角θ之间有下列关系,式中,θ的单位为rad,W的单位为mm。由于倾角很小,sinθ很小,则W=ω /θ

若ω=0.01mm,θ=0.01rad,则上式可得W=1,即光栅放大了100倍。

2.光栅尺分类

光栅尺按结构分宽尺和窄尺两种。窄尺最长可做1米,宽尺30米内任选。

另外可分为敞开式和封闭式两类。其中敞开式光栅尺为高精度型,输出波型为正弦波,主要用于精密仪器的数字化改造最高分辨率可达0.1um。封闭式光栅尺则主要用于普通机床、仪器的数字化改造,输出波型为方波。

直线光栅尺分为增量式和绝对式

(1)增量式光栅尺的测量原理是将光通过两个相对运动的光栅调制成摩尔条纹,通过对摩尔条纹进行计数、细分后得到位移变化量,并通过在标尺光栅上设定一个或是多个参考点来确定绝对位置;

(2)绝对式光栅尺的测量原理是在标尺光栅上刻划一条带有绝对位置编码的码道,读数头通过读取当前位置的编码可以得到绝对位置。绝对式光栅尺的优点是开电后直接得到当前位置信息,无需“归零”操作,简化控制系统设计;绝对位置计算在读数头中完成,无需后续细分电路;采用双向串行通信技术,通信可靠。因此,绝对式光栅尺在数控行业得到越来越广泛的

2.1光栅尺主要应用

(1)各类测量机构、仪器的位移测量:弹簧试验机、三坐标机、投影仪

(2)各类机床的数显系统:车床、铣床、磨床、镗床、电火花、钻床等

(3)各类数控机床的配套使用:数控铣、加工中心、数控磨等

(4)配接PLC,用于各类自动化机构的位移测量

3.典型光栅尺举例

3.1GBC-Q系列光栅尺简介

图一光栅尺(左侧:窄尺,右侧:宽尺)

该光栅尺是先进的光学测量系统,采用可靠耐用的高精度五轴承系统设计,保证光学机械系统的稳定性,优异的重复定位性和高等级测量精度。光栅传感器采用密封式结构,性能可靠,安装方便。采用特殊的耐油、耐蚀、高弹性及抗老化塑胶防水,防尘优异,使用寿命长。具体高水平的抗干扰能力,稳定可靠。光源采用进口红外发光二极管,体积小寿命长。采用先进的光栅制作技术,能制作各规格的高精度光栅玻璃尺。

3.1.2 GBC-Q系列光栅尺传感器准确度

3.1.3 GBC-Q系列光栅尺重复性

重复性单位:mm

3.1.4价格

GBC-Q系列光栅尺一般在500元左右。

3.2 D-KA-300光栅尺

图二D-KA-300光栅尺

3.2.1 D-KA-300相关参数

●测量范围:50mm~30000mm

●测量准确度:±6um/m~±10um/m

●测量基准:光栅周期20µm的光学玻璃尺

●光学测量系统:透射式红外线光测量系统,红外线波长880nm ●反应速度:60m/min(0.005mm) 25m/min(0.001mm)

●读数头滑动系统:垂直式五轴承

●输出讯号:TTL/EIA-422-A

●讯号传达周期:20um

●供应电压:DC 5V±5%

3.2.2 D-KA-300光栅尺价格

400元/条

3.3 D30光栅尺

图三D30光栅尺

3.3.1 D30光栅尺特点

D30光栅测微传感器型光栅测微传感器采用50线/mm或100线/mm的玻璃光栅,输出两路相位差90°的正弦波信号或正交方波信号,供电电压为

+5V/+12V/+24V。本传感器的特点是测量范围大、精度高、使用方便,可配接光栅数显表光栅计数卡或光栅数据转接器使用。

3.3.2 D30光栅尺技术参数

●测量范围:0-15mm、0-30mm、0-50mm

●最大移动速度:300mm/S

●测量力:<2.5N

●工作温度:10°C-40°C

●存储温度:0°C-55°C

●标准配置电缆长度:2米

●两路正弦波信号A、B参数如下:

中心电平:6V(+12V供电)/2.5V(+5V供电)

幅值:6V(+12V供电)/2.6V(+5V供电)

相差:90°±10%

两路正交方波输出:

占空比1∶1(±10%)

11.8V(+12V供电)/TTL电平(+5V供电)

3.3.3 D30光栅尺价格

450元/根

3.4 RGH22开放式光栅尺

图四RGH22开放式光栅尺

3.4.1 RGH22开放式光栅尺技术参数

●测量:20um节距增量测量信号,每50mm一个参考零点信号

●精度(补偿):小于±5um/m

●分辨率:可达0.1um

●信号:1vpp和TTL

●最大移动速度:8m/s

●标准配置电缆长度:100米

●最大频率:1vpp信号400Khz/TTL1MHz

●测量范围:70mm-25m

3.4.2价格

5000元/根

4.光栅尺一般安装方法

光栅尺位移传感器的安装比较灵活,可安装在机床的不同部位。

一般将主尺安装在机床的工作台(滑板)上,随机床走刀而动,读数头固定在床身上,尽可能使读数头安装在主尺的下方。其安装方式的选择必须注意切屑、

切削液及油液的溅落方向。如果由于安装位置限制必须采用读数头朝上的方式安装时,则必须增加辅助密封装置。另外,一般情况下,读数头应尽量安装在相对机床静止部件上,此时输出导线不移动易固定,而尺身则应安装在相对机床运动的部件上(如滑板)。

(1)光栅尺位移传感器安装基面

安装光栅尺位移传感器时,不能直接将传感器安装在粗糙不平的机床身上,更不能安装在打底涂漆的机床身上。光栅主尺及读数头分别安装在机床相对运动的两个部件上。用千分表检查机床工作台的主尺安装面与导轨运动的方向平行度。千分表固定在床身上,移动工作台,要求达到平行度为0.1mm/1000mm以内。如果不能达到这个要求,则需设计加工一件光栅尺基座。

基座要求做到:(1)应加一根与光栅尺尺身长度相等的基座(最好基座长出光栅尺50mm左右)。(2)该基座通过铣、磨工序加工,保证其平面平行度

0.1mm/1000mm以内。另外,还需加工一件与尺身基座等高的读数头基座。读数头的基座与尺身的基座总共误差不得大于±0.2mm。安装时,调整读数头位置,达到读数头与光栅尺尺身的平行度为0.1mm左右,读数头与光栅尺尺身之间的间距为1~1.5mm左右。

(2)光栅尺位移传感器主尺安装

将光栅主尺用M4螺钉上在机床安装的工作台安装面上,但不要上紧,把千分表固定在床身上,移动工作台(主尺与工作台同时移动)。用千分表测量主尺平面与机床导轨运动方向的平行度,调整主尺M4螺钉位置,使主尺平行度满足0.1mm/1000mm以内时,把M2螺钉彻底上紧。

在安装光栅主尺时,应注意如下三点:在装主尺时,如安装超过1.5M以上的光栅时,不能象桥梁式只安装两端头,尚需在整个主尺尺身中有支撑;在有基座情况下安装好后,最好用一个卡子卡住尺身中点(或几点);不能安装卡子时,最好用玻璃胶粘住光栅尺身,使基尺与主尺固定好。

(3)光栅尺位移传感器读数头的安装

在安装读数头时,首先应保证读数头的基面达到安装要求,然后再安装读数头,其安装方法与主尺相似。最后调整读数头,使读数头与光栅主尺平行度保证在0.1mm之内,其读数头与主尺的间隙控制在1~1.5mm以内。

(4)光栅尺位移传感器限位装置

光栅线位移传感器全部安装完以后,一定要在机床导轨上安装限位装置,以免机床加工产品移动时读数头冲撞到主尺两端,从而损坏光栅尺。另外,用户在选购光栅线位移传感器时,应尽量选用超出机床加工尺寸100mm左右的光栅尺,以留有余量。

(5)光栅尺位移传感器检查

光栅线位移传感器安装完毕后,可接通数显表,移动工作台,观察数显表计数是否正常。

5.总结

通过对光栅尺典型类型的列举,以及技术参数列举,可以得知(1)光栅尺一般用于高精度测量(2)分辨率越高价格越高;保证精度的前提下量程越大价格越高(3)安装方法类似,根据封闭式、敞开式、微型等不同特点作细节调整。(4)在选型上,要根据所用量程和精度合理选择

【参考文献】

[1]祝绍箕,等.衍射光栅[M].北京:北京机械工业出版社,1986.

[2]司聚朝,段露彬.光栅尺在数控机床中的应用[J].设备管理与维修,2012:40 -41.

[3]周常河.新型微结构光栅的基础研究[J].中国基础科学研究进展,2004,(1 ): 30-32.

光栅尺

几类典型光栅尺的性价比分析和使用要求简介 摘要:本文介绍了光栅尺的基本原理和分类。并列举了实际生产中的几种典型光栅尺,介绍了其技术参数、安装步骤和使用方法,通过比较,得出性价比分析。关键词:光栅尺;技术参数;摩尔纹 Abstract:This paper introduces the basic principle of grating ruler and classification. And enumerates several typical light in actual productio n.Grating ruler, introduces the technical parameters, the installation steps and method of use, by comparison, it is concluded that ratio of analysis. Keyword: grating ruler;technical parameters;Moore grain

1.光栅尺简介 光栅尺位移传感器(简称光栅尺),是利用光栅的光学原理工作的测量反馈装置。光栅尺位移传感器经常应用于数控机床的闭环伺服系统中,可用作直线位移或者角位移的检测。其测量输出的信号为数字脉冲,具有检测范围大,检测精度高,响应速度快的特点。例如,在数控机床中常用于对刀具和工件的坐标进行检测,来观察和跟踪走刀误差,以起到一个补偿刀具的运动误差的作用。 1.2光栅尺工作原理 光栅尺是通过莫尔条纹原理,通过光电转换,以数字方式表示线性位移量的高精度位移传感器. GBC系列光栅尺是由读数头、主尺和接口组成。玻璃光栅上均匀地刻有透光和小透光的线条,栅线为50线对/mm,其光栅栅距为0.02mm,采用四细分后便可得到分辩率为5μm的计数脉冲。一般的情况下,线条数按所测精度刻制,为了判别出运动方向,线条被刻成相位上相差90°的两路。当读数头运动时,接口电路的光电接收器分别产生A相和B相两路相位相差90°的脉冲波,输出信号再经过数显系统细分处理,分辨率是光栅周期除以信号细分数,经过电子信号细分处理分辨率可为5um或1um 。 1.2.1莫尔条纹 以透射光栅为例,当指示光栅上的线纹和标尺光栅上的线纹之间形成一个小角度θ,并且两个光栅尺刻面相对平行放置时,在光源的照射下,位于几乎垂直的栅纹上形成明暗相间的条纹,这种条纹称为“莫尔条纹”。严格地说莫尔条纹排列的方向是与两片光栅线纹夹角的平分线相垂直,莫尔条纹中两条亮纹或两条暗纹之间的距离称为莫尔条纹的宽度,以W表示。莫尔条纹W=ω /2* sin(θ/2)=ω /θ 。 1.2.2莫尔条纹具特征: (1)莫尔条纹的变化规律 两片光栅相对移过一个栅距,莫尔条纹移过一个条纹距离。由于光的衍射与

光栅尺的定义及应用

光栅尺定义: 光栅尺通过摩尔条纹原理,通过光电转换,以数字方式表示线性位移量地高精度位移传感器.光栅线位移传感器主要应用于直线移动导轨机构,可实现移动量地精确显示和自动控制,广泛应用于金属切削机床加工量地数字显示和加工中心位置环地控制.该产品已形成系列,供不同规格地各类机床选用,量程从毫米至米,覆盖几乎全部金属切削机床地行程. 威海三丰电子有限公司生产数显光栅尺,数控光栅尺,直线光栅尺,电子尺,位移传感器,机床数显,数显改造,数控改造,机床改造,数显装置,数显传感器,数显表,磁栅尺,数显尺,旧机床数显改造,可按客户需求定制,价格优惠!电话:资料个人收集整理,勿做商业用途 现代地自动控制系统中已广泛地采用光电传感器(如光栅尺)来解决轴地线位移、转速或转角地监测和控制问题. 适用以下领域: 加工用地设备:车床、铣床、镗床、磨床、电火花机、线切割等 测量用地仪器:投影机、影像测量仪、工具显微镜等 也可对数控机床上刀具运动地误差起补偿作用资料个人收集整理,勿做商业用途 光栅尺:测量范围:~ 测量准确度:±μ~±μ 测量基准:光栅周期μ地光学玻璃尺 光学测量系统:透射式红外线光测量系统,红外线波长 反应速度:() () 读数头滑动系统:垂直式五轴承 输出讯号: 讯号传达周期:μ 供应电压:± 采用最高优质地材料制造出耐油、高弹性及抗老化胶封.由工程师精心设计出最佳地闭合角度和最适中地软硬度,保证最佳地密封性能和最少地磨擦阻力.读数头滑动部分结构采用已被验证为最可靠耐用地五轴承设计,保证光学感应系统能长期稳定地在光栅尺上畅顺滑行. 读数头滑动部分结构采用已被验证为最可靠耐用地五轴承设计,保证光学感应系统能长期稳定地在光栅尺上畅顺滑行. 弹簧地几何设计经过精确详细地力学模型分析,并采用高级地德国制弹簧钢材制造.确保光学感应系统就是在高速地移动情况下,仍能紧贴在光栅尺上无跳动地滑行. 所有轴承均采用日本规格高精度轴承,保证滑行畅顺,跳动量低,可靠耐用. 采用美国公司地高效能红外线发光管为光源.讯号强而稳定,可靠性极高资料个人收集整理,勿做商业用途 光栅尺相关介绍

光栅尺调试

光栅尺调试增加第二测量回路及增加光栅尺功能 1.PLC 程序修改DB3x.DB1.5=0, DB3x.DB1.6=1 2.机床数据MD30200=2 N30200 $MA_NUM_ENCS[AX1]=2 N30240 $MA_ENC_TYPE[1,AX1]=1 N31000 $MA_ENC_IS_LINEAR[1,AX1]=1 N31010 $MA_ENC_GRID_POINT_DIST[1,AX1]=0.02 N31040 $MA_ENC_IS_DIRECT[1,AX1]=1 N32110 $MA_ENC_FEEDBACK_POL[1,AX1]=-1 N34060 $MA_REFP_MAX_MARKER_DIST[1,AX1]=500 如果为带距离编码的光栅尺: 3.PLC 程序修改DB3x.DB1.5=0, DB3x.DB1.6=1 4.机床数据MD30200=2 N30200 $MA_NUM_ENCS[AX1]=2 N30240 $MA_ENC_TYPE[1,AX1]=1 N31000 $MA_ENC_IS_LINEAR[1,AX1]=1 N31040 $MA_ENC_IS_DIRECT[1,AX1]=1 N32110 $MA_ENC_FEEDBACK_POL[1,AX1]=-1 MD34200 ENC_REFP_MODE=3 N31010 $MA_ENC_GRID_POINT_DIST[1,AX1]=0.04 ; MD34310 ENC_MARKER_INC =0.04 MD 34300 ENC_REFP_DIST=80 N34060 $MA_REFP_MAX_MARKER_DIST[1,AX1]=80 MD34320 ENC_INVERS[1] ;=0 光栅尺与机床同方向 MD34000 REFP_CAM_IS_ACTIVE =0 绝对光栅尺: 5.机床数据MD30200=2 N30200 $MA_NUM_ENCS[AX1]=2 N30240 $MA_ENC_TYPE[1,AX1]=4 N31000 $MA_ENC_IS_LINEAR[1,AX1]=1 N31010 $MA_ENC_GRID_POINT_DIST[1,AX1]=0.02 型号来定 N31040 $MA_ENC_IS_DIRECT[1,AX1]=1 N32110 $MA_ENC_FEEDBACK_POL[1,AX1]=-1 N34060 $MA_REFP_MAX_MARKER_DIST[1,AX1]=500 MD34200 ENC_REFP_MODE=0 MD34102 REF_SYNC-ENC=1 MD1030=18H 标定的步骤:和802D 一样 第二测量回路生效 第二测量回路生效 光栅尺分辩率 ;两个零脉冲之间的差值:两个零脉冲之间的距离;找参考点的最大距离=1 光栅尺与机床反方向 // 根据光栅尺的

(整理)光栅尺工作原理

1 光栅尺工作原理 光栅位移传感器的工作原理,是由一对光栅副中的主光栅(即标尺光栅)和副光栅(即指示光栅)进行相对位移时,在光的干涉与衍射共同作用下产生黑白相间(或明暗相间)的规则条纹图形,称之为莫尔条纹。经过光电器件转换使黑白(或明暗)相同的条纹转换成正弦波变化的电信号,再经过放大器放大,整形电路整形后,得到两路相差为90o的正弦波或方波,送入光栅数显表计数显示。 二、工作原理 常见光栅的工作原理都是根据物理上莫尔条纹的形成原理进行工作的。图4-9是其工作原理图。当使指示光栅上的线纹与标尺光栅上的线纹成一角度来放置两光栅尺时,必然会造成两光栅尺上的线纹互相交叉。在光源的照射下,交叉点近旁的小区域内由于黑色线纹重叠,因而遮光面积最小,挡光效应最弱,光的累积作用使得这个区域出现亮带。相反,距交叉点较远的区域,因两光栅尺不透明的黑色线纹的重叠部分变得越来越少,不透明区域面积逐渐变大,即遮光面积逐渐变大,使得挡光效应变强,只有较少的光线能通过这个区域透过光栅,使这个 区域出现暗带。这些与光栅线纹几乎垂直,相间出现的亮、暗带就是莫尔条纹。莫尔条纹具有以下性质:

(1) 当用平行光束照射光栅时,透过莫尔条纹的光强度分布近似于余弦函数。 (2) 若用W表示莫尔条纹的宽度,d表示光栅的栅距,θ表示两光栅尺线纹的夹角,则它们之间的几何关系为W=d/sin当角很小时,上式可近似写W=d/θ 若取d=0.01mm,θ=0.01rad,则由上式可得W=1mm。这说明,无需复杂的光学系统和电子系统,利用光的干涉现象,就能把光栅的栅距转换成放大100倍的莫尔条纹的宽度。这种放大作用是光栅的一个重要特点。 (3) 由于莫尔条纹是由若干条光栅线纹共同干涉形成的,所以莫尔条纹对光栅个别线纹之间的栅距误差具有平均效应,能消除光栅栅距不均匀所造成的影响。 (4) 莫尔条纹的移动与两光栅尺之间的相对移动相对应。两光栅尺相对移动一个栅距d,莫尔条纹便相应移动一个莫尔条纹宽度W,其方向与两光栅尺相对移动的方向垂直,且当两光栅尺相对移动的方向改变时,莫尔条纹移动的方向也随之改变。 根据上述莫尔条纹的特性,假如我们在莫尔条纹移动的方向上开4个观察窗口A,B,C,D,且使这4个窗口两两相距1/4莫尔条纹宽度,即W/4。由上述讨论可知,当两光栅尺相对移动时,莫尔条纹随之移动,从4个观察窗口A,B,C,D可以得到4个在相位

光栅尺的应用与原理

光栅尺的应用与原理 光栅尺的结构是由有刻有窄的等间距的线纹标尺光栅和读数头组成,读数头是由刻有与标尺光栅光刻密度相同好的指示光栅、光学系统和光路原件等组成。标尺光栅与尺度光栅与一定间距平行放置,并且他们的刻度线相互倾斜一定角度@,标尺光栅固定不动,指示光栅沿着垂直线条纹方向运动,光线照在标尺光栅上放射或者投射在指示光栅并发生光的衍射,产生明暗相间的莫尔条纹,光电探测器检测莫尔条纹的宽度变化并将其转换成电信号输出给控制装置。 莫尔条纹的特点: 1.莫尔条纹的移动与光栅栅距之间的移动关系,光栅移动一个条纹,莫尔条纹正好移动一 个条纹。 2.莫尔条纹的放大作用:B=W/(2SIN2/2)=W/2 主要的元件:发光LED, 标尺光栅,指示光栅,光电探测器。 光栅的选用:选用光栅要综合考虑一下几个要素: 1.考虑被测物理量的性质,要根据呗测量的行程和精度要求选择量程和精度,根据被测量 的最大速度确定光栅尺的最大移动速度以及是否需要基准标记和相位开关传感器,要什么形式的光栅。 2.根据控制器可以控制的信号的类型选择光栅输出类型,还要考虑接口的硬件匹配。 3.根据工作条件确定光栅尺应具备在何种环境下工作的能力 4.根据被测的物体考虑安装方案。考虑到空间,方向等问题。 5.设计电缆的长度 6.价格和服务 7.市场的方便,型号的选择。 光栅的主要技术参数: 分辨率:表征的测量精度,有5.0um ,1.0um ,0.5um ,0.1um 输出波形:方波和正弦波两种。 按控制的形式:数字量和模拟量,要与控制器匹配。 测量周期:没测一次所需的时间 测量长度:可以应许的测量范围 测量方式:绝对值和识字增量坐标 使用温度:5----45度 供电电源:一般为+5+5%,电流大小为120mA 最大移动速度:要大于要求值 最小时钟频率:要保证控制器的频率高于要求值。 安装: 把光栅尺贴在平台的固定部分上。安装要用专用工具,保证光栅的安装合付要求(水平度、垂直度)。 读数头要安装在平台的移动部分上。在安装光栅尺时要先安装光栅尺,然后根据光栅尺安装读数头。保证读头与光栅尺的距离2—3mm,

光栅尺工作原理

光栅尺位移传感器原理简介及维护注意事项 一、光栅尺是什么? 轨道旁边的黄色金属条,与其对 应部位,在移载台底部装有光读 头 定义: 光栅尺位移传感器(简称光栅尺),是利用光栅的光学原理工作的测量反馈装置。 光栅尺位移传感器经常应用于机床与现在加工中心以及测量仪器等方面,可用作 直线位移或者角位移的检测。其测量输出的信号为数字脉冲,具有检测范围大, 检测精度高,响应速度快的特点。 二、光栅尺的分类、构造 1)分类: 光栅尺位移传感器按照制造方法和光学原理的不同,分为透射光栅和反射光栅。 ●透射光栅指的玻璃光栅. ●反射光栅指的钢带光栅 2)结构: 光栅尺位移传感器是由标尺光栅和光栅读数头两部分组成。标尺光栅一般固定在机 床活动部件上,光栅读数头装在机床固定部件上,指示光栅装在光栅读数头中。下图所示的 就是光栅尺位移传感器的结构。

三、光栅尺的工作原理? 常见光栅的工作原理都是根据物理上莫尔条纹的形成原理进行工作的。(关于莫尔条纹的原理,可参考相关文献) 简单的说:光读头通过检测莫尔条纹个数,来“读取”光栅刻度,然后再根据驱动电路的作用,计算出光栅尺的位移和速度。 莫尔条纹 四、光栅尺的维护 1)尽可能外加保护罩,并及时清理溅落在尺上的切屑和油液,严格防止任何异物进入光栅尺传感器壳体内部。 2)定期检查各安装联接螺钉是否松动、定期使用干燥的洁净布擦拭表。 3)光栅尺位移传感器严禁剧烈震动及摔打、踩踏,以免破坏光栅尺,如光栅尺断裂,光

栅尺传感器即失效了。 4)不要自行拆开光栅尺位移传感器,更不能任意改动主栅尺与副栅尺的相对间距,否则一方面可能破坏光栅尺传感器的精度;另一方面还可能造成主栅尺与副栅尺的相对摩擦,损坏铬层也就损坏了栅线,以而造成光栅尺报废。 5)应注意防止油污及水污染、硬物划伤光栅尺面,以免破坏光栅尺线条纹分布,引起测量误差。 6)光栅尺位移传感器应尽量避免在有严重腐蚀作用的环境中工作,以免腐蚀光栅铬层及光栅尺表面,破坏光栅尺质量。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注!)

光栅尺的选型安装与调试_(DEMO)

一、线性光栅尺选型 (1)准确度等级的选择数控机床配置线性光栅尺是了提高 线性坐标轴的定值精度、再复定位精度,所以光栅尺的准确度等级是首先要考虑的,光栅尺准确度等级有±0.01mm、±0.005mm、±0.003mm、±0.02mm。而我们在设计数控机床时根据设计精度要求来选择准确度等级,值得注意的是在选用高精度光栅尺时要考虑光栅尺的热性能,它是机床工作精确度的关键环节,即要求光栅尺的刻线载体的热膨胀系数与机床光栅尺安装基体的热膨胀系数相一致,以克服由于温度引起的热变形。 另外光栅尺最大移动速度可达120m/min,目前可完全满足数控机床设计要求;单个光栅尺最大长度为3040mm,如控制线性坐标轴大于3040mm时可采用光栅尺对接的方式达到所需长度。 (2)测量方式的选择光栅尺的测量方式分增量式光栅尺 和绝对式光栅尺两种,所谓增量式光栅尺就是光栅扫描头通过读出到初始点的相对运动距离而获得位置信息,为了获得绝对位置,这个初始点就要刻到光栅尺的标尺上作为参考标记,所以机床开机时必须回参考点才能进行位置控

制。而绝对式光栅尺以不同宽度、不同问距的闪现栅线将绝对位置数据以编码形式直接制作到光栅上,在光栅尺通电的同时后续电子设备即可获得位置信息,不需要移动坐标轴找参考点位置,绝对位置值从光栅刻线上直接获得。 绝对式光栅尺比增量式光栅尺成本高20%左右,机床设计师因考虑数控机床的性价比,一般选用增量式光栅尺,既能保证机床运动精度又能降低机床成本。但是绝对式光栅尺开机后不需回参考点的优点是增量式光栅尺无法比拟的,机床在停机或故障断电后开机可直接从中断处执行加工程序,不但缩短非加工时间提高生产效率,而且减小零件废品率。因此在生产节拍要求格或由多台数控机床构成的自动生产线上选用绝对式光栅尺是最为理想的。 (3)输出信号的选择光栅尺的输出信号分电流正弦波信号、电压正弦波信号、TTL矩形波信号和TTL差动矩形波信号四种,虽然光栅尺输出信号的波形不同对数控机床线性坐标轴的定位精度、重复定位精度没有影响,但必须与数控机床系统相匹配,如果输出信号的波形与数控机床系统不匹配,导致机床系统无法处理光栅尺的输出信号,反馈信息、补偿误差对机床线性坐标轴全闭环控制无从谈起。在实践中确有输出信号的波形与数控机床系统不匹配

光栅的结构及工作原理

光栅的结构及工作原理 光栅是利用光的透射、衍射现象制成的光电检测元件,它主要由标尺光栅和光栅读数头两部分组成。通常,标尺光栅固定在机床的活动部件上(如工作台或丝杠),光栅读数头安装在机床的固定部件上(如机床底座),二者随着工作台的移动而相对移动。在光栅读数头中,安装着一个指示光栅,当光栅读数头相对于标尺光栅移动时,指示光栅便在标尺光栅上移动。当安装光栅时,要严格保证标尺光栅和指示光栅的平行度以及两者之间的间隙(一般取0.05mm或0.1mm)要求。 1. 光栅尺的构造和种类 光栅尺包括标尺光栅和指示光栅,它是用真空镀膜的方法光刻上均匀密集线纹的透明玻璃片或长条形金属镜面。对于长光栅,这些线纹相互平行,各线纹之间距离相等,我们称此距离为栅距。对于圆光栅,这些线纹是等栅距角的向心条纹。栅距和栅距角是决定光栅光学性质的基本参数。常见的长光栅的线纹密度为25,50,100,125,250条/mm。对于圆光栅,若直径为70mm,一周内刻线100-768条;若直径为110mm,一周内刻线达600-1024条,甚至更高。同一个光栅元件,其标尺光栅和指示光栅的线纹密度必须相同。 2. 光栅读数头 图4-7是光栅读数头的构成图,它由光源、透镜、指示光栅、光敏元件和驱动线路组成。读数头的光源一般采用白炽灯泡。白炽灯泡发出的辐射光线,经过透镜后变成平行光束,照射在光栅尺上。光敏元件是一种将光强信号转换为电信号的光电转换元件,它接收透过光栅尺的光强信号,并将其转换成与之成比例的电压信号。由于光敏元件产生的电压信号一般比较微弱,在长距离传递时很容易被各种干扰信号所淹没、覆盖,造成传送失真。为了保证光敏元件输出的信号在传送中不失真,应首先将该电压信号进行功率和电压放大,然后再进行传送。驱动线路就是实现对光敏元件输出信号进行功率和电压放大的线路。

光栅尺的工作原理

光栅尺工作原理 常见光栅的工作原理都是根据物理上莫尔条纹的形成原理进行工作的。图4-9是其工作原理图。当使指示光栅上的线纹与标尺光栅上的线纹成一角度 来放置两光栅尺时,必然会造成两光栅尺上的线纹互相交叉。在光源的照射下,交叉点近旁的小区域内由于黑色线纹重叠,因而遮光面积最小,挡光效应最弱,光的累积作用使得这个区域出现亮带。相反,距交叉点较远的区域,因两光栅尺不透明的黑色线纹的重叠部分变得越来越少,不透明区域面积逐渐变大,即遮光面积逐渐变大,使得挡光效应变强,只有较少的光线能通过这个区域透过光栅,使这个区域出现暗带。这些与光栅线纹几乎垂直,相间出现的亮、暗带就是莫尔条纹。莫尔条纹具有以下性质: (1) 当用平行光束照射光栅时,透过莫尔条纹的光强度分布近似于余弦函数。 (2) 若用W表示莫尔条纹的宽度,d表示光栅的栅距,θ表示两光栅尺线纹的夹角,则它们之间的几何关系为W=d/sin当 角很小时,上式可近似写W=d/θ 若取d=0.01mm,θ=0.01rad,则由上式可得W=1mm。这说明,无需复杂的光学系统和电子系统,利用光的干涉现象,就能把光栅的栅距转换成放大100倍的莫尔条纹的宽度。这种放大作用是光栅的一个重要特点。 (3) 由于莫尔条纹是由若干条光栅线纹共同干涉形成的,所以莫尔条纹对光栅个别线纹之间的栅距误差具有平均效应,能消除光栅栅距不均匀所造成的影响。 (4) 莫尔条纹的移动与两光栅尺之间的相对移动相对应。两光栅尺相对移动一个栅距d,莫尔条纹便相应移动一个莫尔条纹宽度W,其方向与两光栅尺相对移动的方向垂直,且当两光栅尺相对移动的方向改变时,莫尔条纹移动的方向也随之改变。 根据上述莫尔条纹的特性,假如我们在莫尔条纹移动的方向上开4个观察窗口A,B,C,D,且使这4个窗口两两相距1/4莫尔条纹宽度,即W/4。由上述讨论可知,当两光栅尺相对移动时,莫尔条纹随之移动,从4个观察窗口A,B,C,D可以得到4个在相位上依次超前或滞后(取决于两光栅尺相对移动的方向)1/4周期(即π/2)的近似于余弦函数的光强度变化过程,用表示,见图4-9(c)。若采用光敏元件来检测,光敏元件把透过观察窗口的光强度变化 转换成相应的电压信号,设为 。根据这4个电压信号,可以检测出光栅尺的相对移动。 1.位移大小的检测 由于莫尔条纹的移动与两光栅尺之间的相对移动是相对应的,故通过检测 这4个电压信号的变化情况,便可相应地检测出两光栅尺之间的相对移动。 每变化一个周期,即莫尔条纹每变化一个周期,表明两光栅尺相对移动了一个栅距的距离;若两光栅尺之间的相对移动不到一个栅距,因 是余弦函数,故根据 之值也可以计算出其相对移动的距离。 2. 位移方向的检测 在图4-9(a)中,若标尺光栅固定不动,指示光栅沿正方向移动,这时,莫尔条纹相应地沿向下的方向移动,透过观察窗口A和B,光敏元件检测到的光强度变化过程 和及输出的相应的电压信号和如图4-10(a)所示,在这种情况下,滞后的相位为/2;反之,若标尺光栅固定不动,指示光栅沿负方向移动,这时,莫尔条纹则相应地沿向上的方向移动,透过观察窗口A和B,光敏元件检测到的光强度变化过程和 及输出的相应的电压信号和如图4-10(b)所示,在这种情况下,超前的相位为/2。因此,根据和两信号相互间的超前和滞后关系,便可确定出两光栅尺之间的相对移动方向。 工作原理: 直线光栅尺和旋转编码器均依据相对运动的原理来产生光信号,这些信号经过光电器件的转换处理后,用来检测机械装置的位移。FAGOR公司反馈产品采用两种不同的材料来产生反馈信

光栅尺与磁栅尺的优缺点与特长

介绍一下开环控制系统和闭环控制系统吗?若在机床上用闭环控制系统有哪些优缺点?还有光栅尺磁栅尺的优缺点及特长,通常磁栅尺光栅尺在哪些地方应用? -------------------------- 回复如下:(经整理) 控制系统大致分类:按控制原理的不同,自动控制系统分为开环控制系统和闭环控制系统。 1)开环控制系统 开环控制系统是指被控对象的输出(被控制量)对控制器的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。 2)闭环控制系统 闭环控制系统的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈,若极性相同,则称为正反馈。一般闭环控制系统均采用负反馈,又称负反馈控制系统。 3)开环、闭环控制系统的各自特点: 在开环控制系统中,系统输出只受输入的控制,控制精度和抑制干扰的特性都相对比较差。 闭环控制系统是建立在反馈原理基础之上的,利用输出量同期望值的偏差对系统进行控制,可获得比较好的控制性能。通常大多数重要的自动控制系统都采用闭环控制的方式。 闭环控制系统按控制和测量信号的不同,又可分为连续控制系统和离散控制系统。控制信号连续地作用于系统的,称为连续控制系统。控制信号断续地作用于系统的,称为离散控制系统。此外,在工程中,自动控制系统也有按所控制变量的物理属性进行分类,如速度、位置、压力、温度、流量、液位等等。 4)闭环控制系统的应用 自动控制系统已被广泛应用于人类社会的各个领域。在工业方面,对于冶金、化工、机械制造等生产过程中遇到的各种物理量,包括温度、流量、压力、厚度、张力、速度、位置、频率、相位等等。 应用例子有很多,人类使用自动装置的历史可以追溯到古代。中国古代的指南车和铜壶滴漏,古罗马人家庭水管系统的简单水位调节装置都是自动控制系统的萌芽。

光栅尺和编码器介绍

光栅与编码器介绍 位置检测装置作为数控机床的重要组成部分,其作用就是检测位移量,并发出反馈信号与数控装置发出的指令信号相比较,若有偏差,经放大后控制执行部件使其向着消除偏差的方向运动,直至偏差等于零为止。为了提高数控机床的加工精度,必须提高检测元件和检测系统的精度。其中以编码器,光栅尺,旋转变压器,测速发电机等比较普遍,下面主要对光栅和编码器进行说明。 光栅,现代光栅测量技术 简要介绍: 将光源、两块长光栅(动尺和定尺)、光电检测器件等组合在一起构成的光栅传感器通常称为光栅尺。光栅尺输出的是电信号,动尺移动一个栅距,输出电信号便变化一个周期,它是通过对信号变化周期的测量来测出动就与定就职相对位移。目前使用的光栅尺的输出信号一般有两种形式,一是相位角相差90度的2路方波信号,二是相位依次相差90度的4路正弦信号。这些信号的空间位置周期为W。下面针对输出方波信号的光栅尺进行了讨论,而对于输出正弦波信号的光栅尺,经过整形可变为方波信号输出。输出方波的光栅尺有A相、B 相和Z相三个电信号,A相信号为主信号,B相为副信号,两个信号周期相同,均为W,相位差90o。Z信号可以作为较准信号以消除累积误差。 一、栅式测量系统简述 从上个世纪50年代到70年代栅式测量系统从感应同步器发展到光栅、磁栅、容栅和球栅,这5种测量系统都是将一个栅距周期内的绝对式测量和周期外的增量式测量结合了起来,测量单位不是像激光一样的是光波波长,而是通用的米制(或英制)标尺。它们有各自的优势,相互补充,在竞争中都得到了发展。由于光栅测量系统的综合技术性能优于其他4种,而且制造费用又比感应同步器、磁栅、球栅低,因此光栅发展得最快,技术性能最高,市场占有率最高,产业最大。光栅在栅式测量系统中的占有率已超过80%,光栅长度测量系统的分辨力已覆盖微米级、亚微米级和纳米级,测量速度从60m/min,到480m/min。测量长度从1m、3m 达到30m和100m。 二、光栅测量技术发展的回顾 计量光栅技术的基础是莫尔条纹(Moire fringes),1874年由英国物理学家L.Rayleigh首先提出这种图案的工程价值,直到20世纪50年代人们才开始利用光栅的莫尔条纹进行精密测量。1950年德国Heidenhain首创DIADUR复制工艺,也就是在玻璃基板上蒸发镀铬的光刻复制工艺,这才能制造高精度、价廉的光栅刻度尺,光栅计量仪器才能为用户所接受,进入商品市场。1953年英国Ferranti公司提出了一个4相信号系统,可以在一个莫尔条纹周期实现4倍频细分,并能鉴别移动方向,这就是4倍频鉴相技术,是光栅测量系统的基础,并一直广泛应用至今。 德国Heidenhain公司1961年开始开发光栅尺和圆栅编码器,并制造出栅距为4μm(250线/mm)的光栅尺和10000线/转的圆光栅测量系统,能实现1微米和1角秒的测量分辨力。1966年制造出了栅距为20μm(50线/mm)的封闭式直线光栅编码器。在80年代又推出AURODUR工艺,是在钢基材料上制作高反射率的金属线纹反射光栅。并在光栅一个参考标

海德汉各型号光栅尺规格

海德汉光栅尺常用型号描述 (2011-08-31 10:37:17) 转载▼ 标签: 分类:市场网 海德汉光栅尺 型号描述 杂谈 海德汉光栅尺LC 493F绝对式直线光栅尺,测量步距为0.1 μm(分辨率达0.005 μm),单场扫描定位精度高和移动速度快,适用于安装空间有限处; 海德汉光栅尺 LC 493M 绝对式直线光栅尺,测量步距为0.1 μm(分辨率达0.005 μm),单场扫描定位精度高和移动速度快,适用于安装空间有限处; 海德汉光栅尺 LC 183 绝对式直线光栅尺,测量步距为0.1 μm(分辨率达0.005 μm),单场扫描定位精度高和移动速度快,能承受高振动频率,支持水平安装; 海德汉光栅尺LC 483绝对式直线光栅尺,测量步距为0.1 μm(分辨率达0.005 μm),单场扫描定位精度高和移动速度快,适用于安装空间有限处; 海德汉光栅尺 LF 183C 增量式直线光栅尺,测量步距为0.1 μm,单场扫描定位精度高,温度特性接近钢材和铸铁,能承受高振动频率,支持水平安装; 海德汉光栅尺 LF 481C 增量式直线光栅尺,测量步距为0.1 μm,单场扫描定位精度高,温度特性接近钢材和铸铁,适用于安装空间有限处; 海德汉光栅尺LF 481 增量式直线光栅尺,测量步距为0.1 μm,单场扫描定位精度高,温度特性接近钢材和铸铁,适用于安装空间有限处; 海德汉光栅尺LS 177C增量式直线光栅尺,测量步距为0.5 μm,具有确定温度特性,能承受高振动频率,支持水平安装,单场扫描; 海德汉光栅尺 LS 187C 增量式直线光栅尺,测量步距为0.5 μm,具有确定温度特性,能承受高振动频率,支持水平安装,单场扫描; 海德汉光栅尺 LS 328C 用于手动机床的增量式直线光栅尺; 海德汉光栅尺 LS 378C 用于手动机床的增量式直线光栅尺; 海德汉光栅尺 LS 388C 用于手动机床的增量式直线光栅尺;

光栅尺原理

光栅尺有"S"和"M"两种规格,两者区别是两端固定处不一样,而且有长短之分. 光栅尺有50;100;150;200;300及400(MM) 光栅尺主要功能是靠尺子上的读头读出数据给予数显器或软件里 LE 光栅尺是精密的光栅测量系统,适用于大量程的精密测量. 尤其适用于测量, 医疗设备,精密现代化加工设备. 数控加工中心,机床,磨床,铣床,自动卸货机,金属板压制和焊接机,机器人和自动化科技,生产过程测量机器,线性产品, 直线马达, 直线导轨定位等。 LE 光栅尺将直线的位移变化转换为脉冲信号. 脉冲信号的数量对应移动的距离,脉冲频率则反应了运动速度。LE 本体部分由5只精密轴承,玻璃光栅,LED 光照系统,铝合金外壳组成。 LE输出信号为矩形方波。A,B相相差90°的两路波形,能够指示出移动距离以及方向。零位信号间距50mm 。可选购RS422长线输出。 光栅尺原理: 光栅是结合数码科技与传统印刷的技术,能在特制的胶片上显现不同的特殊效果。在平面上展示栩栩如生的立体世界,电影般的流畅动画片段,匪夷所思的 幻变效果。 光栅是一张由条状透镜组成的薄片,当我们从镜头的一边看过去,将看到在薄片另一面上的一条很细的线条上的图像,而这条线的位置则由观察角度来 决定。如果我们将这数幅在不同线条上的图像,对应于每个透镜的宽度,分别 按顺序分行排列印刷在光栅薄片的背面上,当我们从不同角度通过透镜观察, 将看到不同的图像。 光栅尺其实起到的作用是对刀具和工件的坐标起一个检测的作用,在数控 机床中常用来观察其是否走刀有误差,以起到一个补偿刀具的运动的误差的补 偿作用.其实就象人眼睛看到我切割偏没偏的作用.然后可以给手起到一个是否 要调整我是否要改变用力的标准. 相当于眼睛. 一、引言 目前在精密机加工和数控机库中采用的精密位称数控系统框图如图1所示。 随着电子技术和单片机技术的发展,光栅传感器在位移测量系统得到广泛应用,并逐步向智能化方向转化。 图2是利用光栅传感器构成的位移量自动测量系统原理示意图。该系统采用光栅移动产生的莫尔条纹与电子电路以及单片机相结合来完成对位移量的自 动测量,它具有判别光栅移动方向、预置初值、实现自动定位控制及过限报警、自检和掉电保护以及温度误差修正等功能。下面对该系统的工作原理及设计思 想作以介绍。

海德汉光栅尺调试

光栅尺调试 增加第二测量回路及增加光栅尺功能1.PLC 程序修改DB3x.DB1.5=0, DB3x.DB1.6=1 第二测量回路生效。机床数据MD30200=2 2.N30200 $MA_NUM_ENCS[AX1]=2 N30240 $MA_ENC_TYPE[1,AX1]=1 N31000 $MA_ENC_IS_LINEAR[1,AX1]=1 N31010 $MA_ENC_GRID_POINT_DIST[1,AX1]=0.02 N31040 $MA_ENC_IS_DIRECT[1,AX1]=1 N32110 $MA_ENC_FEEDBACK_POL[1,AX1]=-1 N34060 $MA_REFP_MAX_MARKER_DIST[1,AX1]=500 如果为带距离编码的光栅尺:3.PLC 程序修改DB3x.DB1.5=0, DB3x.DB1.6=1 第二测量回路生效。4.机床数据MD30200=2 N30200 $MA_NUM_ENCS[AX1]=2 N30240 $MA_ENC_TYPE[1,AX1]=1 N31000 $MA_ENC_IS_LINEAR[1,AX1]=1 N31040 $MA_ENC_IS_DIRECT[1,AX1]=1 N32110 $MA_ENC_FEEDBACK_POL[1,AX1]=-1 MD34200 ENC_REFP_MODE=3 N31010 $MA_ENC_GRID_POINT_DIST[1,AX1]=0.04 ;光栅尺分辩率MD34310 ENC_MARKER_INC =0.04 ;两个零脉冲之间的差值MD 34300 ENC_REFP_DIST=80 :两个零脉冲之间的距离N34060 $MA_REFP_MAX_MARKER_DIST[1,AX1]=80 ;找参考点的最大距离MD34320 ENC_INVERS[1] ;=0 光栅尺与机床同方向=1 光栅尺与机床反方向MD34000 REFP_CAM_IS_ACTIVE =0 绝对光栅尺:5.机床数据MD30200=2 N30200 $MA_NUM_ENCS[AX1]=2 N30240 $MA_ENC_TYPE[1,AX1]=4 N31000 $MA_ENC_IS_LINEAR[1,AX1]=1 N31010 $MA_ENC_GRID_POINT_DIST[1,AX1]=0.02 型号来定N31040 $MA_ENC_IS_DIRECT[1,AX1]=1 N32110 $MA_ENC_FEEDBACK_POL[1,AX1]=-1

绝对式光栅尺信号检测系统的设计与实现

绝对式光栅尺信号检测系统的设计与实现 随着现代加工技术向着精密、超精密方法发展,人们对高精度的传感器提出了越来越迫切的需求。绝对式光栅尺是2005年出现在市场的一种新型线位移传感器,相对于传统的增量式光栅尺而言,它具有测量精度高、抗干扰性强、断电后再工作无需回零点、无累计误差、位置计算在读数头内完成等优点,因此,被广泛使用在各种中高档数控机床和精密测量设备当中。 随着绝对式光栅尺的推广与使用,为了方便用户对设备上的光栅尺进行快速、便捷的信号检测;与此同时,为了方便光栅尺生产商在研发阶段对光栅尺产品的 反复检测与调试,以及在售后阶段能方便得对产品进行有效的维护,这都需要一 套完善的绝对式光栅尺信号检测平台来进行实现。在国外,著名的光栅尺产商都会根据自身产品研发特定的检测平台,用于快速的推广和便捷的维护自身绝对式光栅尺产品;在国内,由于对绝对式光栅尺的研究起步比较晚,目前还没有类似系统。 本文在结合国内外现有的绝对式光栅尺检测技术和当前绝对式光栅尺产品 需求的基础上,深入的研究绝对式光栅尺信号检测的原理、常见故障的类型和诊断方法、误差测量和补偿方式,从而设计出一款绝对式光栅尺信号检测系统,该系统由采集卡和上位机组成,用于实现绝对式光栅尺的在线信号检测与修调、故障诊断、误差的测量与补偿等功能。首先研究了绝对式光栅尺信号检测的原理,确定信号检测的方法,包括了增量信号和绝对信号;同时研究了绝对式光栅尺常见 的故障类型及其诊断方式。 设计了以STM32为核心控制器的信号采集卡,该采集卡配备有绝对式信号采集模块、增量信号采集模块、激光干涉仪接口模块、上位机接口模块等。采集卡

作为上位机和光栅尺之间的通讯桥梁,接受上位机的命令和参数,对光栅尺进行读写操作,并反馈到上位机中。 当用于对绝对式光栅尺进行误差测量时,该采集卡可为激光干涉仪提供触发信号。设计了信号检测系统的上位机软件,该软件基于Qt环境,采用模块化方式开发。 包括有网络协议模块、产品信息与位置值采集模块、故障诊断模块、信号检测模块、光电参数修调模块以及误差测量与补偿模块,每个模块都采用独立封装的方式,用户可以根据实际的需求进行加载。上位机软件的主要的功能是作为人机交互的界面,其根据与采集卡之间的通讯协议,向采集卡发送命令与参数,并从采集卡中获取反馈信息,经过处理分析后实时得显示在界面上。 研究了绝对式光栅尺测量误差的补偿方法。分析了影响绝对式光栅尺精度的误差因素,搭建起误差检测平台,可实现对光栅尺的快速误差测量;提出了误差补偿方法,并把补偿数据写入到光栅尺读数头中,最终实现对绝对式光栅尺测量误差的快速、高效补偿。 运用本文的研究方法,完成了绝对式光栅尺信号检测系统的设计,实现了对绝对式光栅尺在线的信号检测与修调、故障诊断、误差测量与补偿等功能,对绝对式光栅尺的推广与维护具有重要的意义。

光栅尺工作原理及基础理论

光栅尺工作原理及详细介绍 光栅:光栅是结合数码科技与传统印刷的技术,能在特制的胶片上显现不同的特殊效果。在平面上展示栩栩如生的立体世界,电影般的流畅动画片段,匪夷所思的幻变效果。 光栅是一张由条状透镜组成的薄片,当我们从镜头的一边看过去,将看到在薄片另一面上的一条很细的线条上的图像,而这条线的位置则由观察角度来决定。如果我们将这数幅在不同线条上的图像,对应于每个透镜的宽度,分别按顺序分行排列印刷在光栅薄片的背面上,当我们从不同角度通过透镜观察,将看到不同的图像。 光栅尺:其实起到的作用是对刀具和工件的坐标起一个检测的作用,在数控机床中常用来观察其是否走刀有误差,以起到一个补偿刀具的运动的误差的补偿作用,其实就象人眼睛看到我切割偏没偏的作用,然后可以给手起到一个是否要调整我是否要改变用力的标准。 【相当于眼睛】 一、引言 目前在精密机加工和数控机库中采用的精密位称数控系统框图。 随着电子技术和单片机技术的发展,光栅传感器在位移测量系统得到广泛应用,并逐步向智能化方向转化。 利用光栅传感器构成的位移量自动测量系统原理示意图。该系统采用光栅移动产生的莫尔条纹与电子电路以及单片机相结合来完成对位移量的自动测量,它具有判别光栅移动方向、预置初值、实现自动定位控制及过限报警、自检和掉电保护以及温度误差修正等功能。下面对该系统的工作原理及设计思想作以下介绍。 二、电子细分与判向电路 光栅测量位移的实质是以光栅栅距为一把标准尺子对位称量进行测量。目前高分辨率的光栅尺一般造价较贵,且制造困难。为了提高系统分辨率,需要对莫尔条纹进行细分,本系统采用了电子细分方法。当两块光栅以微小倾角重叠时,在与光栅刻线大致垂直的方向上就会产生莫尔条纹,随着光栅的移动,莫尔条纹也随之上下移动。这样就把对光栅栅距的测量转换为对莫尔条纹个数的测量,同量莫尔条纹又具有光学放大作用,其放大倍数为: (1) 式中:W为莫尔条纹宽度;d为光栅栅距(节距);θ为两块光栅的夹角,rad 在一个莫尔条纹宽度内,按照一定间隔放置4个光电器件就能实现电子细分与羊向功能。本系统采用的光栅尺栅线为50线对/mm,其光栅栅距为0.02mm,若采用四细分后便可得到分辨率为5μm的计数脉冲,这在一般工业测控中已达到了很高精度。由于位移是一个矢量,即要检测其大小,又要检测其方向,因此至少需要两路相位不同的光电信号。为了消除共模干扰、直流分量和偶次谐波,我们采用了由低漂移运放构成的差分放大器。由4个滏电器件获得的4路光电信号分别送到2只差分放大器输入端,从差分放大器输出的两路信号其相位差为π/2,为得到判向和计数脉冲,需对这两路信号进行整形,首先把它们整形为占空比为1:1的方波,经由两个与或非门74LS54芯片组成的四细分判向电路输入可逆计数器,最后送入由8031组成的单片机系统中进行处理。 三、单片机与接口电路 为实现可逆计数和提高测量速度,系统采用了193可逆计数器。假设工作平台运行速度

光栅尺与编码器

FAGOR

2

4
4 6 8 9
10
10
. . . . . .
S/SV G L
12 14 16
M C F
18 20 22 24 25 26
28
28 29 33 35
3

IRED
FACOR
FAGOR FACOR ( ( ( ) ) )
M MKT C S G
(IRED)
(11 App)
LED ( ) FACOR
F L
FACOR
IRED
4

(
(CNC) (DRO)
)
FAGOR I0
I0 50mm I0
I0
FAGOR
I0
M
C
F
FAGOR
I0
EDM
S G L FAGOR
S
G FAGOR I0
I0
SMD
FAGOR 10.02 10.04 10.06 50.1 50.2 50.4 40.04 40.08 40.12 20 100 80 FAGOR SMD
FAGOR
I0
(B) (A)= (B)=
(I 0 )
I0
505(A)
100 0(A) 504 (A)
10 00 50 (A) 3( A)
(A) 00 ) 10 2(A 50
) 1000(A ) 501(A
(B)
I0
5

光栅尺工作原理

光栅尺工作原理 This manuscript was revised on November 28, 2020

光栅尺位移传感器原理简介及维护注意事项 一、光栅尺是什么 轨道旁边的黄色金属条,与其 对应部位,在移载台底部装有 光读头 定义: 光栅尺位移传感器(简称光栅尺),是利用光栅的光学原理工作的测量反馈装置。光栅尺位移传感器经常应用于机床与现在加工中心以及测量仪器等方面,可用作直线位移或者角位移的检测。其测量输出的信号为数字脉冲,具有检测范围大,检测精度高,响应速度快的特点。 二、光栅尺的分类、构造 1)分类: 光栅尺位移传感器按照制造方法和光学原理的不同,分为透射光栅和反射光栅。 ●透射光栅指的玻璃光栅. ●反射光栅指的钢带光栅 2)结构: 光栅尺位移传感器是由标尺光栅和光栅读数头两部分组成。标尺光栅一般固定在机床活动部件上,光栅读数头装在机床固定部件上,指示光栅装在光栅读数头中。下图所示的就是光栅尺位移传感器的结构。 三、光栅尺的工作原理 常见光栅的工作原理都是根据物理上莫尔条纹的形成原理进行工作的。(关于莫尔条纹的原理,可参考相关文献) 简单的说:光读头通过检测莫尔条纹个数,来“读取”光栅刻度,然后再根据驱动电路的作用,计算出光栅尺的位移和速度。 莫尔条纹 四、光栅尺的维护 1)尽可能外加保护罩,并及时清理溅落在尺上的切屑和油液,严格防止任何异物进入光栅尺传感器壳体内部。 2)定期检查各安装联接螺钉是否松动、定期使用干燥的洁净布擦拭表。 3)光栅尺位移传感器严禁剧烈震动及摔打、踩踏,以免破坏光栅尺,如光栅尺断裂,光栅尺传感器即失效了。 4)不要自行拆开光栅尺位移传感器,更不能任意改动主栅尺与副栅尺的相对间距,否则一方面可能破坏光栅尺传感器的精度;另一方面还可能造成主栅尺与副栅尺的相对摩擦,损坏铬层也就损坏了栅线,以而造成光栅尺报废。

相关主题
文本预览
相关文档 最新文档