当前位置:文档之家› 变频器基本结构详解-民熔

变频器基本结构详解-民熔

变频器基本结构详解-民熔
变频器基本结构详解-民熔

变频器基本结构-民熔

整流电路:

整流电路的功能是把交流电源转换成直流电源。整流电路一般都是单独的一块整流模块,但不少整流电路与逆变电路二者合一的模块如民熔变频器系列。

整流模块损坏是变频器常见故障,在静态中通过万用表电阻挡正反向的测量来判断整流模块是否损坏,当然我们还可以用耐压表来测试。有的品牌变频器整流电路,上半桥为可控硅,下半桥为二极管。如大功率的丹佛斯、台达等。判断可控硅好坏的简易方法,可在控制极加

上直流电压(10V左右)看它正向能否导通。这样基本大致能判断出可控硅的好坏。

另外,民熔变频器G9S(P9S)11kw以下的整流模块的特点为该模块集中五种功能。整流,预充电可控硅,制动管,电源开关管,热敏电阻。如CVM40CD120整流模块引脚及功能的名称,供同行参考。

整流:R、S、T、A(+) N-(-)

充电可控硅:A1、P1、G+n(触发)

制动管:DB、N_、G7(触发) DB1 B+是其续流二极管

电源开关管:D8、S8、G8

热敏电阻:Th1 Th2

G9S(P9S)15kw~22kw,整流模块为(VM100BB160)它的功能除整流外还有预充电可控硅。功率在30kw以上的为整流模块单一整流功能。功率75kw以上为多组并联整流模块。

平波电路:

平波电路在整流器、整流后的直流电压中含有电源6倍频率脉动电压,此外逆变器产生的脉动电流也使直流电压变动,为了抑制电压波动采用电感和电容吸收脉动电压(电流),一般通用变频器电源直流部分对主电路构成器件有余量,省去电感而采用简单电容滤波平波电路。

对滤波电容进行容量与耐压的测试,我们还可以观察电容上的安全阀是否爆开。有没有漏液现象来判断的它的好坏。

控制电路:

现代变频调速基本系用16位、32位单片机或DSP为控制核心,从而实现全数字化控制。

变频器是输出电压频率可调的调速装置。提供控制信号的回路称为主控制电路,控制电路由以下电路构成:频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”。运算电路的控制信号进放大的“驱动电路”以及逆变器和电动机的“保护电路”,但实际使用变频器时,其维护工作也比较复杂。这里就变频器控制电路故障报警产生原因提供以下一些处理方法。

常用变频器在使用中,是否能满足传动系统要求,变频器参数设置尤为重要。设置不正确会导致变频器报警而不能正常工作。

变频器基本结构详解-民熔

变频器基本结构-民熔 整流电路: 整流电路的功能是把交流电源转换成直流电源。整流电路一般都是单独的一块整流模块,但不少整流电路与逆变电路二者合一的模块如民熔变频器系列。 整流模块损坏是变频器常见故障,在静态中通过万用表电阻挡正反向的测量来判断整流模块是否损坏,当然我们还可以用耐压表来测试。有的品牌变频器整流电路,上半桥为可控硅,下半桥为二极管。如大功率的丹佛斯、台达等。判断可控硅好坏的简易方法,可在控制极加

上直流电压(10V左右)看它正向能否导通。这样基本大致能判断出可控硅的好坏。 另外,民熔变频器G9S(P9S)11kw以下的整流模块的特点为该模块集中五种功能。整流,预充电可控硅,制动管,电源开关管,热敏电阻。如CVM40CD120整流模块引脚及功能的名称,供同行参考。

整流:R、S、T、A(+) N-(-) 充电可控硅:A1、P1、G+n(触发) 制动管:DB、N_、G7(触发) DB1 B+是其续流二极管 电源开关管:D8、S8、G8 热敏电阻:Th1 Th2 G9S(P9S)15kw~22kw,整流模块为(VM100BB160)它的功能除整流外还有预充电可控硅。功率在30kw以上的为整流模块单一整流功能。功率75kw以上为多组并联整流模块。 平波电路: 平波电路在整流器、整流后的直流电压中含有电源6倍频率脉动电压,此外逆变器产生的脉动电流也使直流电压变动,为了抑制电压波动采用电感和电容吸收脉动电压(电流),一般通用变频器电源直流部分对主电路构成器件有余量,省去电感而采用简单电容滤波平波电路。 对滤波电容进行容量与耐压的测试,我们还可以观察电容上的安全阀是否爆开。有没有漏液现象来判断的它的好坏。

变频器结构及工作原理

变频器结构及工作原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备。如图1所示,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。 1. 整流器 它与单相或三相交流电源相连接,产生脉动的直流电压。 2. 中间电路,有以下三种作用: a. 使脉动的直流电压变得稳定或平滑,供逆变器使用。 b. 通过开关电源为各个控制线路供电。 c. 可以配置滤波或制动装置以提高变频器性能。 3. 逆变器 将固定的直流电压变换成可变电压和频率的交流电压。 4. 控制电路 它将信号传送给整流器、中间电路和逆变器,同时它也接收来自这些部分的信号。其主要组成部分是:输出驱动电路、操作控制电路。主要功能是: a. 利用信号来开关逆变器的半导体器件。 b. 提供操作变频器的各种控制信号。 c. 监视变频器的工作状态,提供保护功能。

现场对变频器以及周边控制装置的进行操作的人员,如果对一些常见的故障情况能作出判断和处理,就能大大提高工作效率,并且避免一些不必要的损失。为此,我们总结了一些变频器的基本故障,供大家作参考。以下检测过程无需打开变频器机壳,仅仅在外部对一些常见现象进行检测和判断。 以下检测过程无需打开变频器机壳,仅仅在外部对一些常见现象进行检测和判断。

变频器基本结构与原理

变频器基本结构与控制简介 1 变频器简介 1.1 变频器的基本结构 变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。 1.2 变频器的分类 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM 控制变频器和高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 2 变频器中常用的控制方式 2.1 非智能控制方式 在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。 (1) V/f控制 V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2) 转差频率控制 转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速和负载变动有良好的响应特性。 (3) 矢量控制 矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,以达到对电动机在d、q、0坐标轴系中的励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。通过控制各矢量的作用顺序和时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。例如形成开关次数最少的PWM波以减少开关损耗。目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。 基于转差频率的矢量控制方式与转差频率控制方式两者的定常特性一致,但是基于转差频率的矢量控制还要经过坐标变换对电动机定子电流的相位进行控制,使之满足一定的条件,以消除转矩电流过渡过程中的波动。因此,基于转差频率的矢量控制方式比转差频率控制方式在输出特性方面能得到很大的改

相关主题
文本预览
相关文档 最新文档