当前位置:文档之家› 高硫石油焦气化技术分析

高硫石油焦气化技术分析

高硫石油焦气化技术分析
高硫石油焦气化技术分析

高硫石油焦气化技术分析

常玉红,马守涛,赵野

(中国石油石油化工研究院大庆化工研究中心,黑龙江大庆163714)

摘要:随着高硫原油产量的增加,高硫石油焦产量也在增加。利用高硫焦替代煤进行气化制氢,既可以解决高硫焦的利用问题,也可以降低氢气成本。介绍和比较了以水煤浆为原料的GE德士古技术、国内开发的四喷嘴水煤浆气化技术和以煤干粉为原料的Shell技术。对高硫焦的气化利用情况进行综述,气化技术将是高硫石油焦应用的发展方向。

关键词:高硫石油焦;气化;德士古气化;Shell气化;喷嘴

2005年全球开采的原油中38%是低硫轻质原油,13%是重质原油,2006年世界探明原油储量(包

括加拿大和委内瑞拉油砂)为17390亿桶,其中,低硫轻质原油占17%,重质原油占38%[1]。在今后20年内含硫和高硫重质原油的产量会逐年增加。委内瑞拉拥有世界上最大的蕴藏重油区———奥利诺科重油带,全球约90%的超重油分布在委内瑞拉的奥利诺科重油带,据委内瑞拉国家石油公司(PDVSA)2005年公布的数据,奥利诺科重油带的可采重油、超重油和天然沥青的探明可采储量高达2350亿桶[2]。仅仅几年前,还认为这种超重原油的开采不经济,但地震分析、垂直与水平钻井技术以及钻井设备上的进展使这种油田开采成为可能[3]。此外,延迟焦化工艺将用于这些方案的原油改质过程[4]。提升炼油厂经济性是增加重质原油加工量的另一原因。为利用低价原油的优势,我国准备引进委内瑞拉重质原油。

油品的加氢改质是油品升级换代最基本的加工手段,目前大部分炼油厂的H

2

成本较高,通过优化

炼油厂制氢原料,降低H

2

成本,满足油品升级需求已迫在眉睫。壳牌公司、通用电气公司、康菲石油公司和萨索尔-鲁奇公司等多家厂商都提供商业规模的气化技术[5]。

1高硫焦气化制氢

延迟焦化过程中,焦化原料中30%的硫进入石油焦[6],因此,劣质高硫原料焦化时不可避免地产生大量的高硫焦,石油焦产量一般为原料的25% 30%[7],而委内瑞拉重质原油焦化所产生的高硫焦可高达30%以上。

为充分利用炼油装置副产的石油焦资源,真正做到原油加工流程的“吃干榨尽”,目前,石油焦主要用于商品销售或作为CFB锅炉燃料,选择合适的气化技术可作为制氢的原料。高硫焦气化技术的选择主要考虑以下方面:气化技术的工业化应用程度、技术先进性及其今后的技术发展趋势和发展潜力。1.1气化技术分类

石油焦气化是指在气化剂的参与下,在一定温度和压力条件下,将石油焦转化为CO和H

2

的过程。根据所采用的气化剂的种类不同(空气、纯氧、富氧空气和水蒸汽等)和气化工艺的不同,能够制得不同成分且不同热值的合成气,以适应下游不同产品的要求。石油焦外观与煤相似,化学性能稳定,不吸水,不自燃,有利于输送、粉碎和储运。高硫焦含固定碳高,热值高,按标准煤折算一吨高硫焦相当于(1.1 1.2)吨标准煤;含灰分0.5%以下比煤(7% 22%)低很多,挥发分约10%比煤(23% 41%)低很多,其燃烧性能类似半无烟煤[8]。根据目前煤气化技术的发展和应用情况,可以选择较为经济合理的煤气化技术用于高硫焦的气化制氢。

煤气化技术的核心设备是气化炉,依据气化炉的操作状态不同,煤气化可以划分为不同的类别。按照最常用的流体力学状态分类,主要有固定床、流化床和气流床3种类型。固定床气化相对简单和成

熟,需要使用块煤,有效气(CO+H

2

)产率低,干灰排渣,环保问题较多。流化床气化采用碎煤进料,灰渣循环使用,对环保压力小,但仍存在气化温度较低,要求原料煤有较好的反应性。气流床技术是当

作者简介:常玉红,1966年生,女,工程师,从事炼油科研开发工作。E-mail:mst459@petrochina.com.cn

今先进煤气化技术,符合大型化要求,是煤气化技术发展的主流趋势,如Shell粉煤气化[9-12]、GE水煤浆气化[13-17]、多喷嘴粉煤气化[18-19]等以粉煤为原料的加压气化技术,其原料适应范围宽、能耗低、有利环保、适于大规模,表1是气流床煤气化技术。

表1气流床煤气化技术

进料分类典型技术技术来源

干煤粉Shell荷兰壳牌

干煤粉GSP[14-17]西门子

干煤粉单喷嘴、多喷嘴华东理工+兖矿

干煤粉Prenflo[15]德国Krupp-Koppers 干煤粉两段式[20-21]西安热工院

水煤浆气化GE美国GE

水煤浆气化Global E-gas[15,25]Destec

水煤浆气化多喷嘴对置气化华东理工+兖矿水煤浆气化多元料浆[22-23]西北化工研究院

1.2国内外煤气技术发展和应用概况

随着石油价格的不断上涨,新一代先进的煤气化工艺技术也随之迅速发展,我国在引进世界先进的粉煤加压气化工艺的同时,自主创新的新型煤气化技术也得到良性发展。有代表性的先进煤气化技术为湿法水煤浆和干法粉煤进料,湿法水煤浆进料的代表工艺有美国GE(Texaco)工艺、国内四喷嘴对置气化(华东理工大学和兖矿集团)、分级气流床气化和多元料浆气化。干法粉煤进料的代表工艺有壳牌SCGP、未来能源GSP(西门子)气化工艺和国内两段干煤粉气化,多喷嘴粉煤气化等处于开发示范阶段。

根据已经投产的煤气化装置运行情况,气流床气化技术的工业化发展较快,其中,以湿法进料气化技术更为成熟。湿法进料和热壁炉气化技术经多年工业化运行,国内外技术均已成熟,工程建设和操作经验丰富,设备国产化力度大,设计和工程建设周期相对短,总体投资省。装置进入平稳运行期短,多炉配置运行灵活,装置投产后,可以较快获得效益。

中国石化通过引进国外先进煤气化技术,陆续对中石化金陵分公司、南化公司、巴陵分公司、湖北化肥分公司、安庆分公司及齐鲁石化公司等6家企业实施原料“煤代油”改造,其中,金陵、南化和齐鲁选用美国GE公司水煤浆气化技术,巴陵、湖北和安庆采用荷兰壳牌公司干粉煤气化技术,6套煤气化装置现全部建成投产。

金陵等3套水煤浆气化装置投产后运行较稳定,其中,金陵水煤浆装置以煤或煤+石油焦为原料,投产第三年后运转率达到95%以上,装置运行负荷最高达到101%,平均连续运行周期超过100天,最长连续运行142天,保证了向炼油装置稳定供应高质量氢气,实现了化肥装置扭亏为盈。南化煤气化装置是采用GE气化技术压力等级最高的一套装置,实际运行气化压力已接近设计的8.7MPa,其成功运行为水煤浆高压气化技术的应用提供了可借鉴经验。

壳牌干粉煤进料气化技术较新,首次用于生产氨合成气和工业氢气,工程和实际运行经验不足,安庆、巴陵和湖北3套煤气化装置投产初期,在工艺、设备和设计等方面暴露出不少问题,煤气化装置开停工频繁,运行周期较短,表2为典型的煤气化装置概况。

表2典型煤气化装置概况

采用技术气化压力/MPa投煤量/t·d-1合成气/m3·h-1产品结构运行天数投产日期金陵GE水煤浆4.020********氢气、氨1422005-09-26南化GE水煤浆8.7150087500氨722006-01-11湖北双环Shell干煤粉[24]4.2900—氨—2006-5-17安庆Shell干煤粉4.020********氢气、氨802006-11-18湖北Shell干煤粉4.020********氨512006-12-10岳阳Shell干煤粉4.020********氢气、氨1122006-12-19齐鲁GE水煤浆6.51600100000氢气、丁辛醇、甲醇2008-10-24

1.3石油焦原料使用情况

国内采用GE水煤浆气化技术的有金陵石化和齐鲁石化煤气化装置,设计原料为煤和石油焦混合进料,最大掺焦比例为50%。目前,仅金陵煤气化装置进行了30% 50%不同比例的掺焦运行,还进行了全烧石油焦的工况试验,通过实际运行摸索,不同石油焦掺用比例下对气化运行参数、主要消耗、灰水处理和酸性气体脱除能力影响等均积累了一定的

运行经验,为今后进一步利用石油焦作为制合成气的原料提供了可借鉴经验。各类型煤气化技术中,仅有GE等少数水煤浆气化技术具有实际掺用石油焦的使用经验,可根据用户需要,提供不同掺焦比例的工艺包设计。

2主要煤气化技术分析对比

以Shell为代表的干煤粉气化技术包括煤的碾磨和干燥、煤的加压和给料、气化和激冷、干法除尘、湿法洗涤以及初级水处理等。采用水冷壁炉,废锅回收热,产生高压蒸汽。具有煤种适应范围宽、气化效率高和环保性能优良等特点。GE水煤浆气化技术典型工艺流程主要包括煤的研磨与煤浆制备、水煤浆气化、气化炉排渣系统、水煤气洗涤、黑水闪蒸及黑水处理系统等主要工艺单元。根据煤气用途不同可用直接水激冷或废锅回收热量。该技术工业化成熟度高,国产化程度高,气化压力等级高,已建有(2.8 8.7)MPa等级装置。四喷嘴对置气化技术属水煤浆进料,由华东理工大学开发。水煤浆分别经4台高压煤浆泵加压计量后与氧气一起送至4个对称布置的喷嘴,在炉内进行部分氧化反应。流程包括四喷嘴对置式水煤浆气化炉、采用节能高效的分级式合成气初步净化系统和采用直接换热技术的渣水处理系统。工业化应用比较见表3 4。

表3主要气化工艺技术及基本参数

Shell干煤粉气化GE水煤浆气化四喷嘴对置气化原料处理磨煤、干燥磨煤、制浆磨煤、制浆

进料方式干粉水煤浆水煤浆

进料位置气化炉下部气化炉顶部气化炉侧部合成气出口位置气化炉上部气化炉下部气化炉下部合成气冷却方式循环气激冷冷却液激冷冷却液激冷操作压力/MPa2.0 4.02.0 8.72.0 6.5

操作温度/?1400 17001100 14801100 1480单炉处理能力/t·d-1200015001150

H

2

/CO0.4 0.50.7 1.10.7 1.1

H

2O/H

2

+CO 0.21.3 1.41.3 1.4

合成气循环压缩机需要无无

污水处理可蒸干处理大部分循环使用大部分循环使用

表4煤气化技术工业化装置情况

气化技术企业名称

单炉产气量

(CO+H

2

)/m3·h-1

气化炉

台数/台

气化压力/

MPa

投煤量/

t·d-1

产品

Shell干煤粉气化神华煤制油有限公司15000024.03500H2 Shell干煤粉气化中石化湖北化肥分公司14200014.02000氨Shell干煤粉气化岳阳Shell煤气化有限公司14200014.02000氨Shell干煤粉气化中石化安庆分公司14200014.02000氨

GE水煤浆气化金陵石化685002开1备4.01976H2 GE水煤浆气化南化公司875001开1备8.71466氨GE水煤浆气化齐鲁第二化肥厂499382开1备6.51600合成气四喷嘴对置气化兖矿国泰化工有限公司—2台4.01150甲醇四喷嘴对置气化兖矿国泰化工有限公司—1台4.01150甲醇四喷嘴对置气化华鲁恒升化工有限公司—1台6.5750氨四喷嘴对置气化兖矿鲁南化肥厂—1台4.01150尿素四喷嘴对置气化江苏灵谷化工有限公司—2台6.51800氨

续表

气化技术企业名称

单炉产气量

(CO+H

2

)/m3·h-1

气化炉

台数/台

气化压力/

MPa

投煤量/

t·d-1

产品

四喷嘴对置气化山东久泰能源有限公司—6台6.52000二甲醚四喷嘴对置气化安徽华谊化工有限公司—3台6.51500甲醇四喷嘴对置气化滕州凤凰化肥有限公司—3台6.51500氨、甲醇四喷嘴对置气化江苏索普(集团)有限公司—3台6.51500甲醇四喷嘴对置气化神华宁煤集团有限公司—3台4.02000甲醇四喷嘴对置气化宁波万华聚氨酯股份有限公司—3台6.51000甲醇、氨四喷嘴对置气化安徽华谊化工有限公司—3台6.51500甲醇四喷嘴对置气化山东盛大宁东化工有限公司—2台6.52000甲醇

通过以上分析可知,高硫焦的气化技术优选有经验的GE技术,其次国内的四喷嘴技术在工业示范装置上的成功应用为高硫焦的气化提供了又一种选择。

3结论

(1)重质原油的加工使氢气、蒸汽和电力的需求增加,为气化处理石油焦提供了机遇。

(2)炼油厂供氢一般要求气化装置运行可靠性高,规模不大,操作灵活等条件,高硫焦气化技术选择可根据原料适宜程度分别采用水煤(焦)浆气化技术,可优先采用国产的四喷嘴气化技术。

(3)气化制氢将是高硫石油焦应用的发展方向。

参考文献:

[1]Lara A,Leger M W,Auers J.Crude oil price forecasting:a statistical approach[C].In:NPRA2007Annual Meeting,San Antonio:NPRA,2007,AM-07-45.

[2]杨辉,顾文文,李文.世界重油资源开发利用现状和前景[J].中外能源,2006,11(6):10-14.

[3]鲁刚,徐国民.委内瑞拉重质原油的开采[J].国外油田工程,2000,(7):9-10.

[4]侯芙生.发挥延迟焦化在深度加工中的重要作用[J].当代石油石化,2006,14(2):3-7.

[5]Praveen Gunaseelan US.Crude oil imports:recent trends and their impact on refining[C].NPRA2009Annual Meeting,San Antonio:NPRA,2009,AM-09-41.

[6]赵子明.高硫石油焦的工业利用前景分析[J].中外能源,2006,11(5):65-68.

[7]冯娜,田原宇,刘芳等.石油焦后处理技术及其应用[J].石油与天然气化工,2008,37(2):134-137.

[8]刘家栋.高硫焦的应用探讨[J].福建化工,1997,(4):5-8.[9]马军,孙志萍.Shell煤气化技术及其在国内的应用[J].化学工业与工程技术,2008,29(3):54-56.[10]汪家铭.Shell煤气化技术及其在我国的应用[J].煤炭加工与综合利用,2007,(2):37-39.

[11]汪家铭.Shell煤气化技术在我国的应用及前景展望[J].氮肥技术,2009,30(2):9-16.

[12]王永军.煤气化工艺技术的选择[J].西部煤化工.2008,(1):30-35.

[13]方月兰,林阿彪,王彬.Texaco与Shell煤气化工艺比较分析[J].化学工业与工程技术,2007,28(6):57-60.[14]谢书胜,邹佩良,史瑾燕.德士古水煤浆气化、Shell气化和GSP气化工艺对比[J].当代化工,2008,37(6):

66-69.

[15]韩启元,许世森.大规模煤气化技术的开发与进展[J].热力发电,2008,37(1):4-8.

[16]谭成敏,曹召军.GSP粉煤气化技术引进方案的优化[J].煤化工,2008,(1):10-12.

[17]王澄,严行健,仝德全.国内首座采用GSP气化技术的IGCC电站综述[J].江苏电机工程,2009,28(1):11-14.[18]陆新华,胡瑾,张彦.多喷嘴对置式气化炉与单喷嘴水煤浆气化炉实际运行数据的比较与相关分析[J].化工

技术与开发,2008,37(4):40-43.

[19]路文学.新型多喷嘴对置式水煤浆气化技术工业化应用[J].现代化工,2006,26(8):52-54.

[20]许世森,李小宇,任永强,等.两段式干煤粉加压气化技术中试研究[J].中国电力,2007,40(4):42-46.[21]任永强,许世森,夏军仓,等.两段式干煤粉加压气流床气化试验研究[J].热力发电,2007,(8):27-30.[22]张晓慧.多元料浆气化装置的设备布置及工艺配管设计[J].化肥设计,2009,47(1):35-37.

[23]张晓慧,王晓东.煤成分对多元料浆气化工艺的影响[J].山东化工,2008,37(1):27-29.

[24]蒋远华,杨晓勤,古永红.Shell粉煤加压气化工艺及与YH粉煤连续成型气化工艺的对比[J].小氮肥,2008,36(3):8-10.

[25]郑振安.Destec煤气化工艺的特点[J].化肥设计,2004,42(6):3-7.

铝及铝合金化学分析方法

铝及铝合金化学分析方法 EDTA滴定法 第32部分:铋含量的测定 Na 2 编制说明(征求意见稿) 一、工作简况 1、任务来源及计划要求 根据国标委《国家标准委关于下达2018年第三批国家标准制修订计划的通知》(国标委综合〔2018〕60号)文件精神,《铝及铝合金化学分析方法第32部分:铋量的测定方法二:Na2EDTA滴定法》由全国有色金属标准化技术委员会负责归口,由广东省工业分析检测中心负责,项目计划编号为20182000-T-610,完成时间为2020年。 2018年3月14日~3月16日,全国有色金属标准化技术委员会于云南省昆明市组织召开有色金属标准工作会议,会议对国家标准《铝及铝合金化学分析方法第32部分:铋量的测定方法二:Na2EDTA滴定法》进行任务落实,由广东省工业分析检测中心负责起草,参与起草单位有长沙矿冶研究院有限责任公司、贵州省分析测试研究院、中国铝业郑州有色金属研究院有限公司、山东南山铝业股份有限公司、深圳市中金岭南有色金属股份有限公司、北矿检测技术有限公司、有研亿金新材料有限公司。 2、调研和分析工作的情况 在当前国家“一带一路”、“中国制造2025”、国际产能和装备制造合作等战略发展形势下,随着国内外铁路、航空、电力和核发展等有力推动,促使轻量化结构材料---铝合金的需求量不断增长。 现有的GB/T20975系列《铝及铝合金化学分析方法》中没有铋的检测方法,而现有的涉及铝及铝合金中铋元素的检测方法是YS/T 807.9-2012 《铝中间合金化学分析方法第9部分:铋含量的测定碘化钾分光光度法》,测定范围为1.00 %~11.00 %,相较于分光光度法,化学滴定法更适用于常量铋的测定,因此有必要制定铝及铝合金中铋的化学滴定法检测标准,Na2EDTA滴定法用于测定范围为2.50 %~12.00 %的铋量。 Na2EDTA滴定法测定结果具有准确度高、操作简便的特点。对铝及铝合金中铋的Na2EDTA 滴定法测定条件和测定方法进行系统研究,并确定方法的准确度及精密度,最终形成国家标准。方法测定范围为2.50 %~12.00 %。 3、起草单位情况 广东省工业分析检测中心是我国南方从事金属材料、冶金产品、化工产品、再生资源质量检测、欧盟环保(RoHS)指令的有害物质检测、金属材料综合利用检测与咨询、评价以及分析测试技术研究的专业机构。先后隶属于广州有色金属研究院、广东省工业技术研究院(广州有色金属研究院),2015年12月经广东省机构编制委员会批准成为广东省科学院属下的独立事业法人单位。中心是一个检测设备配套齐全、检测技术完备、人员结构合理、管理科学的检测机构。近十年来获得省部级科技进步奖20项。累计申请专利15件,其中授权发明专利5件、授权实用新型专利2件。承担国家、省级各类项目50余项,主持和参与国家、行业标准300余项,发表专著5部,发表论文300余篇。 4、主要工作过程 根据任务落实会议精神,我中心成立《铝及铝合金化学分析方法》起草课题小组,明确了标准的进度安排、任务分工、确定了编制标准的工作计划及技术路线,完成相应的方法研究工作,完成标准相关工作。 (1)2018年3月14日~3月16日在云南省昆明市组织召开有色金属标准工作会议。对《铝及铝合金化学分析方法第32部分:铋量的测定方法二:Na2EDTA滴定法》标准进行了任务落实,批准了由广东省工业分析检测中心负责起草,长沙矿冶研究院有限责任公司、

石油焦指标

石油焦指标 焦化的石油焦主要是针对用户而言,重点关注:硫含量、灰分和挥发分,有时包括水分和真密度; 具体内容如下: 1)挥发份 如石油焦中所含挥发份的量太多,在煅烧时焦炭易于破碎。焦炭塔的反应温度会影响焦炭的挥发份含量。 2)硫含量 硫含量是石油焦重要的质量指标。例如在生产石墨电极焦时,硫残留在石墨电极里,当电极处在1500℃以上的高温时,硫会分解出来,使电极晶体膨胀,再冷却时又会收缩,以致使电极破裂。焦炭硫含量与原料油的沥青质和残炭值有关。硫含量相同的两种焦化原料油,高沥青质含量、高残炭值的原料生产的焦炭硫含量也较高。焦炭塔温度对焦炭硫含量有影响:焦炭塔温度升高后,从焦炭中蒸发出来的低硫重质油增多,所以焦炭的硫含量会相应增高。 3)灰分 在高温石墨化过程中,部分灰分会挥发而形成孔隙,从而使成品电极的机械强度和电性能降低。此外,石墨电极中灰分的存在还会影响冶金产品的纯度。 4)真密度 单位体积的焦块在1300℃的高温煅烧,五小时后出的重量叫石油焦的真密度。其单位为g/cm3,一般在2.0以上,其大小可直接反映了焦炭的强度和质量。 延迟焦化装置生产的石油焦一般为生焦,若要生产冶炼用电极等产品时,需经过煅烧,成为熟焦,又称煅烧焦。石油焦没有国际统一的质量标准及测试方法。我国现用普通石油焦的标准名称为延迟石油焦(生焦),属于中华人民共和国石油化工行业标准,编号为 SH0527-92 。 该标准中的一级品和合格品中的1A和1B焦适用于炼钢工业中制作普通功率石墨电极,也适用于炼铝工业中制作铝用炭素。 合格品中2A和2B焦炭用于炼铝工业中制作铝用炭素。 合格品中3A和3B焦炭用于化学工业中制作碳化物或作燃料。

石油焦标准

石油产品试验方法 中华人民共和国石油化工行业标准( SH/T0010~0037-90) 附录A 石油焦试样制备法 A1.从作业线、车箱、堆放场地或其它运输工具上采样,一次样经13mm 筛,筛后不应小于4000g。 A2 .将4000g样品分成四份,每份1000g, —份弃之不要,第二份作为检查分析用,第三份再分为四份,每份250g,其中二份弃之不用,二份留实验室供作测定水分用。 A3 .研磨质量不小于1000g的第四份试样,直至微粒尺寸小于3mm,并缩分至250g,在180?190C烘箱的烤盘上烘烤15min,再研磨到微粒尺寸小于,这时留在筛上的试样应不超过3%。 A4 .将通过筛的试样分为四份,每份质量约60g,作为分析试样。第一份 供实验室技术分析用,第二份按用户要求作分析用试样;第三份作留样;第四份弃之不要。 A5 .试验和检查用的分析试样,置于用防蚀材料制成的有密封盖的瓶里,瓶里放入和瓶外贴上填有产品类别、试样名称、批号、采样时间和地点的标签。A6 .试样保管期:供测水分的试样为3d;供作技术分析的试样为20d;分析试样邮寄时,用瓶装外加木箱包装。 附录B 石油焦水分的测定方法

B1.用本标准附录A制备的试样进行试验。 B2.烘箱加热温度稳定在130?140 C。 B3.称量瓶有密合的盖,其大小应使称取2g试样时,每1cm2的试样质量不大于。 B4.从试样中不同的深度的两、三处取出约2g试样(天平称量误差不大于),置于预先烘干并称量过的称量瓶里称量,并使符合B3 的要求。 B5.将装有试样的称量瓶放到预先加热到135?140C的烘箱里,保持45mi n,然后取出在空气中冷却5mi n,放入干燥器中冷却至室温,称量后放回到干燥器中,20min 后再从干燥器中取出称量,如果两次称量差数不超过,则认为已恒重。 B6.所有称量误差不得大于。 B7.计算 试样中水分W[% (m/m)]按下式计算: W=(m5 —m6)/(m5 —mu) >100 式中:m4 —带盖称量瓶的质量,g; m5 -带盖称量瓶和试样干燥前的质量,g; m6 -带盖称量瓶和试样干燥后的质量,g; 8.精密度重复性:重复测定两个结果之差不应大于%。 石油焦灰分测定法 1. 主题内容与适用范围本标准规定了用高温煅烧方法测定石油焦的灰分。 本标准适用于延迟焦。

高硫石油焦气化技术分析

高硫石油焦气化技术分析 常玉红,马守涛,赵野 (中国石油石油化工研究院大庆化工研究中心,黑龙江大庆163714) 摘要:随着高硫原油产量的增加,高硫石油焦产量也在增加。利用高硫焦替代煤进行气化制氢,既可以解决高硫焦的利用问题,也可以降低氢气成本。介绍和比较了以水煤浆为原料的GE德士古技术、国内开发的四喷嘴水煤浆气化技术和以煤干粉为原料的Shell技术。对高硫焦的气化利用情况进行综述,气化技术将是高硫石油焦应用的发展方向。 关键词:高硫石油焦;气化;德士古气化;Shell气化;喷嘴 2005年全球开采的原油中38%是低硫轻质原油,13%是重质原油,2006年世界探明原油储量(包 括加拿大和委内瑞拉油砂)为17390亿桶,其中,低硫轻质原油占17%,重质原油占38%[1]。在今后20年内含硫和高硫重质原油的产量会逐年增加。委内瑞拉拥有世界上最大的蕴藏重油区———奥利诺科重油带,全球约90%的超重油分布在委内瑞拉的奥利诺科重油带,据委内瑞拉国家石油公司(PDVSA)2005年公布的数据,奥利诺科重油带的可采重油、超重油和天然沥青的探明可采储量高达2350亿桶[2]。仅仅几年前,还认为这种超重原油的开采不经济,但地震分析、垂直与水平钻井技术以及钻井设备上的进展使这种油田开采成为可能[3]。此外,延迟焦化工艺将用于这些方案的原油改质过程[4]。提升炼油厂经济性是增加重质原油加工量的另一原因。为利用低价原油的优势,我国准备引进委内瑞拉重质原油。 油品的加氢改质是油品升级换代最基本的加工手段,目前大部分炼油厂的H 2 成本较高,通过优化 炼油厂制氢原料,降低H 2 成本,满足油品升级需求已迫在眉睫。壳牌公司、通用电气公司、康菲石油公司和萨索尔-鲁奇公司等多家厂商都提供商业规模的气化技术[5]。 1高硫焦气化制氢 延迟焦化过程中,焦化原料中30%的硫进入石油焦[6],因此,劣质高硫原料焦化时不可避免地产生大量的高硫焦,石油焦产量一般为原料的25% 30%[7],而委内瑞拉重质原油焦化所产生的高硫焦可高达30%以上。 为充分利用炼油装置副产的石油焦资源,真正做到原油加工流程的“吃干榨尽”,目前,石油焦主要用于商品销售或作为CFB锅炉燃料,选择合适的气化技术可作为制氢的原料。高硫焦气化技术的选择主要考虑以下方面:气化技术的工业化应用程度、技术先进性及其今后的技术发展趋势和发展潜力。1.1气化技术分类 石油焦气化是指在气化剂的参与下,在一定温度和压力条件下,将石油焦转化为CO和H 2 的过程。根据所采用的气化剂的种类不同(空气、纯氧、富氧空气和水蒸汽等)和气化工艺的不同,能够制得不同成分且不同热值的合成气,以适应下游不同产品的要求。石油焦外观与煤相似,化学性能稳定,不吸水,不自燃,有利于输送、粉碎和储运。高硫焦含固定碳高,热值高,按标准煤折算一吨高硫焦相当于(1.1 1.2)吨标准煤;含灰分0.5%以下比煤(7% 22%)低很多,挥发分约10%比煤(23% 41%)低很多,其燃烧性能类似半无烟煤[8]。根据目前煤气化技术的发展和应用情况,可以选择较为经济合理的煤气化技术用于高硫焦的气化制氢。 煤气化技术的核心设备是气化炉,依据气化炉的操作状态不同,煤气化可以划分为不同的类别。按照最常用的流体力学状态分类,主要有固定床、流化床和气流床3种类型。固定床气化相对简单和成 熟,需要使用块煤,有效气(CO+H 2 )产率低,干灰排渣,环保问题较多。流化床气化采用碎煤进料,灰渣循环使用,对环保压力小,但仍存在气化温度较低,要求原料煤有较好的反应性。气流床技术是当 作者简介:常玉红,1966年生,女,工程师,从事炼油科研开发工作。E-mail:mst459@petrochina.com.cn

公司未来发展前景(1)

公司未来发展前景 安徽成兴循环科技发展有限公司成立于2013年5月,公司将投资建设《年20万吨废塑料初加工及年产12万吨超细复合纤维》项目,项目预计总投资8.5亿元,其中固定资产投资6.5亿元。首期注册资本5000万元,立项占地面积650亩(实际规划用地面积744亩)。 公司拟建设一个废旧塑料集合群工业园区,由循环科技研发中心、废塑料初加工区、超细复合纤维深加工区和日万吨级污水处理工程及集中供气、供电工程组成。 废塑料回收、利用是维持我国塑料工业持续发展的必经之路,也是解决塑料垃圾污染环境的最经济、最有效的方法,因此废塑料回收利用是一项前途光明的绿色产业。 安徽省界首市是我国著名的废塑料聚散地,“安徽省田营循环经济工业区”在2011年被国家首批列入“城市矿产”示范基地之一。现该地区由于种种原因最终没能形成规模化的发展,但是原有的废塑料加工利用基础仍然存在,目前该地区从事废塑料加工利用的经营户近1500家,从业人员3万余人,年收购、处理的废塑料达130万吨之多。 安徽成兴循环科技发展有限公司在安徽阜阳界首市工业小区建《年20万吨废塑料加工胶年产12万吨超细复合纤维项目》,项目建成后对界首市废塑料加工行业的现状可得到相应的改变,直接改变目前废塑料初加工过程中的废气、废水污染环境的问题

以及循环用水、节约用水的问题;建设一个先进的废塑料深加工生产区,与废塑料初加工形成产业链,打造界首市循环经济及资源再生利用的标杆企业和龙头企业;项目建设符合国家和安徽省关于发展循环经济的要求,有利于界首市废塑料回收加工业的有序发展和良性发展。 项目厂址条件较优越,交通运输方便,当地水、电资源可靠,煤炭供应渠道畅通,具备支持本项目建设的条件和能力。项目投入运行后,具有明显的的经济效益,能安排千余人就业,具有较好的社会效益,经济效益、环境效益,建设周期短、见效快,具有一定的抗风险能力。 废塑料是我国八大类再生资源的重要组成部分,通过回收废塑料而实现节能、降耗、减排的效果尤为显著,中国塑料加工工业协会的一项统计数据表明,2010年我国共计回收约2000万吨废塑料,其中:进口废塑料约862吨,国内回收废塑料约1200万吨。废塑料回收已经成为我国再生资源回收的主力军。 根据中国塑料加工工业协会的一项调查数据,2010年我国塑料消费量为7135.6万吨,已经成为全球最大的塑料消费国和仅次于美国的塑料第二大生产国,预计到2015我国合成树脂及塑料产品的消费量将达到1亿吨,并急剧地向差别化、功能化、高端化方向发展,巨大的塑料增量为废塑料回收利用行业的进一步发展奠定了雄厚的基础。 从材料本身而言,再生塑料比原生塑料具有更好的环境优势,以聚酯塑料为例,生产再生聚酯所需原料不足合成聚酯所需原料的2/3,并减少了2/3的二氧化硫和50%的二氧化氮的排放,用水量减少10倍,二氧化碳排放量减少2.5倍。另一方面,国家

石灰石化学分析方法

石灰石化学分析方法 分析化验联系电话0519886339130找李主任1. 烧失量的测定称取1.0000克试样,至于瓷坩埚中,放在马弗炉内,从低温逐渐升高温度,在900~1000℃下灼烧1h。2. 二氧化硅的测定称取约0.6g试样,精确至0.0001g ,置于铂坩埚中,将盖斜置于坩埚上,并留有一定缝隙,在900~1000℃下灼烧5min,取出坩埚冷却至室温,用玻璃棒仔细压碎块状物,加入0.3g无水碳酸钠混匀,再将坩埚置于950~1000℃下灼烧10min ,取下冷却至室温。将烧结块移入瓷蒸发皿中,加少量水润湿,盖上表面皿,从皿口加入5mL盐酸(1+1)及2~3滴硝酸,待反应停止后取下表面皿,用平头玻璃棒压碎块状物使分解安全,用热盐酸(1+1)清洗坩埚数次,洗液合并于蒸发皿中,将蒸发皿置于沸水浴上,皿上放一玻璃三角架,再盖上表面皿,蒸发至糊状后,加入1g氯化氨,充分搅匀,在沸水浴上蒸发至干后继续蒸发10~15min 。取下蒸发皿,加入10~20mL热盐酸(3+97),搅拌使可溶性盐溶解。用中速滤纸过滤,用胶头檫棒以热水檫洗玻璃棒及蒸发皿,用热水洗涤10~12次。滤液及洗液保存于250mL容量瓶中。将沉淀连同滤纸一并移入原铂坩埚中,干燥、灰化后,放入已升温至950~1000℃的马弗炉内灼烧30min,取出坩埚至于干燥器中,冷却至室温,恒量。向坩埚内加数滴水润

湿沉淀,加3滴硫酸(1+4)和5mL氢氟酸,放入通风橱缓慢加热,蒸发至干,升高温度继续加热至三氧化硫白烟完全散尽。将坩埚放入已升温至950~1000℃内灼烧30min,取出坩埚至于干燥器中,冷却至室温,恒量。经氢氟酸处理后得到的残渣中加入1g焦硫酸钾,在500~600℃下熔融至透明,熔块用热水和数滴盐酸(1+1)溶解,溶液并入分离二氧化硅后得到的滤液和洗液中,用水稀释至标线,摇匀。 3. 氧化钙的测定吸取25mL于400mL烧杯中,加水稀释约200mL,加5mL三乙醇胺(1+2)及适量的CMP(1.000g钙黄绿素、1.000g甲基百里香酚蓝、0.200g酚酞、50g已在105℃烘干过的硝酸钾)混合指示剂,在搅拌下加入氢氧化钾(200g/L)至出现绿色荧光后再过量5~8mL ,以EDTA(0.015mol/L)滴定至绿色荧光消失并出现红色。 4. 氧化镁的测定吸取25mL于400mL烧杯中,加水稀释约200mL,依次加入1mL 酒石酸钾钠(100 g/L)和5mL三乙醇胺(1+2),搅拌,然后加入25mL、pH10缓冲溶液(67.5g氯化氨、570mL氨水)及适量的酸性铬蓝K—萘酚绿B混合指示剂(1.000g酸性铬蓝K、0.200g萘酚绿B、50g硝酸钾),以EDTA(0.015mol/L)滴定,近终点时应缓慢滴定至纯蓝色。5. 浆液pH值的测量电极每天使用前用缓冲溶液进行检查和校核pH值测量必须在现场流动的浆液中进行,并同时观测温度,通过pH计所显示的数字,对浆液在线pH计的读数进行对比。测量完毕

石油焦项目立项报告

石油焦项目立项报告 投资分析/实施方案

报告说明— 该石油焦项目计划总投资14255.53万元,其中:固定资产投资11188.29万元,占项目总投资的78.48%;流动资金3067.24万元,占项目总投资的21.52%。 达产年营业收入25070.00万元,总成本费用19184.83万元,税金及附加256.48万元,利润总额5885.17万元,利税总额6953.40万元,税后净利润4413.88万元,达产年纳税总额2539.52万元;达产年投资利润率41.28%,投资利税率48.78%,投资回报率30.96%,全部投资回收期4.73年,提供就业职位470个。 石油焦的主要用途是电解铝所用的预配阳极和阳极糊、碳素行业生产增炭剂、石墨电极、冶炼工业硅以及燃料等。主要用于制取碳素制品,如石墨电极、阳极弧、制作炼铝阳极,提供炼钢、有色金属、炼铝制用。

第一章项目概论 一、项目概况 (一)项目名称及背景 石油焦项目 (二)项目选址 某经济开发区 场址应靠近交通运输主干道,具备便利的交通条件,有利于原料和产成品的运输,同时,通讯便捷有利于及时反馈产品市场信息。项目建设方案力求在满足项目产品生产工艺、消防安全、环境保护卫生等要求的前提下尽量合并建筑;充分利用自然空间,坚决贯彻执行“十分珍惜和合理利用土地”的基本国策,因地制宜合理布置。 (三)项目用地规模 项目总用地面积39766.54平方米(折合约59.62亩)。 (四)项目用地控制指标 该工程规划建筑系数63.16%,建筑容积率1.44,建设区域绿化覆盖率6.66%,固定资产投资强度187.66万元/亩。 (五)土建工程指标

石油焦知识

一、石油焦 (一)石油焦 1、定义 石油焦(PETroleum coke)是原油经蒸馏将轻重质油分离后,重质油再经热裂的过程,转化而成的产品,从外观上看,焦炭为形状不规则,大小不一的黑色块状(或颗粒),有金属光泽,焦炭的颗粒具多孔隙结构,主要的元素组成为碳,占有80wt%以上,其余的为氢、氧、氮、硫和金属元素。石油焦具有其特有的物理、化学性质及机械性质,本身是发热部份的不挥发性碳,挥发物和矿物杂质(硫、金属化合物、水、灰等)这些指标决定焦炭的化学性质。 2、性质 石油焦是黑色或暗灰色坚硬固体石油产品,带有金属光泽,呈多孔性,是由微小石墨结晶形成粒状、柱状或针状构成的炭体物。石油焦的主要用途是电解铝所用的预焙阳极和阳极糊、碳素行业生产增炭剂、石墨电极、冶炼工业硅以及燃料等。石油焦组分是碳氢化合物,含碳90-97%,含氢1.5-8%,还含有氮、氯、硫及重金属化合物。 石油焦是延迟焦化装置的原料油在高温下裂解生产轻质油品时的副产物。石油焦的产量约为原料油的25-30%。其低位发热量约为煤的1.5-2倍,灰分含量不大于0.5%,挥发分约为11%左右,品质接近于无烟煤 3、性状 石油焦的形态随制程、操作条件及进料性质的不同而有所差异。从石油焦工场所生产的石油焦均称为生焦(green cokes),含一些未碳化的碳烃化合物的挥发份,生焦就可当做燃料级的石油焦,如果要做炼铝的阳极或炼钢用的电极,则需再经高温煅烧,使其完成碳化,降低挥发份至最少程度。大部份石油焦工场所生产的焦外观为黑褐色多孔固体不规则块状,此种焦又称为海绵焦(sponge coke)。第二种品质较佳的石油焦叫做针状焦(needle coke)与海绵焦比,由于其具较低的电阻及热膨胀系数,因此更适合做电极。有时另一种坚硬石油焦亦会产生,称之为球状焦(shot coke)。这种焦形如弹丸,表面积少,不易焦化,故用途不多。(二)石油焦加工工艺 石油焦与煅烧焦及石墨电极的价格每吨相差数百元甚至上千元。因此,国内许多企业都在进行石油焦增值加工的工作。 1、生产煅后石油焦 国外的石油焦煅烧过程全部在炼油厂完成,炼油厂生产出的石油焦直接进入煅烧装置进行煅烧。由于我国国内炼油厂没有煅烧装置,炼油厂生产的石油焦廉价出售。目前,我国的石油焦及煤炭的煅烧均在冶金行业进行,如碳素厂、铝厂等。 煅烧焦主要用于生产石墨电极、炭糊制品、金刚沙、食品级磷工业、冶金工业、制电石等。其中应用最广泛的是石墨电极。 煅烧石油焦在国内的销售市场比较看好,它的最大用户是炼铝工业,锻烧石油焦在国外市场销售的前景也很乐观,例如,镇江碳素厂,一次就出口美国20kt煅后焦。普通石油焦与煅后焦的价格每吨相差数百元,煅烧石油焦将是炼油厂提高焦化装置经济效益的一项重要举措,石油焦的后加工可以使石油焦得到极大增值。2、生产石墨电极 镇江焦化煤气公司煅后焦出口到日本,日本再石墨化后,则价格约3500元/t。因此,有必要采取增大石油焦附加值的方法来增效创收,采取对石油焦进行煅烧来提高石油焦的销售价格。吉林炭素厂用大庆和抚顺二厂的针状焦为原料,研制了达到国外同类产品水平的超高功率石墨电极。兰州炭素厂选择国内某种优质石油焦,采用大颗粒配方,加以其它工艺上的措施,研制了高功率石墨电极。如果工艺控制得当,用胜利焦也可以生产石墨电极。高硫石油焦会导致石墨电极龟裂,不适宜做石墨电极。 3、生产活性炭 活性炭是一种优良吸附剂,石油焦制备活性炭产率可达78%,石油焦按550元/t计,生产一吨活性炭仅需704元。以年生产规模1k计,粉末活性炭总产值394.6万元,税后利润92.7万元;以1kt计,颗粒活性炭总产值526.2万元,税后利润122.7万元。建1kt/a石油焦粉末或颗粒活性炭厂,一年可建成投产,其投资分别为172.5万元和230万元。 (三)石油焦生产工艺

钽铌化学分析方法

钽铌化学分析方法 第部分:钽中铌含量的测定 电感耦合等离子体原子发射光谱法和色层分离重量法 编制说明 (征求意见稿) 宁夏东方钽业股份有限公司

钽铌化学分析方法 第部分:钽中铌含量的测定 电感耦合等离子体原子发射光谱法和色层分离重量法 编制说明 一、工作简况 项目来源 根据国家标准化管理委员会《国家标准委关于下达年第三批国家标准制修订计划的通知》(国标委综合[]号)的文件精神,由宁夏东方钽业股份有限公司负责《钽铌化学分析方法第部分:钽中铌含量的测定电感耦合等离子体原子发射光谱法和色层分离重量法》国家标准的起草任务,计划编号为,项目完成年限为年月。 项目所涉及的方法简况 钽具有耐腐蚀性、化学稳定性高、冷加工性能好和表面氧化膜介电常数大等优点,有许多重要用途。钽主要用做制作钽电解电容器,具有电容量大、漏电流小、等效串联电阻低、稳定性好、可靠性高、耐压性能好、寿命长、体积小等突出特点,是一种用途极其广泛的功能材料。钽钨、钽钨铪、钽铪合金,比任何别的材料更能经受高温和矿物酸的腐蚀,可作为飞机、导弹、火箭的耐热高强度材料以及控制、调节装置的零部件等。铌具有细化钢中晶粒的能力,在钢中加入极少量铌,能大大提高钢的强度,改善钢的机械和焊接性能,提高抗腐蚀性能。铌可用做电容器、铌基高温合金、超导材料等。铌和钽还用作骨科和外科手术材料。碳化钽用于制作超硬工具的添加剂。氧化钽可以用于制造高级光学玻璃和催化剂等。 该标准是采用电感耦合等离子体原子发射光谱法和色层分离重量法进行检测,钽中铌含量检测范围~。标准中包含测试原理、所用试剂、样品处理、分析和结果计算方法。 起草单位情况 宁夏东方钽业股份有限公司是集科研、生产与技术开发为一体的国有大型稀有金属企业,是国内最大的钽、铌产品生产基地,科技先导型钽、铌研究中心;是国家重点高新技术企业、国家首批创新型企业、国家成果产业化基地、全国专利工作试点企业和国家级企业技术中心;是国际钽铌研究中心()执委单位;是世界钽工业三强之一。 公司在钽、铌及其合金技术领域具有雄厚的研究开发实力,在国内同行业中处于技术领先地位。其综合实力代表了我国钽、铌工业的整体水平,是我国国防、核能、宇航、电子、冶金和化工工业等高新技术领域里的一个极为重要的稀有金属材料研究、开发、成果转化为一体的综合基地。几十年来承担了我国钽铌特种金属材料领域绝大部分国家级科研和产业化项目,多项成果获国家级、省部级科技进步奖。公司拥有用于科研开发的价值达亿元以上的仪器设备,仪器的自动化与精度已经达到了国际先进或国内领先的水平。 宁夏东方钽业股份有限公司分析检测中心成立于年,检测能力涵盖钽铌钛产品和原辅材料的化学成分分析、气体成分分析和电性能检测,并在实验室内部建立了标准化的检测方法和作业指导书。年以来,负责起草了《钽铌化学分析方法第部分:铌中钽含量的测定》、《钽铌化学分析方法第部分:钼含量和钨含量的测定》、《钽铌化学分析方法第部分:碳含量和硫含量的测定》、《钽铌化学分析方法第部分:钽中铁、铬、镍、锰、钛、铝、铜、锡、铅和锆含量的测定》、《钽铌化学分析方法第部分:钽中磷含量的测定》、《钽铌化学分析方法第部分:氮含量的测定》、《钽铌化学分析方法第部分:氧含量的测定》、《钽铌化学分析方法第部分:氢含量的测定》、《钽铌化学分析方法第部分:钠含量和钾含量的测定》、-《钽粉电性能试验方法》,并先后参与了国家军用标准《铍化学分析方法铬量、锰量和镁量的测定》、《铍化学分析方法钐量、铕量、钆量和镝量的测定》、行业标准《海绵钛、钛及钛合金化学分析方法多元素含量的测定》、《铪化学分析方法杂质元素的测定》等国家标准和行业标准的制修订工作。 主要工作过程 ()根据年月~月,在接到标准制定任务后,成立了《钽铌化学分析方法第部分:钽中铌含量的

石油焦的性质

一、石油焦的性质 石油焦是黑色或暗灰色坚硬固体石油产品,带有金属光泽,呈多孔性,是由微小石墨结晶形成粒状、柱状或针状构成的炭体物。石油焦组分是碳氢化合物,含碳90-97%,含氢1.5-8%,还含有氮、氯、硫及重金属化合物。 石油焦是延迟焦化装置的原料油在高温下裂解生产轻质油品时的副产物。石油焦的产量约为原料油的25-30%。其低位发热量约为煤的1.5-2倍,灰分含量不大于0.5%,挥发分约为11%左右,品质接近于无烟煤。 二、石油焦的质量标准 延迟石油焦是指延迟焦化装置生产的生焦,也称普通焦,目前还没有相应的国家标准。现国内生产企业主要依据原中国石化总公司制定的行业标准SH0527-92 生产(详见表1)。该标准主要根据石油焦硫含量分类,其中一级品、1 号焦适用于炼钢工业中制作普通功率石墨电极,也适用于炼铝业作铝用碳素;2 号焦用作炼铝工业中电解槽 (炉 )所用的电极糊和生产电极,3 号焦用作生产碳化硅 (研磨材料 )及碳化钙(电石),以及其它碳素制品,亦用于制造炼铝电解槽的阳极底块及用于高炉碳素衬砖或炉底构筑。2010年,中国石化石油焦销售业务整合后,制定了中国石油化工集团公司石油焦企业标准《石油焦》Q/SH PRD392-2010,对硫含量大于3%的石油焦进行了品级细分(详见表2)。 表1延迟石油焦标准SH0527-92 表2 石油焦(Q/SH PRD392-2010)

三、石油焦的主要用途 石油焦的主要用途是电解铝所用的预焙阳极和阳极糊、碳素行业生产增炭剂、石墨电极、冶炼工业硅以及燃料等。 根据石油焦结构和外观,石油焦产品可分为针状焦、海绵焦、弹丸焦和粉焦4种: 1、针状焦,具有明显的针状结构和纤维纹理,主要用作炼钢中的高功率和超高功率石墨电极。由于针状焦在硫含量、灰分、挥发分和真密度等方面有严格质量指标要求,所以对针状焦的生产工艺和原料都有特殊的要求。 2、海绵焦,化学反应性高,杂质含量低,主要用于炼铝工业及炭素行业。 3、弹丸焦或球状焦:形状呈圆球形,直径0.6-30mm,一般是由高硫、高沥青质渣油生产,只能用作发电、水泥等工业燃料。 4、粉焦:经流态化焦化工艺生产,其颗粒细(直径0.1-0.4mm),挥发分高,热胀系数高,不能直接用于电极制备和炭素行业。 根据硫含量的不同,可分为高硫焦(硫含量3%以上)和低硫焦(硫含量3%以下)。低硫焦可作为供铝厂使用的阳极糊和预焙阳极以及供钢铁厂使用的石墨电极。其中高品质的低硫焦(硫含量小于0.5%)可用于生产石墨电极和增炭剂。一般品质的低硫焦(硫含量小于1.5%)常用于生产预焙阳极。而低品质石油焦主要用于冶炼工业硅和生产阳极糊。高硫焦则一般用作水泥厂和发电厂的燃料。 在炼钢用的石墨电极或制铝、制镁用的阳极糊(融熔电极)时,为使石油焦(生焦)适应要求,必须对生焦进行煅烧。煅烧温度一般在1300℃左右,目的是将石油焦挥发分尽量除掉。这样可减少石油焦再制品的氢含量,使使油焦的石墨化程度提高,从而提高石墨电极的高温强度和耐热性能,并改善了石墨电极的电导率。煅烧焦主要用于生产石墨电极、炭糊制品、金刚沙、食品级磷工业、冶金工业及电石等,其中应用最广泛的是石墨电极。生焦不经锻烧可直接用于碳化钙作电石主料,生产碳化硅和碳化硼作研磨材料。也可直接作为冶金工业鼓风炉用焦炭或高炉墙衬炭砖,也可作铸造工艺用致密焦等

铜及铜合金化学分析方法

DY/QW014-01 铜及铜合金化学分析方法 作业指导书 1 范围 本指导书规定了铜中锌的测定方法。 本指导书适用于铜中锌量的测定,测定范围:0.0005%~2.00% 。 2 方法提要 试料用硝酸或硝酸加氢氟酸,或盐酸加过氧化氢溶解后,使用空气-乙炔火焰于原子吸收光谱仪波长213.8nm 处测量锌的吸光度,基体铜的干扰在配制标准溶液系列时加入相应量的铜予以消除,合金中存在的其他元素不干扰测定。 3 试剂 除非另有说明,在分析中仅使用确认为分析纯的试剂和蒸馏水或去离子水或相当纯度的水。 3.1 氢氟酸(ρ1.15g/mL) 3.2 过氧化氢(ρ1.11g/mL) 3.3 过氧化氢(1+9) 3.4 盐酸(1+1) 3.5 硝酸(1+1) 3.6 硼酸溶液(40g/L) 3.7 铜溶液称:取10g 纯铜(锌质量分数小于0.00001%)置于500mL 烧杯中,加入70mL 硝酸(3.5)。加热溶解完全,煮沸除去氮的氧化物,冷却移入500mL 容量瓶中。用水稀释至刻度混匀,此溶液1mL 含20mg 铜。 3.8锌标准贮存溶液:称取0.5000g 纯锌(锌质量分数不小于99.9%),置250mL 烧杯中加入10mL 硝酸(3.5) ,加热至溶解完全,煮沸除去氮的氧化物,冷却后移入1000mL 容量瓶中,用水稀释至刻度,混匀。此溶液1mL 含500μg 锌。 3.9 锌标准溶液:移取20.00mL 锌标准储存溶液(3.8)置于500mL容量瓶中,加入100mL硝酸(1+1),用水稀释至刻度混匀。此溶液1mL含20μg锌。 4 仪器 4.1 原子吸收光谱仪附锌空心阴极灯 4.2 所用原子吸收光谱仪应达到下列指标

(完整版)常见的化学成分分析方法及其原理

常见的化学成分分析方法 一、化学分析方法 化学分析从大类分是指经典的重量分析和容量分析。重量分析是指根据试样经过化学实验反应后生成的产物的质量来计算式样的化学组成,多数是指质量法。容量法是指根据试样在反应中所需要消耗的标准试液的体积。容量法即可以测定式样的主要成分,也可以测定试样的次要成分。 1.1重量分析 指采用添加化学试剂是待测物质转变为相应的沉淀物,并通过测定沉淀物的质量来确定待测物的含量。 1.2容量分析 滴定分析主要分为酸碱滴定分析、络合滴定分析、氧化还原滴定分析、沉淀滴定分析。 酸碱滴定分析是指以酸碱中和反应为原理,利用酸性标定物来滴定碱性物质或利用碱性标定物来滴定酸性待测物,最后以酸碱指示剂(如酚酞等)的变化来确定滴定的终点,通过加入的标定物的多少来确定待测物质的含量。 络合滴定分析是指以络合反应(形成配合物)反应为基础的滴定分析方法。如EDTA与金属离子发生显色反应来确定金属离子的含量等。络合反应广泛地应用于分析化学的各种分离与测定中,如许多显色剂,萃取剂,沉淀剂,掩蔽剂等都是络合剂,因此,有关络合反应的理论和实践知识,是分析化学的重要内容之一。 氧化还原滴定分析:是以溶液中氧化剂和还原剂之间的电子转移为基础的一种滴定分析方法。氧化还原滴定法应用非常广泛,它不仅可用于无机分析,而且可以广泛用于有机分析,许多具有氧化性或还原性的有机化合物可以用氧化还原滴定法来加以测定。通常借助指示剂来判断。有些滴定剂溶液或被滴定物质本身有足够深的颜色,如果反应后褪色,则其本身就可起指示剂的作用,例如高锰酸钾。而可溶性淀粉与痕量碘能产生深蓝色,当碘被还原成碘离子时,深蓝色消失,因此在碘量法中,通常用淀粉溶液作指示剂。

石油焦技术参数修订稿

石油焦技术参数 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

石油焦技术参数标准 新闻来源:作者: 【】点击:50 次 石油焦 石油焦(Petroleum coke)是原油经蒸馏将轻重质油分离后,重质油再经热裂的过程,转化而成的产品,从外观上看,焦碳为形状不规则,大小不一的黑色块状(或颗粒),有金属光泽,焦碳的颗粒具多孔隙结构,主要的元素组成为碳,占有80wt%以上,其余的为氢、氧、氮、硫和金属元素。石油焦具有其特有的物理、化学性质及机械性质,本身是发热部份的不挥发性碳,挥发物和矿物杂质(硫、金属化合物、水、灰等)这些指标决定焦炭的化学性质。 一、石油焦分类及性质 石油焦的形态随制程、操作条件及进料性质的不同而有所差异。从石油焦工场所生产的石油焦均称为生焦(green cokes),含一些未碳化的碳烃化合物的挥发份,生焦就可当做燃料级的石油焦,如果要做炼铝的阳极或炼钢用的电极,则需再经高温锻烧,使其完成碳化,降低挥发份至最少程度。 大部份石油焦工场所生产的焦外观为黑褐色多孔固体不规则块状,此种焦又称为海绵焦(sponge coke)。第二种品质较佳的石油焦叫做针状焦(needle coke)与海绵焦比,由于其具较低的电阻及热膨胀系数,因此更适合做电极。有时另一种坚硬石油焦亦会产生,称之为球状焦(shot coke)。这种焦形如弹丸,表面积少,不易焦化,故用途不多。

石油焦具有其特有的物理、化学性质及机械性质,本身是发热部份的不挥发性碳,挥发物和矿物杂质(硫、金属化合物、水、灰等)这些指针决定焦炭的化学性质。物理性质中孔隙度及密度,决定焦炭的反应能力和热物理性质。机械性质有硬度、耐磨性、强度及其它机械特性,颗粒组成及其它加工和运输、堆放、贮存等性质影响的情形。 二、石油焦的加工工艺 石油焦是以原油经蒸馏后的重油或其它重油为原料,以高流速通过500℃1℃加热炉的炉管,使裂解和缩合反应在焦炭塔内进行,再经生焦到一定时间冷焦、除焦生产出石油焦。 用途:主要用于制取炭素制品,如石墨电极、阳极弧,提供炼钢、有色金属、炼铝之用;制取炭化硅制品,如各种砂轮、砂皮、砂纸等;制取商品电石供制作合成纤维、乙炔等产品;也可做为燃料。 石油焦(petroleum coke)是原油经蒸馏将轻重质油分离后,重质油再经热裂的过程,转化而成的产品,从外观上看,焦碳为形状不规则,大小不一的黑色块状(或颗粒),有金属光泽,焦碳的颗粒具多孔隙结构,主要的元素组成为碳,占有80wt%以上,其余的为氢、氧、氮、硫和金属。 三、石油焦的质量标准

石油焦的理化性质

石油焦的理化性质 石油焦是渣油延迟焦化的副产物,而高温气化则是实现其高效、清洁利用的有效方法。然而,石油焦的气化活性很低,这制约了石油焦用做大规模高效气化原料的可行性。因此,研究石油焦的理化性质及其气化反应特性以寻找制约其气化活性的关键因素显的尤为重要。催化气化技术可有效改善石油焦的气化反应活性以实现其高效利用,而建立一个准确、普适性的催化气化反应动力学模型对于解决石油焦催化气化的现实性问题,如气化炉的设计和优化,具有极其重要的意义。本文的主要研究内容和结果如下:在热解温度为350-500℃范围内,以减压渣油、煤沥青和生物质沥青为原料分别制备了三类液相炭化焦,并对三类液相炭化焦的理化性质和气化反应特性进行了研究,在此基础上进一步考察了三类液相炭化焦在高温煅烧过程中理化性质和气化反应特性的演变规律。结果表明:①液相炭化焦中可溶有机质的含量高达14.12~66.69%,经CS2处理后,液相炭化焦碳微晶结构的变化很小,而BET比表面积和孔体积均大幅增加,从而导致其气化反应活性的大幅提高;②液相炭化焦中存在的大量小分子有机物质是制约其气化反应活性的一个重要因素;③三种液相炭化焦经高温煅烧后的碳微晶结构的有序化程度存在如下关系,即煤沥青焦石油焦生物质沥青焦,而三者的气化反应活性则完全相反。以五种煤气化灰渣为研究对象,对其物相组成、表面形态和粒度分布等理化性质进行了分析表征,并考察了不同煤气化灰渣对石油焦/CO2和石油焦/水蒸气气化反应特性的影响。结果表明:①煤气化灰渣的组成极不均匀,不同粒度气化灰渣的化学组成有很大的差异,可通过简单的筛分过程初步实现气化灰渣的分级利用;②气化灰渣残炭及其原煤的快速热解焦的碳结构有序化程度存在如下关系,即DSHHZDSHFHSF-RP1400,而气化灰渣残炭的气化反应活性则要优于其原煤的快速热解焦;③不同气化灰渣对石油焦/CO2气化反应促进作用的大小顺序为:SHFH≈SHHZGTHZB≈GTHZALNHZ,气化灰渣对气化反应促进作用的大小与气化灰渣中Fe2O3+CaO和Fe2O3+CaO+Na2O+K2O含量近似成线性关系。在气化温度为800~1000℃范围内,分别考察了气化温度、原煤掺入量以及煤种对不同煤阶原煤与石油焦共气化反应特性的影响。结果表明:①随着神府煤掺入量的增

红土镍矿处理方法综述

和Mg之后。然而,在地壳中镍的含量很低,不到0.01%,其丰度排在第24位。 地球上有四种含镍矿物: ⑴硫化镍矿——镍黄铁矿、镍磁黄铁矿和针硫镍矿等 ⑵氧化镍矿——主要指红土镍矿 ⑶含砷镍矿——红镍矿、砷镍矿和辉镍矿等 ⑷深海含镍锰结核 深海含镍锰结核的数量现在还无法估计,由于开采成本太高,暂无法利用这种含镍资源。目前,世界各国正在研制海底机器人,为开采海底锰结核做前期准备工作。 含砷镍矿在地球上的储量很少,是一种次要的含镍资源。主要的炼镍原料是硫化镍矿和红土镍矿。 根据目前的炼镍技术水准,硫化镍矿含镍高于3%的被称为富矿,可不经选矿而直接冶炼;含镍较低的硫化镍矿需经过选矿进行富集,产出品位较高的硫化镍精矿再进行冶炼。红土矿很难用选矿方法来富集,通常是用冶炼的方法直接处理。 1.3 开发和利用红土镍矿资源的重要意义 ⑴陆地上镍资源总量中硫化镍矿和红土镍矿的比例约为3:7,未来镍冶金工业的发展主要以红土矿为原料; ⑵硫化镍矿日趋枯竭,中国的硫化镍矿的年产量以10%的速度递减; ⑶红土镍矿埋藏在地表附近,开采成本低,不需要选矿,随着冶炼技术水

准的提高,处理红土镍矿的成本不断降低; ⑷选择合适的生产方法,处理红土镍矿可不产生二氧化硫烟气污染; ⑸中国是镍的消费大国,同时又是贫镍国。 由以上事实可知,我国开发红土镍矿资源有着非常重要的意义。目前,世界各国,特别是发达国家,都在积极开发或准备开发红土镍矿资源。 2 红土镍矿的特点 2.1 红土镍矿的地质结构 红土镍矿是由多雨的热带和亚热带的橄榄岩(Peridotite)和蛇纹石(Ser pentine)这样一些超级岩石的风化而形成的。红土镍矿床通常是分层存在于地表以下0~40米范围,矿床的地质结构为:覆盖层;褐铁矿层;过渡层;腐泥层;橄榄岩层。有价元素镍和钴主要分布在褐铁矿层,过渡层和腐泥土矿层。因此,人们通常将红土镍矿床分为三个矿层: ⑴褐铁矿层(Lateritic ore layer) 褐铁矿层离地表最近,主要矿物包括褐铁矿(Laterite)、针铁矿(Goet hite)、水铝矿(Gibbsite)和铬铁矿(Chromite)。矿石的化学成分和矿物组成很均匀,镍的含量较低,通常含有一定数量的钴,结晶性差,粒度较细。 ⑵腐泥矿层(Saprolitic ore layer) 腐泥矿层埋藏较深,正好在基岩之上,主要含有石英(Quartz),滑石(T alc),蛇纹石(Serpentine),橄榄石(Olivine)和硅镁镍矿(Garnierite)等矿物。矿石含镍量最高,但其化学成分和矿物组成极不均匀。 ⑶过渡矿层(Transition ore layer)

镨钕镝合金化学分析方法

镨钕镝合金化学分析方法 等离子发射光谱法测定配分含量 研究报告 包头稀土研究院 2011-07

镨钕镝合金化学分析方法 配分含量的测定 于勇海王安丽崔爱端 前言 本文研究了利用等离子发射光谱仪,测定镨钕镝合金中配分的量。测定范围:镨:15.00~25.00%钕:65.00~85.00%;镝:1.00~10.00%。 1 实验部分 1.1仪器及主要参数 仪器:岛津ICPS-8100光谱仪; 主要参数:RF功率:1.2kW;冷却气流量:14 L/min;辅助气流量:1.2 L/min;载气流量:0.7L/min;观测高度:11mm。 1.2 试剂及标准溶液 1.2.1 硝酸(优级纯)。 1.2.2 镨标准贮存溶液:称取0.1208g经950℃灼烧1h的氧化镨(>99.99%)于100mL烧杯中,加入10mL 硝酸(1.2.1),低温溶解,取下冷却。移入100mL容量瓶中,用水稀释至刻度,混匀。此溶液1mL含1mg 镨。 1.2.3 钕标准贮存溶液:称取0.1166g经950℃灼烧1h的氧化钕(>99.99%)于100mL烧杯中,加入10mL 硝酸(1.2.1),低温溶解,取下冷却。移入100mL容量瓶中,用水稀释至刻度,混匀。此溶液1mL含1mg 钕。 1.2.4 镝标准贮存溶液:称取0.1148g经950℃灼烧1h的氧化镝(>99.99%)于100mL烧杯中,加入10mL 硝酸(1.2.1),低温溶解,取下冷却。移入100mL容量瓶中,用水稀释至刻度,混匀。此溶液1mL含1mg 镝。 1.2.5 镨标准溶液:分取镨标准贮存溶液(1.2.2)10mL于100mL容量瓶中,加入2mL硝酸(1.2.1),用水稀释至刻度,混匀。此溶液1mL含100μg镨。 1.2.6 钕标准溶液:分取钕标准贮存溶液(1.2.3)20mL于100mL容量瓶中,加入2mL硝酸(1.2.1),用水稀释至刻度,混匀。此溶液1mL含200μg钕。 1.2.7 镝标准溶液:分取镝标准贮存溶液(1.2.4)5mL于100mL容量瓶中,加入2mL硝酸(1.2.1),用水稀释至刻度,混匀。此溶液1mL含50μg镝。 1.3 工作曲线的配制 在三个100mL容量瓶中,分别加入镨标准溶液(1.2.5)8.00、12.00、15.00mL,钕标准贮存溶液(1.2.3)2.50、3.50、4.50mL以及镝标准溶液(1.2.7)1.00、4.00、10.00mL,配制成工作曲线系列。工作曲线浓度见表1。 表1工作曲线的浓度 1.4 试样溶液的制备 1.4.1 将试料钻成碎金属屑,以保证试料的均匀性。 1.4.2 称取0.2g(精确至0.0001g)试料(1.4.1)于100mL烧杯中,加入10mL水,5mL浓硝酸溶解。冷

相关主题
文本预览
相关文档 最新文档