当前位置:文档之家› 连续驱动摩擦焊基本原理

连续驱动摩擦焊基本原理

连续驱动摩擦焊基本原理
连续驱动摩擦焊基本原理

连续驱动摩擦焊基本原理

1.焊接过程

连续驱动摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过

程结束。

对于直径为16mm的45号钢,在2000r/min转速、8.6MPa摩擦压力、0.7s摩擦时间和161MPa的顶锻压力下,整个摩擦焊接过程如图10所示。从图中可知,摩擦焊接过程的一个周期可分成摩擦加热过程和顶锻焊接过程两部分。摩擦加热过程又可以分成四个阶段,即初始摩擦、不稳定摩擦、稳定摩擦和停车阶段。顶锻焊接过程也可以分为纯顶锻和顶锻维持两个阶段。

(1)初始摩擦阶段(t1)此阶段是从两个工件开始接触的a点起,到摩擦加热功率显着增大的b 点止。摩擦开始时,由于工件待焊接表面不平,以及存在氧化膜、铁锈、油脂、灰尘和吸附气体等,使得摩擦系数很大。随着摩擦压力的逐渐增大,摩擦加热功率也慢慢增加,最后摩擦焊接表

面温度将升到200~300℃左右。

在初始摩擦阶段,由于两个待焊工件表面互相作用着较大的摩擦压力和具有很高

的相对运动速度,使凸凹不平的表面迅速产生塑性变形和机械挖掘现象。塑性变形破坏了界面的金属晶粒,形成一个晶粒细小的变形层,变形层附近的母材也沿摩擦方向产生塑性变形。金属互相压入部分的挖掘,使摩擦界面出现同心圆痕迹,这样又增大了塑性变形。因摩擦表面不平,接触不连续,以及温度升高等原因,使摩擦表面产生振动,此时空气可能进入摩擦表面,使高温下的金属氧化。但由于t1时间很知,摩擦表面的塑性变形和机械挖掘又可以破坏氧化膜,因此,对接头的影响不大。当焊件断面为实心圆时,其中心的相对旋转速度为零,外缘速度最大,此时焊接表面金属处于弹性接触状态,温度沿径向分布不均匀,摩擦压力在焊接表面上呈双曲线分布,中心压力最大,外缘最小。在压力和速度的综合影响下,摩擦表面的加热往往从距圆心半径2/3

左右的地方首先开始。

(2)不稳定摩擦阶段(t2)不稳定摩擦阶段是摩擦加热过程的一个主要阶段,该阶段从摩擦加热功率显着增大的b点起,越过功率峰值c点,到功率稳定值的d点为止。由于摩擦压力较初始摩擦阶段增大,相对摩擦破坏了焊接金属表面,使纯净的金属直接接触。随着摩擦焊接表面的温度升高,金属的强度有所降低,而塑性和韧性却有很大的提高,增大了摩擦焊接表面的实际接触面积。这些因素都使材料的摩擦系数增大,摩擦加热功率迅速提高。当摩擦焊接表面的温度继续增高时,金属的塑性增高,而强度和韧性都显着下降,摩擦加热功率也迅速降低到稳定值d点。因此,摩擦焊接的加热功率和摩擦扭矩都在c点呈现出最大值。在45号钢的不稳定摩擦阶段,待焊表面的温度由200~300℃升高到1200~1300℃,而功率峰值出现在600~700℃左右。这时摩擦表面的机械挖掘现象减少,振动降低,表面逐渐平整,开始产生金属的粘结现象。高温塑性状态的

局部金属表面互相焊合后,又被工件旋转的扭力矩剪断,并彼此过渡。随着摩擦过程的进行,接触良好的塑性金属封闭了整个摩擦面,并使之与空气隔开。

(3)稳定摩擦阶段(t3)稳定摩擦阶段是摩擦加热过程的主要阶段,其范围从摩擦加热功率稳定值的d点起,到接头形成最佳温度分布的e点为止,这里的e点也是焊机主轴开始停车的时间点(可称为e′点),也是顶锻压力开始上升的点(图10的?点)以及顶锻变形量的开始点。在稳定摩擦阶段中,工件摩擦表面的温度继续升高,并达到1300℃左右。这时金属的粘结现象减少,分子作用现象增强。稳定摩擦阶段的金属强度极低,塑性很大,摩擦系数很小,摩擦加热功率也基本上稳定在一个很低的数值。此外,其它连接参数的变化也趋于稳定,只有摩擦变形量不断增大,变形层金属在摩擦扭矩的轴向压力作用下,从摩擦表面挤出形成飞边,同时,界面附近的高温金属不断补充,始终处于动平衡状态,只是接头的飞边不断增大,接头的热影响区变宽。(4)停车阶段(t4)停车阶段是摩擦加热过程至顶锻焊接过程的过渡阶段,是从主轴和工件一起开始停车减速的e′点起,到主轴停止转动的g点止。从图10可知,实际的摩擦加热时间从a点开始,到g点结束,即t?=t1+t2+t3+t4。尽管顶锻压力从?点施加,但由于工件并未完全停止旋转,所以g′点以前的压力,实质上还是属于摩擦压力。顶锻开始后,随着轴向压力的增大,转速降低,摩擦扭矩增大,并再次出现峰值,此值称为后峰值扭矩。同时,在顶锻力的作用下,接头中的高温金属被大量挤出,工件的变形量也增大。因此,停车阶段是摩擦焊接的重要过程,直接

影响接头的焊接质量,要严格控制。

(5)纯顶锻阶段(t5)从主轴停止旋转的g(或g′)点起,到顶锻压力上升至最大位的h点止。在这个阶段中,应施加足够大的顶锻压力,精确控制顶锻变形量和顶锻速度,以保证获得优异的

焊接质量。

(6)顶锻维持阶段(t6)该阶段从顶锻压力的最高点h开始,到接头温度冷却到低于规定值为止。在实际焊接控制和自动摩擦焊机的程序设计时,应精密控制该阶段的时间tu(tu=t3+t4)。在顶锻维持阶段,顶锻时间、顶锻压力和顶锻速度应相互配合,以获得合适的摩擦变形量△I?和顶锻变形量△Iu。在实际计算时,摩擦变形速度一般采用平均摩擦变形速度(△I?/t?),顶锻变形速

度也采用其平均值〔△Iu/(t4+t5)〕。

总之,在整个摩擦焊接过程中,待焊的金属表面经历了从低温到高温摩擦加热,连续发生了塑性变形、机械挖掘、粘接和分子连接的过程变化,形成了一个存在于全过程的高速摩擦塑性变形层,摩擦焊接时的产热、变形和扩散现象都集中在变形层中。在停车阶段和顶锻焊接过程中,摩擦表面的变形层和高温区金属被部分挤碎排出,焊缝金属经受锻造,形成了质量良好的焊接接头。

2.摩擦焊接产热

摩擦焊接过程中,两工件摩擦表面的金属质点,在摩擦压力和摩擦扭矩的作用下,沿工件径向与切向力的合成方向作相对高速摩擦运动,在界面形成了塑性变形层。该变形层是把摩擦的机械功转变成热能的发热层,它的温度高、能量集中,具有很高的加热效率。

(1)摩擦加热功率摩擦加热功率的大小及其随摩擦时间的变化,决定了焊接温度及其温度场的分布,直接影响接头的加热过程、焊接生产率和焊接质量,同时也关系到摩擦焊机的设计与制造。

摩擦加热功率就是焊接热源的功率,它的计算与分布如下:

对圆形的焊接工件,假设沿摩擦表面半径方向的摩擦压力p?和摩擦系数μ为常数。为了求出功率分布,在摩擦表面上取一半径为r的圆环,该环的宽度为dr(图11),其面积为dA,则dA=2π

rdr,则作用在圆环上的摩擦力为

dF=p?μdA=2πp?μrdr(4)

以O点为圆心的摩擦扭矩为

dM=rdF=2πp?μr2dr(5)

圆环上的摩擦加热功率为

dP≈1.02dM×10-3n

(6)

摩擦加热功率沿接合面半径R方向上的分布dP/dr如图11所示。加热功率在圆心处为零,在外边

缘最大。

将式(5)、式(6)积分,可以得到摩擦焊接表面上总的摩擦扭矩和加热功率为

M=2πp

μR3/3(7)

?

P=2×10-3πp?nμR3/3(8)

式中M——摩擦扭矩;

P——摩擦加热功率;

p?——摩擦压力;

n——工件转速;

μ——摩擦系数;

r——圆环半径;

R——待焊工件半径。

实际上p?(r)不是常数,在初始摩擦阶段和不稳定摩擦阶段的前期,摩擦表面还没有全面产生塑性变形,主要是弹性接触,摩擦压力在中心高,外圆低。因此沿摩擦焊接表面半径R的摩擦加热功率最大值不在外圆,而在距圆心2/3R左右的地方,这一点不仅符合计算结果,也被试验所证实。在稳定摩擦阶段,摩擦表面全部产生塑性变形,成为塑性接触时,p?(r)才可以认为等于常数。此外,μ(r)在初始摩擦阶段和不稳定摩擦阶段也不是常数,由高温金属组成的高速塑性变形层热源,在距圆心1/2~1/3半径处形成环状加热带,随着摩擦加热的进行,环状加热带向圆心和外圆迅速展开,当进入稳定摩擦阶段时,摩擦表面的温度才趋于平衡,此时可以认为μ(r)是常数。

摩擦表面上总的加热热量为

式中Q——接合面总的摩擦加热热量;

t——摩擦时间;

to——摩擦加热开始时间(设to=0);

tn——实际摩擦加热时间;

k——常数。

(2)摩擦焊接表面温度摩擦焊接表面的温度会直接影响接头的加热温度、温度分布、摩擦系数、接头金属的变形与扩散。其加热面的温度由摩擦加热功率和散热条件所决定。

在焊接圆断面工件时,摩擦焊接热源被认为是一个线性传播的连续均布的面状热源。如果不考虑向周围空间的散热,根据雷卡林的焊接热过程计算公式,同种金属摩擦焊接表面的温度为式中T(O,t)——摩擦焊接表面温度(O表面热源中心,t是摩擦加热时间);

q2——单位面积上的加热热量;

λ——焊件热导率;

c——焊件热容。

在式(10)中,如果选定焊接所需要的温度为Tw,热源温度升高到Tw所需要的摩擦加热时间为

t?′,则该式可以写成

t?′q22=cπλT2w=常数(11)

从式(11)可以看出,当Tw和t?′确定以后,能够计算出q2的数值,并可以根据q2的要求选择焊接参数。式(10)和式(11)适合于计算以稳定摩擦阶段为主的摩擦加热过程。

实际上,不论何种材料的摩擦焊接,摩擦表面的最高温度是有限制的,不能超过焊件材料的熔点,此外,在采用式(10)和式(11)进行运算时,还应该考虑到摩擦焊接表面温度与加热功率之间的内在联系、相互制约及摩擦加热功率随摩擦时间变化的特殊规律。

连续驱动摩擦焊基本原理

连续驱动摩擦焊基本原理 1.焊接过程 连续驱动摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过 程结束。 对于直径为16mm的45号钢,在2000r/min转速、8.6MPa摩擦压力、0.7s摩擦时间和161MPa的顶锻压力下,整个摩擦焊接过程如图10所示。从图中可知,摩擦焊接过程的一个周期可分成摩擦加热过程和顶锻焊接过程两部分。摩擦加热过程又可以分成四个阶段,即初始摩擦、不稳定摩擦、稳定摩擦和停车阶段。顶锻焊接过程也可以分为纯顶锻和顶锻维持两个阶段。 (1)初始摩擦阶段(t1)此阶段是从两个工件开始接触的a点起,到摩擦加热功率显着增大的b 点止。摩擦开始时,由于工件待焊接表面不平,以及存在氧化膜、铁锈、油脂、灰尘和吸附气体等,使得摩擦系数很大。随着摩擦压力的逐渐增大,摩擦加热功率也慢慢增加,最后摩擦焊接表 面温度将升到200~300℃左右。 在初始摩擦阶段,由于两个待焊工件表面互相作用着较大的摩擦压力和具有很高 的相对运动速度,使凸凹不平的表面迅速产生塑性变形和机械挖掘现象。塑性变形破坏了界面的金属晶粒,形成一个晶粒细小的变形层,变形层附近的母材也沿摩擦方向产生塑性变形。金属互相压入部分的挖掘,使摩擦界面出现同心圆痕迹,这样又增大了塑性变形。因摩擦表面不平,接触不连续,以及温度升高等原因,使摩擦表面产生振动,此时空气可能进入摩擦表面,使高温下的金属氧化。但由于t1时间很知,摩擦表面的塑性变形和机械挖掘又可以破坏氧化膜,因此,对接头的影响不大。当焊件断面为实心圆时,其中心的相对旋转速度为零,外缘速度最大,此时焊接表面金属处于弹性接触状态,温度沿径向分布不均匀,摩擦压力在焊接表面上呈双曲线分布,中心压力最大,外缘最小。在压力和速度的综合影响下,摩擦表面的加热往往从距圆心半径2/3 左右的地方首先开始。 (2)不稳定摩擦阶段(t2)不稳定摩擦阶段是摩擦加热过程的一个主要阶段,该阶段从摩擦加热功率显着增大的b点起,越过功率峰值c点,到功率稳定值的d点为止。由于摩擦压力较初始摩擦阶段增大,相对摩擦破坏了焊接金属表面,使纯净的金属直接接触。随着摩擦焊接表面的温度升高,金属的强度有所降低,而塑性和韧性却有很大的提高,增大了摩擦焊接表面的实际接触面积。这些因素都使材料的摩擦系数增大,摩擦加热功率迅速提高。当摩擦焊接表面的温度继续增高时,金属的塑性增高,而强度和韧性都显着下降,摩擦加热功率也迅速降低到稳定值d点。因此,摩擦焊接的加热功率和摩擦扭矩都在c点呈现出最大值。在45号钢的不稳定摩擦阶段,待焊表面的温度由200~300℃升高到1200~1300℃,而功率峰值出现在600~700℃左右。这时摩擦表面的机械挖掘现象减少,振动降低,表面逐渐平整,开始产生金属的粘结现象。高温塑性状态的

连续驱动摩擦焊机 C

连续驱动摩擦焊机C-1摩擦焊机 发布时间:2010-08-25 07:42:09 查看:84次字体:【大中小】 C-1摩擦焊机

标签:驱动摩擦焊 连续驱动摩擦焊机C-20A-2摩擦焊机发布时间:2010-08-25 07:36:55 查看:96次字体:【大中小】 C-20A-2摩擦焊机 标签:驱动摩擦焊 惯性驱动摩擦焊机CG-1摩擦焊机发布时间:2010-08-25 07:25:18 查看:107次字体:【大中小】 CG-1摩擦焊机

惯性驱动摩擦焊机CG-250-J摩擦焊机发布时间:2010-08-25 07:22:53 查看:76次字体:【大中小】 CG-250-J摩擦焊机

惯性驱动摩擦焊机CG-400-J摩擦焊机 发布时间:2010-08-25 07:23:30 查看:103次字体:【大中小】 CG-400-J摩擦焊机 惯性驱动摩擦焊机CG-200-J摩擦焊机发布时间:2010-08-25 07:23:59 查看:81次字体:【大中小】 CG-200-J摩擦焊机

惯性驱动摩擦焊机CT-25摩擦焊机 发布时间:2010-08-25 07:24:25 查看:93次字体:【大中小】 CT-25摩擦焊机

惯性驱动摩擦焊机CG-6.3摩擦焊机 发布时间:2010-08-25 07:24:52 查看:86次字体:【大中小】 CG-6.3摩擦焊机 C20A摩擦焊机说明: 主机结构简介: 本焊机包括主机、液压、电气和润滑系统四部分,主机由床身、主轴箱、滑架、主没缸、夹具等主要部件组成。 主轴箱是重要部件之一,固定在铸造床身的左端,主轴用滚动轴承支承在箱体上,主轴上的四个8317单向推力球轴承组成二个串联轴承组,承受焊接过程中摩擦和顶锻压力,主轴的启动旋转和制动借助于片式离合器来实现,离合器由液压缸来驱动,当离合器与皮带轮(用滚动轴承支承在主轴上)接合时,旋转无能运动便通过可以在主轴上滑动的花键套传给了主轴,使主轴转动。当离合器和皮带轮脱开切断主轴旋转的动力,而与固定在主轴箱体上的摩擦片接合时,主轴被制动(如果液压系统调到先顶锻后制动时则施于工件的顶锻力,加速了主轴的制动)。皮带轮在生产的过程中始终不停的转动。它由八根B型三角带由主电机的皮带轮驱动。主电机安装在可调电机底板上,调节底板的张紧螺钉改变两皮带轮的中心距,便可调整皮带的张紧程度。 主轴箱通过二根导杠与床身右端的主没缸支座牢固的连接在一起,主轴箱的结构见下图: 主没缸的作用是带动与活塞杆连接的滑架实现进退运动,向前运动时,进行摩擦和顶锻加压。滑架体用四个可调铜套支承在导杠上,其结构见下图:

摩擦焊

摩擦焊原理简介

连续驱动摩擦焊基本原理 1.焊接过程 连续驱动摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过程结束。 对于直径为16mm的45号钢,在2000r/min转速、8.6MPa摩擦压力、0.7s摩擦时间和161MPa的顶锻压力下,整个摩擦焊接过程如图10所示。从图中可知,摩擦焊接过程的一个周期可分成摩擦加热过程和顶锻焊接过程两部分。摩擦加热过程又可以分成四个阶段,即初始摩擦、不稳定摩擦、稳定摩擦和停车阶段。顶锻焊接过程也可以分为纯顶锻和顶锻维持两个阶段。 (1)初始摩擦阶段(t1)此阶段是从两个工件开始接触的a点起,到摩擦加

热功率显著增大的b点止。摩擦开始时,由于工件待焊接表面不平,以及存在 氧化膜、铁锈、油脂、灰尘和吸附气体等,使得摩擦系数很大。随着摩擦压力 的逐渐增大,摩擦加热功率也慢慢增加,最后摩擦焊接表面温度将升到200~ 300℃左右。 在初始摩擦阶段,由于两个待焊工件表面互相作用着较大的摩擦压力和具有很高 的相对运动速度,使凸凹不平的表面迅速产生塑性变形和机械挖掘现象。塑性 变形破坏了界面的金属晶粒,形成一个晶粒细小的变形层,变形层附近的母材 也沿摩擦方向产生塑性变形。金属互相压入部分的挖掘,使摩擦界面出现同心 圆痕迹,这样又增大了塑性变形。因摩擦表面不平,接触不连续,以及温度升 高等原因,使摩擦表面产生振动,此时空气可能进入摩擦表面,使高温下的金 属氧化。但由于t1时间很知,摩擦表面的塑性变形和机械挖掘又可以破坏氧化 膜,因此,对接头的影响不大。当焊件断面为实心圆时,其中心的相对旋转速 度为零,外缘速度最大,此时焊接表面金属处于弹性接触状态,温度沿径向分 布不均匀,摩擦压力在焊接表面上呈双曲线分布,中心压力最大,外缘最小。 在压力和速度的综合影响下,摩擦表面的加热往往从距圆心半径2/3左右的地方 首先开始。 (2)不稳定摩擦阶段(t2)不稳定摩擦阶段是摩擦加热过程的一个主要阶段, 该阶段从摩擦加热功率显著增大的b点起,越过功率峰值c点,到功率稳定值 的d点为止。由于摩擦压力较初始摩擦阶段增大,相对摩擦破坏了焊接金属表 面,使纯净的金属直接接触。随着摩擦焊接表面的温度升高,金属的强度有所 降低,而塑性和韧性却有很大的提高,增大了摩擦焊接表面的实际接触面积。 这些因素都使材料的摩擦系数增大,摩擦加热功率迅速提高。当摩擦焊接表面 的温度继续增高时,金属的塑性增高,而强度和韧性都显著下降,摩擦加热功 率也迅速降低到稳定值d点。因此,摩擦焊接的加热功率和摩擦扭矩都在c点 呈现出最大值。在45号钢的不稳定摩擦阶段,待焊表面的温度由200~300℃升 高到1200~1300℃,而功率峰值出现在600~700℃左右。这时摩擦表面的机械 挖掘现象减少,振动降低,表面逐渐平整,开始产生金属的粘结现象。高温塑 性状态的局部金属表面互相焊合后,又被工件旋转的扭力矩剪断,并彼此过渡。 随着摩擦过程的进行,接触良好的塑性金属封闭了整个摩擦面,并使之与空气 隔开。 (3)稳定摩擦阶段(t3)稳定摩擦阶段是摩擦加热过程的主要阶段,其范围 从摩擦加热功率稳定值的d点起,到接头形成最佳温度分布的e点为止,这里

摩擦焊工艺

1.接头设计 1)接头设计原则 (1)对旋转式摩擦焊,至少有一个圆形截面。 (2)为了夹持方便、牢固,保证焊接过程不失稳,应尽量避免设计薄管、薄板接头。 (3)一般倾斜接头应与中心线成30°~45°的斜面。 (4)对锻压温度或热导率相差较大的材料,为了使两个零件的锻压和顶锻相对平衡,应调整界面的相对尺寸。 (5)对大截面接头,为了降低摩擦加热时的扭矩和功率峰值,采用端面导角的办法可使焊接时接触面积逐渐增加。 (6)如要限制飞边流出(如不能切除飞或不允许飞边暴露时),应预留飞边槽。 (7)对于棒-棒、和棒-板接头,中心部位材料被挤出形成飞边时,要消耗更多的能量,而焊缝中心部位对扭矩和弯曲应力的承担又很少,所 以,如果工作条件允许,可将一个或两个零件加工成具有中心孔洞, 这样既可用较小功率的焊机,又可提高生产率。 (8)采用中心部位突起的接头,见图1,可有效地避免中心未焊合。 (9)摩擦面要避免采用渗碳、渗氮等。 (10)为了防止由于轴向力(摩擦力、顶锻力)引起的滑退,通常在工件后面设置挡块。 (11)工件伸出夹头的尺寸要适当,被焊工件应尽可能有相同的伸出长度。

图1 接头表面突起设计标准 2)摩擦焊接头的形式 表1是摩擦焊接头的基本形式。 表1 摩擦焊接头的基本形式 2. 连续驱动摩擦焊的焊接参数 1)主要的焊接参数 可以控制的主要焊接参数有转速、摩擦压力、摩擦时间、摩擦变形量、停车时间、顶锻延时、顶锻时间、顶锻力、顶锻变形量。其中,摩擦变形量和顶锻变形量(总和为缩短量)是其它参数的综合反映。

(1)转速和摩擦压力 转速和摩擦压力直接影响摩擦扭矩、摩擦加热功率、接头温度场、塑性层厚度以及摩擦变形速度等。 工件直径一定时,转速代表摩擦速度。实心圆截面工件摩擦界面上的平均摩擦速度是距圆心为2/3半径处的摩擦线速度。稳定摩擦扭矩与平均摩擦速度、摩擦压力的关系见图2。摩擦变形速度与平均摩擦速度、摩擦压力的关系见图3。转速对热影响区和飞边形状的影响见图4。 图2 摩擦扭矩与平均摩擦速度、摩擦压力的关系曲线 (低碳钢管φ19mm×3.15mm)

Φ15 45钢+45钢连续驱动摩擦焊焊接工艺

Φ15 45钢+45钢连续驱动摩擦焊焊接工艺概述 连续驱动摩擦焊是在外力作用下,利用焊件接触面之间的相对摩擦运动和塑形流动所产生的热量,使接触面金属件相互扩散、流动和动态再结晶而完成的固态连接方法。焊接过程不需要填充金属、焊剂或保护气体。连续驱动摩擦焊方法以优质、高效、节能、无污染的技术特点受到制造业的重视,特别是近几年来开发的搅拌摩擦焊、超塑性摩擦焊等新技术,使其在航空航天、能源、海洋开发等技术领域及石油化工、机械和汽车制造等产业部门得到了广泛应用。 一.母材技术状况 试件材料:45钢试件尺寸:Φ15×100mm 45号钢,是GB中的叫法,JIS中称为:S45C,ASTM中称为1045,080M46,DIN称为:C45。 物理性能:密度ρ:7.85g/cm3,弹性模量E:210MPa,泊松比μ:0.269。 力学性能: 抗拉强度:不小于600MPa ;屈服强度:不小于355MPa 。 伸长率:17% ;收缩率:40% ;冲击功:39J 。 钢材交货状态硬度:热轧钢:≤229HB 退火钢:≤197HB 推荐热处理温度:正火850℃淬火840℃回火600℃ 二、连续驱动摩擦焊原理 1、连续驱动摩擦焊原理如图1所示,是在摩擦压力的作用下被焊界面相互接触,通过相对运动进行摩擦,使机械能转变为热能,利用摩擦热去除界面的氧化物,在顶锻力的作用下形成可靠接头。该过程所产生的摩擦加热功率为 P=μkρυ 式中: P——摩擦加热功率;μ——摩擦系数; k——系数; ρ——摩擦压力; v——摩擦相对运动速度。

图1 连续驱动摩擦焊的工作原理图 连续驱动摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过程结束。 整个摩擦焊接过程如图2所示。从图中可知,摩擦焊接过程的一个周期可分成摩擦加热过程和顶锻焊接过程两部分。摩擦加热过程又可以分成四个阶段,即初始摩擦、不稳定摩擦、稳定摩擦和停车阶段。顶锻焊接过程也可以分为纯顶锻和顶锻维持两个阶段。 2、连续驱动摩擦焊机普通型连续驱动摩擦焊机主要由主轴系统、加压系统、机身、夹头、检测与控制系统以及辅助装置等六部分组成。连续驱动摩擦焊机参数,见表3。

摩擦焊

特种焊接方法与工艺大作业——摩擦焊焊接技术 姓名:武颂昆 学号: 20 班级: 10焊接 天津滨海职业学院 2011年12月

摩擦焊焊接技术 一、摩擦焊的定义 摩擦焊(Friction Welding,FW)是利用焊件接触的端面相对运动中相互摩擦所产生的热,使端面达到热塑性状态,然后迅速顶锻,完成焊接的一种固相焊接方法。 二、摩擦焊的基本原理 摩擦焊焊接过程是在压力的作用下,相对运动的待焊材料之间产生摩擦,使界面及附近温度升高并达到热塑性状态,随着顶锻力的作用,界面氧化膜破碎,材料发生塑性变形与流动,通过界面元素扩散及再结晶冶金反应而形成接头。 焊接过程不加填充金属,不需焊剂,也不用保护气体,全部焊接过程只需几秒钟。 两焊件结合面之间在较高的压力下高速旋转相互摩擦产生了两个重要的效果:一是破坏了结合面的氧化膜或其他污物,使纯净金属暴露出来;另一个是摩擦生热,使结合面很快形成热塑性层。在随后的摩擦扭矩和轴向压力作用下这些破碎的氧化物和部分塑性层被挤出结合面外形成飞边,剩余的塑性变形金属就构成了焊缝金属,最后的顶锻使焊缝金属获得进一步锻造,形成了质量良好的焊接接头。 三、摩擦焊的特点 (1)焊接施工时间短,生产效率高。 (2)焊接热循环引起的焊接变形小,焊后尺寸精度高,不用焊后校形和消

除应力。 (3)机械化、自动化程度高,焊接质量稳定。当给定焊接条件后,操作简单,不需要特殊的焊接技术人员。 (4)适合各类异种材料的焊接,对常规熔化下不能焊接的铝-钢、铝-铜、钛-铜、金属间化合物-钢等都可以进行焊接。 (5)可以实现同直径、不同直径的棒材和管材的焊接。 (6)焊接时不产生烟雾、弧光以及有害气体等,不污染环境。同时,与闪光焊相比,电能节约5-10倍。 四、摩擦焊的应用 目前我国摩擦焊技术的应用比较广泛,可焊接直径3.0~120mm的工件以及8000mm2的大截面管件,同时还开发了相位焊和径向摩擦焊技术,以及搅拌摩擦焊技术。不仅可焊接钢、铝、铜,而且还成功焊接了高温强度级相差很大的异种钢和异种金属,以及形成低熔点共晶和脆性化合物的异种金属。如高速钢—碳钢、耐热钢—低合金钢、高温和金—合金钢、不锈钢—低碳钢、不锈钢—电磁铁以及铝—铜、铝—钢等。 近年来随着我国航空航天事业的发展,也加速了摩擦焊技术向这些领域的渗透,进行了航空发动机转子、起落架结构件、紧固件等材料(Ln718Ti17300MGH159GH4169)以及金属与陶瓷、复合材料、粉末高温合金的摩擦焊工艺试验研究,某些电工材料的钎焊工艺也开始用摩擦焊接所取代。如电磁铁—不锈钢、钨铜合金等。目前我国采用摩擦焊接方法焊接的产品有:锅炉行业的蛇形管摩擦焊接,阀门行业的阀门法兰和阀体密封座的摩擦焊接,轴瓦行业的止推边轴瓦的摩擦焊接,工具行业的钻头、铣刀、铰刀的刃部与柄部的摩擦焊接,汽车及机车行业发动机的双金属排气阀、气门顶杆、柴油机预热室喷咀、半轴、扭力管、内燃机增压器涡轮轴,潜水电泵转轴,紫铜不锈钢水接头,铝铜过渡接头,纺织机梭子芯,关节轴承,泥瓦工具,地质钻杆,石油钻杆、实心、空心抽油杆,航空发动机集成齿轮,木工多用机床上的刀轴等等。 我国现有六百余台摩擦焊机,绝大部分是连续驱动摩擦焊机。近年来由于加强了与德国KUKA、日东株氏会社、美国MTI公司等摩擦焊机制造公司的交流与引进样机,焊机先后采用了液压马达驱动的主轴系统,串联轴承组——平衡油缸

摩擦焊知识

摩擦焊 ?摩擦焊原理与分类 ?惯性摩擦焊 ?搅拌摩擦焊 ?摩擦焊设备 定义:摩擦焊是利用焊件相对摩擦运动产生的热量来实现材料可靠连接的一种压力焊方法。其焊接过程是在压力的作用下,相对运动的待焊材料之间产生摩擦,使界面及其附近温度升高并达到热塑性状态,随着顶锻力的作用界面氧化膜破碎,材料发生塑性变形与流动,通过界面元素扩散及再结晶冶金反应而形成接头 一、摩擦焊原理及分类 ?1.1 摩擦焊的分类 ?摩擦焊的方法很多,一般根据焊件的相对运动和工艺特点进行分类,主要方法如图1所示。在实 际生产中,连续驱动摩擦焊、相位控制摩擦焊、惯性摩擦焊和搅拌摩擦焊应用的比较普遍。 ?通常所说的摩擦焊主要是指连续驱动摩擦焊、相位控制摩擦焊、惯性摩擦焊和轨道摩擦焊,统称 为传统摩擦焊,它们的共同特点是靠两个待焊件之间的相对摩擦运动产生热能。而搅拌摩擦焊、嵌入摩擦焊、第三体摩擦焊和摩擦堆焊,是靠搅拌头与待焊件之间的相对摩擦运动产生热量而实现焊接。 1.2 摩擦焊原理 ?同种材质焊接时,最初界面接触点上产生犁削-粘合现象。由于单位压力很大,粘合区增多。继续 摩擦使这些粘合点产生剪切撕裂,金属从一个表面迁移到另一个表面。界面上的犁削-粘合-撕裂过程进行时,摩擦力矩增加时界面温度增高。当整个界面上形成一个连续塑性状态薄层后,摩擦力矩降低到一最小值。界面金属成为塑性状态并在压力作用下不断被挤出形成飞边,工件轴向长度也不断缩短 ?异种金属的机理比较复杂,除了犁削-粘合-剪切撕裂无力现象外,金属的物理与力学性能、相互 间固溶度及金属间化和物等,在结合机理中都会起作用,焊接时由于机械混合和扩散作用,在结合面附近很窄的区域内有可能发生一定程度的合金化,这一薄层的性能会对整个接头的性能有重要影响。机械混合和相互镶嵌对结合也会有一定作用。这种复杂性使得异种金属的摩擦焊接性很难预料。 1.2.1.连续驱动摩擦焊1.2.2 惯性摩擦焊1.2.3 相位摩擦焊1.2.4 径向摩擦焊1.2.5 摩擦堆焊1.2.6 线性摩擦焊1.2.7 搅拌摩擦焊 二、连续驱动摩擦焊 ?2.1 连续驱动摩擦焊基本原理 ? 2.1.1 焊接过程 ?连续驱动摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后, 位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过

挖掘机液压油缸活塞杆连续驱动摩擦焊工艺研究

挖掘机液压油缸活塞杆连续驱动摩擦焊工艺研究液压油缸是工程机械的核心零部件之一,其性能优劣直接决定着工程机械产品的可靠性和使用寿命。目前,液压油缸活塞杆的耳环与杆体之间主要采用气体保护方式进行焊接。 这种焊接方法不仅效率低下,而且还会经常出现焊缝熔合不良、气孔、夹杂等质量问题。为了保证活塞杆的焊接质量,提高产品的合格率及其使用寿命,徐州徐工液压件有限公司引进了液压油缸活塞杆摩擦焊接技术并进行了深入的研究。 摩擦焊技术是通过摩擦热使接头母材熔化,然后迅速施加顶锻力从而获得合格焊缝的一种焊接方法。母材状态、焊接参数、有无镀层和焊后热处理方式都会对焊口性能产生一定的影响。 因此本文主要从焊材准备、参数选择、焊后热处理等三个方面对活塞杆摩擦焊工艺进行了研究。在焊接参数方面,主要研究了摩擦压力,摩擦时间,顶锻压力和保压时间等参数对焊接接头力学性能的影响;在焊材状态方面,主要研究了电镀镀层、端面结构等对接头力学性能的影响;最后针对部分焊件焊后冲击强度偏低的情况,进行了热处理探究。 对于直径为85 mm的活塞杆,当采用镀前焊,摩擦压力为7.6MPa、摩擦时间为19s、顶锻压力为14.3MPa、顶锻时间为16s,焊后采用870℃零时淬火、520℃回火、回火保温时间为140min的热处理工艺时,经过一系列的实验可以发现,活塞杆焊接接头抗拉强度达到800MPa以上,断面收缩率达到50%以上,实现了接头合格率100%的目标。同时,主机在使用过程中未发生任何焊接质量问题,达到了预期的研究目标。 为工程液压油缸活塞杆的制造,乃至整个液压装备制造技术的提升和技术的

创新奠定了理论研究和工程实践的基础。调质处理后,通过对焊件进行拉伸测试、金相组织显微观察、拉伸断口的宏观及微观形貌分析可以发现采用“零保温”淬火热处理工艺可以细化晶粒、提高焊件综合力学性能,即焊接试样接口在经过上述调质处理以后其强度和塑性韧性较热处理前有明显的改善。 在诸多影响摩擦焊焊接接头抗拉强度的因素中,主摩擦压力、主摩擦时间、顶锻压力以及顶锻保压时间等四个因素对其影响较大。其中,顶锻保压时间的不同水平对其影响最大,顶锻压力的影响仅次于保压时间,主摩擦压力对焊接接头抗拉强度的影响略小,主摩擦时间的影响则最小。 在调质工序中,对接头抗拉强度的影响按从大到小的顺序依次为淬火保温时间、淬火温度、回火温度和回火保温时间。除淬火保温时间外,其他三个因素对接头强度的影响基本相当。 通过对焊前母材状态的研究和实验可以发现,无论是镀前焊还是镀后焊都能获得抗拉强度高于800MPa的焊接接头。但镀后焊焊接接头的抗拉强度比镀前焊的强度低,并且镀前焊焊接头为塑性断裂,镀后焊接头为脆性断裂。 当用摩擦焊生产直径较大杆件时,应选用中心有凸度的焊接结构,一般是凸度为2°的端面。这种结构可以促进整个端面加热的均衡性,确保整个焊接面都可以达到要求的焊接温度。

连续驱动摩擦焊资料

连续驱动摩擦焊资料 一、焊接工艺 ㈠.熔焊 1.电弧焊 2.气焊 3.电子束焊 4.激光焊 5.电渣焊 6.铝热焊 传统的汽车传动轴焊接方式,一般都是采用CO?气体保护焊,成本高、效率低 ㈡.压焊 1.锻焊 2.摩擦焊 3.冷压焊 4.电阻焊 ---电焊 / 缝焊 / 对焊 5.超声波焊 6.扩散焊 7.高频焊 8.爆炸焊 ㈢.钎焊 1.火焰钎焊 2.烙铁钎焊 3.感应钎焊 4.电阻钎焊 5.盐浴钎焊 6.炉中钎焊 高压电触头普遍采用真空钎焊,电子束焊等工艺,成本高、效率低 二、连续驱动摩擦焊原理 利用工件端面相互摩擦产生的热量使之达到塑性状态,然后顶锻完成焊接的方法。在压力作用下,是在恒定或递增压力以及扭矩的作用下,利用焊接接触端面之间的相对运动在摩擦面及其附近区域产生摩擦热和塑形变形热,使及其附近区域温度上升到接近但一般低于熔点的温度区间,材料的变形抗力降低、塑性提高、界面的氧化膜破碎,在顶锻压力的作用下,伴随材料产生塑性变形及流动,通过界面的分子扩散和再结晶而实现焊接的固态焊接方法。 三、摩擦焊机工作过程 (1)初始摩擦阶段(t1) (2)不稳定摩擦阶段(t2) (3)稳定摩擦阶段(t3) (4)停车阶段(t4) (5)纯顶锻阶段(t5) (6)顶锻维持阶段(t6) 在整个摩擦焊接过程中,待焊的金属表面经历了从低温到高温摩擦加热,连续发生了塑性变形、机械挖掘、粘接和分子连接的过程变化,形成了一个存在于全过程的高速摩擦塑性变形层,摩擦焊接时的产热、变形和扩散现象都集中在变形层中。在停车阶段和顶锻焊接过程中,摩擦表面的变形层和高温区金属被部分挤碎排出,焊缝金属经受锻造,形成了质量良好的焊接接头。 四、连续驱动摩擦焊机优点 1、接头质量好且稳定。 焊接过程由机器自动控制,参数设定后容易监控,重复性好,不依赖于操作人员的技术水平和

连续驱动摩擦焊焊接工艺

Φ15 45钢+45钢连续驱动摩擦焊焊接工艺 一、目的 《特种焊接设备使用与维护》是三年制高职焊接技术及自动化专业的一门专业主干课程。其任务主要是讲述各种特种焊接方法的过程本质、质量控制、相应焊接设备的构成、工件原理、焊接参数的合理选择及设备使用维护的技术知识。为了巩固所学常用特种焊接方法与设备的知识,熟悉有关资料,掌握焊接工艺参数的选择和焊接设备的使用维护,安排了为期一周的课程设计。通过本次焊接工艺设计,锻炼学生们的分析问题与解决问题的能力,提高焊接操作技能。 二、摩擦焊接技术概况 摩擦焊接是利用焊件接触的端面相对运动中相互摩擦所产生的热,使端面达到热塑性状态,然后迅速顶锻,完成焊接的一种固相焊接方法。摩擦焊以其优质、高效、节能、无污染等优势受到制造业的重视,使其在航天、核能、海洋开发等技术领域及电力、机械、石化、汽车制造等产业部门得到了越来越广泛的应用。摩擦焊的基本原理:摩擦焊焊接过程是在压力的作用下,相对运动的待焊材料之间产生摩擦,使界面及附近温度升高并达到热塑性状态,随着顶锻力的作用,界面氧化膜破碎,材料发生塑性变形与流动,通过界面元素扩散及再结晶冶金反应而形成接头。焊接过程不加填充金属,不需焊剂,也不用保护气体,全部焊接过程只需几秒钟。两焊件结合面之间在较高的压力下高速旋转相互摩擦产生了两个重要的效果:一是破坏了结合面的氧化膜或其他污物,使纯净金属暴露出来;另一个是摩擦生热,使结合面很快形成热塑性层。在随后的摩擦扭矩和轴向压力作用下这些破碎的氧化物和部分塑性层被挤出结合面外形成飞边,剩余的塑性变形金属就构成了焊缝金属,最后的顶锻使焊缝金属获得进一步锻造,形成了质量良好的焊接. 三、摩擦焊的优缺点 1、焊接质量好而稳定。由于摩擦焊是一种热压焊接法,摩擦不仅能消除焊接表面的氧化膜, 同时在较大的顶锻压力作用下, 还能挤碎和挤出由于高速摩擦而产生的塑性变形层中氧化了的部分和其它杂质, 并使焊缝金属得到锻造组织。

相关主题
文本预览
相关文档 最新文档