当前位置:文档之家› 张量分析在弹性力学中的应用

张量分析在弹性力学中的应用

张量分析在弹性力学中的应用
张量分析在弹性力学中的应用

张量分析在弹性力学中的应用

自然界的许多问题用数学语言来描述时都需要引入坐标系,但其本质又与坐标无关。当有些自然规律用坐标形式表达后,由于复杂的方程式往往使得人们忽略了它的内在本质。张量是一种特殊的数学表达形式,它描述的结果不会因为坐标系的变化而发生变化[1],因此可以摆脱坐标系的影响,反应事物的本质。此外通过爱因斯坦求和约定、相关记法的规定等常用的表示方法,使得张量的表达形式变得十分简洁。

弹性力学,又称弹性理论,主要是研究弹性体在外力和其它外界因素作用下产生的应力、形变和位移,广泛应用于建筑、机械、化工、航天等工程领域。为了求得一定边界条件下物体的应力、应变和位移,先对构成物体的材料以及物体的变形作了五条基本假设,即:连续性假设、均匀性假设、各向同性假设、完全弹性假设和小变形假设,然后分别从问题的静力学、几何学和物理学方面出发,导得弹性力学的基本方程,即平衡微分方程、几何方程和本构方程,共15个方程[2]。由于方程数目的众多,使得我们在分析过程中往往将大部分注意力集中在了方程的形式上,从而忽略问题的本质。

如果将张量引入到物体的应力、应变和位移中,关于弹性问题的15个方程都可以用相关的符号而不是展开式来表示,一方面可以使得书写简便,更重要的是可以将大部分注意力集中在物理原理上而不是方程本身,从而深化对问题的分析[3,4]。

由于表达简洁、不会改变方程式的本质,张量分析得到了广泛的应用。黄勇对张量的概念做出了具体的分析[5];林诚之利用张量的概念推导了形状比能的表达式[6];赵超先[7]、黄晓琴[8]将张量应用于物理学中,利用应力张量对麦克斯韦磁场力进行了重新推导;明华军等利用监测得到的张量结果得到了岩体破裂面空间方位的计算方法[9];杨天鸿等以现场岩体渗透结构面概率模型统计资料为依据,采用离散介质方法建立典型裂隙网络模型,提出计算岩体结构面网络的等效渗透系数张量方法[10]。

本文的目的并不是概述张量在工程中的应用,而是主要介绍张量在弹性力学中的应用,具体介绍弹性力学中基本方程的张量表达形式以及用张量概念推导的弹性应变能函数的表达式。

2 弹性力学中基本方程的张量表达形式[2,3,4]

2.1 用张量表示弹性力学中的基本物理量

对于空间问题,受力物体在外力作用下,物体的各个点都会长生相应的应

来表示

力、应变和位移。将受力物体上一点的应力状态用应力张量

ij

11121321

2223313233x xy xz ij yx y yz zx zy z σσσσττσσσστστσσσττσ??

??

? ?== ? ? ? ????? (1) 其中,,1,2,3i j =,下标1、2、3表示笛卡尔坐标,以下表达式中i ,j 的取值也是如此。对于ij σ,当i j =时表示正应力;i j ≠时,等表示剪切应力。

将受力物体上一点的位移用位移张量i u 来表示。

i u u v w ??

??=??????

(2) 小应变条件下,受力物体一点的应变状态可以用应变张量ij ε来表示

1112

132122

233132

3311()()2211()

()2211()()22ij u

v u u w x

x y

z x v u v v w x y y z y u w v w w

z x

z y

z εεεεεεεε

εε???????++

??????

??? ?

????? ?==++ ? ?????? ? ?

??

??????++ ?

???????

(3) 其中,对于ij ε,当i j =时表示正应变;i j ≠时表示剪应变。 2.2 弹性力学中的基本方程

(1)平衡方程

000xy x xz

x yx y yz

y zy zx z

z f x

y z f x y z f x y z τσττστττσ????+++=?

?????????+++=?????????+++=??????

(4) (2)几何方程

x y z xy

yz zx u v w x y z v u w v u w x y y z z x εεεγγγ????===?????

?

???????=+=+=+????????

(5) (3)本构方程

1

() 1() 1() xy x x y z xy yz y y x z yz zx z z

x y zx E G E G E G τεσμσσγτεσμσσγτεσμσσγ???=-+=????

?

??=-+=????

?

??=-+=????

(6) 2.3 将弹性力学中的基本方程用张量表示

利用应力张量,受力物体的平衡微分方程可简化为:, 0ij j i f σ+= (7) 利用应变张量,受力物体的几何方程可以简化为:(),,1

2

ij i j j i u u ε=+ (8)

物体的本构方程可以表示为:1ij ij ij E E

μμ

εσδσ+=- (9)

式中,ij δ为Kronecker 符号,112233x y z σσσσσσσ=++=++。

将式(4)、式(5)和式(6)与(7)、式(8)和式(9)进行对比,我

们可以发现将张量形式引入到弹性力学后,基本方程的表达式明显得到简化,当然简化的前提是我们对张量表示的应力、应变状态以及相应的张量计算规则达到一定的熟

通过将用张量形式表达后的弹性力学基本方程与原方程进行对比,可以发现张量的引入可以使得弹性力学中的相关表达式得到很大的简化,所表达的物理含义更加明显。

利用张量,推导了弹性体的弹性应变能函数。弹性应变能函数取决于物体的偏应力张量和球应力张量。

《连续介质力学》期末复习提纲-总

<连续介质力学> QM 复习提纲(2010.12) 一、基本要求 1、掌握自由指标与哑指标的判别方法及表达式按指标展开; 2、掌握ij 与ijk e 的定义、性质及相互关系; 3、掌握二阶张量坐标转换的计算; 4、掌握二阶张量特征值、特征向量与三个不变量的计算方法; 5、掌握哈密顿微分算子及其基本计算; 6、掌握小变形应变张量、转动张量及转动向量的计算; 7、掌握正应变的计算; 8、掌握正应力、剪应力及应力向量的计算; 9、掌握应力张量与应变张量的对称性; 10、掌握能量密度及能通量密度向量的计算; 11、掌握各向同性线弹性体的广义胡克定律的两种形式; 12、掌握应力张量与体积膨胀率的关系; 13、掌握各向同性线弹性体的应变能密度函数; 14、会对材料的各个弹性参数之间的关系进行相互推导; 15、掌握从质点的运动方程推导Navier 方程的过程; 16、掌握从质点的运动方程出发推导纵横波的方程的过程; 17、掌握地震波速度与泊松比的关系; 18、掌握非均匀平面简谐波的传播特征; 19、掌握P 波、SV 波入射到自由界面上的传播特征; 20、掌握利用自由界面边界条件确定反射系数和反射波位移场的方法; 21、掌握Reilaygh 波和Stonely 波的传播特征; 22、掌握P 波入射到两种弹性体接触面上的反射系数和透射系数的计算方法; 二、复习题 简答论述题 1、试解释“连续介质”所必须满足的条件。 2、简述弹性动力学基本假设。 3、说明应力、应变、正应力、正应变、剪应力及剪应变的含义。 4、说明杨氏模量、泊松比、体积模量与剪切模量的物理含义。 5、简述小变形应变张量的几何解释。

弹性力学基础讲解

一、基本物理量 应力张量:在直角坐标系中,过弹性体内任一点取分别平行于三个坐标平面的三个微平面,它们的外法线方向分别为三个坐标轴的方向,将三个剪应力平行于坐标轴的两个分量;由此共得九个应力分量,记为: ??? ? ??????=zz zy zx yz yy yx xz xy xx ττττττττττ;每个分量的第一下标表示应力分量所在平面的外法线方向,第二下标表示应力分量 的方向。应力分量的正负号规定为:当应力分量所在平面的外法线方向与某坐标轴同向时,应力分量的方向也与相应坐标轴同向;当应力分量所在平面的外法线方向与某坐标轴反向时,应力分量的方向也与相应坐标轴反向。 3、应变 弹性体内某一点的正应变(线应变):设P 为弹性体内任意点,过P 点某一微元线段变形前的长度为l ?,变形后的长度为'l ?,定义P 点l 方向的正应变为:l l l l ll ??-?=→?'lim 0ε。即正应变表示单位长度线段的伸长 或缩短。 弹性体内某一点的剪应变(角应变):设r l ?和s l ?为过P 点的两微元线段,变形前两线段相互垂直,定义变形后两线段间夹角的改变量(弧度)为角应变,夹角减小则角应变为正。 应变张量:在直角坐标系中,过弹性体内任一点取分别平行三个坐标轴的线段,按上述原则定义各应变分 量,得:??? ? ? ?????=zz zy zx yz yy yx xz xy xx εεεεεεεεεε;两个下标相同的分量为正应变,其它为剪应变。 关于主应变和主应变方向的讨论与主应力基本相同,可以证明,主应变方向与主应力方向重合。 4、外力 体积力:作用于弹性体内部每一点上,如重力、电磁力、惯性力等。设V ?为包含P 点的微元体,作用于该微元体上的体积力为V F ?,则定义P 点的体积力为:{}T z y x V V f f f V =??=→?F f 0lim 。 表面力:作用于弹性体表面,如压力,约束力等。设S ?为包含P 点的微元面,作用于该微元面上的表面力为S F ?,则定义P 点的表面力为:{}T z y x S S s s s S =??=→?F s 0lim 。 二、基本方程 1、平衡方程

张量分析在弹性力学中的应用

张量分析在弹性力学中的应用 自然界的许多问题用数学语言来描述时都需要引入坐标系,但其本质又与坐标无关。当有些自然规律用坐标形式表达后,由于复杂的方程式往往使得人们忽略了它的内在本质。张量是一种特殊的数学表达形式,它描述的结果不会因为坐标系的变化而发生变化[1],因此可以摆脱坐标系的影响,反应事物的本质。此外通过爱因斯坦求和约定、相关记法的规定等常用的表示方法,使得张量的表达形式变得十分简洁。 弹性力学,又称弹性理论,主要是研究弹性体在外力和其它外界因素作用下产生的应力、形变和位移,广泛应用于建筑、机械、化工、航天等工程领域。为了求得一定边界条件下物体的应力、应变和位移,先对构成物体的材料以及物体的变形作了五条基本假设,即:连续性假设、均匀性假设、各向同性假设、完全弹性假设和小变形假设,然后分别从问题的静力学、几何学和物理学方面出发,导得弹性力学的基本方程,即平衡微分方程、几何方程和本构方程,共15个方程[2]。由于方程数目的众多,使得我们在分析过程中往往将大部分注意力集中在了方程的形式上,从而忽略问题的本质。 如果将张量引入到物体的应力、应变和位移中,关于弹性问题的15个方程都可以用相关的符号而不是展开式来表示,一方面可以使得书写简便,更重要的是可以将大部分注意力集中在物理原理上而不是方程本身,从而深化对问题的分析[3,4]。 由于表达简洁、不会改变方程式的本质,张量分析得到了广泛的应用。黄勇对张量的概念做出了具体的分析[5];林诚之利用张量的概念推导了形状比能的表达式[6];赵超先[7]、黄晓琴[8]将张量应用于物理学中,利用应力张量对麦克斯韦磁场力进行了重新推导;明华军等利用监测得到的张量结果得到了岩体破裂面空间方位的计算方法[9];杨天鸿等以现场岩体渗透结构面概率模型统计资料为依据,采用离散介质方法建立典型裂隙网络模型,提出计算岩体结构面网络的等效渗透系数张量方法[10]。 本文的目的并不是概述张量在工程中的应用,而是主要介绍张量在弹性力学中的应用,具体介绍弹性力学中基本方程的张量表达形式以及用张量概念推导的弹性应变能函数的表达式。 2 弹性力学中基本方程的张量表达形式[2,3,4] 2.1 用张量表示弹性力学中的基本物理量 对于空间问题,受力物体在外力作用下,物体的各个点都会长生相应的应 来表示 力、应变和位移。将受力物体上一点的应力状态用应力张量 ij

(完整版)张量分析中文翻译

张量 张量是用来描述矢量、标量和其他张量之间线性 关系的几何对象。这种关系最基本的例子就是点积、 叉积和线性映射。矢量和标量本身也是张量。张量可 以用多维数值阵列来表示。张量的阶(也称度或秩) 表示阵列的维度,也表示标记阵列元素的指标值。例 如,线性映射可以用二位阵列--矩阵来表示,因此该 阵列是一个二阶张量。矢量可以通过一维阵列表示, 所以其是一阶张量。标量是单一数值,它是0阶张量。 张量可以描述几何向量集合之间的对应关系。例 如,柯西应力张量T 以v 方向为起点,在垂直于v 终点方向产生应力张量T(v),因此,张量表示了这两个 向量之间的关系,如右图所示。 因为张量表示了矢量之间的关系,所以张量必 须避免坐标系出现特殊情况这一问题。取一组坐标 系的基向量或者是参考系,这种情况下的张量就可 以用一系列有序的多维阵列来表示。张量的坐标以 “协变”(变化规律)的形式独立,“协变”把一种 坐标下的阵列和另一种坐标下的阵列联系起来。这 种变化规律演化成为几何或物理中的张量概念,其 精确形式决定了张量的类型或者是值。 张量在物理学中十分重要,因为在弹性力学、流体力学、广义相对论等领域中,张量提供了一种简洁的数学模型来建立或是解决物理问题。张量的概念首先由列维-奇维塔和格莱格里奥-库尔巴斯特罗提出,他们延续了黎曼、布鲁诺、克里斯托费尔等人关于绝对微分学的部分工作。张量的概念使得黎曼曲率张量形式的流形微分几何出现了替换形式。 历史 现今张量分析的概念源于卡尔?弗里德里希?高斯在微分几何的工作,概念的 制定更受到19世纪中叶代数形式和不变量理论的发展[2]。“tensor ”这个单词在 1846年被威廉·罗恩·哈密顿[3]提及,这并不等同于今天我们所说的张量的意思。 [注1]当代的用法是在1898年沃尔德马尔·福格特提出的[4]。 “张量计算”这一概念由格雷戈里奥·里奇·库尔巴斯特罗在1890年《绝对微分几何》中发展而来,最初由里奇在1892年提出[5]。随着里奇和列维-奇维塔1900年的经典著作《Méthodes de calcul différentiel absolu et leurs applications 》(绝对微分学的方法及其应用)出版而为许多数学家所知[6]。 在20世纪,这个学科演变为了广为人知的张量分析,1915年左右,爱因斯坦的广义相对论理论中广泛应用了这一理论。广义相对论完全由张量语言表述。爱因斯坦曾向几何学家马塞尔·格罗斯曼学习过张量方法,并学得很艰苦。[7]1915 年到1917年之间,列维·奇维塔 在与爱因斯坦互相尊重互相学习的氛围下,对爱因斯坦的张量表述给与了一些指正。 “我很佩服你的计算方法的风采,它必将使你在数学大道上策马奔腾,然而我们却只能步履蹒跚。”阿尔伯特·爱因斯坦,意大利相对论数学家[8]。 柯西应力张量是一个二阶张量。该张量的元素在三维笛卡尔坐标系下组成如下矩 阵: 312()()()111213212223313233 T T T =e e e σσσσσσσσσσ??=???????????? 该矩阵的各列表示作用在 e 1,e 2,e 3方向正方体表面上的应力(单位面积上的力)。

《连续介质力学》期末复习提纲--弹性力学部分.docx

〈连续介质力学〉期末复习提纲一弹性力学部分 1、自由指标与哑指标判别(★) 2、自由指标与哑指标的取值范围约定 3、自由指标与哑指标规则 4> Einstein 求和约定(★) 5、Kronecker-delta 符号(★) 、、, f 0, i j 定乂:廿 性质:(1) §ij= Eji (2)e f -e)= % (3)戈=久+爲2+爲3=3 (6) S ik5kj=S ij 6、Ricci符号(置换符号或排列符号)(★) 1,北为1,2,3的偶排列 定义:e..k = -1, ■从为1,2,3的奇排列 0, 门,舛任两个相等 性质:(1) e ijk = e jki = e kij = -e Jik = -e ikj = -e kji (2)弓23 =幺23] =?】2 =1 (3)弓32=?2I =勺口=_1 ⑷e^ej=e ijk e k (5) (axb)k = egbj, a、b为向量 7、%与爲的关系(★) 魯i詁0 § ZQ

8、坐标变换(★) 向量情形: 旧坐标系: ox [兀込尹丘,仔,£ 新坐标系: 州兀姿戸心乙列 变换系数: e[?e 尸(3 坐标变换关系: X , i - 0ijXj x t = 0jXj 0厂(角)T 矩阵形式为: 011 012 013 011 0 】2 013 X * = 021 022 023 兀2 或[耳,兀;,堪]=[西,兀2,兀 021 022 023 A.几 2 A.3_ _^3_ .031 032 033. 011 012 013 A 011 012 013 兀2 — 021 022 023 %; 或[西,吃,兀3] = [X ,%;,兀;] 021 022 023 _031 032 033 _ .031 032 033. 张量情形 入芋与A“?是两个二阶张量,角是坐标变换系数矩阵,则有 気=炕0“九 矩阵形式为[匍=[0]|? ]|> ],其中[A J=[A ]T (★) 9、 张量的基本代数运算 (1) 张量的相等 (2) 张量的加减法 (3) 张量的乘积 (4) 张量的缩并 (5) 张量的内积(★) (6) 张量的商法则 10、 几中特殊形式的张量 (1) 零张量 (2) 单位张量

浅议张量分析的形成及其应用

浅议张量分析的形成及其应用 摘要:张量分析是现代数学物理学的基础工具。从广义相对论开始,到规范场论,以至后来的弦理论的建立都得力于张量分析。张量分析所提供的对曲线坐标系的微分方法,真正实现了非欧几何从概念到演算的革命,而所有这一切都是以张量概念的产生为基础的。同时叙述了张量分析在相对论以及连续介质力学方便的应用。 关键词:张量分析;线性变换;相对论;连续介质力学 1引言 张量是向量(矢量)的自然推广。简单说,三维向量是有三个分量的矩阵函数,三维张量(也叫二阶张量)是有九个分量的矩阵函数。但是并不是只要把九个数写成矩阵形式就可以成为张量,还要必须满足线性变换形式不变这个条件。向量是一种平移不变量,在坐标系变换的时候,向量保持长度和方向不变。建立在向量基础上的微积分运算,也就是向量分析,为麦克斯韦的电磁理论提供了数学工具。不过,向量分析是笛卡儿空间中的分析,即三维直角坐标系中的向量微积分运算,它的局限性是很明显的,物理量中很多都有超过三个的分量,如果把分量理解为维数,那就需要处理高维空间中的分析的数学方法,张量分析因此有存在和发展的必要。 2张量概念的起源 2.119世纪初的非欧几何学 1826年,喀山大学的罗巴切夫斯基(H. N. Lobachevsky,1792-1856)演讲了他的关于非欧几何的论文《几何学原理及平行线定理严格证明的摘要》,被视为非欧几何诞生的标志。罗巴切夫斯基在证明第五公设的过程中,提出一个和欧氏平行公理相矛盾的命题,假如用它与欧氏几何的前四个公设结合成一个公理系统,然后展开一系列的推理,那么在此过程中,将得出一个个在直觉上很难理解,但在逻辑上毫无矛盾的命题。罗巴切夫斯基由此提出了新的几何理论,后来被称为罗巴切夫斯基几何,这是第一个被提出的改变空间观念的非欧几何学。 从罗巴切夫斯基创立的非欧几何学中,可以得出一个极为重要的、具有普遍意义的结论:逻辑上互不矛盾的一组假设都有可能提供一种几何学。几乎在罗巴切夫斯基创立非欧几何学的同时,1832年,匈牙利数学家波尔约(Janos Bolyai,1802-1860)从第五公设证明了

连续介质力学几个定律汇总情况

第二章连续介质力学的基本定律 在第一章中,我们仅考察了连续介质运动的运动学描述,而没有考虑到引起运动和变形的因素。本章我们将引入应力等概念,并给出连续介质力学的基本定律:质量守恒定律、动量平衡定律、动量矩平衡定律、能量守恒定律及熵不等式。 2.1 应力矢量与应力张量 在物体的运动中,物体的两部分之间或物体与其外界间的力学作用是通过力来描述的。在连续介质力学中我们主要研究三种类型的力:(1)一个物体的两部分之间的接触力;(2)由外界作用于物体边界上的接触力;(3)由外界作用于物体内部点的非接触力(如重力、离心力等)。在另一方面,由于(1)(2)型的力总是通过某一接触面发生作用的,因此通常把作用于单位接触面积上的接触力称为表面力,或简称面力;由于(3)型力作用于物体整个体积内所含的物质点,因此通常把它称为体积力,或简称体力。 在连续介质力学中重要的公理之一就是关于接触力形式的柯西假设。柯西假设在运动过程中的时刻t对于任何物质坐标X和与之对应的接触面S上的单位法矢量n,表面力的存在形式为 ()n t X t t,, =(2.101) 通常,我们规定()n t X t t,, =指向接触面S的外法向时为正,反之为负(见图2.1). 现在不管在X和S面与S'面的曲率相差多少。 为了研究物体内部的力学状态,我们把一物体用一假想平面S截断成两部分A和B,如图2.3所示。此时S面就是A和B相互作用的接触面,B部分对A部分一 点的作用,便可以用A部分截面上的表面力t n 来表征,我们称之为应力矢量。反过来,考虑A部分对B部分作用,按照牛顿的作用与反作用定律可得应力矢量 t n -。它与t n 作用于同一平面上的同一点处,并且大小相等,方向相反。即 t t n n =-(2.102) 对于物体内部的一点P,通过它可以有无穷多个方向的截面,而对于不同 方向的截面,应力矢量也就不同,这种复杂情况只有引进应力张量的概念才能充分地加以描述。为了刻画一点的应力状态,设想在一点P的附近任意给定一个单位法矢量为

张量投票算法及其应用

华东师范大学 硕士学位论文 张量投票算法及其应用 姓名:秦菁 申请学位级别:硕士专业:基础数学 指导教师:沈纯理 20080501

摘要 本文主要介绍了一种新的数据分析算法,即张量投票算法.该算法完全利用图像数据,根据张量分析,矩阵论和几何的知识,对数据点进行编译和几何阐释,再根据心理学中的Gestalt原理制定一个数据点与周围的数据点之问的信息传递规则,从而推断出一些几何结构.这种方法有诸多优点o.局部性,对噪声的鲁棒性,非迭代的,可处理大量数据的,可同时表示各种几何结构类型等.本文从二维情形开始对该算法进行了详细的数学描述,并推广到高维空间. 这种算法与现在流行的基于偏微分方程的图像处理方法不同,在第三章中就该算法的应用提出了三个方面:1.图像去噪;2.图像分割;3.图像序列.其中,图像去噪是完全利用张量投票算法对数据的处理,可以看到这种算法的有效性.而对于图像中轮廓线的提取,以前也有很多基于能量泛函和偏微分方程的工作,本文从另外一个角度把张量投票算法中出现的显著性信息放到能量泛函中得到跟以前一致,并更精细的方程.限于时间,这个改进的方法没有进一步与之前的方法进行比较和分析.最后,对图像序列中研究不多的过渡图像生成的问题做一些结合张量投票算法的尝试.而这个问题在文献【23】中并没有得到有效的解决,但我们的方法部分解决了这一问题. 关键词:张量投票算法,图像去噪,轮廓提取,图像序列分析 2

第一章绪论 1.1张量分析的基本知识 1.1.1张量的定义和性质 假设y是一个II维的实向量空间,三(y;R)表示从y到实数集R的线性函数空间.可以证明己(y;R)与y有相同的维数n.因此y和L(V;R)为同构的.L(y;R)也经常被称为y的对偶空间,记为P. 若Ⅵ….,K都是向量空间,一个函数A:v1×…×K_÷R当满足如下条件: A(Vl,v2,…,oil‰1+n2i%2,…,vs)=耐A("1,…,钉j,…,%)+ai2A(v1,…,谚,…,%), 讹i,吐∈R,叫,蛾2∈K,i=1….,8函数A称为8重线性函数.若向量空间Ⅵ….,K中要么为向量空间y要么为其对偶空间V’,则称A为y上的一个张量.即V上的p,q)阶张量(P和口均为正整数)为一个p+g)重线性函数: A:V’×…×V’×V×…×V_R 、-?___—-v—_-_一、?__-_、一.—?___, p口 当P=q=0时定义(0,0)型张量即为R中的一个数量,仞,o)型张量也称为P阶反变张量,(o,口)型张量也称为q阶协变张量.其余类型的张量称为混合张量,一般我们称p,q)型张量为P+q阶的张量.用馏表示全体y上的p,口)阶张量所构成的空间,它是一个矿+q维的线性空间,以 eil@…o eipo哼lo…o吃,il,…,ip,jl,…,Jq=1,…,Tt. 为基底.其中el,…,en为V的基,e:,…,e:为V+中的对偶基. 例如,一阶张量就是一个线性作用将一个向量映为一个数量,从而任何一个向量与一个已知向量的内积可以看作一个一阶张量.同理,二阶张量可以定义为一个把两 1

张量分析在连续介质力学中的应用

张量分析在连续介质力学中的应用 薛玉洁 (中国矿业大学力学与建筑工程学院,桥梁与隧道工程,ZS13030047) 摘要:本研究将叙述张量分析在连续介质力学中的应用,Euclid空间上张量场分析、二维曲面(Riemann流形)上的张量场分析的相关知识体系要点,以及作为应用的可变形边界局部动力学有关研究的理论基础等。张量分析是我国著名力学家周培源先生常用的数学及力学分析方法,亦谨以此文表示为前辈诚挚的仰慕之情。 关键词:连续介质力学;Euclid空间;二维曲面;涡量与涡动力学 1引言 一般连续介质力学的理论体系,引入初始物理构形以及当前物理构形,对二者可再分别引入初始参数构形以及当前参数构形,物理构形与参数构形之间的关系即为一般曲线坐标系,数学上对应为有限维Euclid空间之间二个开集之间的微分同胚。 为研究边界的有限变形运动对介质运动的影响,我们对于当前物理构形引入显含时间的曲线坐标系,表现为时空空间中的微分同胚。通过构造适当的曲线坐标系可将物理空间中几何形态不规则且随时间变化的运动区域微分同胚至参数空间中的几何形态规则且不随时间变化的参数区域。如图l所示,对于研究出口边界可作有限变形运动的射流场,其当前物理构形显得极其复杂,但我们可以考虑如图所示的对应于当前物理构形的显含时间的曲线坐标系,使得当前参数构形不仅几何形态规则而且不随时间变化。进一步将连续介质运动的控制方程按曲线坐标系的局部基展开就可获得定义于参数区域上的控制方程。特别地,可基于非完整系理论系统获得控制方程在一般单位正交系(非完整系)下的分量方程,也适用于按时均分解的湍流控制方程。我们亦可将把相关方法推广至张量梯度的多点表示形式。 以上所述,一定程度上归纳了现代张量分析在现代连续介质力学中有关应用的基本思想及方法。本文将叙述Euclid空间上张量场分析、二维曲面(Riemann流形)上的张量场分析的相关知识体系要点,以及作为应用的可变形边界局部动力学有关研究的理论基础。

《连续介质力学》期末复习提纲--弹性波理论部分

<连续介质力学> 期末复习提纲—弹性波理论部分 1、无界线弹性体中的波传播 (1)Helmholtz 定理 a. 定理内容 b. 位移场的分解---无旋部分与无散部分 (1)(2u u u =+ ,其中(1)0u ??= ,(2)0u ??= c. 转动向量与体积膨胀率的位移场表示 (2)21122 u ωψ=??=-? , (1)2u θφ=??=? (2)无界线弹性体中的P 波与S 波 a. 体积膨胀率与转动向量满足的波动方程 (★) 2212211 112,f c c c λμ θθ ρ +?+??== 2 2 2222211,2f c c c μωωρ ?+??== b. Helmholtz 势满足的波动方程 222 2 22221211,b B c t c t φφφψ???+=?+=?? c. 位移场无旋部分与无散部分满足的波动方程 2 (1) (1)2 (2) (2) 221 2 1 1 ,u b u u B u c c ?+?=?+??= d. 纵波与横波的相速度及其比值 (★) 2 1121221222) 21c c c c c c c c ν??=- ????===?? ???= -?? ??? ?????? 2、无界线弹性体中的平面波 (1)波阵面、平面波与球面波 (2)一般平面波及其描述 (★)

a. 一般平面波位移场的形式 (★) (,)()u x t f x n ct d =?- b. 纵横波满足的条件及相速度公式 (★) 2 0()()()0d n n d c c P wave S wave c d n d n μρλμ?=±?=---++?= c. 一般平面波的能量密度与能通量密度向量 (★) ① 平面纵波的情况 (★) 能量密度: [][][] 222211112 21111 2211()()22 ()p ij ij i i e u u c f x n c t c f x n c t c f x n c t ετρρρρ=+''=?-+?-'=?- 能通量密度向量:[]2 311()p ij i j u e n c f x n c t ?τρ'=-=?- 二者关系: 1p p c n ?ε= ② 平面横波的情况 (★) 能量密度: [][][] 2222212122 211 12 2 11()()22 ()s ij ij i i e u u c f x n c t c f x n c t c f x n c t ετρρρρ=+''= ?-+?-'=?- 能通量密度向量:[ ]2 321()s ij i j u e n c f x n c t ?τρ'=-=?- 二者关系: 2s s c n ?ε= (2)平面简谐波及其描述 (★) a. 描述平面简谐波的物理量 (★) kc ω=,2T π ω = ,12T ωαπ= =,22c cT k ππ ωΛ=== 2k n n c ωπ==Λ , 22 2i i k k k k k c ω?===

第六章 连续介质力学方法

第六章连续介质力学方法 连续介质力学方法的出发点是支护结构与围岩相互作用,组成一个共同承载体系,其中围岩是主要的承载结构,支护结构是镶嵌在无限或半无限介质孔洞上的加劲环。它的特点能反映出隧道开挖后围岩的应力状态。 解析法:即根据所给定的边界条件,对问题的平衡方程、几何方程和物理方程直接求解。由于数学上的困难,现在还只能对少数问题求解。 数值法:主要是指有限元法。它把围岩和支护结构都划分为若干单元,然后根据能量原理建立单元刚度矩阵,并形成整个系统的总体刚度矩阵,从而求出系统上各个节点的位移和单元的应力。它不但可以模拟各种施工过程和各种支护效果,同时可以分析复杂的地层情况(如断层、节理等地质构造以及地下水等)和材料的非线性等。 6.1 解析法 以均匀内压水工隧洞的计算为例,说明解析法计算的基本思路。 (1)衬砌应力的分析 水工隧洞衬砌厚度一般在20 cm以上、故力学分析中可将其视为厚壁圆筒。如图6.1.1 (a)所示。在均匀内水压力作用下,厚壁圆筒的内力分析是轴对称问题。 衬砌的径向应变为: 近似按平面应变问题分析衬砌,则由平面问题极坐标解的物理方程可写为: 作用在单元体上的外荷载为零,且在轴对称情况下单元体内力分量中的剪应力也为零,故根据平面问题极坐标解的静力平衡力程式,有:

(2)洞室围岩应力 分析均匀内力圆形水工隧洞围岩的应力仍可采用厚壁圆筒原理。 由式(6.1.16)可知:内水压力使围岩产生的切向应力σt是拉应力。若σt 的量值大于围岩中原来存在的压应力,且差值超过岩体的抗拉强度,则当衬砌抗拉强度不足时岩体将与衬砌一起发生开裂。将式(6.1.16)中的r0理解为毛洞半径,Pa理解为内压力,则该式就成为无衬砌圆形水工隧洞围岩应力的计算式。 (3)衬砌与围岩共同作用的计算 分析均匀内力圆形水工隧洞围岩的应力仍可采用厚壁圆筒原理。

连续介质力学几个定律

第二章 连续介质力学的基本定律 在第一章中,我们仅考察了连续介质运动的运动学描述,而没有考虑到引起运动和变形的因素。本章我们将引入应力等概念,并给出连续介质力学的基本定律:质量守恒定律、动量平衡定律、动量矩平衡定律、能量守恒定律及熵不等式。 2.1 应力矢量与应力张量 在物体的运动中,物体的两部分之间或物体与其外界间的力学作用是通过力来描述的。在连续介质力学中我们主要研究三种类型的力:(1)一个物体的两部分之间的接触力;(2)由外界作用于物体边界上的接触力;(3)由外界作用于物体内部点的非接触力(如重力、离心力等)。在另一方面,由于(1)(2)型的力总是通过某一接触面发生作用的,因此通常把作用于单位接触面积上的接触力称为表面力,或简称面力;由于(3)型力作用于物体整个体积内所含的物质点,因此通常把它称为体积力,或简称体力。 在连续介质力学中重要的公理之一就是关于接触力形式的柯西假设。柯西假设在运动过程中的时刻t 对于任何物质坐标X 和与之对应的接触面S 上的单位法矢量n ,表面力的存在形式为 ()n t X t t ,,= (2.101) 通常,我们规定()n t X t t ,,=指向接触面S 的外法向时为正,反之为负(见图2.1). 现在不管在X 和S 面与S'面的曲率相差多少。 为了研究物体内部的力学状态,我们把一物体用一假想平面S 截断成两部分A 和B ,如图2.3所示。此时S 面就是A 和B 相互作用的接触面,B 部分对A 部分一点的作用,便可以用A 部分截面上的表面力t n 来表征,我们称之为应力矢量。反过来,考虑A 部分对B 部分作用,按照牛顿的作用与反作用定律可得应力矢量t n -。它与t n 作用于同一平面上的同一点处,并且大小相等,方向相反。即 t t n n =- (2.102) 对于物体内部的一点P ,通过它可以有无穷多个方向的截面,而对于不同方向的截面,应力矢量也就不同,这种复杂情况只有引进应力张量的概念才能充分地加以描述。为了刻画一点的应力状态,设想在一点P 的附近任意给定一个单位法矢量为 (),cos ,cos ,cos 321ααα=n ()n e n e n e ???=321,, (2.103) 的平截面。相应地,过P 点沿活动标架作三个坐标平面。于是它们在物体内截得一个微小四面体,如图2.4所示。在这个微小四面体的每一个面上,都受有物体的其余部分给它的作用力,不妨设在ABC 上受到的作用力为t A ?,在PBC ,PCA 与PAB 上的作用力分别为-t A 11?、-t A 22?与-t A 33?,其中?A 与?A i 分别为各微小平面的面积,作用于微小四面体ABCP 上单位质量的体力为b 。 现在假设对物体的任何部分,特别是对微小四面体ABCP 而言,动量的变化率与作用的合力成正比。虽然这是个很自然且牛顿第二定律更强的新假设(因为牛顿第二定律只适用于整个物体),然而,它却不能用实验直接验证,因为不可

连续介质力学几个定律汇总

第二章 连续介质力学的基本定律 在第一章中,我们仅考察了连续介质运动的运动学描述,而没有考虑到引起运动和变形的因素。本章我们将引入应力等概念,并给出连续介质力学的基本定律:质量守恒定律、动量平衡定律、动量矩平衡定律、能量守恒定律及熵不等式。 2.1 应力矢量与应力张量 在物体的运动中,物体的两部分之间或物体与其外界间的力学作用是通过力来描述的。在连续介质力学中我们主要研究三种类型的力:(1)一个物体的两部分之间的接触力;(2)由外界作用于物体边界上的接触力;(3)由外界作用于物体内部点的非接触力(如重力、离心力等)。在另一方面,由于(1)(2)型的力总是通过某一接触面发生作用的,因此通常把作用于单位接触面积上的接触力称为表面力,或简称面力;由于(3)型力作用于物体整个体积内所含的物质点,因此通常把它称为体积力,或简称体力。 在连续介质力学中重要的公理之一就是关于接触力形式的柯西假设。柯西假设在运动过程中的时刻t 对于任何物质坐标X 和与之对应的接触面S 上的单位法矢量n ,表面力的存在形式为 ()n t X t t ,,= (2.101) 通常,我们规定()n t X t t ,,=指向接触面S 的外法向时为正,反之为负(见图2.1). 现在不管在X 和S 面与S'面的曲率相差多少。 为了研究物体内部的力学状态,我们把一物体用一假想平面S 截断成两部分A 和B ,如图2.3所示。此时S 面就是A 和B 相互作用的接触面,B 部分对A 部分一点的作用,便可以用A 部分截面上的表面力t n 来表征,我们称之为应力矢量。反过来,考虑A 部分对B 部分作用,按照牛顿的作用与反作用定律可得应力矢量t n -。它与t n 作用于同一平面上的同一点处,并且大小相等,方向相反。即 t t n n =- (2.102) 对于物体内部的一点P ,通过它可以有无穷多个方向的截面,而对于不同方向的截面,应力矢量也就不同,这种复杂情况只有引进应力张量的概念才能充分地加以描述。为了刻画一点的应力状态,设想在一点P 的附近任意给定一个单位法矢量为 (),cos ,cos ,cos 321ααα=n ()n e n e n e ???=321,, (2.103) 的平截面。相应地,过P 点沿活动标架作三个坐标平面。于是它们在物体内截得一个微小四面体,如图2.4所示。在这个微小四面体的每一个面上,都受有物体的其余部分给它的作用力,不妨设在ABC 上受到的作用力为t A ?,在PBC ,PCA 与PAB 上的作用力分别为-t A 11?、-t A 22?与-t A 33?,其中?A 与?A i 分别为各微小平面的面积,作用于微小四面体ABCP 上单位质量的体力为b 。 现在假设对物体的任何部分,特别是对微小四面体ABCP 而言,动量的变化率与作用的合力成正比。虽然这是个很自然且牛顿第二定律更强的新假设(因为牛顿第二定律只适用于整个物体),然而,它却不能用实验直接验证,因为不可能做内部表面接触力的直接测定,这种力的存在与大小只能由其它量的观测推知。描述一点是应力张量,描述通过一点的某一截面是应力矢量。 对于微小四面体ABCP ,柯西定律给出 t A t A t A t A b V ?????---+112233ρ

连续介质力学

摘要:弹塑性力学在材料加工工程中的应用相当广泛,首先说明下材料加工工程包括焊接、铸造、塑性成形三个方面。我主要是简单说明下弹塑性力学在金属塑性成形方面的应用。金属的变形分为两个阶段:弹性变形阶段与塑性变形阶段,对这两个阶段的研究相应的就分为弹性力学跟塑性力学[1]。 关键词:弹性力学、塑性力学、塑性成形、有限元、屈服准则、滑移线、应力、应变 首先来简单介绍下两个学科。弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工[2]。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。 弹性力学是固体力学的重要分支,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 首先来简单介绍下弹性力学在塑性成形方面的应用。弹性力学一般来解决两个方面的问题,一个是平面问题,一个是空间问题。而平面问题的解决包括平面问题的直角坐标解答、平面问题的极坐标解答、平面问题的有限单元法解答。应用弹性力学来解决塑性成形方面的应力、应变方面的问题,恰当的应力大小、应变程度就有金属的不同工艺性能。分析各种结构物或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度跟刚度,并寻求或改进它们的计算方法。空间问题解决的是运用平衡微分方程来分析物体内任一点的应力状态、最大与最小的应力等问题[3]。 有限元法在塑性成形方向的应用有这重要的作用,我简单说下有限元法在板料冲压方面的应用。在冲压板料成形加工中,钣金件展开计算非常重要。求得钣金件的展开毛坯,是分析钣金件变形程度、设计工艺以及拟定工艺规程的前提。合理的毛坯形状和尺寸,可以明显改善冲压过程中板料变形不均匀的现象,充分发挥金属的成形性能。在钣金件的展开方法中,基于全量理论的有限元逆算法只

连续介质力学复习题a20121210

连续介质力学复习题 (1)1.10, 1.19 答: 120 122 22m 32 ()()()()11( )|1211 () 12 1 (1)(2)M(x)k 1=x =const D C (1)(2)2-2m=0.m=1. m x x m m m x m m m M x x kD d x k d kC x m m kC x x m m kC x m m m m ξξξξξ ξξ+++++-=-=-=-++=-++=++++????令D(x)=Cx Cx 所以:

(2)2.13,考察一个被约束在圆形轨道上作匀速运动的质点。设v 是任意时刻的速度,质点的加速度是多少,即力量dv/dt 是多少? 2.19,两个矢量123u=,,u u u ()和123v=,,v v v ()的矢量积是矢量w=u v ?, 其分量为证明上式可以简写为 =i ijk j k u v ωε 证明:反证法:有 =i ijk j k u v ωε 所以有11=jk j k u v ωε 22=jk j k u v ωε 33=jk j k u v ωε 1111111121211313123231212113232122221313113333=++++++++u v u v u v u v u v u v u v u v u v ωεεεεεεεεε 2211112121221312221212222222323231312323223333 3311113121231313321213222232323331313323233333 =++++++++=++++++++u v u v u v u v u v u v u v u v u v u v u v u v u v u v u v u v u v u v ωεεεεεεεεεωεεεεεεεεε

连续介质力学复习题20121210

连续介质力学复习题 1.10 答: 1.19 答: 120 122 22m 32 ()()()()11( )|1211 () 12 1 (1)(2)M(x)k 1 =x =const D C (1)(2)2-2m=0.m=1. m x x m m m x m m m M x x kD d x k d kC x m m kC x x m m kC x m m m m ξξξξξ ξξ+++++-=-=-=-++=-++=++++????令D(x)=Cx Cx 所以:

2.13,考察一个被约束在圆形轨道上作匀速运动的质点。设v 是任意时刻的速度,质点的加速度是多少,即力量dv/dt 是多少? 2.19, 答: 2.37将下列方程写出展开的形式2 ,,21 ()12i i kk k ki i u G u u X v t ρ?++=-? 答:2 ,111,122 ,222,22 2 ,333,32 1 ();121 ()121 ()12i i i i i i i i i i i i u G u u X v t u G u u X v t u G u u X v t ρρρ?++=-??+ +=-??++=-? i=1、2、3.

3.9,在无体力情况下,如下应力分布是否处于平衡状态: 答:根据 0i j ij X x σ?+=?得到处于平衡状态。 3.22库埃特流动。两个同心圆筒间的空间中充满了流体,如图P3.22。令内筒静止,外筒以每秒w 弧度的角速度旋转。若测得内筒的扭矩为T ,作用在外筒的扭矩是多少?为什么? 答:T 。内外筒之间缝隙很小,内外筒半径近似相等。 4.12用锤子打击一个无限大的弹性体,应该设置什么样的边界条件? 答:

四大力学概论

理论力学 理论力学是机械运动及物体间相互机械作用的一般规律的学科,也称经典力学。是力学的一部分,也是大部分工程技术科学理论力学的基础。其理论基础是牛顿运动定律,故又称牛顿力学。20世纪初建立起来的量子力学和相对论,表明牛顿力学所表述的是相对论力学在物体速度远小于光速时的极限情况,也是量子力学在量子数为无限大时的极限情况。对于速度远小于光速的宏观物体的运动,包括超音速喷气飞机及宇宙飞行器的运动,都可以用经典力学进行分析。 基本概况 理论力学是研究物体的机械运动及物体间相互机械作用的一般规律的学科。同时理论力学是一门理论性较强的技术基础课,随着科学技术的发展,工程专业中许多课程均以理论力学为基础。 理论力学研究示意图 理论力学遵循正确的认识规律进行研究和发展。人们通过观察生活和生产实践中的各种现象,进行多次的科学试验,经过分析、综合和归纳,总结出力学的最基本的理论规律。[1] 发展简史 力学是最古老的科学之一,它是社会生产和科学实践长期发展的结果。随着古代建筑技术的发展,简单机械的应用,静力学逐渐发展完善。公元前5~前4世纪,在中国的《墨经》中已有关于水力学的叙述。古希腊的数学家阿基米德(公元前3世纪)提出了杠杆平衡公式(限于平行力)及重心公式,奠定了静力学基础。荷兰学者S.斯蒂文(16世纪)解决了非平行力情况下的杠杆问题,发现了力的平行四边形法则。他还提出了著名的“黄金定则”,是虚位移原理的萌芽。这一原理的现代提法是瑞士学者约翰第一·伯努利于1717年提出的。 动力学的科学基础以及整个力学的奠定时期在17世纪。意大利物理学家伽利略创立了惯性定律,首次提出了加速度的概念。他应用了运动的合成原理,与

连续介质力学读书报告

第一章绪论 研究连续介质宏观力学性状的分支学科。宏观力学性状是指在三维欧氏空间和均匀流逝时间下受牛顿力学支配的物质性状。连续介质力学对物质的结构不作任何假设。它与物质结构理论并不矛盾,而是相辅相成的。物质结构理论研究特殊结构的物质性状,而连续介质力学则研究具有不同结构的许多物质的共同性状。连续介质力学的主要目的在于建立各种物质的力学模型和把各种物质的本构关系用数学形式确定下来,并在给定的初始条件和边界条件下求出问题的解答。 如果一个物体的质量、动量、能量密度在数学意义上存在,这个物质就是一个物质连续统(连续介质)。这样一个物质连续统的力学就是连续介质力学(附加限制条件:只要始终保持含有足够多的粒子,而不至于使极限值不存在或者发生突跃)。它通常包括下述基本内容:①变形几何学,研究连续介质变形的几何性质,确定变形所引起物体各部分空间位臵和方向的变化以及各邻近点相互距离的变化,这里包括诸如运动,构形、变形梯度、应变张量、变形的基本定理、极分解定理等重要概念。 ②运动学,主要研究连续介质力学中各种量的时间率,这里包括诸如速度梯度,变形速率和旋转速率,里夫林-埃里克森张量等重要概念。③基本方程,根据适用于所有物质的守恒定律建立的方程,例如,热力连续介质力学中包括连续性方程、运动方程、能量方程、熵不等式等。④本构关系。⑤特殊理论,例如弹性理论、粘性流体理论、塑性理论、粘弹性理论、热弹性固体理论、热粘性流体理论等。⑥问题的求解。根据发展过程和研究内容,客观上连续介质力学已分为古典连续介质力学和近代连续介质力学。 1.1基本假设 连续介质力学的最基本假设是“连续介质假设”:即认为真实的流体和固体可以近似看作连续的,充满全空间的介质组成,物质的宏观性质依然受牛顿力学的支配。这一假设忽略物质的具体微观结构(对固体和液体微观结构研究属于凝聚态物理学的范畴),而用一组偏微分方程来表达宏观物理量(如质量,数度,压力等)。这些方程包括描述介质性质的方程(constitutive equations)和基本的

相关主题
文本预览
相关文档 最新文档