当前位置:文档之家› 高中物理连接体模型.docx

高中物理连接体模型.docx

高中物理连接体模型.docx

-

-

连接体模型: 是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本

方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时

, 可以把物体组作为整体,对整体用牛二定律列方程

隔离法是指在需要求连接体内各部分间的相互作用 ( 如求相互间的压力或相互间的摩擦力等 ) 时,把某物体从连接体中隔离出来进行分析的方

法。

连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒 ( 单个球机械能不守恒 )

与运动方向和有无摩擦

( μ相同 ) 无关,及与两物体放置的方式都无关。

平面、斜面、竖直都一样。只要两物体保持相对静止

m

1

记住: N=m 2 F 1 m 1F 2 (N 为两物体间相互作用力 ),

m

m 1 m 2

2

一起加速运动的物体的分子 m 1F 2 和 m 2F 1 两项的规律并能应用 m 2 F

N

m 2

m 1

讨论:① F 1≠0;F 2=0

F=(m 1

+m 2

)a

N= N=m 2a

F

m 1

m 2

m

2

F

m 1 m 2

② F 1 ≠0;F 2≠0

F= m 1 (m 2g) m 2 (m 1g)

m 1 m 2

N=

m 2 F 1

m 1F 2

m 1 m 2

F= m 1 (m 2 g ) m 2 (m 1gsin )

m 1 m 2

m A (m B g ) m B F

F=

m 1 m 2

F 1 >F 2m 1>m 2N 1

5 对 6

m

12对 13

(n -12)m

N = M F (m 为第 6 个以后的质量 ) 第 12 对 13 的作用力 N

= F

nm

高考物理连接体模型问答归纳

绳牵连物”连接体模型问题归纳 广西合浦廉州中学秦付平 两个物体通过轻绳或者滑轮这介质为媒介连接在一起,物理学中称为连接体,连结体问题是物体运动过程较复杂问题,连接体问题涉及多个物体,具有较强的综合性,是力学中能考查的重要内容。从连接体的运动特征来看,通过某种相互作用来实现连接的物体,如物体的叠合,连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。从能量的转换角度来说,有动能和势能的相互转化等等,下面本文结合例题归纳有关“绳牵连物”连接体模型的几种类型。 一、判断物体运动情况 例1如图1所示,在不计滑轮摩擦和绳质量的条件下,当小车匀速向右运动时,物体A的受力情况是() A.绳的拉力大于A的重力 B.绳的拉力等于A的重力 C.绳的拉力小于A的重力 D.拉力先大于A的重力,后小于重力

解析:把小车的速度为合速度进行分解,即根据运动效果向沿绳的方向和与绳垂直的方向进行正交分解,分别是v2、v1。如图1所示,题中物体A的运动方向与连结处绳子的方向相同,不必分解。A的速度等 于v2,,小车向右运动时,逐渐变小,可知逐渐变大,故A向上做加速运动,处于超重状态,绳子对A的拉力大于重力,故选项A正确。 点评:此类问题通常是通过定滑轮造成绳子两端的连接体运动方向不一致,导致主动运动物体和被动运动物体的加速、减速的不一致性。解答时必须运用两物体的速度在各自连接处绳子方向投影相同的规律。 二、求解连接体速度 例2质量为M和m的两个小球由一细线连接(),将M置于半径为R的光滑半球形容器上口边缘,从静止释放,如图2所示。求当M滑至容器底部时两球的速度。两球在运动过程中细线始终处于绷紧状态。 解析:设M滑至容器底部时速度为,m的速度为。根据运动效果,将沿绳的方向和垂直于 绳的方向分解,则有:,对M、m系统在M从容器上口边缘滑至碗底的过程,由机械能

高中物理常见连接体问题总结知识分享

常见连接体问题 (一)“死结”“活结” 1.如图甲所示,轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为10 kg 的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,轻杆的G点用细绳GF拉住一个质量也为10 kg 的物体.g取10 m/s2,求 (1)细绳AC段的张力FAC与细绳EG的张力FEG之比; (2)轻杆BC对C端的支持力; (3)轻杆HG对G端的支持力. (二)突变问题 2。在动摩擦因数μ=0.2的水平 质量为m=1kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止 平衡状态,且水平面对小球的弹力恰好为零,当剪断轻绳的瞬间,取g=10m/s2,求: (1)此时轻弹簧的弹力大小 (2)小球的加速度大小和方向.(三)力的合成与分解 3.如图所示,用一根细线系住重力为、半径为的球,其与倾角为的光滑斜面劈接触, 处于静止状态,球与斜面的接触面非常小, 当细线悬点固定不动,斜面劈缓慢水平向左 移动直至绳子与斜面平行的过程中,下述正确的是(). A.细绳对球的拉力先减小后增大 B.细绳对球的拉力先增大后减小 C.细绳对球的拉力一直减小 D.细绳对球的拉力最小值等于G (四)整体法 4.如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接。在力F的作用下一起沿水平方向做匀速直线运动(m1在地面,m2在空中),力F与水平方向成θ角,则m1所受支持力N 和摩擦力f正确的是() A.N=m1g+m2g-Fsinθ B.N=m1g+m2g-Fcosθ C.f=Fcosθ D.f=Fsinθ (五)隔离法 5.如图所示,水平放置的木板上面放置木块,木板与木块、木板与地面间的摩擦因数分别为μ1和μ2。已知木块质量为m,木板的质量为M,用定滑轮连接如图所示,现用力F匀速拉动木块在木板上向右滑行,求力F的大小?

高三物理 连接体专题复习

连接体专题复习 1. 连接体:多个相互关联的物体连接(叠放、并排或由弹簧、绳子、细杆联系)在一起构成的物体系统称为连接体。连接体一般具有相同的运动情况(速度、加速度)。 2. 解决连接体问题的两种方法 3. 整体法、隔离法应注意的问题 (1)不涉及系统内力时,优先考虑应用整体法,即“能整体、不隔离”。 (2)同样应用“隔离法”,也要先隔离“简单”的物体,如待求量少、或受力少、或处于边缘处的物体。 (3)将“整体法”与“隔离法”有机结合、灵活应用。 (4)各“隔离体”间的关联力,表现为作用力与反作用力,对整体系统则是内力 特别提醒 当系统内各物体的加速度不同时,一般不直接用整体法,要采用隔离法解题。 例1 如图所示,在建筑工地,民工兄弟用两手对称水平施力将两长方体水泥制品夹紧并以加速度a 竖直向上匀加速搬起,其中A 的质量为m ,B 的质量为2m ,水平作用力为F ,A 、B 之间的动摩擦因数为μ,在此过程中,A 、B 间的摩擦力为( ) A.μF B.1 2m (g +a ) C.m (g +a ) D.3 2m (g +a ) 例2 质量为2 kg 的木板B 静止在水平面上,可视为质点的物块A 从木板的左侧沿木板上表面水平冲上木板,如图甲所示。A 和B 经过1 s 达到同一速度,之后共同减速直至静止,A 和B 的v -t 图象如图乙所示, 重力加速度g =10 m/s 2,求: (1)A 与B 上表面之间的动摩擦因数μ1; (2)B 与水平面间的动摩擦因数μ2; (3)A 的质量。

例3 如图所示,质量为m 1和m 2的两物块放在光滑的水平地面上。用轻质弹簧将两物块连接在一起。当用水平力F 作用在m 1上时,两物块均以加速度a 做匀加速运动,此时,弹簧伸长量为x ;若用水平力F ′作用在m 1上时,两物块均以加速度a ′=2a 做匀加速运动,此时弹簧伸长量为x ′。则下列关系正确的是( ) A.F ′=2F B.x ′>2x C.F ′>2F D.x ′<2x 例4如图所示,质量分别为m 、M 的两物体P 、Q 保持相对静止,一起沿倾角为θ的固定光滑斜面下滑,Q 的上表面水平,P 、Q 之间的动摩擦因数为μ,则下列说法正确的是( ) A. P 处于超重状态 B. P 受到的摩擦力大小为μmg ,方向水平向右 C. P 受到的摩擦力大小为mg sin θcos θ,方向水平向左 D. P 受到的支持力大小为mg sin 2θ 例5(多选)如图所示,质量分别为m A 、m B 的A 、B 两物块用轻质弹簧连接放在倾角为θ的斜面上,用始终平行于斜面向上的拉力F 拉B 物块,使它们沿斜面匀加速上升,A 、B 与斜面间的动摩擦因数均为μ,为了减小弹簧的形变量,可行的办法是( ) A.减小A 物块的质量 B.增大B 物块的质量 C.增大倾角θ D.增大动摩擦因数μ 针对训练 1.如图所示,在倾角为30°的光滑斜面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是f m 。现用平行于斜面的拉力F 拉其中一个质量为 2m 的木块,使四个木块沿斜面以同一加速度向下运动,则拉力F 的最大值是( ) A . B . C . D . 2.在两个足够长的固定的相同斜面体上(其斜面光滑),分别有如图甲、乙所示的两套装置,斜面体B 的上表面水平且光滑,长方体D 的上表面与斜面平行且光滑,p 是固定在B 、D 上的小柱,完全相同的两只弹簧一端固定在p 上,另一端分别连在A 和C 上,在A 与B 、C 与D 分别保持相对静止状态沿斜面自由下滑的过程中,下列说法正确的是( ) A .两弹簧都处于拉伸状态 B .两弹簧都处于压缩状态

(完整)高中物理力学模型及分析

╰ α 高中物理力学模型及分析 1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。 解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 2斜面模型(搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定 μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面 μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ) 3.轻绳、杆模型 绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。 杆对球的作用力由运动情况决定 只有θ=arctg( g a)时才沿杆方向 最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢? E m L · m2 m1 F B A F1 F2 B A F

假设单B下摆,最低点的速度V B=R 2g ?mgR=2 2 1 B mv 整体下摆2mgR=mg 2 R +'2 B '2 A mv 2 1 mv 2 1 + ' A ' B V 2 V=?' A V=gR 5 3 ;' A ' B V 2 V==gR 2 5 6 > V B=R 2g 所以AB杆对B做正功,AB杆对A做负功 若V0 V B=R 2g 所以AB杆对B做正功,AB杆对A做负功 若V0

高一物理 连接体受力分析

掌握母题100例,触类旁通赢高考 高考题千变万化,但万变不离其宗。千变万化的新颖高考题都可以看作是由母题衍生而来。研究母题,掌握母题解法,使学生触类旁通,举一反三,可使学生从题海中跳出来,轻松备考,事半功倍。 母题十五、连接体受力分析 【解法归纳】对于平衡状态的连接体,一般采用隔离两个物体分别进行受力分析,利用平衡条件列出相关方程联立解答。 典例15.(2011海南物理)如图,墙上有两个钉子a 和b ,它们的连线与水平方向的夹角为45°,两者的高度差为l 。一条不可伸长的轻质细绳一端固定于a 点,另一端跨 过光滑钉子b 悬挂一质量为m1的重物。在绳子距a 端2 l 的c 点有一固定绳圈。若绳圈上悬挂质量为m2的钩码,平衡后绳的ac 段正好水平,则重物和钩码的质量比12 m m 为 C. 【解析】:根据题述画出平衡后绳的ac 段正好水平的示意图,对绳圈c 分析受力,画出受力图。由平行四边形定则和图中几何关系可得 12m m C 正确。 【答案】:C 【点评】此题考查受力方向、物体平衡等相关知识点。 衍生题1(2010山东理综)如图2所示,质量分别为 m 1、m 2的两个物体通过轻弹簧连接,在力F 的作用下 一起沿水平方向做匀速直线运动(m 1在地面,m 2在空 中),力F 与水平方向成θ角,则m 1所受支持力N 和摩

擦力f正确的是 A.N= m1g+ m2g- F sinθ B.N= m1g+ m2g- F cosθ C.f=F cosθ D.f=F sinθ 【解析】把两个物体看作一个整体,由两个物体一起沿水平方向做匀速直线运动可知水平方向f=F cosθ,选项C正确D错误;设轻弹簧中弹力为F1,弹簧方向与水平方向的夹角为α,隔离m2,分析受力,由平衡条件,在竖直方向有,F sinθ=m2g+ F1sinα, 隔离m1,分析受力,由平衡条件,在竖直方向有,m1g=N+ F1sinα, 联立解得,N= m1g+ m2g- F sinθ,选项A正确B错误。 【答案】AC 【点评】本题考查整体法和隔离法受力分析、物体平衡条件的应用等知识点,意在考查考生对新情景的分析能力和综合运用知识的能力。 衍生题2(2005天津理综卷)如图所示,表面粗糙的固定斜面顶端安有滑轮,两物块P、Q用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦),P悬于空中,Q放在斜面上,均处于静止状态。当用水平向左的恒力推Q时,P、Q仍静止不动,则 A.Q受到的摩擦力一定变小 B.Q受到的摩擦力一定变大 C.轻绳上拉力一定变小 D.轻绳上拉力一定不变 解析:由于两物块P、Q用轻绳连接并跨过滑轮,当用水平向左的恒力推Q时,P、Q仍静止不动,则轻绳上拉力等于物块P的重力,轻绳上拉力一定不变,选项C错误D正确。由于题述没有给出两物块P、Q质量的具体关系,斜面粗糙程度未知,用水平向左的恒力推Q前,Q受到的摩擦力方向未知。当用水平向左的恒力推Q时,Q受到的摩擦力变化情况不能断定,所以选项AB错误。 【答案】D 衍生题3(2003天津理综卷,19 )如图所示,一个半球形的碗放在桌面上,碗

专题六 弹簧连接体模型

动量守恒的十种模型精选训练6 动量守恒定律是自然界中最普遍、最基本的规律之一,它不仅适用于宏观、低速领域,而且适用于微观、高速领域。通过对最新高考题和模拟题研究,可归纳出命题的十种模型。 六.弹簧连接体模型 【模型解读】两个物体在相对运动过程中通过弹簧发生相互作用,系统动量守恒,机械能守恒。 例6. .如图所示,A、B两物体的中间用一段细绳相连并有一压缩的弹簧,放在平板小车C上后,A、B、C均处于静止状态。若地面光滑,则在细绳被剪断后,A、B从C上未滑离之前,A、B在C上向相反方向滑动的过程中 A.若A、B与C之间的摩擦力大小相同,则A、B组成的系统动量守恒,A、B、C组成的系统动量守恒B.若A、B与C之间的摩擦力大小相同,则A、B组成的系统动量不守恒,A、B、C组成的系统动量守恒 C.若A、B与C之间的摩擦力大小不相同,则A、B组成的系统动量不守恒,A、B、C组成的系统动量不守恒 D.若A、B与C之间的摩擦力大小不相同,则A、B组成的系统动量不守恒,A、B、C组成的系统动量守恒 针对训练题 1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于 静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度 向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求: (1)A球与B球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B球的最小速度。 2.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B= 3.0kg. 用轻弹簧栓接,放在光滑的水平地面上,物块B右侧与竖直墙相接触. 另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求: ①物块C的质量m C; ②墙壁对物块B的弹力在4 s到12s的时间内对对B的冲量I的大小和方向; ③B离开墙后的过程中弹簧具有的最大弹性势能E p。

高中物理:力学模型及方法知识归纳

╰ α 高中物理知识归纳(二) ----------------力学模型及方法 1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用( 如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 2斜面模型(搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定 μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面 μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ) 3.轻绳、杆模型 向的力。 杆对球的作用力由运动情况决定 只有θ=arctg( g a)时才沿杆方向 最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢? 假设单B下摆,最低点的速度V B=R 2g?mgR=2 2 1 B mv 整体下摆2mgR=mg 2 R +'2 B '2 A mv 2 1 mv 2 1 +

F 'A 'B V 2V = ? ' A V = gR 53 ; ' A ' B V 2V ==gR 25 6> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功 若 V 0

高中物理复习-有关连接体问题专项训练

有关连接体问题专项训练 【例题精选】: 例1:在光滑的水平面上放置着紧靠在一起的两个物体A和B(如图),它们的质量分别为m A、m B。当用水平恒力F推物体A时,问:⑴A、B两物体的加速度多大?⑵A物体对B物体的作用力多大? 分析:两个物体在推力的作用下在水平面上一定做匀加速直线运动。对整体来说符合牛顿第二定律;对于两个孤立的物体分别用牛顿第二定律也是正确的。因此,这一道连接体的问题可以有解。 解:设物体运动的加速度为a,两物体间的作用力为T,把A、B两个物体隔离出来画在右侧。因为物体组只在水平面上运动在竖直方向上是平衡的,所以分析每个物体受力时可以只讨论水平方向的受力。A物体受水平向右的推力F和水平向左的作用力T,B物体只受一个水平向右的作用力T。对两个物体分别列牛顿第二定律的方程: 对m A满足F-T= m A a ⑴ 对m B满足T = m B a ⑵ ⑴+⑵得 F =(m A+m B)a ⑶ 经解得: a = F/(m A+m B)⑷ 将⑷式代入⑵式可得T= Fm B/(m A+m B) 小结:①解题时首先明确研究对象是其中的一个物体还是两个物体组成的物体组。如果本题只求运动的加速度,因为这时A、B两物体间的作用力是物体组的内力和加速度无关,那么我们就可以物体组为研究对象直接列出⑶式动力学方程求解。若要求两物体间的作用力就要用隔离法列两个物体的动力学方程了。 ②对每个物体列动力学方程,通过解联立方程来求解是解决连接体问题最规范的解法,也是最保险的方法,同学们必须掌握。 例2:如图所示,5个质量相同的木块并排放在光滑的水平桌面上,当用水平向右推力F推木块1,使它们共同向右加速运动时,求第2与第3块木块之间弹力及第4与第5块木 块之间的弹力。 分析:仔细分析会发现这一道题与例1几乎是一样的。把第1、第2木块看作A物体,把第3、4、5木块看作B物体,就和例1完全一样了。因5个木块一起向右运动时运动状态完全相同,可以用整体法求出系统的加速度(也是各个木块共同加速度)。再用隔离法

高中物理力学模型及方法1

╰ α 高中物理力学模型及方法 1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。 解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 2斜面模型(搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定 μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面 μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ) 3.轻绳、杆模型 绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。 杆对球的作用力由运动情况决定 只有θ=arctg( g a)时才沿杆方向 最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢? 假设单B下摆,最低点的速度 ?mgR=2 2 1 B mv V B=R 2g 整体下摆 2mgR=mg 2 R +'2 B '2 A mv 2 1 mv 2 1 + ' A ' B V 2 V=?' A V=gR 5 3 ;' A ' B V 2 V==gR 2 5 6 > V B=R 2g 所以AB杆对B做正功,AB杆对A做负功 若V0

F m 求水平初速及最低点时绳的拉力? 换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v1突然消失),再v2下摆机械能守恒 例:摆球的质量为m,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A时绳子受到的拉力是多少? 4.超重失重模型 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y) 向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a) 难点:一个物体的运动导致系统重心的运动 1到2到3过程中(1、3除外)超重状态 绳剪断后台称示数 系统重心向下加速 斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动? 铁木球的运动 用同体积的水去补充 5.碰撞模型:特点,①动量守恒;②碰后的动能不可能比碰前大; ③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。 ◆弹性碰撞:m1v1+m2v2=' 2 2 ' 1 1 v m v m+(1) '2 2 2' 1 2 2 2 1 mv 2 1 mv 2 1 mv 2 1 mv 2 1 + = +(2 ) ◆一动一静且二球质量相等的弹性正碰:速度交换 大碰小一起向前;质量相等,速度交换;小碰大,向后返。 ◆一动一静的完全非弹性碰撞(子弹打击木块模型) mv0+0=(m+M)'v20 mv 2 1 ='2 M)v m ( 2 1 ++E损 E损=2 mv 2 1 一'2 M)v (m 2 1 += 2 2 0E m M M m 2 1 m) (M M M) 2(m mM k v v + = + = + E损可用于克服相对运动时的摩擦力做功转化为内能E损=fd相=μmg·d相=20 mv 2 1 一'2 M)v (m 2 1 + “碰撞过程”中四个有用推论 弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等的特征, 设两物体质量分别为m1、m2,碰撞前速度分别为υ1、υ2,碰撞后速度分别为u1、u2,即有:m1υ1+m2υ2=m1u1+m1u2 2 1 m1υ12+ 2 1 m2υ22= 2 1 m1u12+ 2 1 m1u22 a θ v0 A B A B v0 v s M v L 1 2 A v0

高中物理连接体模型.docx

高 中 物 理 - - 连 接 体 模 型 连接体模型: 是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本 方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时 , 可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用 ( 如求相互间的压力或相互间的摩擦力等 ) 时,把某物体从连接体中隔离出来进行分析的方 法。 连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒 ( 单个球机械能不守恒 ) 与运动方向和有无摩擦 ( μ相同 ) 无关,及与两物体放置的方式都无关。 平面、斜面、竖直都一样。只要两物体保持相对静止 m 1 记住: N=m 2 F 1 m 1F 2 (N 为两物体间相互作用力 ), m m 1 m 2 2 一起加速运动的物体的分子 m 1F 2 和 m 2F 1 两项的规律并能应用 m 2 F N m 2 m 1 讨论:① F 1≠0;F 2=0 F=(m 1 +m 2 )a N= N=m 2a F m 1 m 2 m 2 F m 1 m 2 ② F 1 ≠0;F 2≠0 F= m 1 (m 2g) m 2 (m 1g) m 1 m 2 N= m 2 F 1 m 1F 2 m 1 m 2 F= m 1 (m 2 g ) m 2 (m 1gsin ) m 1 m 2 m A (m B g ) m B F F= m 1 m 2 F 1 >F 2m 1>m 2N 1

高中物理连接体动力学完美训练版(四大连接体)

高中物理连接体动力学完美训练版 查看答案方法:在word 中按Ctrl + Shift + 8 四大连接体、内力口诀 接触体 1. (2015·课标卷Ⅱ,20)【多选】在一东西向的水平直铁轨上,停放着一列已用挂钩连接好的车厢.当机车在东边拉着这列车厢以大小为a 的加速度向东行驶时,连接某两相邻车厢的挂钩P 和Q 间的拉 力大小为F ;当机车在西边拉着车厢以大小为23 a 的加速度向西行驶时,P 和Q 间的拉力大小仍为F .不计车厢与铁轨间的摩擦,每节车厢质量相同,则这列车厢的节数可能为() A .8 B .10 C.15 D .18 2. 如图所示,质量为M 的圆槽内有质量为m 的光滑小球,在水平恒力F 作用下两者保持相对静止,地面光滑.则() A .小球对圆槽的压力为MF M +m B .小球对圆槽的压力为mF M +m C .F 变大后,如果小球仍相对圆槽静止,小球在槽内位置升高 D .F 变大后,如果小球仍相对圆槽静止,小球在槽内位置降低 3. 如图所示,两相互接触的物块放在光滑的水平面上,质量分别为m 1和m 2,且m 1

“绳牵连物”连接体模型问题归纳

“绳牵连物”连接体模型问题归纳 广西合浦廉州中学秦付平 两个物体通过轻绳或者滑轮这介质为媒介连接在一起,物理学中称为连接体,连结体问题是物体运动过程较复杂问题,连接体问题涉及多个物体,具有较强的综合性,是力学中能考查的重要内容。从连接体的运动特征来看,通过某种相互作用来实现连接的物体,如物体的叠合,连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。从能量的转换角度来说,有动能和势能的相互转化等等,下面本文结合例题归纳有关“绳牵连物”连接体模型的几种类型。 一、判断物体运动情况 例1如图1所示,在不计滑轮摩擦和绳质量的条件下,当小车匀速向右运动时,物体A 的受力情况是(????) A.绳的拉力大于A的重力 B.绳的拉力等于A的重力 C.绳的拉力小于A的重力 D.拉力先大于A的重力,后小于重力 解析:把小车的速度为合速度进行分解,即根据运动效果向沿绳的方向和与绳垂直的方向进行正交分解,分别是v2、v1。如图1所示,题中物体A的运动方向与连结处绳子的方向 相同,不必分解。A的速度等于v2,,小车向右运动时,逐渐变小,可知 逐渐变大,故A向上做加速运动,处于超重状态,绳子对A的拉力大于重力,故选项A正确。 点评:此类问题通常是通过定滑轮造成绳子两端的连接体运动方向不一致,导致主动运动物体和被动运动物体的加速、减速的不一致性。解答时必须运用两物体的速度在各自连接处绳子方向投影相同的规律。 二、求解连接体速度 例2质量为M和m的两个小球由一细线连接(),将M置于半径为R的光滑半球形容器上口边缘,从静止释放,如图2所示。求当M滑至容器底部时两球的速度。两球在运动过程中细线始终处于绷紧状态。 解析:设M滑至容器底部时速度为,m的速度为。根据运动效果,将沿绳的方向和垂直于绳的方向分解,则有:,对M、m系统在M从容器上口边缘滑至碗底的过程,由机械能守恒定律有:,联立两式解得: ,方向水平向左;方向竖直向上。 点评:作为连接两个物体的介质绳,能实现力和能量的传递,这也就使两个物体的运动状态彼此都会发生影响,这就使物体的速度上存在一定的矢量关联,分解或者求解速度之间的约束关系就成为解决这类问题的关键。 三、考查机械能守恒定律应用 例3如图3所示,一轻绳绕过无摩擦的两个轻质小定滑轮O1、O2和质量m B=m的小球连接,另一端与套在光滑直杆上质量m A=m的小物块连接,已知直杆两端固定,与两定滑轮在

高中物理 高考回归复习—力学解答题之连接体模型 含解析

高考回归复习—力学解答题之连接体模型 1.如图所示,质量为2m 的物块A 与水平地面间的动摩擦因数为μ,质量为m 的物块B 与地面的摩擦不计,在大小为F 的水平推力作用下,A 、B 一起向右做加速运动,则A 和B 之间的作用力大小为( ) A . 3 mg μ B . 23 mg μ C .243 F mg μ- D .23 F mg μ- 2.如图所示,A 、B 两滑块质量分别为2kg 和4kg ,用一轻绳将两滑块相连后分别置于两等高的光滑水平面上,并用手按着滑块不动,第一次是将一轻质动滑轮置于轻绳上,然后将一质量为4kg 的钩码C 挂于动滑轮上,只释放A 而按着B 不动;第二次是将钩码C 取走,换作竖直向下的40N 的恒力作用于动滑轮上,只释放B 而按着A 不动。重力加速度g =10m/s 2,则两次操作中A 和B 获得的加速度之比为( ) A .2:1 B .5:3 C .4:3 D .2:3 3.如图所示,斜面光滑且固定在地面上,A 、B 两物体一起靠惯性沿光滑斜面下滑,下列判断正确的是( ) A .图甲中A 、 B 两物体之间的绳有弹力 B .图乙中A 、B 两物体之间没有弹力 C .图丙中A 、B 两物体之间既有摩擦力,又有弹力 D .图丁中A 、B 两物体之间既有摩擦力,又有弹力 4.如图所示,质量m A =4kg 的物体A 放在倾角为θ=37°的斜面上时,恰好能匀速下滑.现用细线系住物体A ,并平行于斜面向上绕过光滑的定滑轮,另一端系住物体B ,释放后物体A 沿斜面以加速度a =2m/s 2匀加速上滑。(g=10m/s 2,sin37° =0.6,cos37°=0.8)求:

高中物理常见连接体问题总结

(一)“死结”“活结” 1.如图甲所示,轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为10 kg 的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,轻杆的G点用细绳GF拉住一个质量也为10 kg的物体.g取10 m/s2,求 (1)细绳AC段的张力FAC与细绳EG的张力FEG之比; (2)轻杆BC对C端的支持力; (3)轻杆HG对G端的支持力. (二)突变问题 2。在动摩擦因数μ=的水平 质量为m=1kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止 平衡状态,且水平面对小球的弹力恰好为零,当剪断轻绳的瞬间,取g=10m/s2,求: (1)此时轻弹簧的弹力大小 (2)小球的加速度大小和方向.(三)力的合成与分解 3.如图所示,用一根细线系住重力为、半径 为的球,其与倾角为的光滑斜面劈接触, 处于静止状态,球与斜面的接触面非常小, 当细线悬点固定不动,斜面劈缓慢水平向左 移动直至绳子与斜面平行的过程中,下述正确的是( ). A.细绳对球的拉力先减小后增大 B.细绳对球的拉力先增大后减小 C.细绳对球的拉力一直减小 D.细绳对球的拉力最小值等于G (四)整体法 4.如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接。在力F的作用下一起沿水平方向做匀速直线运动(m1在地面,m2在空中),力F与水平方向成θ角,则m1所受支持力N 和摩擦力f正确的是() A.N=m1g+m2g-Fsinθ B.N=m1g+m2g-Fcosθ C.f=Fcosθ D.f=Fsinθ (五)隔离法 5.如图所示,水平放置的木板上面放置木块,

连接体模型

专题一 牛顿第二定律的应用——连接体模型 一、连接体与隔离体 两个或两个以上物体相连接组成的物体系统,称为 。如果把其中某个物体隔离出来,该物体 即为 。 二、外力和内力 如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的 力,而系统内各物体间的 相互作用力为 。 应用牛顿第二定律列方程不考虑 力。如果把物体隔离出来作为研究对象,则这些内力将转换为隔 离体的 力。 三、连接体问题的分析方法 1.整体法:连接体中的各物体如果 ,求加速度时可以把连接体作为一个整体。运用 列方程求解。 2.隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用 求解,此 法称为隔离法。 3.整体法与隔离法是相对统一,相辅相成的。本来单用隔离法就可以解决的连接体问题,但如果这两种方 法交叉使用,则处理问题就更加方便。如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用 法求出 ,再用 法求 。 【典型例题】 例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体 B 的作用力等于( ) A. F m m m 211+ B.F m m m 2 12 + D. F m 2 1 扩展:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。 2.如图所示,倾角为α的斜面上放两物体m 1和m 2,用与斜面 平行的力F 推m 1,使两物加速上滑,不管斜面是否光滑,两物体 之间的作用力总为 。 例2.如图所示,质量为M 的木板可沿倾角为θ的光滑斜面下滑, 木板上站着一个质量为m 的人,问(1)为了保持木板与斜面相 对静止,计算人运动的加速度(2)为了保持人与斜面相对静止, 木板运动的加速度是多少 【针对训练】

高中物理常见模型

高中物理常见模型 -CAL-FENGHAb(2020YEAR-YICAI).JINGBIAN

2010年高三物理第二轮总复习 伏纲版) 第9专题高中物理常见的物理模型 方法概述 髙考命题以《考试大纲》为依拯,考查学生对高中物理知识的掌握情况,体现了〃知识与技能、过程与方法并重“的髙中物理学习思想.每年各地的髙考题为了避免雷同而千变万化.多姿多彩,但又总有一些共性,这些共性可粗略地总结如下: (1)选择题中一般都包含3?4道关于振动与波、原子物理、光学、热学的试题. (2)实验题以考查电路、电学测量为主,两道实验小题中出一道较新颖的设计性实验题的可能性较大. (3)试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型.传送带问题、含弹簧的连接体模型? 髙考中常出现的物理模型中,有些问题在髙考中变化较大,或者在前而专题中已有较全而的论述,在这里就不再论述和例举.斜而问题.叠加体模型、含弹簧的连接体模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的槪率也较大,而且解题思路独特,本专题也略加论述. 热点、重点.难点 一、斜面问题 在每年各地的高考卷中几乎都有关于斜而模型的试题.如2009年髙考全国理综卷I第25题.北京理综卷第18题、天津理综卷第1题、上海物理卷第22题等,2008年髙考全国理综卷I第14题、全国理综卷II第16题、北京理综卷第20题、江苏物理卷第7题和第15题等.在前而的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理淸解题思路和选择解题方法. 1.自由释放的滑块能在斜面上(如图9-1甲所示)匀速下滑时,m与M之间的动摩擦因数μ = gta n ?. 2.自由释放的滑块在斜而上(如图9一 1甲所示): (1)静止或匀速下滑时,斜而M对水平地面的静摩擦力为零; (2)加速下滑时,斜而对水平地而的静摩擦力水平向右: (3)减速下滑时,斜而对水平地而的静摩擦力水平向左. 3.自由释放的滑块在斜而上(如图9-1乙所示)匀速下滑时,M对水平地而的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地而的静摩

高中物理复习--连接体问题

连接体运动问题 一、教法建议 【解题指导】“连接体运动”是在生活和生产中常见的现象,也是运用牛顿运动定律解答的一种重要题型。在“连接体运动”的教学中,需要给学生讲述两种解题方法──“整体法”和“隔离法”。 如图1-15所示:把质量为M 的的物体放在光滑..的水平.. 高台上,用一条可以忽略质量而且不变形的细绳绕过定滑轮把它与质量为m 的物体连接起来,求:物体M 和物体m 的运动加速度各是多大? ⒈ “整体法”解题 采用此法解题时,把物体M 和m 看作一个整体.. ,它们的总质量为(M+m )。把通过细绳连接着的M 与m 之间的相互作 用力看作是内力.. ,既然水平高台是光滑无阻力的,那么这个整体所受的外力.. 就只有mg 了。又因细绳不发生形变,所以M 与m 应具有共同的加速度a 。 现将牛顿第二定律用于本题,则可写出下列关系式: mg=(M+m)a 所以,物体M 和物体m 所共有的加速度为: g m M m a += ⒉ “隔离法”解题 采用此法解题时,要把物体M 和m 作为两个物体隔离开 分别进行受力分析,因此通过细绳连接着的M 与m 之间的相. 互.作用力T 必须标出,而且对M 和m 单独..来看都是外力.. (如图1-16所示)。 根据牛顿第二定律对物体M 可列出下式:T=Ma ① 根据牛顿第二定律对物体m 可列出下式:mg-T=ma ② 将①式代入②式:mg-Ma=ma mg=(M+m)a 所以物体M 和物体m 所共有的加速度为:g m M m a += 最后我们还有一个建议:请教师给学生讲完上述的例题后,让学生自己独 立推导如图1-17所示的另一个例题:用细绳连接绕过定滑轮的物体M 和m , 已知M>m ,可忽略阻力,求物体M 和m 的共同加速度a 。 如果学生能不在老师提示的情况下独立地导出:g m M m M a +-=,就表明学生已经初步地掌握了“连接体运动的解题方法了。(如果教师是采用小测验的 方式进行考察的,还可统计一下:采用“整体法”解题的学生有多少?采用“隔 离法”解题的学生有多少?从而了解学生的思维习惯。)” 【思路整理】 ⒈ 既然采用“整体法”求连接体运动的加速度比较简便?为什么还要学习“隔离法”解题呢? 这有两方面的原因: ①采用“整体法”解题只能求加速度a ,而不能直接.... 求出物体M 与m 之间的相互作用力T 。采用“隔离法”解联立方程,可以同时解出a 与T 。因此在解答比较复杂的连接体运动问题时,还是采用“隔离法”

第三讲 连接体模型 超重和失重

第三讲连接体模型超重和失重 一、连接体模型与整体隔离法 若干个物体通过一定的方式连接在一起,就构成了连接体,其连接方式,一般是通过细绳、杆等物体来实现的。从连接体的特征来看,可以建立这样的广义连接体模型:通过某种相互作用来实现连接的物体,如物体的叠合,就是通过摩擦力的作用形成连接。连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。求解连接体的加速度或内部物体间的相互作用力,是力学中能力考查的重要内容,在高考中也经常出现。解决上述问题的有效方法,是综合运用整体法与隔离法。 1.隔离法 2.整体法 3.应用举例 (1)用隔离法计算内力 【例题1】 如图所示,物体A和B靠在一起放在光滑 水平面上,物体A受到水平向右的推力,大小为10N,已知 物体A的质量为2kg,物体B的质量为3kg,求物体A运动 的加速度及物体A、B间的相互作用力. (2)整体法研究系统 【例题2】(1994年高考全国卷)如图所示,C是水平地面,A、B 是两个长方形物体,F是作用在物块B上沿水平方向的力,物体A和B 以相同的速度作匀速直线运动.由图可知,A、B之间的动摩擦因数μ1B、 C间的动摩擦因数μ2有可能是( B、D ) A.μ1=0,μ2=0 B.μ1=0,μ2≠0 C.μ1≠0,μ2=0 D.μ1≠0,μ2≠0

(3)整体法和隔离法的综合运用 当若干个物体具有共同加速度时,可以先用整体法研究,求出系统的加速度,再用隔离法隔离单个物体或几个物体来研究。 【例题3】如图所示的三个物体A ,B ,C ,其质量分别为 m 1,m 2,m 3,带有滑轮的物体B 放在光滑平面上,滑轮和所有接触 面间的摩擦及绳子的质量均不计。为使三物体间无相对运动,则 水平推力的大小应为F =____。 〖巩固练习1〗 1. 如图所示, 有A 、B 两物体, m A =2m B , 用细绳连接后放在光滑的斜 面上, 在它们下滑的过程中 ( ) A. 它们的加速度a=gsin θ B. 它们的加速度a

相关主题
文本预览
相关文档 最新文档