当前位置:文档之家› 集成运放电路试题及答案

集成运放电路试题及答案

集成运放电路试题及答案
集成运放电路试题及答案

第三章集成运放电路

一、填空题

1、(3-1,低)理想集成运放的A ud= ,K CMR= 。

2、(3-1,低)理想集成运放的开环差模输入电阻ri= ,开环差模输出电阻ro= 。

3、(3-1,中)电压比较器中集成运放工作在非线性区,输出电压Uo只有或两种的状态。

4、(3-1,低)集成运放工作在线形区的必要条件是___________ 。

5、(3-1,难)集成运放工作在非线形区的必要条件是__________,特点是___________,___________。

6、(3-1,中)集成运放在输入电压为零的情况下,存在一定的输出电压,这种现象称为__________。

7、(3-2,低)反相输入式的线性集成运放适合放大 (a.电流、b.电压) 信号,同相输入式的线性集成运放适合放大 (a.电流、b.电压)信号。

8、(3-2,中)反相比例运算电路组成电压(a.并联、b.串联)负反馈电路,而同相比例运算电路组成电压(a.并联、b.串联)负反馈电路。

9、(3-2,中)分别选择“反相”或“同相”填入下列各空内。

(1)比例运算电路中集成运放反相输入端为虚地,而比例运算电路中集成运放两个输入端的电位等于输入电压。

(2)比例运算电路的输入电阻大,而比例运算电路的输入电阻小。

(3)比例运算电路的输入电流等于零,而比例运算电路的输入电流等于流过反馈电阻中的电流。

(4)比例运算电路的比例系数大于1,而比例运算电路的比例系数小于零。

10、(3-2,难)分别填入各种放大器名称

(1)运算电路可实现A u>1的放大器。

(2)运算电路可实现A u<0的放大器。

(3)运算电路可将三角波电压转换成方波电压。

(4)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均大于零。

(5)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均小于零。

11、(3-3,中)集成放大器的非线性应用电路有、等。

12、(3-3,中)在运算电路中,运算放大器工作在区;在滞回比较器中,运算放大器工作在区。

13、(3-3,中)_________和_________是分析集成运算放大器线性区应用的重要依据。

二、选择题

1、(3-1,中)集成运放的主要参数中,不包括以下哪项。

A、输入失调电压

B、开环放大倍数

C、共模抑制比

D、最大工作电流

2、(3-1,低)差模输入信号是两个输入信号的。

A、和

B、差

C、比值

D、平均值

3、(3-1,低)差模放大倍数是指什么之比。

A、输出变化量与输入变化量

B、输出差模量与输入差模量

C、输出共模量与输入共模量

D、输出直流量与输入直流量

4、(3-2,难)如图所示理想集成运放的输出电压Uo应为。

A、-6V

B、-4V

C、-2V

D、-1V

5、(3-2,中)集成运放组成_________输入放大器的输入电流基本上等于流过反馈电阻的电流。

A、同相

B、反相

C、差动

D、以上三种都不行

6、(3-2,中)集成运放组成_______输入放大器的输入电流几乎等于零。

A、同相

B、反相

C、差动

D、以上三种都不行

7、(3-2,中)集成运放组成__________输入放大器输入电阻大。

A、同相

B、反相

C、差动

D、以上三种都不行

8、(3-2,难)在多个输入信号的情况下,要求各输入信号互不影响,宜采用________输入方式的电路。

A、同相

B、反相

C、差动

D、以上三种都不行

9、(3-2,低)如要求能放大两信号的差值,又能抑制共模信号,采用_____ 输入方式电路。

A、同相

B、反相

C、差动

D、以上三种都不行

10、(3-2,低)输出量与若干个输入量之和成比例关系的电路称为________。

A.加法电路

B.减法电路

C.积分电路

D.微分电路

11、(3-2,中)_________运算电路可将方波电压转换成三角波电压。

A、微分

B、积分

C、乘法

D、除法

12、(3-2,中)如果要将正弦波电压移相+90O,应选用。

A、反相比例运算电路

B、同相比例运算电路

C、积分运算电路

D、微分运算电路

13、(3-2,中)欲将正弦波电压叠加上一个直流量,应选用。

A、加法运算电路

B、减法运算电路

C、积分运算电路

D、微分运算电路

14、(3-2,中)欲实现A u=-100的放大电路,应选用。

A 、反相比例运算电路

B 、同相比例运算电路

C 、积分运算电路

D 、微分运算电路

15、(3-2,中)欲将方波电压转换成三角波电压,应选用 。

A 、反相比例运算电路

B 、同相比例运算电路

C 、积分运算电路

D 、微分运算电路

16、(3-2,中)欲将方波电压转换成尖顶波波电压,应选用 。

A 、反相比例运算电路

B 、同相比例运算电路

C 、积分运算电路

D 、微分运算电路

17、(3-3,中)集成运放放大电路调零和消振应在_______进行。

A 、加信号前

B 、加信号后

C 、自激振荡情况下

D 、以上情况都不行

18、(3-3,难)相对来说,_____________比较器抗干扰能力强。

A 、单限

B 、滞回

C 、窗口

D 、集成电压

三、判断题

1、(3-1,中)当集成运放工作在非线形区时,输出电压不是高电平就是低电平。( )

2、(3-1,低)理想的差动放大电路,只能放大差模信号,不能放大共模信号。( )

3、(3-1,中)运放的输入失调电压U IO 是两输入端电位之差。( )

4、(3-1,中)运放的输入失调电流I IO 是两端电流之差。( )

5、(3-1,低)运放的共模抑制比c

d CMR A A K ( ) 6、(3-1,难)有源负载可以增大放大电路的输出电流。( )

7、(3-1,难)在输入信号作用时,偏置电路改变了各放大管的动态电流。( )

8、(3-1,低)运算电路中一般均引入负反馈。( )

9、(3-2,低)同相比例运算电路的闭环电压放大倍数数值一定大于或等于1。( )

10、(3-2,低)在运算电路中,集成运放的反相输入端均为虚地。( )

11、(3-2,低)凡是运算电路都可利用“虚短”和“虚断”的概念求解运算关系。( )

12、(3-2,中)集成运放电路必须引入深度负反馈。( )

13、(3-2,难)运放在深度负反馈情况下,放大特性与运放本身参数无关,仅取决于外接电路元件及其

参数,因而在使用过程中不需要考虑运放的特性参数。( )

14、(3-2,中)集成运放构成放大电路不但能放大交流信号,也能放大直流信号。( )

15、(3-2,难)为了提高集成运放组成的放大电路增益,可选用10MΩ电阻作为反馈电阻。 ( )

16、(3-2,中)反相输入式集成运放的虚地可以直接接地。( )

17、(3-3,中)只要集成运放引入正反馈,就一定工作在非线性区。( )

18、(3-3,中)一般情况下,在电压比较器中,集成运放不是工作在开环状态,就是仅仅引入了正反馈。( )

四、简答题

1、(3-1,中)理想运算放大器有哪些特点?什么是“虚断”和“虚短”?

2、(3-1,难)关系式u o =A(u +-u -)的适用条件是什么?为什么要引入深度负反馈才能使运放工作于线形区?

3、(3-2,中)试从反馈的角度比较同相比例放大器和反相比例运算放大器的异同点?

4、(3-2,易)试列举集成运算放大器的线性应用。

5、(3-3,易)试列举集成运算放大器的非线性应用。

五、计算题

1、(3-2,中)加法器电路如图所示,设R 1=R 2=R F ,试根据输入电压波形画出输出电压的波形。

2、(3-2,中)运放电路如图所示,已知RF=2R1,Ui=-2V ,求Uo 。

3、(3-2,难)电路如图所示,已知R1=3KΩ,若希望它的电压放大倍数等于7,试估算Rf 和R2的值。

4、(3-2,难)电路如图所示,求输出电压Uo 的表达式(可用逐级求输出电压的方法)。

5、(3-2,中)电路如下图所示,求下列情况下,U O 和U i 的关系式。

(1)S 1和S 3闭合,S 2断开时;

(2)S 1和S 2闭合,S 3断开时。

6、(3-2,难)在下图所示同相比例运算电路中,已知12R =k ?,2=2R k ?,F 10R =k ?, 318R = k ?,1i u =V ,求o u 。

7、(3-2,难)电路如下图所示,110R =k ?,220R =k ?,F 100R =k ?,i10.2u =V ,i20.5u =-V , 求输出电压o u 。

8、(3-2,难) 电路如图所示,集成运放输出电压的最大幅值为±14V,填表。 u I /V

u O1/V

u O2/

V

9、(3-2,中)有一个比例运算电路, 输入电阻R i =20kΩ, 比例系数为-100,则其采用何种比例运算电路?反馈电阻值为多少?

10、(3-2,难) 电路如右图所示,集成运放输出电压的最大幅值为±14V,u I 为2V 的直流信号。分别求出下列各种情况下的输出电压。

(1)R2短路;(2)R3短路;(3)R4短路;(4)R4断路。

第三章集成运放电路

一、填空题

1、∞、∞

2、∞、0

3、V+、V-

4、引入深度负反馈

5、引入正反馈,输出电压最大,输入电流为零

6、静态失调

7、b,a

8、a、b

9、(1)反相,同相(2)同相,反相(3)同相,反相(4)同相,反相

10、(1)同相比例(2)反相比例(3)微分(4)同相求和(5)反相求和

11、电压比较器,波形发生器

12、线形,非线性

13、虚短,虚断

二、选择题

1、D

2、B

3、B

4、A

5、B

6、A

7、A

8、A

9、C

10、A

11、B

12、C

13、A

14、A

15、C

16、D

17、A

18、B

三、判断题

1、对

2、对

3、错

4、对

5、对

6、对

7、错

8、对9、对

10、错

11、对

12、对

13、错

14、对

15、错

16、错

17、错

18、对

四、 简答题

1、(3-1,中)理想运算放大器有哪些特点?什么是“虚断”和“虚短”?

答:开环电压放大倍数A uo →∞;差模输入电阻r id →∞;输出电阻r o →0; 共模抑制比K CMRR →∞。 由于两个输入端间的电压为零,-+≈u u 而又不是短路,故称为“虚短”; 0≈=-+i i ,像这样,输入端相当于断路,而又不是断开,称为“虚断”。

2、(3-1,难)关系式u o =A(u +-u -)的适用条件是什么?为什么要引入深度负反馈才能使运放工作于线形区?

答:关系式u o =A(u +-u -)只有运放工作于线形区才适用。当引入深度负反馈时,放大倍数与运放本身无关,只与外电阻有关。这样才能保证运放工作于线形区。

3、(3-2,中)试从反馈的角度比较同相比例放大器和反相比例运算放大器的异同点? 答:相同点是它们都引入了深度负反馈。但反相比例运算电路组成电压并联负反馈电路,而同相比例运算电路组成电压串联负反馈电路。

4、(3-2,易)试列举集成运算放大器的线性应用。

答:比例运算电路,加法运算电路,减法运算电路,积分运算电路,微分运算电路。

5、(3-3,易)试列举集成运算放大器的非线性应用。

答:电压比较器,波形发生器。

五、 计算题

1、(3-2,中)加法器电路如图所示,设R1=R2=RF ,试根据输入电压波形画出输出电压的波形。

解:Uo= -(Ui1+Ui2)

2、(3-2,中)运放电路如图所示,已知RF=2R1,Ui=-2V ,求Uo 。

解:Uo1=Ui

Uo= -(RF/R1)×Uo1= -2R1/R1×(-2)=4V

3、(3-2,难)电路如图所示,已知R1=3KΩ,若希望它的电压放大倍数等于7,试估算Rf 和R2的值。

解:Uo =(1+Rf/R1)Ui 7=1+Rf/R1 Rf=18KΩ R2=R1∥Rf=Ω

4、(3-2,难)电路如图所示,求输出电压Uo 的表达式(可用逐级求输出电压的方法)。

解:Uo1=Ui

Uo2=-10/5Uo1=-2Ui

Uo3=(1+20/10)Uo2=-6Ui

5、(3-2,中)电路如下图所示,求下列情况下,U O 和U i 的关系式。

(1)S 1和S 3闭合,S 2断开时;

(2)S 1和S 2闭合,S 3断开时。

解:(1)这是反相比例运算电路,代入公式,得

(2)根据叠加原理得i u u =0 。

6、(3-2,难)在下图所示同相比例运算电路中,已知12R =k ?,2=2R k ?,F 10R =k ?, 318R = k ?,1i u =V ,求o u 。

解:

7、(3-2,难)电路如下图所示,110R =k ?,220R =k ?,F 100R =k ?,i10.2u =V ,i20.5u =-V , 求输出电压o u 。

解:

8、(3-2,难) 电路如图所示,集成运放输出电压的最大幅值为±14V,填表。 u I /V

u O1/V

u O2/

V

解:u O1=(-R f /R ) u I =-10 u I ,u O2=(1+R f /R ) u I =11 u I 。当集成运放工作到非线性区时,输出电压不是+14V ,就是-14V 。

u I /V

u O1/V

-1 -5 -10 -14 u O2/V 11 14

9、(3-2,中)有一个比例运算电路, 输入电阻R i =20kΩ, 比例系数为-100,则其采用何种比例运算电路?反馈电阻值为多少?

解:采用的是反相比例运算电路,R =20kΩ,则反馈电阻R f =20 kΩ*100=2MΩ。

10、(3-2,难) 电路如右图所示,集成运放输出电压的最大幅值为±14V,u I 为2V 的直流信号。分别求出下列各种情况下的输出电压。

(1)R 2短路;(2)R 3短路;(3)R 4短路;(4)R 4断路。

解:(1)V 4 2I 1

3O -=-=-=u R R u (2)V 4 2I 1

2O -=-=-=u R R u (3)电路无反馈,u O =-14V

(4)V 8 4I 132O -=-=+-=u R R R u

运放电路PCB设计技巧

运放电路PCB设计技巧 虽然这里主要针对与高速运算放大器有关的电路,但是这里所讨论的问题和方法对用于大多数其它高速模拟电路的布线是普遍适用的。当运算放大器工作在很高的射频(RF)频段时,电路的性能很大程度上取决于PCB布线。“图纸”上看起来很好的高性能电路设计,如果由于布线时粗心马虎受到影响,最后只能得到普通的性能。在整个布线过程中预先考虑并注意重要的细节会有助于确保预期的电路性能。 原理图 尽管优良的原理图不能保证好的布线,但是好的布线开始于优良的原理图。在绘制原理图时要深思熟虑,并且必须考虑整个电路的信号流向。如果在原理图中从左到右具有正常稳定的信号流,那么在PCB上也应具有同样好的信号流。在原理图上尽可能多给出有用的信息。因为有时候电路设计工程师不在,客户会要求我们帮助解决电路的问题,从事此工作的设计师、技术员和工程师都会非常感激,也包括我们。 除了普通的参考标识符、功耗和误差容限外,原理图中还应该给出哪些信息呢?下面给出一些建议,可以将普通的原理图变成一流的原理图。加入波形、有关外壳的机械信息、印制线长度、空白区;标明哪些元件需要置于PCB上面;给出调整信息、元件取值范围、散热信息、控制阻抗印制线、注释、扼要的电路动作描述……(以及其它)。 谁都别信 如果不是你自己设计布线,一定要留出充裕的时间仔细检查布线人的设计。在这点上很小的预防抵得上一百倍的补救。不要指望布线的人能理解你的想法。在布线设计过程的初期你的意见和指导是最重要的。你能提供的信息越多,并且整个布线过程中你介入的越多,结果得到的PCB就会越好。给布线设计工程师设置一个暂定的完成点——按照你想要的布线进展报告快速检查。这种“闭合环路”方法可以防止布线误入歧途,从而将返工的可能性降至最低。

集成运放组成的基本运算电路 实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 基本运算电路设计 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握集成运放组成的比例、加法和积分等基本运算电路的设计。 2.掌握基本运算电路的调试方法。 3.学习集成运算放大器的实际应用。 二、实验内容和原理 1.实现反相加法运算电路 2.实现反相减法运算电路 3.用积分电路将方波转换为三角波 4.同相比例运算电路的电压传输特性(选做) 5.查看积分电路的输出轨迹(选做) 三、主要仪器设备 HY3003D-3型可调式直流稳压稳流电源 示波器、信号发生器、万用表 实验箱LM358运放模块 四、操作方法和实验步骤 1.两个信号的反相加法运算 1) 按设计的运算电路进行连接。 2) 静态测试:将输入接地,测试直流输出电压。保证零输入时电路为零输出。 3) 调出0.2V 三角波和0.5V 方波,送示波器验证。 4) V S1输入0.2V 三角波,V S2输入0.5V 方波,用示波器双踪观察输入和输出波形,确认电路功能正确。记录示波器波形(坐标对齐,注明幅值)。 2. 减法器(差分放大电路) 减法器电路,为了消除输入偏置电流以及输入共模成分的影响,要求R1=R2、RF=R3。

1) 按设计的运算电路进行连接。 2) 静态测试:输入接地,保证零输入时为零输出。 3) V S1和V S2输入正弦波(频率和幅值),用示波器观察输入和输出波形,确认电路功能正确。 4) 用示波器测量输入和输出信号幅值,记到表格中。 3.用积分电路转换方波为三角波 电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。 在t<<τ2(τ2=R2C)的条件下,若V S为常数,则V O与t将近似成线性关系。因此,当V S为方波信号并满足T P<<τ2时(T P为方波半个周期时间),则V O将转变为三角波,且方波的周期越小,三角波的线性越好,但三角波的幅度将随之减小。 1) 连接积分电路,加入方波信号(幅度?)。 2) 选择频率,使T P <<τ2,用示波器观察输出和输入波形,记录线性情况和幅度。 3) 改变方波频率,使T P ≈τ2,观察并记录输出波形的线性情况和幅度的变化。 4) 改变方波频率,使T P >>τ2,观察并记录输出波形的线性情况和幅度的变化。 4.同相比例运算电压传输特性 同相比例运算电路同反相加法运算电路,其特点是输入电阻比较大,电阻R’的接入同样是为了消除平均偏置电流的影响,故要求R’=R1//R F。 1) 连接同相比例运算电路。 2) 静态测试:输入接地,保证零输入时为零输出。 3) 加入正弦波,用示波器观察输入和输出波形,验证电路功能。 4) 用示波器测出电压传输特性:示波器选择XY显示模式,选择适合的按钮设置。 5) 适当增大输入信号,使示波器显示整个电压传输特性曲线(即包含线性放大区和饱和区)。

集成运放电路试题及答案

第三章集成运放电路 一、填空题 1、(3-1,低)理想集成运放的A ud=,K CMR=。 2、(3-1,低)理想集成运放的开环差模输入电阻ri=,开环差模输出电阻ro=。 3、(3-1,中)电压比较器中集成运放工作在非线性区,输出电压Uo只有或 两种的状态。 4、(3-1,低)集成运放工作在线形区的必要条件是___________ 。 5、(3-1,难)集成运放工作在非线形区的必要条件是__________,特点是___________,___________。 6、(3-1,中)集成运放在输入电压为零的情况下,存在一定的输出电压,这种现象称为__________。 7、(3-2,低)反相输入式的线性集成运放适合放大(a.电流、b.电压) 信号,同相输入式的线性集成运放适合放大(a.电流、b.电压)信号。 8、(3-2,中)反相比例运算电路组成电压(a.并联、b.串联)负反馈电路,而同相比例运算电路组成电压(a.并联、b.串联)负反馈电路。 9、(3-2,中)分别选择“反相”或“同相”填入下列各空内。 (1)比例运算电路中集成运放反相输入端为虚地,而比例运算电路中集成运放两个输入端的电位等于输入电压。 (2)比例运算电路的输入电阻大,而比例运算电路的输入电阻小。 (3)比例运算电路的输入电流等于零,而比例运算电路的输入电流等于流过反馈电阻中的电流。 (4)比例运算电路的比例系数大于1,而比例运算电路的比例系数小于零。 10、(3-2,难)分别填入各种放大器名称 (1)运算电路可实现A u>1的放大器。 (2)运算电路可实现A u<0的放大器。 (3)运算电路可将三角波电压转换成方波电压。 (4)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均大于零。 (5)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均小于零。 11、(3-3,中)集成放大器的非线性应用电路有、等。

电流反馈运放电路设计

电流反馈运放电路设计 电流反馈放大器不受基本增益带宽积的限制,随着信号幅度的增加,带宽的损失非常小。因为可以在最小失真的条件下对大信号进行调节,这些放大器在非常高的频率下通常都具有优异的线性度。而电压反馈放大器的带宽随着增益的增加降低,电流反馈放大器在很宽的增益范围上维持其大部分带宽不变。 正因为如此,准确地说,电流反馈运放没有增益带宽积的限制。当然,电流反馈运放也不是无限快,其压摆率(Slew Rate)不受内部偏置电流的限制,但受三极管本身的速度限制。对给定的偏置电流,这就容许不用通常可能影响稳定性的正反馈或其方法来获得较大的压摆率。 那么如何构建这些电路呢?电流反馈运放具有一个与差分对相对的输入缓冲器,该输入缓冲器大多数情况下常常是射极跟随器或其它非常类似的电路。正相输入端具有高阻抗,而缓冲器的输出,即放大器的反相输入具有低阻抗。相比之下,电压反馈放大器的输入都是高阻。 电流反馈运放的输出是电压,并且它与流出或流入运放的反相输入端的电流有关,这由称为互阻抗(transimpedance)的复杂函数Z(s)来表示(图1)。在直流时,互阻抗是一个非常大的数,并且像电压反馈运放一样,它随着频率的增加具有单极点滚降特性。 电流反馈运放灵活性的关键之一是具有可调节的带宽和可调节的稳定性。因为反馈电阻的数值实际上改变放大器的交流环路的动态特性,所以能够影响带宽和稳定性两个方面。加之具有非常高的压摆率和基于反馈电阻的可调节带宽,你可以获得与器件的小信号带宽非常接近的大信号带宽。在甚至更好的情况下,该带宽在很宽的增益范围内大部分都维持不变。而因为具有固有的线性度,你也可以在高频大信号时获得较低的失真。 如何发现最佳的反馈电阻R F 由于放大器的交流特性部分地取决于反馈电阻,这就让我们能够针对每一个特定的应用“量身定制”放大器。降低反馈电阻的数值将提升环路增益。为了保持稳定性和最大的带宽,在低增益时,反馈电阻要设置为较高的数值;随着增益的上升,环路增益自然降低。如果需要高的增益,可以利用较小的反馈电阻来部分地恢复环路增益。 图1:具有Z(s)和反馈电阻的电路示意图

集成运放组成的运算电路 习题解答

第7章 集成运放组成的运算电路 本章教学基本要求 本章介绍了集成运放的比例、加减、积分、微分、对数、指数和乘法等模拟运算电路及其应用电路以及集成运放在实际应用中的几个问题。表为本章的教学基本要求。 表 第7章教学内容与要求 学完本章后应能运用虚短和虚断概念分析各种运算电路,掌握比例、求和、积分电路的工作原理和输出与输入的函数关系,理解微分电路、对数运算电路、模拟乘法器的工作原理和输出与输入的函数关系,并能根据需要合理选择上述有关电路。 本章主要知识点 1. 集成运放线性应用和非线性应用的特点 由于实际集成运放与理想集成运放比较接近,因此在分析、计算应用电路时,用理想集成运放代替实际集成运放所带来的误差并不严重,在一般工程计算中是允许的。本章中凡未特别说明,均将集成运放视为理想集成运放。 集成运放的应用划分为两大类:线性应用和非线性应用。 (1) 线性应用及其特点 集成运放工作在线性区必须引入深度负反馈或是兼有正反馈而以负反馈为主,此时其输出量与净输入量成线性关系,但是整个应用电路的输出和输入也可能是非线性关系。 集成运放工作在线性区时,它的输出信号o U 和输入信号(同相输入端+U 和反相输入端-U 之差)满足式(7-1) )(od o -+-=U U A U (7-1) 在理想情况下,集成运放工作于线性区满足虚短和虚断。虚短:是指运放两个输入端之间的电压几乎等于零;虚断:是指运放两个输入端的电流几乎等于零。即 虚短:0≈-+-U U 或 +-≈U U 虚断:0≈=+-I I

(2) 非线性应用及其特点 非线性应用中集成运放工作在非线性区,电路为开环或正反馈状态,集成运放的输出量与净输入量成非线性关系)(od o +--≠U U A U 。输入端有很微小的变化量时,输出电压为正饱和电压或负饱和电压值(饱和电压接近正、负电源电压),+-=U U 为两种状态的转折点。即 当+->U U 时,OL o U U = 当+-

集成运放电路的设计

一设计目的 1.集成运算放大电路当外部接入不同的线性或非线性元器件组成输入和负反 馈电路时,可以灵活地实现各种特定的函数关系,在线性应用方面,可组成比例、加法、减法、积分、微分等模拟运算电路。 2.本课程设计通过Mulitisim编写程序几种运算放大电路仿真程序,通过输入 不同类型与幅度的波形信号,测量输出波形信号对电路进行验证,并利用Protel软件对实现对积累运算放大电路的设计,并最终实现PCB版图形式。二设计工具:计算机,Mulitisim,Protel软件 三设计任务及步骤要求 1)通过Mulitisim编写程序运算放大电路仿真程序,通过输入不同类型与 幅度的波形信号,测量输出波形信号对电路进行验证。输入电压波形可以任意选取,并且可对输入波形的运算进行实时显示,并进行比较; 2)对设计完成的运算放大电路功能验证无误后,通过Protel软件对首先对电 路进行原理图SCH设计,要求:所有运算放大电路在一张原理图上; 输入输出信号需预留接口; 3)设计完成原理图SCH后,利用Protel软件设计完成印制板图PCB,要求:至 少为双层PCB板; 四设计内容 1集成运算放大器放大电路概述

集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。 2集成运放芯片的选取和介绍 由于LM324具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,而本次电子设计实验对精度要求不是非常高,LM324完全满足要求,因此我们这里选用LM 324作为运放元件 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。每一组运算放大器可如图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图。 3运放电路基本原理及其Mulitisim仿真 3.1.同相比例运放电路

专用集成电路

实验一 EDA软件实验 一、实验目的: 1、掌握Xilinx ISE 9.2的VHDL输入方法、原理图文件输入和元件库的调用方法。 2、掌握Xilinx ISE 9.2软件元件的生成方法和调用方法、编译、功能仿真和时序仿真。 3、掌握Xilinx ISE 9.2原理图设计、管脚分配、综合与实现、数据流下载方法。 二、实验器材: 计算机、Quartus II软件或xilinx ISE 三、实验内容: 1、本实验以三线八线译码器(LS74138)为例,在Xilinx ISE 9.2软件平台上完成设计电 路的VHDL文本输入、语法检查、编译、仿真、管脚分配和编程下载等操作。下载芯片选择Xilinx公司的CoolRunner II系列XC2C256-7PQ208作为目标仿真芯片。 2、用1中所设计的的三线八线译码器(LS74138)生成一个LS74138元件,在Xilinx ISE 9.2软件原理图设计平台上完成LS74138元件的调用,用原理图的方法设计三线八线译 码器(LS74138),实现编译,仿真,管脚分配和编程下载等操作。 四、实验步骤: 1、三线八线译码器(LS 74138)VHDL电路设计 (1)三线八线译码器(LS74138)的VHDL源程序的输入 打开Xilinx ISE 6.2编程环境软件Project Navigator,执行“file”菜单中的【New Project】命令,为三线八线译码器(LS74138)建立设计项目。项目名称【Project Name】为“Shiyan”,工程建立路径为“C:\Xilinx\bin\Shiyan1”,其中“顶层模块类型(Top-Level Module Type)”为硬件描述语言(HDL),如图1所示。 图1 点击【下一步】,弹出【Select the Device and Design Flow for the Project】对话框,在该对话框内进行硬件芯片选择与工程设计工具配置过程。

运算放大器设计

运算放大器设计 电子竞赛初赛设计方案姓名:刘俊贤学号:班级: 2019301951 08031301 实验一:用集成运放设计一个能实现V0=-(4Vi1+3Vi2+2Vi3) 的加法电路 一.实验要求 用集成运放设计一个能实现V0=-(4Vi1+3Vi2+2Vi3)的加法电路。设计步骤: (1)根据已知条件,确定电路方案,计算并选取各电路元件参数; (2)在输出波形不失真的情况下,测量输入、输出波形的幅度,使之满足设计要求 二.实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大器件。当外界接入线性或非线性元器件组成输入和负反馈电路时,可以灵活实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 在大多数情况下,将运放看成是理想的,有以下三条基本结论: (1)开环电压增益Av=∞。 (2)运算放大器的两个输入端电压近似相等,即V+ = V-,成为虚短。(3)运算放大器同相和反相两个输入端电流可视为0,成为虚断。 三.实验分析设计 题目要求设计能实现 V0=-(4Vi1+3Vi2+2Vi3) U0Ui .. 的加法电路,分析得: (1)输出与输入反相,则采用反相加法运算电路。(2)由基本反相比例放大器的增益公式Auf= =- RfR1

可进一步推出反相加法 运算公式u=-(Rfu+Rfu+Rfu),则Rf=4 Rf=3 Rf=2,所以设计 0i1i2i3 R1R2R3R1R2R3 Rf=120kΩ,R1=30kΩ,R2=40kΩ,R3=60kΩ (3)Vi1=100mV,Vi2=200mV,Vi3=300mV,三者频率都为1kHz的正弦信号,使输出波形不失真,观察并记录结果。反相加法运算电路如下图所示: 四、仿真结果 理论计算(峰值): u0=-(4*100+3*200+2*300)=1600mV 实验测得(峰值): ' u0=1.590V ' u0≈u0 所以该设计较合理。 实验二 RC文氏桥振荡器输出正弦波 一、实验要求 根据文氏电桥振荡电路原理,设计一个正弦波发生器电路。设计任务: (1) 输出正弦波的振荡频率为1KHZ; (2) 振荡频率的测量值与理论值的相对误差 二、实验原理 文氏电桥振荡电路又称RC串并联网络正弦波振荡电路,它是一种较好的正弦波产生电路,适用于频率小于1MHz,频率范围宽,波形较好的低频振荡信号。 从结构上看,正弦波振荡器是没有输入信号的,为了产生正弦波,必须在放大电路中加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。但是,这样两部分构

集成运放电路试题及答案

第三章集成运放电路一、填空题 1、(3-1,低)理想集成运放的A ud = ,K CMR = 。 2、(3-1,低)理想集成运放的开环差模输入电阻ri= ,开环差模输出电阻ro= 。 3、(3-1,中)电压比较器中集成运放工作在非线性区,输出电压Uo只有或两种的状态。 4、(3-1,低)集成运放工作在线形区的必要条件是___________ 。 5、(3-1,难)集成运放工作在非线形区的必要条件是__________,特点是___________,___________。 6、(3-1,中)集成运放在输入电压为零的情况下,存在一定的输出电压,这种现象称为__________。 7、(3-2,低)反相输入式的线性集成运放适合放大 (a.电流、b.电压) 信号,同相输入式的线性集成运放适合放大 (a.电流、b.电压)信号。 8、(3-2,中)反相比例运算电路组成电压(a.并联、b.串联)负反馈电路,而同相比例运算电路组成电压(a.并联、b.串联)负反馈电路。 9、(3-2,中)分别选择“反相”或“同相”填入下列各空内。 (1)比例运算电路中集成运放反相输入端为虚地,而比例运算电路中集成运放两个输入端的电位等于输入电压。 (2)比例运算电路的输入电阻大,而比例运算电路的输入电阻小。 (3)比例运算电路的输入电流等于零,而比例运算电路的输入电流等于流过反馈电阻中的电流。 (4)比例运算电路的比例系数大于1,而比例运算电路的比例系数小于零。 10、(3-2,难)分别填入各种放大器名称 (1)运算电路可实现A u>1的放大器。 (2)运算电路可实现A u<0的放大器。 (3)运算电路可将三角波电压转换成方波电压。 (4)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均大于零。 (5)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均小于零。

集成运放电路实验报告

实验报告姓名:学号: 日期:成绩: 一、实验目的 1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 =∞ 开环电压增益A ud =∞ 输入阻抗r i 输出阻抗r =0 o =∞ 带宽 f BW

失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O 与输入电压之间满足关系式 U O =A ud (U +-U -) 由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 (2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图6-1所示。对于理想运放, 该电路的输出电压与输入电压之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图6-1 反相比例运算电路 图6-2 反相加法运算电路 2) 反相加法电路 电路如图6-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 // R 2 // R F 3) 同相比例运算电路 图6-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 // R F 当R 1→∞时,U O =U i ,即得到如图6-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U - =

专用集成电路AD的设计

A/D转换器的设计 一.实验目的: (1)设计一个简单的LDO稳压电路 (2)掌握Cadence ic平台下进行ASIC设计的步骤; (3)了解专用集成电路及其发展,掌握其设计流程; 二.A/D转换器的原理: A/D转换器是用来通过一定的电路将模拟量转变为数字量。 模拟量可以是电压、电流等电信号,也可以是压力、温度、湿度、位移、声音等非电信号。但在A/D转换前,输入到A/D转换器的输入信号必须经各种传感器把各种物理量转换成电压信号。符号框图如下: 数字输出量 常用的几种A/D器为; (1):逐次比较型 逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB 开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。 (2): 积分型 积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。 (3):并行比较型/串并行比较型

并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。 串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级型AD,而从转换时序角度又可称为流水线型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路规模比并行型小。 一.A/D转换器的技术指标: (1)分辨率,指数字量的变化,一个最小量时模拟信号的变化量,定义为满刻度与2^n的比值。分辨率又称精度,通常以数字信号的位数来表示。 (2)转换速率,是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级,属中速AD,全并行/串并行型AD可达到纳秒级。采样时间则是另外一个概念,是指两次转换的间隔。为了保证转换的正确完成,采样速率必须小于或等于转换速率。因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。常用单位ksps 和Msps,表示每秒采样千/百万次。 (3)量化误差,由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。通常是1 个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。(4)偏移误差,输入信号为零时输出信号不为零的值,可外接电位器调至最小。(5)满刻度误差,满度输出时对应的输入信号与理想输入信号值之差。 (6)线性度,实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。 三、实验步骤 此次实验的A/D转换器用的为逐次比较型,原理图如下:

双电源运放电路设计

使用双电源的运放交流放大电路 为了使运放在零输入时零输出,运放的内部电路是按使用双电源的要求来设计的。运放交流放大电路采用 双电源供电,可以增大动态范围。 1.1.1 双电源同相输入式交流放大电路 图1是使用双电源的同相输入式交流放大电路。两组电源电压VCC和VEE相等。C1和C2为输入和输出耦合电容;R1使运放同相输入端形成直流通路,内部的差分管得到必要的输入偏置电流;RF引入直流和交流负反馈,并使集成运放反相输入端形成直流通路,内部的差分管得到必要的输入偏置电流;由于C隔直流,使直流形成全反馈,交流通过R和C分流,形成交流部分反馈,为电压串联负反馈。引入直流全反馈和交流部分反馈后,可在交流电压增益较大时,仍能够使直流电压增益很小(为1倍),从而避免输入失 调电流造成运放的饱和。 无信号输入时,运放输出端的电压V0≈0V,交流放大电路的输出电压U0=0V;交流信号输入时,运放输出端的电压V0在-VEE~+VCC之间变化,通过C2输出放大的交流信号,输出电压uo的幅值近似为VCC(V CC=VEE)。引入深度电压串联负反馈后,放大电路的电压增益为放大电路输入电阻Ri=R1//γif。γif是运放引入串联负反馈后的闭环输入电阻。γif很大,所以Ri=R1/γif≈R1;放大电路的输出电阻R0=γof≈0,γof是运放引入电压负反馈后的闭环输出电阻,rof很小。 1.1.2 双电源反相输入式交流放大电路 图2是使用双电源的反相输入式交流放大电路。两组电源电压VCC和VEE相等。RF引入直流和交流负反馈,C1隔直流,使直流形成全反馈,交流通过R和C1分流,形成交流部分反馈,为电压并联负反馈。为了减小运放输入偏置电流造成的零点漂移,可以选择R1=RF。引入深度电压并联负反馈后,放大电路的电 压增益为因为运放反相输入端"虚地",所以放大电路的输入电阻Ri≈R;放大电 路的输出电R0=r0f≈0。

集成电路运算放大器的定义

第四章集成运算放大电路 第一节学习要求 第二节集成运算放大器中的恒流源 第三节差分式放大电路 第四节集成电路运算放大器 第五节集成电路运算放大器的要紧参数 第六节场效应管简介 第一节学习要求 1. 掌握差不多镜象电流源、比例电流源、微电流源电路结构及差不多特性。 2. 掌握差模信号、共模信号的定义与特点。 3. 掌握差不多型和恒流源型差分放大器的电路结构、特点,会熟练计算电路的静态工作点,熟悉四种电路的连接方式及输入输出电压信号之间的相位关系。 4. 熟练分析差分放大器对差模小信号输入时的放大特性,共模抑制比。会计算A VD、R id、 R ic、 R od、 R oc、K CMR。 5.熟悉运放的要紧技术指标及集成运算放大电路的一般电路

结构。 学习重点: 掌握集成运放的差不多电路的分析方法 学习难点: 集成运放内部电路的分析 集成电路简介 集成电路是在一小块 P型硅晶片衬底上,制成多个晶体管 ( 或FET)、电阻、电容,组合成具有特定功能的电路。 集成电路在结构上的特点: 1. 采纳直接耦合方式。 2. 为克服直接耦合方式带来的温漂现象,采纳了温度补偿的手段 ----输入级是差放电路。 3. 大量采纳BJT或FET构成恒流源 ,代替大阻值R ,或用于设置静态电流。 4. 采纳复合管接法以改进单管性能。 集成电路分为数字和模拟两大部分。 返回 第二节集成运算放大器中的恒流源 一、差不多镜象电流源

电路如图6.1所示。T1,T2参数完全相同,即 β1=β2,I CEO1=I CEO2 ,从电路中可知V BE1=V BE2,I E1=I E2,I C1=I C2 3 / 34

第六章 集成运放组成的运算电路典型例题

第六章集成运放组成的运算电路 运算电路 例6-1例6-2例6-3例6-4例6-5例6-6例6-7例6-8例6-9 例6-10例6-11 乘法器电路 例6-12例6-13例6-14 非理想运放电路分析 例6-15 ; 【例6-1】试用你所学过的基本电路将一个正弦波电压转换成二倍频的三角波电压。要求用方框图说明转换思路,并在各方框内分别写出电路的名称。 【相关知识】 波形变换,各种运算电路。 【解题思路】 利用集成运放所组成的各种基本电路可以实现多种波形变换;例如,利用积分运算电路可将方波变为三角波,利用微分运算电路可将三角波变为方波,利用乘方运算电路可将正弦波实现二倍频,利用电压比较器可将正弦波变为方波。 【解题过程】 先通过乘方运算电路实现正弦波的二倍频,再经过零比较器变为方波,最后经积分运算电路变为三角波,方框图如图(a)所示。

【其它解题方法】 先通过零比较器将正弦波变为方波,再经积分运算电路变为三角波,最后经绝对值运算电路(精密整流电路)实现二倍频,方框图如图(b)所示。 实际上,还可以有其它方案,如比较器采用滞回比较器等。 【例6-2】电路如图(a)所示。设为A理想的运算放大器,稳压管DZ的稳定电压等于5V。 (1)若输入信号的波形如图(b)所示,试画出输出电压的波形。 (2)试说明本电路中稳压管的作用。 & 图(a) 图(b) 【相关知识】 反相输入比例器、稳压管、运放。 【解题思路】 (1)当稳压管截止时,电路为反相比例器。

(2)当稳压管导通后,输出电压被限制在稳压管的稳定电压。 【解题过程】 (1)当时,稳压管截止,电路的电压增益 故输出电压 当时,稳压管导通,电路的输出电压被限制在,即。根据以上分析,可画出的波形如图(c)所示。 图(c) 。 (2)由以上的分析可知,当输入信号较小时,电路能线性放大;当输入信号较大时稳压管起限幅的作用。 【例6-3】在图(a)示电路中,已知, ,,设A为理想运算放大器,其输出电压最大值为,试分别求出当电位器的滑动端移到最上端、中间位置和最下端时的输出电压的值。

专用集成电路设计

专用集成电路课程设计 简易电子琴 通信工程学院 011051班 侯珂

01105023 目录 1 引言 (1) 1.1设计的目的 (1) 1.2设计的基本内容 (2) 2 EDA、VHDL简介 (2) 2.1EDA技术 (2) 2.2硬件描述语言——VHDL (3) 2.2.1 VHDL的简介 (3) 2.2.2 VHDL语言的特点 (3) 2.2.3 VHDL的设计流程 (4) 3 简易电子琴设计过程 (5) 3.1简易电子琴的工作原理 (5) 3.2简易电子琴的工作流程图 (5) 3.3简易电子琴中各模块的设计 (6) 3.3.1 乐曲自动演奏模块 (7) 3.3.2 音调发生模块 (8) 3.3.3 数控分频模块 (9)

3.3.4 顶层设计 (10) 4 系统仿真 (12) 5 结束语 (14) 收获和体会.................................................................................................. 错误!未定义书签。参考文献 .. (15) 附录 (16)

1 引言 我们生活在一个信息时代,各种电子产品层出不穷,作为一个计算机专业的学生,了解这些电子产品的基本组成和设计原理是十分必要的,我们学习的是计算机组成的理论知识,而课程设计正是对我们学习的理论的实践与巩固。本设计主要介绍的是一个用超高速硬件描述语言VHDL设计的一个具有若干功能的简易电子琴,其理论基础来源于计算机组成原理的时钟分频器。 摘要本系统是采用EDA技术设计的一个简易的八音符电子琴,该系统基于计算机中时钟分频器的原理,采用自顶向下的设计方法来实现,它可以通过按键输入来控制音响。系统由乐曲自动演奏模块、音调发生模块和数控分频模块三个部分组成。系统实现是用硬件描述语言VHDL按模块化方式进行设计,然后进行编程、时序仿真、整合。本系统功能比较齐全,有一定的使用价值。 关键字电子琴、EDA、VHDL、音调发生 1.1 设计的目的 本次设计的目的就是在掌握计算机组成原理理论的基础上,了解EDA技术,掌握VHDL硬件描述语言的设计方法和思想,通过学习的VHDL语言结合电子电路的设计知识理论联系实际,掌握所学的课程知识,例如本课程设计就是基于所学的计算机原理中的时钟分频器和定时器的基础之上的,通过本课程设计,达到巩固和综合运用计算机原理中的知识,理论联系实际,巩固所学理论知识,并且提高自己通过所学理论分析、解决计算机实际问题的能力。

集成运放组成的基本运算电路实验报告

实验报告课程名称:电路与电子技术实验指导老师: 成绩: 实验名称:集成运放组成的基本运算电路实验实验类型:同组学生:一、实验目的和要求(必填)二、实验容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.研究集成运放组成的比例、加法和积分等基本运算电路的功能; 2.掌握集成运算放大电路的三种输入方式。 3.了解集成运算放大器在实际应用时应考虑的一些问题; 4.理解在放大电路中引入负反馈的方法和负反馈对放大电路各项性能指标的影响; 5.学会用集成运算放大器实现波形变换 二、实验容和原理 1.实现两个信号的反相加法运算 2.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值 3.实现单一信号同相比例运算(选做) 4.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值,测量闭环传输特性:Vo = f (Vs) 5.实现两个信号的减法(差分)运算 6.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值 7.实现积分运算(选做) 8.设置输出初态电压等于零;输入接固定直流电压,断开K2,进入积分;用示波器观察输出变化(如何设轴,Y轴和触发方式) 9.波形转换—方波转换成三角波 10.设:Tp为方波半个周期时间;τ=R2C 11.在T p<<τ、T p ≈τ、T p>>τ三种情况下加入方波信号,用示波器观察输出和输入波形,记录线性 三、主要仪器设备 1.集成运算电路实验板;通用运算放大器μA741、电阻电容等元器件; 2.MS8200G型数字多用表;XJ4318型双踪示波器;XJ1631数字函数信号发生器;DF2172B型交流电压表; 型可调式直流稳压稳流电源。

运放输出电流放大电路设计要点

电子报/2010年/3月/28日/第016版 电子文摘 运放输出电流放大电路设计要点 徐岩编译 当用运放不能满足要求时,可以在后面增加一个晶体三极管对输出电流进行放大。图1是输出+5V、50mA的电路。电路由运算放大器和NPN晶体三极管组成,并在电路中引入了负反馈。 考虑到输出端如出现瞬间短路,在晶体管的集电极发射极之间会流过巨大的电流,管子会立即被烧毁。所以在集电极电路中串接限流电阻Rc。Re的功率必须较大,在图1中Re流过50mA 电流,Re功率必须在0.25W以上。 也可以采用图2所示的集电极输出电路,即使输出端瞬间短路也不会将晶体管烧坏。 Trl的基极电压是恒定的约为+11.4V,所以流过R3上的电流Ir3为1.5mA。若Trl的hFE=100,那么从Trl基极流出的电流IB=50mA/100=0.5mA。流入运放的电流是I F3和IB之和为2mA。RB 上的电压降约为0.4V。所以运放的输出电压(A点的电压)必须为+11V。也就是说,如果运放不能输出+11V的电压,负反馈环路就不能正常工作,也就不能输出+5V电压。 但是对于通用运放来说,最大输出电压总是比电源电压低1V以上,要想输出+11V的电压,电源电压就必须在+12V以上。 解决此问题的办法是加大电阻RB的数值,降低A点的电位,让运放能正常工作。由于图2中运放的电源电压为±12V,所以在设计电路时按运放的输出电压以0V为中心摆动进行设计。将RB取为5.6kΩ,当RB上流过2mA的电流时,其上的电压降为11.2V,运放的工作点就几乎为0V。 图2是输入+2.5V得到+5V、50mA输出的电路。图3是输入+5V获得-5V、50mA输出的电路。

复旦微电子《电子线路与集成电路设计》专业课程考试大纲

复旦大学2007年入学研究生 《电子线路与集成电路设计》专业课程考试大纲 本复习大纲是为了便于考生对《电子线路与集成电路设计》课程进行复习而制定。大纲提供了一些参考书目录,考生可以根据自己的实际情况选择合适的参考书。 第一部分模拟电路 考试题型:问答题,分析计算题。 参考书:①童诗白等,模拟电子技术基础(第三版),高等教育出版社,2001年 ②谢嘉奎等,电子线路线性部分(第四版),高等教育出版社,1999年 ③蓝鸿翔,电子线路基础,人民教育出版社,1981年 总分:50分 一、电路分析(③的第一章或其他电路分析教材) 基本电路定律与定理: 掌握基尔霍夫电压与电流定律;等效电压源定律;等效电流源定律;叠加原理。 能够运用节点电压法求解线性电路网络。 线性电路的一般分析方法: 能够写出线性电路网络的传递函数。 了解稳态分析和瞬态分析的基本概念。 掌握线性网络幅频特性、相频特性的基本概念。 能够利用波特(Bode)图进行频率特性分析。 二、半导体器件(①或②) 了解PN结的结构与原理,掌握PN结的伏安特性。 掌握半导体二极管的特性曲线和特性参数及其基本应用:整流、限幅、钳位。 双极型晶体管: 了解双极型晶体管的结构和放大原理; 掌握双极型晶体管的伏安特性;晶体管的基本模型,掌握双极型晶体管的交流小信 号等效电路,并能计算其中的各个参数。 场效应晶体管: 掌握场效应晶体管的结构和工作原理,分清6种类型场效应管的区别; 掌握场效应晶体管的交流小信号等效电路,并能计算其中的各个参数。 三、基本放大电路(①或②) 放大电路的性能指标:

增益(放大倍数)、输入阻抗、输出阻抗,掌握它们的概念与计算方法。 晶体管共射放大电路: 分清直流通路与交流通路; 用近似估算法确定放大电路的直流工作点; 用小信号等效电路方法估算放大电路的性能指标:增益、输入阻抗、输出阻抗; 用图解法确定输出动态范围以及输出波形失真情况。 晶体管共基和共集放大电路: 了解上述两种电路的工作原理和电路特点; 能够简单估算上述两种放大电路的性能指标:增益、输入阻抗、输出阻抗; 熟悉三种接法的放大电路性能指标的异同,能够在不同场合正确选择合适的电路; 了解三种接法的放大电路在频率特性方面的异同。 场效应管共源放大电路: 能够根据场效应晶体管的伏安特性确定放大电路的直流工作点; 用小信号等效电路方法估算放大电路的性能指标。 差分放大电路: 熟悉差分放大电路的工作原理和电路特点; 掌握差分放大电路的性能指标估算方法。 互补输出电路: 熟悉互补输出电路的工作原理和电路特点; 了解互补输出电路中产生交越失真的原因以及消除方法。 多级放大电路: 掌握多级放大电路的增益、输入阻抗、输出阻抗的估算方法。 四、放大电路中的负反馈(①或②) 反馈的基本概念: 正确理解开环与闭环、正反馈与负反馈、直流反馈与交流反馈、电压反馈与电流反 馈、串联反馈与并联反馈等概念; 能够正确运用瞬时极性法判断反馈的极性。 负反馈放大电路的组态: 正确判断四种不同的负反馈组态; 掌握四种不同负反馈组态的电路特点以及对电路性能产生的各种影响的异同; 能够根据需要在电路中引入合适的反馈形式。 深度负反馈放大电路的分析: 掌握深度负反馈放大电路的计算方法。 负反馈放大电路的自激振荡及消除方法: 了解负反馈放大电路自激振荡产生的原因,了解消除振荡的方法。 五、集成运算放大器及其应用基础(①或②) 熟悉集成运算放大器的性能参数: 差模增益、共模增益、共模抑制比、输入失调、单位增益带宽、转换速率等。 基于集成运放构成的线性电路的基本分析方法:

相关主题
文本预览
相关文档 最新文档