当前位置:文档之家› 曲线桥梁计算

曲线桥梁计算

曲线桥梁计算
曲线桥梁计算

目前解决曲线桥梁计算方法有以下几种:

1、空间梁元模型法

2、空间薄壁箱梁元模型法

3、空间梁格模型法

4、实体、板壳元模型法

第一种方法,是不能考虑桥梁的横向效应的,使用时要求桥梁的宽跨比不易太大。第二种方法,是第一种方法的改进,主要区别是采用了不同的单元模型,考虑了横向作用如翘曲和畸变。

第四种方法,是解决问题最有效的方法,能够考虑各种结构受力问题。

第三种方法,是目前设计及科研中常采用的方法,其特点是容易掌握,且对设计能保证足够的精度,其中采用比较多的方法是剪力-柔性梁格法,能充分考虑弯桥横向的受力特性。

剪力-柔性梁格法的原理

是当梁格节点与结构重合的点承受相同挠度和转角时,由梁格产生的内力局部静力等效与结构的内力。其实质是将传统的一维杆单元计算模式推进到二维计算模型,用一个二维的空间网格来模拟结构的受力特性。

对于梁格法的讨论这里也有不少帖子进行了讨论,实际与梁格之间的等效关系,主要表现在梁格各个构件的刚度计算上,理论上,原型和等效梁格承受相等的外荷载时,必须具有恒等的挠曲和扭转,等效梁格中每一构件的内力也必须等于该构件所代表的原型截面的,事实上这种理想状况是达不到的,模拟也是近似的,但事实是按梁格计算能把握住结构的总体性能,对于设计来说应该是能满足精度的。梁格也是近似的模拟,只要计算者能够和好的模拟了横向纵向的特性,应该是可以作为设计依据的。你在这里说的横向的切分使得预应力产生的次内力问题我不太清楚你指的什么,但是只要横向的刚度业等效了原型,对于计算应该不会出现逆所说的结构内力失真,这条可以通过结果验证。

当然任何结构,只要不怕麻烦都可以用实体单元来分析,只要正确模拟,实体分析也是最精确的,但是对于这种模型要准确模拟可不是一件容易的事,并且预应力的损失计算,施加等等都非常麻烦,还有最后结果的查看也不方便,因此除了结构局部的分析,一般是没有拿实体来进行全桥的整体分析的,至于说单梁我也说了,有些时候精度是可以的,但是对于这种结构相对于梁格来说单梁的精度是不如梁格的。特别是在没有把握的前提下可以做一下梁格的分析,对结果进行对比,能放心一些,其实对于设计,能用单梁算的近量用单梁能用平面的尽量不用空间,这也应该是一个原则,前提是对简化做到心中有数。像这种结构来说如果开始计算就用梁格或者更麻烦的实体来配筋都不是一般的麻烦,配筋计算还是最好用简化的单梁,如果不放心然后用其他方式来验算,这样比较合适

在midas分析中应该注意的问题:

如果你要计算的是普通钢筋混凝土结构,主要看内力结果,可以在划分的时候简单一些,直接“一刀切”,也就是顶底板在同一位置切开,但是在计算其抗弯惯性矩的时候一定要注意纵向梁格的界面惯性矩是相对于整体截面的中性轴的,而不是划分以后的梁格截面本身的惯性矩,对于预应力混凝土的结构你就得注意梁格的划分了,在划分的时候尽量使得划分以后的各个梁格截面要跟原截面的中性轴一致,只有这样计算出来的应力结果才能比较准确,当然,如果是等截面的梁只要划分一个截面就可以了,算起来也不是很费时费力,但是如果是变截

面的那种异型箱梁在进行划分和计算截面特性的时候就应该采取一定的方法,用excell或者自己编制小程序来批量划分和计算,要不然会非常费时费力。

其中抗扭惯性矩的计算一定要按相关书籍中介绍的公式进行计算,否则是不准确的,因为输入的抗扭惯性矩实际上是顶底板的抗扭,另一部分抗扭由腹板来承担,因此梁格的抗剪面积也要输入准确,就是腹板的面积,建立模型的时候注意一定不要使用midas自带的梁格截面,因为这里面的截面都是上面所说的那种“一刀切”的截面,并且其计算得到抗扭惯性矩根剪切面积也是不准确的。

不能直接应用midas中的梁格截面是因为它其中的截面特性不是按梁格法的计算方法得到的,应该数值输入;截面特性的计算公式相关书籍中都有,可以查阅;想保持一致有很多种方法,其实原理就是解方程,对于变宽的截面由于要计算的截面特性比较多,可以用excell 也可以编程解决,对于等宽的试分都可以了;预应力和普通钢筋关注的结果不同,预应力由于要关注应力结果,所以要保持中性轴一致,才能得到其合理的计算结果而普通钢筋只需要看内力结果就可以了,所以无所谓一致不一致,梗腋一般不计入抗剪面积,虚拟梁是为了加载方便。

梁格法建模注意事项

在梁桥中会经常会使用梁格法建立模型,因为不同的设计人员对横向联系的模拟(虚梁的设置)不尽相同,所以分析结果会略有差异。下面就一些注意事项供设计人员参考。

1. 将多室箱梁分割为梁格时,注意纵梁的中和轴位置应尽量一致。

2. 每跨内的虚拟的横向联系梁数量不应过少(划分为1.5m左右一个在精度上应能满足要求)。

3. 虚拟的横向联系梁之间尽量要设为铰接(可将纵梁之间的虚拟横梁分割为两个单元,将其中一个释放梁端约束)。

4. 虚拟的横向联系梁的刚度可按一字或二字形矩形截面计算。

5. 虚拟的横向联系梁的重量应设为零(可在截面刚度调整系数中调整)。

6. 当虚拟的横向联系梁悬挑出边梁外时,应设置虚拟的边纵梁(为了准确地计算自振周期和分配荷载),此时可将虚拟的边纵梁作为一个梁格进行划分。

7. 定义移动荷载的车道时,应尽量选择按“横向联系梁”方法分布移动荷载,此时应将所有的横向联系梁定义为一个结构组,并在定义车道时选择该结构组。

8. 定义车道时最好定义两次车道,一次按横向偏载定义,一次按横向中间向两边定义。定义移动荷载工况时可定义偏载和居中两个工况(荷载组合中会自动找到包络结果)。

9. 定义支座时尽量遵循一排支座中只约束其中一个支座在X, Y方向的自由度的原则(否则温度荷载结果会偏大)。另外,多支座时一般可不约束旋转自由度。

10. 注意输入梁截面温度荷载时宽度B的取值为实际翼缘宽度(或腹板宽度之和)。

11. 弯桥时应注意支座的约束方向(设置节点局部坐标系)。

3. 虚拟的横向联系梁之间尽量要设为铰接(可将纵梁之间的虚拟横梁分割为两个单元,将其中一个释放梁端约束)。"4定义移动荷载的车道时,应尽量选择按“横向联系梁”方法分布移动荷载,此时应将所有的横向联系梁定义为一个结构组,并在定义车道时选择该结构组。

请问高手以上两条处理的理由是什么?

"虚拟的横向联系梁之间尽量要设为铰接(可将纵梁之间的虚拟横梁分割为两个单元,将其

中一个释放梁端约束"

这条说的有问题,只针对特殊的模型,并不是针对所有的模型,我已向midas公司咨询过而且midas对活载只能按影响线加载,必须先定义车道线,并不能按照影响面加载,对midas在梁格法的应用方面,算是它的一个弊端。个人认为你可以参考一下桥博,它在斜弯桥部分,对影响面加载已解决。另你还可以参考一下戴公连李德建《桥梁结构空间

分析方法与应用》这本书

同意4楼的说法。midas的空间结构加载,局限在车道范围,不一定能体现车道横向最不利加:因为车道宽度一般不小于3.5m,而横向车辆加载可以是3.1m。

建筑工程坐标计算实例

坐标的计算方法及公式 一、概念 卵形曲线:是指在两半径不等的圆曲线间插入一段缓和曲线。也就是说:卵形曲线本身是缓和曲线的一段,只是在插入时去掉了靠近半径无穷大方向的一段,而非是一条完整的缓和曲线。 二、卵形曲线坐标计算原理 根据已知的设计参数,求出包括卵形 曲线的完整缓和曲线的相关参数和曲线要素,再按缓和曲线坐标计算的方法来计算卵形曲线上任意点上的坐标。 三、坐标计算 以雅(安)至攀(枝花)高速公路A合同段(西昌西宁)立交区A匝道一卵形曲线为例,见图一: (图一) 已知相关设计数据见下表: 主点桩号坐标(m)切线方位角(θ) X Y ° ’ ”

ZH AK0+090 9987.403 10059.378 92 17 26.2 Y1 AK0+160 9968.981 10125.341 132 23 51.6 YH1 AK0+223.715 9910.603 10136.791 205 24 33.6 HY2 AK0+271.881 9880.438 10100.904 251 24 18.5 YH2 AK0+384.032 9922.316 10007.909 337 04 54.2 HZ AK0+444.032 9981.363 10000.000 0 00 00 1、缓和曲线(卵形曲线)参数计算 A1==59.161 卵形曲线参数: A2=(HY2-YH1)×R1(小半径)×R2(大半径)÷(R2-R1)=(271.881-223.715)×50×75÷(75-50)= 7224.900 A2==84.999 A3==67.082 2.卵形曲线所在缓和曲线要素计算 卵形曲线长度LF由已知条件知:LF=HY2-YH1=271.881-223.715=48.166 卵形曲线作为缓和曲线的一段,因此先求出整条缓和曲线的长度LS,由此找出HZ'点的桩号及坐标(实际上不存在,只是作为卵形曲线辅助计算用) LM=LS(YH1至HZ'的弧长)=A2÷R1=7224.900÷50=144.498 ∴HZ'桩号=YH1+LM=223.715+144.498=368.213 LE=HY2至HZ'的弧长=A2÷R2=7224.900÷75=96.332 或LE= LM-LF=144.498-48.166=96.332 卵形曲线长度LF=LM-LE=144.498-96.332=48.166(校核) HY2=HZ'-LE=368.213-96.332=271.881(校核) 由上说明计算正确 3.HZ'点坐标计算(见图二) (图二) ①用缓和曲线切线支距公式计算,缓和曲线切线支距公式通式: Xn=[(-1)n+1×L4n–3]÷[(2n-2)!×22n–2×(4n-3)×(RLs)2n–2] Yn=[(-1)n+1×L4n–1]÷[(2n-1)!×22n–1×(4n-1)×(RLs)2n–1]

铁路曲线桥墩台中心坐标计算

浅析铁路曲线桥墩台中心坐标计算

————————————————————————————————作者:————————————————————————————————日期:

浅析铁路曲线桥墩台中心坐标计算 (中交 广东 广州) 摘 要:结合在建的某铁路设计资料,采用坐标计算法计算铁路曲线桥梁工作线偏角,并推算出桥梁墩台中心坐标,全过程采用VB 语言程序结合Excel 电子表格自动计算。 关键词:曲线桥梁工作线;偏距E 值;交点距L ;桥梁偏角α;桥梁偏角坐标计算法 Abstract : Key words : 1引言 高速铁路采用的桥梁部份所占比例较大,需要计算的曲线桥梁墩台坐标计算工作量繁重。与直线桥相比,曲线桥墩台坐标的计算要复杂的多,涉及的内容也较多,如何能快速准确计算出曲线桥梁墩台坐标对测量内业计算至关重要。传统的采用前后视偏角计算法计算桥梁偏角,F B A δδα+=,δB 前视偏角,δB 后视偏角,由于梁体在线路上的位置不同,δB 、δF 的计算方法也不一样,不同情形下桥梁线路偏角的计算公式也不同,计算起来繁琐。 本文结合在建的某铁路,谈谈自已采用坐标计算法计算桥梁偏角,推算曲线桥梁墩台坐标的一些快速计算方法及编程实现。 2 基本原理 2-1. 梁和桥台在曲线上的布置形式 桥梁位于曲线上,线路中线为具有一定半径的圆曲线或缓和曲线,而预制梁的中线为直线,这就要求梁中线必须随着线路中线的弯曲形成与线路曲线基本相符的连续折线,如图2-1-1所示。这条连续折线称为曲线桥梁的工作线,其顶点为相邻两梁中线的交点,相邻两交点之间的水平距离,称为交点距,亦称墩中心距或跨距,以L 表示。 在曲线桥上,桥梁工作线为折线,线路中线为曲线,两者并不重合,列车通过时,桥梁必然承受偏心荷载。为了使桥梁承受较小的偏心荷载,桥梁设计中,每孔梁中心线的两个端点并不位于线路中心线上,而必须将梁的中线向曲线外侧移动一段距离。根据跨长及曲线半径,梁中线向曲线外侧所移动的距离,可以等于以梁长为弦线的中矢值,此布置方式称为切线布置,如图2-1-2(a )所示;也可以等于该中矢值的一半,称为平分中矢布置,如图2-1-2(b )所示。两种布置形式比较,平分中矢布置较为有利,铁路曲线桥基本上都采用这种布 图2-1-1

道路坐标计算公式

曲线坐标计算 1、曲线要素计算 (1)缓和曲线常数计算 内移距R l 24/p 2 s = 切垂距 23 s 240/2/m R l l s -= 缓和曲线角R l R l s s πβ/902/0??== (2)曲线要素计算 切线长 m R T ++=2/tan )p (α 曲线长 ?+=?-+=180/]180/)2([20απβαπR l R l L s s 外矢距 R R E -+=)]2/cos(/)p [(0α 切曲差 L T q -=2 2、主要点的里程推算

s s s S l YH HZ )/22l -(L QZ YH )/22l -(L HY QZ l +=+=+=+=-=ZH HY T JD ZH 检核: HZ T JD =-+q 3、方位角计算 根据已知JD1和JD2的坐标计算出 21JD JD -α 偏角βαα±=--211JD JD JD ZH ?±-=-18011JD ZH ZH JD αα 4、计算直线中桩坐标 (1)计算ZH 点坐标: ZH JD JD ZH ZH JD JD ZH T y y T x x --?+=?+=1111sin cos αα (2)计算HZ 点坐标: 2 11211cos cos JD JD JD HZ JD JD JD HZ T y y T x x --?+=?+=αα (3)计算直线上任意点中桩坐标 待求点到JD1的距离为i L 2 112 11sin cos -JD JD i JD i JD JD i JD i i L y y L x x HZ T L --?+=?+=+=αα里程 待求点里程 5、计算缓和曲线中桩坐标 (1)第一缓和曲线上任意点中桩坐标 在切线坐标系中的坐标为: s i s i Rl l y Rl l l x 6/)(40/3 25=-= ZH 到所求点方位角:

曲线桥梁计算

目前解决曲线桥梁计算方法有以下几种: 1、空间梁元模型法 2、空间薄壁箱梁元模型法 3、空间梁格模型法 4、实体、板壳元模型法 第一种方法,是不能考虑桥梁的横向效应的,使用时要求桥梁的宽跨比不易太大。第二种方法,是第一种方法的改进,主要区别是采用了不同的单元模型,考虑了横向作用如翘曲和畸变。 第四种方法,是解决问题最有效的方法,能够考虑各种结构受力问题。 第三种方法,是目前设计及科研中常采用的方法,其特点是容易掌握,且对设计能保证足够的精度,其中采用比较多的方法是剪力-柔性梁格法,能充分考虑弯桥横向的受力特性。 剪力-柔性梁格法的原理 是当梁格节点与结构重合的点承受相同挠度和转角时,由梁格产生的内力局部静力等效与结构的内力。其实质是将传统的一维杆单元计算模式推进到二维计算模型,用一个二维的空间网格来模拟结构的受力特性。 对于梁格法的讨论这里也有不少帖子进行了讨论,实际与梁格之间的等效关系,主要表现在梁格各个构件的刚度计算上,理论上,原型和等效梁格承受相等的外荷载时,必须具有恒等的挠曲和扭转,等效梁格中每一构件的内力也必须等于该构件所代表的原型截面的,事实上这种理想状况是达不到的,模拟也是近似的,但事实是按梁格计算能把握住结构的总体性能,对于设计来说应该是能满足精度的。梁格也是近似的模拟,只要计算者能够和好的模拟了横向纵向的特性,应该是可以作为设计依据的。你在这里说的横向的切分使得预应力产生的次内力问题我不太清楚你指的什么,但是只要横向的刚度业等效了原型,对于计算应该不会出现逆所说的结构内力失真,这条可以通过结果验证。 当然任何结构,只要不怕麻烦都可以用实体单元来分析,只要正确模拟,实体分析也是最精确的,但是对于这种模型要准确模拟可不是一件容易的事,并且预应力的损失计算,施加等等都非常麻烦,还有最后结果的查看也不方便,因此除了结构局部的分析,一般是没有拿实体来进行全桥的整体分析的,至于说单梁我也说了,有些时候精度是可以的,但是对于这种结构相对于梁格来说单梁的精度是不如梁格的。特别是在没有把握的前提下可以做一下梁格的分析,对结果进行对比,能放心一些,其实对于设计,能用单梁算的近量用单梁能用平面的尽量不用空间,这也应该是一个原则,前提是对简化做到心中有数。像这种结构来说如果开始计算就用梁格或者更麻烦的实体来配筋都不是一般的麻烦,配筋计算还是最好用简化的单梁,如果不放心然后用其他方式来验算,这样比较合适 在midas分析中应该注意的问题: 如果你要计算的是普通钢筋混凝土结构,主要看内力结果,可以在划分的时候简单一些,直接“一刀切”,也就是顶底板在同一位置切开,但是在计算其抗弯惯性矩的时候一定要注意纵向梁格的界面惯性矩是相对于整体截面的中性轴的,而不是划分以后的梁格截面本身的惯性矩,对于预应力混凝土的结构你就得注意梁格的划分了,在划分的时候尽量使得划分以后的各个梁格截面要跟原截面的中性轴一致,只有这样计算出来的应力结果才能比较准确,当然,如果是等截面的梁只要划分一个截面就可以了,算起来也不是很费时费力,但是如果是变截

铁路曲线桥坐标及相关参数计算

浅谈铁路曲线桥坐标及相关参数计算

————————————————————————————————作者:————————————————————————————————日期:

浅谈铁路曲线桥坐标及相关参数计算 井昭义 中交一公局张呼客专五标一分部 【摘要】铁路曲线桥与直线桥相比桥墩、台坐标计算要复杂得多,涉及的内容也较多,本文结合张呼铁路工程实例,对铁路曲线桥坐标、参数计算提出了具体建议。 【关键词】铁路;曲线桥;坐标、参数计算; 新建张家口至呼和浩特铁路站前工程ZHZQ-5合同段一分部管段DK167+550~DK179+950,起于集宁新区六间房村,而后经察哈尔右翼前旗止于卓资山县芦家卜子村,全长12.4km,特大桥2137.66m/2座、大桥706.44m/2座、中桥112.6m/1座,其中曲线桥3座,直线桥2座。直线桥坐标计算较为简单,在此不进行详细说明,下面以西土外大桥为例进行曲线桥坐标、参数计算。 西土外大桥位于内蒙古乌兰察布市西土坑村西南,起止里程为DK178+163.13~DK178+373.97,桥中心里程为DK178+268.55,全长210.84m,孔跨类型为6-32.6m简支梁。桥台采用双线矩形空心桥台,桥墩1~5号墩采用圆端形实体桥墩,桥墩台桩基础采用钻孔灌注桩,1~5墩范围简支梁固定支座设于每孔跨的小里程侧,横向活动支座均设置于线路右侧。曲线布置采用平分中矢法,按左线中心线里程进行计算、绘图,左右线线间距4.6m,桥墩中心线与线路中心线之间的距离等于曲线偏距E。相关设计数据如下图所示:

设在曲线上的简支梁桥,每孔梁仍是直的,于是各孔梁中线的连接线为折线,以适应梁上曲线线路需要,而线路中线为曲线,两者并不重合,简支梁中心线总是偏在线路中线内侧,当列车通过时,桥梁必然承受偏心荷载。为使桥梁承受较小的偏心荷载,桥梁设计中,每孔梁中心线的两个端点并不位于线路中心线上,而是将梁的中线向曲线外侧移动一段距离。根据跨长及曲线半径,梁中线向曲线外侧所移动的距离,可以等于以梁长为弦线的中矢值,此布置方式称为切线布置(图1)。也可以等于该中矢值的一半,称为平分中矢布置(图2)。两种布置形式比较,平分中矢布置较为有利,铁路曲线桥基本上都采用这种布置形式。本桥也采用平分中矢布置。 桥台在曲线上的布置形式与梁稍有不同,如果将桥台的中心线与其相邻的梁跨中心线布置在同一条直线上,则台尾中心必然偏离到线路中线的外侧,设其偏距为d,如果d≤10cm时,则桥台就采用这种布置形式;否则,应旋转桥台,使台前的偏距与相邻梁跨的偏距相同,台尾的偏距0,如下图所示,前者布置形式称为直线布置,后者称为折线布置。

曲线坐标计算

曲线坐标计算 一、 圆曲线 圆曲线要素:α---------------曲线转向角 R---------------曲线半径 根据α及R 可以求出以下要素: T----------------切线长 L----------------曲线长 E----------------外矢距 q----------------切曲差(两切线长与曲线全长之差) 各要素的计算公式为: ??=180π αR L (弧长) )12(sec -=αR E (sec α=cos α的倒数) 圆曲线主点里程:ZY=J D -T QZ=ZY +L /2 或 QZ=JD -q /2 YZ=QZ +L /2 或 YZ=JD +T -q JD=QZ +q /2(校核用) 1、基本知识 ◆ 里程:由线路起点算起,沿线路中线到该中线桩的距离。 ◆ 表示方法:DK26+284.56。 “+”号前为公里数,即26km ,“+”后为米数,即284.56m 。

CK ——表示初测导线的里程。 DK ——表示定测中线的里程。 K——表示竣工后的连续里程。 铁路和公路计算方法略有不同。 2、曲线点坐标计算(偏角法或弦切角法) 已知条件:起点、终点及各交点的坐标。 1)计算ZY、YZ点坐标 通用公式: 2)计算曲线点坐标 ①计算坐标方位角 i 点为曲线上任意一点。 li 为i 点与ZY点里程之差。 弧长所对的圆心角 弦切角 弦的方位角 当曲线左转时用“-”,右转时用“+”。 ②计算弦长

③计算曲线点坐标 此时的已知数据为: ZY(x ZY,y ZY)、 ZY- i、C。 根据坐标正算原理: 切线支距法这种方法是以曲线起点ZY或终点YZ为坐标原点,以切线为X轴,以过原点的半径为Y轴,则圆曲线上任意一点的切线支距坐标可通过以下公式求得: 利用坐标平移和旋转,该点在大地平面直角坐标系中的坐标可由以下公式求得: 式中:α为ZY(YZ)点沿线路前进方向的切线方位角。当起点为ZY 时,“±”取“+”,X0=X(ZY), Y0=Y(ZY), 曲线为左偏时应以y i=-y i代入;当起点为YZ时,“±”取“-”,X0=X(YZ), Y0=Y(YZ), 曲线为左偏时应以y i=-y i代入; 注:1、同弧所对的圆周角等于圆心角的一半 2、切线性质圆的切线与过切点的半径相垂直 3、弦切角定理弦切角等于它所夹弧上的圆周角 4、弧长公式 由L/πR=n°/180°得L=n°πR/ 180°=nπR/180 二、缓和曲线(回旋线) 缓和曲线主要有以下几类: A:对称完整缓和曲线(基本形)------切线长、ls1与ls2都相等。B: 非对称完整缓和曲线---------------切线长、ls1与ls2都不相等

曲线桥桥墩桥台的计算方法

曲线桥桥墩、桥台的计算方法 所有的曲线桥都有偏心距E,有的还有横向预偏心(暂用F表示),直线桥一般没有(特殊情况除外),所以曲线桥桥墩、桥台计算是桩基、承台、墩身、托盘、顶帽、牛腿、下锚平台都要偏移E+F的距离(E、F图纸上标注的单位都是cm,计算时要注意),但是支撑垫石只偏移E的距离。 图1 图2

一、桥墩的计算 算出墩中心偏移E+F后的坐标、方位角→以墩中心的坐标、方位角为基准计算其它需要放样点的坐标。计算时,可采用辛普森公式或程序,也可采用孙队长编的那套计算程序,如何使用程序再此不再详述,请教测量队人员。 举例1:

1.151.15SD1K2+085 SD1K2+085 乔村中桥1#墩 康营 中心 说明:1#墩在S D 1K 1+891.28~SD 1K 2+619.24段圆曲线上,1#墩左偏偏心距E =12cm 、向左横向预偏心40cm ,计算时请注意桩、承台、墩中心均向曲线外侧偏移52cm (即:向线路前进方向的左侧偏移52cm )。 二、桥台的计算 桥台计算采用台前、台尾中心点连线计算(图1、图2),以台前中心点(即胸墙线中心)为基准点、以台前中心点指向台尾中心点的方向为方位角计算所需放样点的坐标。 计算太焦立交桥南台为例。太焦立交桥南台前:SD1K1+225.64,南台尾:SD1K1+210.34。南台在曲线上(HY :SD1K0+707.00,YH :SD1K1+606.54,R=550m ),桥台中心南台前向左横向预偏心E=10cm ,南台尾横向预偏心E=0,(即南台前向线路前进方向左侧偏移10cm ,南台尾不偏移)。 计算步骤:计算台前台尾偏移E 后的中心坐标(南台前:SD1K1+225.64,X1=4118.088,Y1=49390.485,南台尾:SD1K1+210.34,X2=4132.239,Y2=49396.303)→计算两点连线的方位角,得α=22-20-57.76→用辛普森程序计

坐标计算方法

旋转坐标系法求缓和曲线坐标 1、旋转坐标系原理 1.1旋转公式 1cos 1sin 1sin 1cos x x y y x y αααα =-=+ 对于测量坐标系逆时针旋转为α取正值,顺时针为负。例如:原坐标系中的()1,1点,坐标系旋转45 °后,在目标坐标系为(。 1cos 451sin 4501sin 451cos 45x y =*?-*?==*?+*?=

2、利用旋转坐标计算缓和曲线任意点的坐标原理 利用缓和曲线坐标公式求 5913 48 16 3711 2610 14034565990401633642240l l l x l A A A l l l y A A A =-+-=-+ 然后旋转坐标轴,γ为方位角,把原坐标系逆时针旋转方位角。 1cos 1sin 1sin 1cos x x y y x y γγγγ =-=+ 3、用旋转坐标系法求曲线坐标 已知: ①缓和曲线上任一点离ZH 点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:0l ④过ZH 点的切线方位角:γ ⑤转向角系数:K (1或-1)左转为-1右转为1 计算过程: 3.1、求直缓点ZH 的坐标 3.1.1缓和曲线要素

A =2 03 00 2242240()tan 2 l p R l l m R T R p q α = =- =++ 00cos sin z z x x T y y T γγ =-=- 3.1.2求第一缓和曲线上任意点在原坐标系中的坐标 5913 4816 3711 2610 14034565990401() 633642240l l l x l A A A l l l y K A A A =-+- =-+ 左转为K=-1右转为K=1,因为右转时y1为正,左转时y1为负 3.1.3旋转坐标系 1cos 1sin 1sin 1cos z z x x x y y y x y γγγγ =+-=++ 3.2、求圆曲线上任意点的坐标 3.2.1求圆曲线上任意点在原坐标系上的坐标

圆曲线和缓和曲线坐标推算公式(附带例题)

圆曲线和缓和曲线坐标推算公式 一、直线上的坐标推算 ???++0i m i 0i m i sina L Y Y cosa L X X == 式中:Xm 、Ym ——直线段起点M 坐标 Li ——直线段上任意点i 到线路起点M 的距离 a 0——直线段起点M 到JD1的方位角 二、圆曲线上任一点的坐标推算 ①、圆曲线上任一点i 相对应的圆心角:i i L R 180π?? = 式中:Li ——圆曲线上任一点i 离开ZY 或YZ 点的弧长 ②、圆曲线上任一点i 的直角坐标:???-)(==i i i i cos 1R Y Rsin X ??(可不计算).

③、圆曲线ZY 或YZ 点到任一点i 的偏角:i i i L R 902 π?? ?= = ④、圆曲线ZY 或YZ 点到任一点i 的弦长:)sin(2)2 sin( 2C i i i R R ?=?= ⑤、圆曲线ZY 或YZ 点到任一点i 的弦长的方位角:i jd y z jd zy i a a ?±→→或= ⑥、所以圆曲线上任意点i 的坐标为:???++i i YZ ZY i i i YZ ZY i sina C Y Y cosa C X X 或或== 例题: 已知一段圆曲线,R=3500m ,Ls =553.1m ,交点里程K50+154.734,ZY 点到JD 方向方位角为A=129°23′18.3″,右偏9°3′15.8″,ZY 点里程K49+877.607,YZ 点里程K50+430.707,起点坐标为x =389823.196,y =507787.251,求K50+200处中点坐标及左右各偏12.5m 的坐标。 解:K50+200处的曲线长度为Li =322.393m K50+200相对应的方位角:"'?????52.39165393.3223500 180L R 180i ===ππa K50+200相对应的偏角:"'???? ??76.19382393.3223500 90L R 902 i i i === = ππ? K50+200到zy 点的弦长:m 279.32276.19382sin 35002Rsin 2C i i ==="'???? zy 点到K50+200中桩的方位角: "'?"'?+"'??+→06.38113276.193823.1823129a a i jd zy i === K50+200左、右偏12.5m 的方位角: "'??-"'??-+82.5739449082.573913490a a ===左i A "'??+"'??++82.57391349082.573913490a a ===右i A 所以K50+200处的坐标为: ???"'??++"'??++6484.50802606.381132sin 279.322251.507787sina C Y Y 4354 .38960706.381132cos 279.322196.389823cosa C X X i i ZY i i i ZY i ======

曲线桥坐标计算

曲线桥墩台中心坐标计算 与直线桥相比,曲线桥墩台中心坐标的计算要复杂的多,涉及的内容也较多,下面就有关内容分述如下。 1. 梁和桥台在曲线上的布置形式 桥梁位于曲线上,线路中线为具有一定半径的圆曲线或缓和曲线,而预制梁的中线为直线,这就要求梁中线必须随着线路中线的弯曲形成与线路曲线基本相符的连续折线,如图16—11所示。这条连续折线称为曲线桥梁的工作线,其顶点为相邻两梁中线的交点,相邻两交点之间的水平距离,称为交点距,亦称墩中心距或跨距,以L 表示。 E 1L 1L 2 L 3 图 16—11 E 2 E 3 E 4 α 1 α 2 α 3 α 4 在曲线桥上,桥梁工作线为折线,线路中线为曲线,两者并不重合,列车通过时,桥梁必然承受偏心荷载。为了使桥梁承受较小的偏心荷载,桥梁设计中,每孔梁中心线的两个端点并不位于线路中心线上,而必须将梁的中线向曲线外侧移动一段距离。根据跨长及曲线半径,梁中线向曲线外侧所移动的距离,可以等于以梁长为弦线的中矢值,此布置方式称为切线布置,如图16—12(a )所示;也可以等于该中矢值的一半,称为平分中矢布置,如图16—12(b )所示。两种布置形式比较,平分中矢布置较为有利,铁路曲线桥基本上都采用这种布置形式。 (a ) (b ) 图 16—12 L L E E 桥台在曲线上的布置形式与梁稍有不同,如果将桥台的中心线和与其相邻的梁跨中线布置在同一条直线上,则台尾中心必然偏离到线路中线的外侧,如图16—13所示。设其偏距为d ,如果d ≤10cm 时,则桥台就采用这种布置形式;否则,应旋转桥台,使台前的偏距与相邻梁跨的偏距相同,台尾的偏距为0,如图16—14所示。前者布置形式称为直线布置,后者称为折线布置。 当采用折线形式布置桥台时,台尾偏角可能会出现负值,如图16—15(a )所示,如果出现这种情况,则台前和台尾采用相同的偏距,如图16—15(b )所示。 2. 偏距E 的计算 在曲线桥上,梁的中线由弦线位置,向曲线外侧移动的一段距离称为偏距,并以E 表示。由于曲线半径很大,相邻两跨梁中线的偏转角很小,故可以认为偏距E 就是桥梁工作线各转折点相对线路中线外移的距离。

曲线坐标计算公式

一、简单型单曲线(即没有缓和曲线,只有圆曲线 x=R*sina y=R*(1-cosa a=(LP/R*(180/ π x 、y :分别为切线横距和纵距 R :曲线半径 a :待定点到曲线起点沿曲线的弧长对应的圆心角 LP :待定点到曲线起点的曲线长 二、基本型单曲线(即有缓和曲线 1、缓和曲线段内 x=LP-(LP 5/(40*R 2*LS 2 y=(LP 3/(6*R*LS-(LP 7/(336*R 3*LS 3

2、纯圆曲线段内 x=R*sina+q y=R*(1-cosa+p a=((LP-LS/R*(180/ π+b b=LS/2R (弧度 LP :测点至 ZH 或 HZ 曲线长 LS :缓和曲线长 b :缓和曲线角 q :切线增长值 =LS/2-LS 3/(240*R 2 p :内移值 =LS 2/(24*R 注:红色为次方,其余符号意义同前 一、简单型单曲线(即没有缓和曲线,只有圆曲线 x=R*sina y=R*(1-cosa a=(LP/R*(180/

π x 、y :分别为切线横距和纵距 R :曲线半径 a :待定点到曲线起点沿曲线的弧长对应的圆心角LP :待定点到曲线起点的曲线长 二、基本型单曲线(即有缓和曲线 1、缓和曲线段内 x=LP-(LP 5/(40*R 2*LS 2 y=(LP 3/(6*R*LS-(LP 7/(336*R 3*LS 3 2、纯圆曲线段内 x=R*sina+q y=R*(1-cosa+p

a=((LP-LS/R*(180/ π+b b=LS/2R (弧度 LP :测点至 ZH 或 HZ 曲线长 LS :缓和曲线长 b :缓和曲线角 q :切线增长值 =LS/2-LS 3/(240*R 2 p :内移值 =LS 2/(24*R 注:红色为次方,其余符号意义同前

5800计算器公路坐标计算程序(全线)直缓和圆曲线程序

5800计算器公路坐标计算程序(全线) 原4850程序改编 Lb1 1 ”K”?K:”W”?W:”O”?O:”I”?I IF K<41490.879:Then 40776.825→A: 41490.879→ B: 3761346.715→ M: 505279.147→N:166°45′36.3″→F: 1/1045→D:1/1045→E :Goto 0 :Return:Ifend IF K<41690.879:Then 41490.879→A: 41690.879→ B: 3760651.641→ M: 505442.686→N:166°45′36.3″→F: 1/1045→D:1/1000→E :Goto 0 :Return:Ifend IF K<42242.154:Then 41690.879→A: 42242.154→ B: 3760455.626→ M: 505481.961→N:172°29′22.78″→F: 1000→ R:Goto 2: Return:Ifend IF K<42442.154:Then 42242.154→A: 42442.154→ B: 3759916.982→ M: 505403.549→N:204°04′31.62″→F: 1/1000→D: 1/1045→E: Goto 0 : Return:Ifend IF K<42673.884:Then 42442.154→A: 42673.884→ B: 3759740.299→ M: 505310.019→N :209°48′18.1″→F: 1/1045→D: =1/1045→E :Goto 0 : Return:Ifend IF K<42863.884:Then 42673.884→A: 42863.884→ B:3759539.223→ M:505194.838→N:209°48′18.1″→F:-1/1045→D:-1/800→E:Goto 0 : Return:Ifend IF K<43636.692:Then 42863.884→A: 43636.692→ B:3759370.853→ M:505107.051→N:203°00′04.15″→F:R=-800:Goto2 : Return:Ifend IF K<43826.692:Then 43636.692→A: 43826.692→ B:3758630.216→ M: 505167.591→N:147°39′10.35″→F: -1/800→D:E=-1/1045→E :Goto 0 : Return:Ifend IF K<44825.092:Then 43826.692→A: 44825.092→ B:3758478.338→ M: 505281.555→N:140°50′56.4″→F:-1/1045→D:-1/1045→E: Goto 0 : Return:Ifend IF K<45025.092:Then 44825.092→A: 45025.092→ B:3757704.093→ M: 505911.911→N:140°50′56.4″→F: 1/1045→D:1/1000→E:Goto 0 : Return:Ifend IF K<45300.109:Then 45025.092→A: 45300.109→ B:3757544.945→ M: 506032.892→N:146°34′42.88″→F:R=1000:Goto 2 : Return:Ifend IF K<45500.109:Then 45300.109→A: 45500.109→ B:3757297.588→ M: 506151.102→N:162°20′09.32″→F: 1/1000→D: 1/1045→E :Goto 0 : Return:Ifend IF K<45805.835:Then 45500.109→A: 45805.835→ B:3757103.485→ M: 506198.937→N:168°03′55.8″→F: 1/1045→D:1/1045→E: Goto 0 : Return:Ifend IF K<45980.835:Then 45805.835→A: 45980.835→ B:3756804.367→ M: 506262.160→N:168°03′55.8″→F: -1/1045→D: -1/1000→E:Goto 0 : Return:Ifend IF K<46136.333:Then 45980.835→A: 46136.333→ B:3756634.336→ M: 506303.312→N:163°03′07.63″→F:R=-1000:Goto 2 : Return:Ifend Lb1 0 (E-D)÷(Abs(B-A)) →P: Abs(K-A) →Q: F+(PQ+2D)Q×90÷∏→J F+(PQ÷4+2D)Q×45÷(2∏) →G F+(3PQ÷4+2D)Q×135÷(2∏) →H F+(PQ÷2+2D)Q×45÷∏→S:

通过逐桩坐标计算曲线要素完整版

通过逐桩坐标计算曲线 要素 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

通过逐桩坐标表推算曲线要素(CAD篇) 摘要:现在从事工程行业的都流行使用AutoCAD进行绘制图形,为了更好的利用这个绘图工具来绘制线路曲线要素,本文将讲解如何通过设计院提供的逐桩坐标表推算未知曲线要素。 关键词:AutoCAD技巧曲线要素 说明:AutoCAD已经成为国际上广为流行的绘图工具。具有良好的用户界面,通过交互菜单或命令行方式便可以进行各种操作。它的多文档设计环境,让非计算机专业人员也能很快地学会使用。在不断实践的过程中更好地掌握它的各种应用和开发技巧,从而不断提高工作效率。 如何提高CAD速率? 通常在开始绘图的时候一些人由于对工具命令不熟悉直接使用工具栏等查找命令,这样对制图的效率会大打折扣从而导致绘图的速率缓慢,提高制图的方法需要掌握CAD的快捷命令,孰能生巧的记住,然后择优选用其中的一些常用的绘图命令,把繁琐的长命令转化为简单的命令使用,其次需要多练习绘图的方式与方法才会提高绘图水平。 推算原理: 通过逐桩坐标表(含曲线五大桩)然后利用生成展点命令在AutoCAD中进行坐标展点,再通过工具或命令绘制进行查询曲线长、切线长、外失距、交点坐标、交点里程、曲线半径、方位角、转角等。 准备工作: 1、逐桩坐标表X、Y(含曲线五大桩) 2、AutoCAD绘图软件 演示版本为:AutoCAD 2007

示例文件:某高速铁路逐桩坐标表 演示范围:DK07+~DK12+(由于该交点属于大转角则演示明显) 操作流程:坐标展点→绘制半径→绘制切线长→查询→查询转角→查询交点坐标→查询交点里程→查询外失距→绘制缓和曲线。(请注意逐桩坐标表中所提供的ZH、HY、QZ、YH、HZ等说明) 准备操作如下: 1、打开“逐桩坐标表”并复制(里程桩号、坐标X、坐标Y)数据到“曲线坐标计算程序VBA ”的“交点法正算”表格中,效果图如下: 逐桩坐标表见(本文附件)下载地址附后! 2、在“曲线坐标计算程序VBA ”的“交点法正算”表中“点击生成展点”然后点击“复制数据”按钮,再打开AutoCAD在命令行中输入pline按回车键,并在命令行上点击鼠标右键选择“粘贴”,图示如下: 3、展点完毕后删除起始点那根长线段(该线段属于展点命令的起始端位置,该线段无用可以直接删除),然后在命令行中输入zoom按回车键再选择E按回车键,图示如下: 绘图操作准备: 1、基本设置:点击AutoCAD顶部工具栏中的“格式”→“标注样式”(或 输入命令d)→“修改”→主单位精度选择“”→角度标注:单位格式选择“度/分/秒”,精度选择“0d’””→确定→设为当前。 2、在命令行中输入:se按回车键,然后弹出草图设置面板→选择“全部清除”→在“圆心”上面打勾→确定。 绘制曲线半径: 半径:在圆中,连接圆心和圆上任意一点的线段叫做圆的半径。 先找到HY 位置,点击顶部工具栏中的“绘图”→“圆弧”→“三点”然后在HY 圆心位置单击鼠标左键,图示如下:

曲线上桥梁桩基施工过程坐标计算

桥梁施工种类分为两种,一种为直线桥施工,另一种为曲线桥施工。两种桥梁施工过程中施工方法和测量放线的方法存在很多相同与不同之处。整个桥梁施工过程分为桩基施工、承台施工、墩身托盘顶帽及牛腿施工、垫石施工四部分,每一部分施工过程中有许多工序需要考虑,曲线桥施工与直线桥施工的不同之处是由外矢距引起的。 一、桩基施工 1、施工流程 钻机进场 导管水密性实验 平整场地、泥浆池开挖 开钻 钻机就位 埋设护筒 钻机移位 下放钢筋笼 灌装 清孔 灌注前量孔深 2、坐标计算 在直线桥施工过程中,桩位放样可以用小坐标(里程和偏距),也可以转换成大坐标进行放样。 在曲线桥施工过程中,桩位放样需要运用大坐标去放样,所以需要计算大坐标。大坐标计算过程:首先以ZH 点为坐标原点建立直角坐标系,根据曲线坐标计算公式可以求出墩中心在直角坐标系下的小坐标,然后将小坐标系中的坐标转换为大坐标系下的坐标,此时得到的坐标是墩中心的大坐标。然后根据墩中心坐标结合里程偏距利用小坐标转换大坐标公式即可求出每根桩基的中心坐标,即大坐标(由于外矢距对墩中心坐标有影响,所以计算时要考虑)。计算公式: (1)第一条缓和曲线上的坐标计算公式:(ZH 点为坐标原点建立直角坐标系) -=L x 12 25 40M R L )cos(90±+αd (左偏为-90,右偏为+90) )90sin(63 1±+=αd RM L y (左偏为-90,右偏为+90) π RM L 21802 =α (需要转换为弧度) 如果是左转曲线,1y 和前要加负号。 小坐标转换大坐标公式: θθθ θcos sin sin cos 110110y x Y Y y x X X ++=-+= 其中,R 、M 、L 、、分别为曲线半径、缓和曲线长、所求点到已知点的距离、转角、 ααθ

曲线上构造物坐标的计算案例高铁曲线桥简支梁墩布置放样

曲线上构造物坐标的计算案例高铁曲线桥简支 梁墩布置放样 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

这个案例还是2010年12月18日网友发给我的,由于事务繁忙,一直未给予详细解答,在此趁着讲述曲线上构造物坐标计算专题时,一并在此分析解答,还望网友见谅这个迟到的回复。 先看一下相关图纸的截图: 这是曲线要素表: 这是曲线桥墩中心线与路线中心线的关系图全图与局部放大图: 这是图纸上全部的桥墩位置参数图: 这里取两处有代表性的位置,这是圆曲线上某段: 这是缓和曲线上某段: 简支梁墩曲线布置大样图:

桥墩及基础尺寸: 图纸的附注说明:

———————————————————————————————————————————————————————————— 补充相关尺寸 在讲述之前,有必要补充一下以上设计文件中没有给出或者标注不清晰的相关尺寸:1.简支箱梁宽度11.6米; 2.直线上,简支箱梁在桥墩上假设时,相邻两箱梁之间留10cm的缝宽,以桥墩中线为界,两侧各5cm; 3.两轨道中心线之间的距离为4.4米。 按我的理解,以目前大多数测量工程师的理论和实践基础,本日志所呈现的高铁简支墩梁,在直线上的放样和计算应该没有问题。因此本文仅针对曲线上的一些情况来阐述。两个关键点 曲线又分圆曲线和缓和曲线两种情况,按照对设计文件的理解,圆曲线和缓和曲线上简支墩梁放样的关键在于两点: 1.对外距E的处置,这个涉及到构造物控制线的左、右距离的确定; 2.构造物控制线(即桥墩基础的中轴线)相对于路线的夹角,这个涉及到控制线的方位。 第1点,E的数值没有问题,每个桥墩都标注了这个参数,关键是要理解这个E值如何落实到放样计算中,此外,若能自己计算验证出E值的数值则更好。 第2点,控制线的方位,附注说明中说得很清楚,平分偏角的补角,这个在圆曲线上很简单,也就是对应中桩的法线(即正交),而在缓和曲线上就不行了,那到底偏多少呢,这个需要计算确定,而且必须确定好,否则墩梁的施工放样会有问题。

EXCEL曲线坐标计算公式

公式解析一.坐标转换 X =A +N COSα-E SINαY =B +N SINα+E COSαN=(X-A) COSα±(Y-B)SINαE=(Y-B)COSα±(X-A)SINα A,B为施工坐标系坐标原点α为施工坐标系与北京坐标系X轴的夹角(旋转角)即大地坐标系方位角X,Y为北京坐标值N,E为施工坐标值 二.方位角计算 1.直线段方位角: α=tanˉ1 [(Y b-Y a)/(X b-X a)] 2.交点转角角度: α=2 tanˉ1 (T/R) 计算结果①为﹢且<360,则用原数; ②为﹢且>360,则减去360; ③为﹣,则加上180. 3.缓和曲线上切线角: α=?ZH±90°*Lo2/(π*R* Ls) α= Lo/(2ρ)=Lo2/(2 A2)=Lo2/(2R*Ls) ρ—该点的曲率半径 4.圆曲线上切线角: α=?HY±180°*Lo/(π*R) ?ZH—直缓点方位角, ?HY—缓圆点方位角, 注:以计算方向为准,左偏,取"﹣";右偏,取"﹢"。 左偏,则第一段缓和曲线和圆曲线上取"﹣",第二段缓和曲线上取"﹢" ; 右偏,则第一段缓和曲线和圆曲线上取"﹢",第二段缓和曲线上取"﹣" .。 。 符号说明: A—回旋线参数(A2=R* Ls)Ls—缓和曲线长度R—曲线半径Lo—曲线长度:计算点位到特殊点(ZH、HY、YH、HZ)的长度

三.坐标值计算 1.直线段坐标计算公式: 直线两端点A.B间距离为S;A点坐标为A(X a, Y a);方位角为αX b= X a+S*cosα Y b= Y a+S*sinα 2.缓和曲线及圆曲线坐标计算公式: ①缓和曲线坐标计算公式: X=X ZH+(Lo-Lo^5/(40*R^2*Ls^2)+Lo^9/(3456*R^4*Ls^4)-Lo^13/( 599040*R^6*Ls^6)+Lo^17/(175472640*R^8*Ls^8))*cosα-(Lo^3/(6 *R*Ls)-Lo^7/(336*R^3*Ls^3)+Lo^11/(42240*R^5*Ls^5)-Lo^15/(9 676800*R^7*Ls^7)+Lo^19/(3530096640*R^9*Ls^9))*sinα Y=Y ZH+(Lo-^5/(40*R^2*Ls^2)+Lo^9/(3456*R^4*Ls^4)-Lo^13/(59 9040*R^6*Ls^6)+Lo^17/(175472640*R^8*Ls^8))*sinα+(Lo^3/(6* R*Ls)-Lo^7/(336*R^3*Ls^3)+Lo^11/(42240*R^5*Ls^5)-Lo^15/(96 76800*R^7*Ls^7)+Lo^19/(3530096640*R^9*Ls^9))* cosα 符号说明: X ZH—直缓点X坐标值Y ZH—直缓点Y坐标值A—回旋线参数(A2=R* Ls)Lo—计算点位到特殊点的长度Ls—缓和曲线长度R—曲线半径α—方位角 注:式中,紫色部分为缓和曲线任意点的坐标增量(支距坐标)。第一段缓和曲线从直缓点计算到缓圆点(Z H→HY),第二段缓和曲线从缓直点计算到圆缓点(HZ→YH),与第一段计算方向相反。

曲线坐标计算程序

曲线坐标计算程序

曲线坐标计算程序 关键词: 曲线坐标计算 EXCEL编程坐标曲线坐标实例 摘要: 利用EXCEL强大的函数功能通过曲线坐标计算的知识编制成曲线计算坐标的计算程序。简单的输入曲线的里程桩号,通过坐标旋转、平移结合可以快速的计算完成与线路成任意角度的曲线上各中桩、边桩以及任意点坐标的计算。 1、概述 一般计算圆曲线可用坐标正算直接进行计算,具体思路和求解步骤,这里不再阐述。若计算带有缓和曲线的圆曲线时,将测量中所学的支距法与坐标旋转、平移结合在一起,利用EXCEL表中强大的函数自动计算功能,准确快速的完成对缓和曲线的坐标计算。比一般的手工计算快10~20倍,比CAD绘图计算快5~10倍。并可以应用来指导工程施工、施工放样、审核图纸等工作。 2、计算过程分段 在计算带有缓和曲线的圆曲线或圆曲线时,只要输入待求点的里程,程序将会自动会计算线路中桩的坐标、与中桩有一定夹角、距离的边桩坐标,与边桩中心线任意夹角的垂直桩基坐标。若要计算其他的距离和夹角的坐标,相应的修改待求点里程、夹角和距离。 2.1、程序初始化:

输入每个曲线所对应交点的半径、缓和曲线长、线路转角、连续三交点的里程和坐标、交点连线的坐标方位角,顺便计算出各个曲线要素以及曲线各主点的里程。 2.2、初直线H Z i-1~ZH i段: (1)X ZHi-1和Y ZHi-1的计算 X ZHi-1= X JDi-1+T i-1×cos(A i-1,i) Y ZHi-1= Y JDi-1+ T i-1×sin(A i-1,i) 其中:T i-1——JD i-1曲线的切线长; A i-1,i——JD i-1与JD i直线的坐标方位角; X JDi-1、Y JDi-1——JD i-1的坐标; X ZHi-1、Y ZHi-1——JD i-1对应的ZH点坐标。 (2)中桩计算公式: X中=L A×cos(A i-1,i)+ X ZHi-1 Y中= L A× sin(A i-1,i)+ Y ZHi-1 其中:L A——待求点与ZH i的里程差; A i-1,i——JD i-1与JD i直线的坐标方位角; X中、Y中——待求点里程的中桩坐标; 其余符号同上。 (3)边桩计算公式: X边=L A’×cosα’+ X中 Y边= L A’×sinα’+ Y中

相关主题
文本预览
相关文档 最新文档