当前位置:文档之家› 实验4传热(空气—蒸汽)

实验4传热(空气—蒸汽)

实验4传热(空气—蒸汽)
实验4传热(空气—蒸汽)

实验四:传热(空气—蒸汽)实验

实验目的

1.了解间壁式换热器的结构与操作原理;

2.学习测定套管换热器总传热系数的方法;

3.学习测定空气侧的对流传热系数;

4.了解空气流速的变化对总传热系数的影响。

基本原理:

对流传热的核心问题是求算传热膜系数α,当流体无相变时对流传热准数关联式的一般形式为:

(4-1)

对于强制湍流而言,Gr准数可以忽略,故

(4-2)

本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m、n和系数A。

用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归。本实验可简化上式,即取n=0.4(流体被加热)。这样,上式即变为单变量方程,再两边取对数,即得到直线方程:

(4-3)

在双对数坐标中作图,找出直线斜率,即为方程的指数m。在直线上任取一点的函数值代入方程中,则可得到系数A,即:

(4-4)

用图解法,根据实验点确定直线位置有一定的人为性。而用最小二乘法回归,可以得到最佳关联结果。应用微机,对多变量方程进行一次回归,就能同时得到A、m、n。

对于方程的关联,首先要有Nu、Re、Pr的数据组。其准数定义式分别为:

实验中改变冷却水的流量以改变Re准数的值。根据定性温度(冷空气进、出口温度的算术平均值)计算对应的Pr准数值。同时,由牛顿冷却定律,求出不同流速下的传热膜系数α值。进而算得Nu准数值。

牛顿冷却定律:

(4-5)式中:

α—传热膜系数,[W/m2·℃];

Q—传热量,[W];

A—总传热面积,[m2];

△tm—管壁温度与管内流体温度的对数平均温差,

[℃]。

传热量Q可由下式求得:

(4-6)式中:

W—质量流量,[kg/h];

Cp—流体定压比热,[J/kg·℃];

t1、t2—流体进、出口温度,[℃];

ρ—定性温度下流体密度,[kg/m3];

V—流体体积流量,[m3/s]。

注意事项:

(1)、学校的设备大都是需要用电为差计测量电流然后计算温度的,此套设备比较先进,采用了数字显示仪表直接显示温度。

(2)、关于排放不凝气:如果不打开放气阀,理论上套管内的压力应该不断增大,最后爆炸,实际上由于套管的密封程度不是很好,会漏气,所以压力不会升高很多,基本可以忽略。另外不凝气的影响在实际是实验中并不是很大,在仿真实验中为了说明做了夸大。

(3)蒸汽发生器:关于蒸汽发生器的控制和安全问题做了简化。

(4)传热实验有两个流程,另一个管内的介质为水,原理一样,只是流程稍有不同。

思考题:

1.观察并比较三根传热管的传热速率,说明原因

答:保温管的传热速率为76.116W,裸管的传热速率为91.277W,汽-水套管的传热速率为2121.2W,因此传热速率:保温管<裸管<汽水套管。保温管的传热速率慢,是因为其壁较厚,而且材料的导热系数小;裸管其次,是因为自然对流的条件下给热系数很小;而汽水套管的传热最快,是因其为强制对流,给热系数较大。

2.测定传热系数K时,按现实验流程,用管内冷凝液测定传热速率与用管外冷却水测定传热速率哪种方法更准确?为什么?如果改变流程,使蒸汽走环隙,冷却水走管内,用哪种方法更准确?为什么?答:使用管内冷凝液进行热量衡算更准确,因为它只与套管进行热量

交换,而管外冷却水还与管外空气进行对流换热,得到的总传热系数偏大。如果改变流程,冷却水走管内,则使用管内冷却水进行热量衡算更准确。

3. 汽包上装有不凝气排放口和冷凝液排放口,注意两口的安装位置特点并分析其作用。

答:不凝气排放口安装在汽包上方,而冷凝液排放口在汽包下方。不凝气排放口是为了排出水蒸气中的不凝气,防止其积累或者进入换热管中,影响热量衡算的准确性。冷凝液排放口也有相似作用,但位置不同。

4.若将汽-水套管的冷却水出口、入口调换,则调换前后Δtm值是否相同?

答:不同。原实验装置是逆流,平均温差大,而调换后是并流,平均温差较小。 5.在间壁两侧流体的对流给热系数α相差较大时,壁温接近哪侧温度?欲提高K值,应从哪侧入手?

答:壁温较接近α大的一侧流体的温度。而当α相差较大时,K更接近α较小的一侧,因此,欲提高K值,应从α较小的一侧入手,增加该侧的对流给热系数。

实验四 传热实验0

实验四传热实验 一实验内容 测定单壳程双管程列管式换热器的总传热系数 二实验目的 1 了解影响传热系数的工程因素和强化传热操作的工程途径。 2 学会传热过程的调节方法。 三实验基本原理 工业上大量存在的传热过程(指间壁式传热过程)都是由固体内部的导热及冷热流体与固体表面间的给热组合而成。传热过程的基本数学描述是传热速率方程式和热量衡算式。 热流密度q 是反应具体传热过程速率大小的特征量。对q 的计算需引入壁面温度,而在实际计算时,壁温往往是未知的。为实用方便,希望避开壁温,直接根据冷热流体的温度进行传热速率计算 在间壁式换热器中,热量序贯的由热流体传给壁面左侧、再由壁面左侧传导至壁面右侧、最后由壁面右侧传给冷流体。在定态条件下,忽略壁面内外面积的差异,则各环节的热流密度相等,即 q =Q A =T ?T W 1 ɑh =T W ?t w δɑh =t w ?t 1ɑc ① 由①式可以得到 q =T ?t ɑh +δ+ɑc =推动力阻力② 由上式,串联过程的推动力和阻力具有加和性。上式在工程上常写为 Q=KA(T-t) ③

式中K=1 1 ɑh +δh +1ɑc ④ 式④为传热过程总热阻的倒数,称为传热系数,是换热器性能好坏的重要指标。比较①和④两式可知,给热系数α同流体与壁面的温差相联系,而传热系数K 则同冷热体的温差相联系。由于冷热流体的温差沿加热面是连续变化的,且此温度差与冷热流体的温度呈线性关系,故将③式中(T-t )的推动力用换热器两端温差的对数平均温差来表示,即 Q=KA Δt m ⑤ 热量衡算方程式 Q=q mc C pc (t 2-t 1)=q mh C ph (T 1-T 2)⑥ KA Δt m = q mc C pc (t 2-t 1) ⑦ Δt m =(T 1?t 2)?(T 2?t 1)ln T 1?t 2T 2?t 1 ⑧ K=qmc Cpc (t2?t1) A Δtm ⑨ 在换热器中,若热流体的流量q mh 或进口温度T 1发生变化,而要求出口温度T 2保持原来数值不变,可通过调节冷却介质流量来达到目的。但是这种调节作用不能单纯的从热量衡算的观点理解为冷流体流量大带走的热量多,流量小带走的热量少。根据传热基本方程式,可能来自Δt m 的变化,也可能来自K 的变化,而多数是由两者共同引起的。 如果ɑc ?ɑh ,调节q mc ,k 基本不变,调节作用主要靠Δt m 的变化。如果ɑc ?ɑh 或ɑc ≈ɑh ,调节q mc 将使q mc 和K 皆有较大变化,此时调节过程是两者共同的作用。 四实验设计 实验方案 实验物系:热流体选用热空气,冷流体选用自来水。

传热实验实验报告-传热实验报告

传热实验 一、实验目的 1、了解换热器的结结构及用途。 2、学习换热器的操作方法。 3、了解传热系数的测定方法。 4、测定所给换热器的传热系数K。 5、学习应用传热学的概念和原理去分析和强化传热过程,并实验之。 二、实验原理 根据传热方程 Q=KA△ tm,只要测得传热速率 Q,冷热流体进出口温度和传 热面积 A,即可算出传热系数 K。在该实验中,利用加热空气和自来水通过列管 式换热器来测定 K, 只要测出空气的进出口温度、自来水进出口温度以及水和空 气的流量即可。Q 与自来水在工作过程中,如不考虑热量损失,则加热空气释放出的热量 1Q 得到的热量 Q 应相等,但实际上因热损失的存在,此两热量不等,实验中以 22为准。 三、实验流程和设备 实验装置由列管换热器、风机、空气电加热器、管路、转子流量计、温度计 等组成。空气走管程,水走壳程。列管式换热器的传热面积由管径、管数和管长 进行计算。 实验流程图: 空气进口水进口温度计 温度计列管式 转子流 换热器 转子流量计量计 风机温度计温度计 空气电 调节阀 加热器 传热系数K 测定实验流程图

四、实验步骤及操作要领 1、熟悉设备流程,掌握各阀门、转子流量计和温度计的作用。 2、实验开始时,先开水路,再开气路,最后再开加热器。 3、控制所需的气体和水的流量。 4、待系统稳定后,记录水的流量、进出口温度,记录空气的流量和进出 口温度,记录设备的有关参数。重复一次。 5、保持空气的流量不变,改变自来水的流量,重复第四步。 6、保持第 4 步水的流量,改变空气的流量,重复第四步。 7、实验结束后,关闭加热器、风机和自来水阀门。 五、实验数据记录和整理 1、设备参数和有关常数 换热流型错流;换热面积 0.4 ㎡ 2、实验数据记录 序号风机出口空气流量空气进口温空气出口温度℃水流量水进口温度℃水出口温度℃2 度℃L/h 压强 mHO 读数 m3/h 1 1.61611029.28018.921.9 2 1.61611029.48018.921.9 1 1.61611029.96018.922.4 2 1.61611029.96018.922.3 1 1.61611031.92019.024.8 2 1.61611032.02019.024.9 1 1.61111029.62019.123.0 2 1.61111029.62019.023.0 1 1.6611027.82019.021.3 2 1.6611027.82019.021.3 3、数据处理 空气流量水流量水的算术水的比热 传热速对数平均换热面传热系数K 的平均 序号平均温容 J/ m3/s kg/s率 J/s温度△ t m积 m2K W/m2K值 W/m2K 度℃( kg·℃) 10.00440.022220.404183278.86736.24790.419.2333 19.1717 20.00440.022220.404183278.86736.48160.419.1101

化工原理实验传热实验报告

传热膜系数测定实验(第四组) 一、实验目的 1、了解套管换热器的结构和壁温的测量方法 2、了解影响给热系数的因素和强化传热的途径 3、体会计算机采集与控制软件对提高实验效率的作用 4、学会给热系数的实验测定和数据处理方法 二、实验内容 1、测定空气在圆管内作强制湍流时的给热系数α1 2、测定加入静态混合器后空气的强制湍流给热系数α1’ 3、回归α1和α1’联式4.0Pr Re ??=a A Nu 中的参数A 、a * 4、测定两个条件下铜管内空气的能量损失 二、实验原理 间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。 1)寻找影响因素 物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βg ΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βg ΔT ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]] 3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量 α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βg ΔT : Gr =βg ΔT l 3ρ2/μ2 5)原函数无量纲化 6)实验 Nu =ARe a Pr b Gr c 强制对流圆管内表面加热:Nu =ARe a Pr 0.4 圆管传热基本方程: 热量衡算方程: 圆管传热牛顿冷却定律: 圆筒壁传导热流量:)]/()ln[)()()/ln(11221122121 2w w w w w w w w t T t T t T t T A A A A Q -----?-?=δλ 空气流量由孔板流量测量:54.02.26P q v ??= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]

导热系数实验报告

一、【实验目的】 用稳态法测定金属、空气、橡皮的导热系数。 二、【实验仪器】 导热系数测定仪、铜-康导热电偶、游标卡尺、数字毫伏表、台秤(公用)、杜瓦瓶、秒表、待测样品(橡胶盘、铝芯)、冰块 三、【实验原理】 1、良导体(金属、空气)导热系数的测定 根据傅里叶导热方程式,在物体内部,取两个垂直于热传导方向、彼此间相距为h 、温度分别为θ1、θ2的平行平面(设θ1>θ2),若平面面积均为S ,在t ?时间内通过面积S 的热量Q ?免租下述表达式: h S t Q ) (21θθλ-=?? (3-26-1) 式中, t Q ??为热流量;λ即为该物质的导热系数,λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是)(K m W ?。 在支架上先放上圆铜盘P ,在P 的上面放上待测样品B ,再把带发热器的圆铜盘A 放在B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,由于A,P 都是良导体,其温度即可以代表B 盘上、下表面的温度θ1、θ2,θ1、θ2分别插入A 、P 盘边缘小孔的热电偶E 来测量。热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感器切换”开关G ,切换A 、P 盘中的热电偶与数字电压表的连接回路。由式(3-26-1)可以知道,单位时间内通过待测样品B 任一圆截面的热流量为 冰水混合物 电源 输入 调零 数字电压表 FD-TX-FPZ-II 导热系数电压表 T 2 T 1 220V 110V 导热系数测定仪 测1 测1 测2 测2 表 风扇 A B C 图4-9-1 稳态法测定导热系数实验装置

2 21)(B B R h t Q πθθλ-=?? (3-26-2) 式中,R B 为样品的半径,h B 为样品的厚度。当热传导达到稳定状态时,θ1和θ2的值不变, 遇事通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速率相等,因此,可通过铜盘P 在稳定温度T 2的散热速率来求出热流量 t Q ??。实验中,在读得稳定时θ1和θ2后,即可将B 盘移去,而使A 盘的底面与铜盘P 直接接触。当铜盘P 的温度上升到高于稳定时的θ2值若干摄氏度后,在将A 移开,让P 自然冷却。观察其温度θ随时间t 变化情况,然后由此求出铜盘在θ2的冷却速率 2 θθθ=??t ,而2 θθθ=??t mc ,就是铜盘P 在温度为θ2时的散热速率。 2、不良导体(橡皮)的测定 导热系数是表征物质热传导性质的物理量。材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。 测量导热系数在这里我们用的是稳态法,在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;适当控制实验条件和实验参数可使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。 本实验应用稳态法测量不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。 1898年C .H .Le e s .首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。 设稳态时,样品的上下平面温度分别为 12θθ,根据傅立叶传导方程,在t ?时间内通过 样品的热量Q ?满足下式:S h t Q B 21θθλ-=?? (1) 式中λ为样品的导热系数,B h 为样品的厚度,S 为样品的平面面积,实验中样品为圆盘状。设圆盘样品的直径为B d ,则半径为B R ,则由(1)式得: 2 21B B R h t Q πθθλ-=?? (2) 实验装置如图1所示、固定于底座的三个支架上,支撑着一个铜散热盘P ,散热盘P 可以借助底座内的风扇,达到稳定有效的散热。散热盘上安放面积相同的圆盘样品B ,样品B 上放置一个圆盘状加热盘C ,其面积也与样品B 的面积相同,加热盘C 是由单片机控制的自适应电加热,可以设定加热盘的温度。

传热仿真实习实验指导

基本原理: 对流传热的核心问题是求算传热膜系数α,当流体无相变时对流传热准数关联式的一般形式为: (4-1) 对于强制湍流而言,Gr准数可以忽略,故 (4-2) 本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m、n和系数A。 用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归。本实验可简化上式,即取n=0.4(流体被加热)。这样,上式即变为单变量方程,再两边取对数,即得到直线方程: (4-3) 在双对数坐标中作图,找出直线斜率,即为方程的指数m。在直线上任取一点的函数值代入方程中,则可得到系数A,即: (4-4) 用图解法,根据实验点确定直线位置有一定的人为性。而用最小二乘法回归,可以得到最佳关联结果。应用微机,对多变量方程进行一次回归,就能同时得到A、m、n。 对于方程的关联,首先要有Nu、Re、Pr的数据组。其准数定义式分别为: 实验中改变冷却水的流量以改变Re准数的值。根据定性温度(冷空气进、出口温度的算术平均值)计算对应的Pr准数值。同时,由牛顿冷却定律,求出不同流速下的传热膜系数α值。进而算得Nu准数值。 牛顿冷却定律: (4-5) 式中: α—传热膜系数,[W/m2·℃]; Q—传热量,[W]; A—总传热面积,[m2]; △t m—管壁温度与管内流体温度的对数平均温差,[℃]。 传热量Q可由下式求得: (4-6)式中:

W—质量流量,[kg/h]; Cp—流体定压比热,[J/kg·℃]; t1、t2—流体进、出口温度,[℃]; ρ—定性温度下流体密度,[kg/m3]; V—流体体积流量,[m3/s]。 设备参数: 孔板流量计: 流量计算关联式:V=4.49*R0.5 O),V——空气流量 (m3 /h) 式中:R——孔板压差(mmH 2 换热套管: 套管外管为玻璃管,内管为黄铜管。 套管有效长度:1.25m,内管内径:0.022m 计算方法、原理、公式: 对流传热的核心问题是求算传热膜系数α,当流体无相变时对流传热准数关联式的一般形式为: (4-1) 对于强制湍流而言,Gr准数可以忽略,故 (4-2) 本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m、n和系数 A。 用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归。本实验可简化上式,即取n=0.4(流体被加热)。这样,上式即变为单变量方程,再两边 取对数,即得到直线议程: (4-3)

实验四 传热实验

实验四 气-汽对流传热实验 一、实验目的 ⒈了解套管换热器的结构。 ⒉通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数 的测定方 法,加深对其概念和影响因素的理解。并应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4 中常数A 、m 的值。 二、 实验原理 2.1 对流传热系数i α的测定 在该传热实验中,空气走内管,蒸气走外管。 对流传热系数i α可以根据牛顿冷却定律,用实验来测定 i m i i S t Q ??= α (1) 式中:i α—管内流体对流传热系数,W/(m 2 ?℃); Q i —管内传热速率,W ; S i —管内换热面积,m 2; m t ?—内壁面与流体间的温差,℃。 m t ?由下式确定: 2 2 1t t t t w m +- =? (2) 式中:t 1,t 2 —冷流体的入口、出口温度,℃; t w —壁面平均温度,℃; 因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示。 管内换热面积: i i i L d S π= (3) 式中:d i —内管管内径,m ; L i —传热管测量段的实际长度,m 。 由热量衡算式: )(12t t Cp W Q m m i -= (4) 其中质量流量由下式求得: 3600 m m m V W ρ= (5) 式中:m V —冷流体在套管内的平均体积流量,m 3 / h ; m Cp —冷流体的定压比热,kJ / (kg ·℃);

m ρ—冷流体的密度,kg /m 3 。 m Cp 和m ρ可根据定性温度t m 查得,2 2 1t t t m += 为冷流体进出口平均温度。t 1,t 2, t w , m V 可采取一定的测量手段得到。 2.2 对流传热系数准数关联式的实验确定 流体在管内作强制湍流,被加热状态,准数关联式的形式为 n m A Nu Pr Re =. (6) 其中: i i i d Nu λα= , m m i m d u μρ=Re , m m m Cp λμ=P r 物性数据m λ、m Cp 、m ρ、m μ可根据定性温度t m 查得。经过计算可知,对于管内被加热的空气,普兰特准数Pr 变化不大,可以认为是常数,则关联式的形式简化为: 4 .0Pr Re m A Nu = (7) 这样通过实验确定不同流量下的Re 与Nu ,然后用线性回归方法确定A 和m 的值。 2.3 实验的测量手段 ⑴ 空气流量的测量 空气流量计由孔板与差压变送器和二次仪表组成。该孔板流量计在20℃时标定的流量和压差的关系式为: (8) 流量计在实际使用时往往不是20℃,此时需要对该读数进行校正: 20 2732731 20 1++=t V V t (9) 式中:P ?—孔板流量计两端压差,KPa ; 20V —20℃时体积流量, m 3 /h ; 1t V —流量计处体积流量,也是空气入口体积流量,m 3/h ; 1t —流量计处温度,也是空气入口温度,℃。 由于换热器内温度的变化,传热管内的体积流量需进行校正: 1 1273273t t V V m t m ++? = (10) 648 .020)(909.13P V ??=

对流传热实验实验报告

实验三 对流传热实验 一、实验目的 1.掌握套管对流传热系数i α的测定方法,加深对其概念和影响因素的理解,应用线性回归法,确定关联式4.0Pr Re m A Nu =中常数A 、m 的值; 2.掌握对流传热系数i α随雷诺准数的变化规律; 3.掌握列管传热系数Ko 的测定方法。 二、实验原理 ㈠ 套管换热器传热系数及其准数关联式的测定 ⒈ 对流传热系数i α的测定 在该传热实验中,冷水走内管,热水走外管。 对流传热系数i α可以根据牛顿冷却定律,用实验来测定 i i i S t Q ??= α (1) 式中:i α—管内流体对流传热系数,W/(m 2?℃); Q i —管内传热速率,W ; S i —管内换热面积,m 2; t ?—内壁面与流体间的温差,℃。 t ?由下式确定: 2 2 1t t T t w +- =? (2) 式中:t 1,t 2 —冷流体的入口、出口温度,℃; T w —壁面平均温度,℃; 因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示。 管内换热面积: i i i L d S π= (3) 式中:d i —内管管内径,m ; L i —传热管测量段的实际长度,m 。

由热量衡算式: )(12t t Cp W Q m m i -= (4) 其中质量流量由下式求得: 3600 m m m V W ρ= (5) 式中:m V —冷流体在套管内的平均体积流量,m 3 / h ; m Cp —冷流体的定压比热,kJ / (kg ·℃); m ρ—冷流体的密度,kg /m 3。 m Cp 和m ρ可根据定性温度t m 查得,2 2 1t t t m +=为冷流体进出口平均温度。t 1,t 2, T w , m V 可采取一定的测量手段得到。 ⒉ 对流传热系数准数关联式的实验确定 流体在管内作强制湍流,被加热状态,准数关联式的形式为 n m A Nu Pr Re =. (6) 其中: i i i d Nu λα= , m m i m d u μρ=Re , m m m Cp λμ=Pr 物性数据m λ、m Cp 、m ρ、m μ可根据定性温度t m 查得。经过计算可知,对于管内被加热的空气,普兰特准数Pr 变化不大,可以认为是常数,则关联式的形式简化为: 4.0Pr Re m A Nu = (7) 这样通过实验确定不同流量下的Re 与Nu ,然后用线性回归方法确定A 和m 的值。 ㈡ 列管换热器传热系数的测定 管壳式换热器又称列管式换热器。是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。壳体多为圆筒形,

传 热 综 合 实 验

传 热 综 合 实 验 一、实验目的 1.通过对本换热器的实验研究,可以掌握对流传热系数αi 的测定方法,加深对其概念和影响因素的理解。。 2.应用线性回归分析方法,确定关联式Nu=ARemPr 0.4 中常数A 、m 的值。 3.通过对管程内部插有螺旋线圈的空气-水蒸气强化套管换热器的实验研究,测定其准数关 联式Nu=BRe m 中常数B 、m 的值和强化比Nu/Nu0,了解强化传热的基本理论和基本方式。 二、实验原理 对于流体在圆形直管中作强制湍流时的对流传热系数的准数关联式可以表示成: n m C Nu Pr Re = (1) 系数C 与指数m 和n 则需由实验加以确定。对于气体,Pr 基本上不随温度而变,可视为一常数,因此,式(1)可简化为: m A Nu Re = (2) 式中: λαd Nu 2= μ ρ du =Re 通过实验测得不同流速下孔板流量计的压差,空气的进、出口温度和换热器的壁温(因 为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内、外壁温度与壁面的平均温度近似相等),根据所测的数据,经过查物性数据和计算,可求出不同流量下的Nu 和Re ,然后用线性回归方法确定关联式m A Nu Re =中常数A 、m 的值。 三、 设备主要技术数据 1. 传热管参数: 表1 实验装置结构参数 2.空气流量计 (1) 由孔板与压力传感器及数字显示仪表组成空气流量计。空气流量由公式[1]计算。 (第1套)6203.00)(113.18P V t ??=………………………………………………………………[1] (第2套)6203.00)(113.18P V t ??=………………………………………………………………[1] 其中, 0t V - 20℃ 下的体积流量,m 3/h ; P ?-孔板两端压差,Kpa

有机化学实验五 水蒸汽蒸馏

实验五水蒸气蒸馏 一.实验目的: 1.学习水蒸汽蒸馏的原理及应用; 2. 掌握水蒸汽蒸馏的装置及其操作方法; 3.比较水蒸气蒸馏、普通蒸馏和分馏的异同点。二.实验重点和难点: 1. 学习水蒸汽蒸馏的原理及应用; 2.掌握水蒸汽蒸馏的装置及其操作方法; 实验类型:基础性实验学时:4学时 三.实验装置和药品: 实验仪器:玻璃管250mL圆底烧瓶克氏蒸馏瓶冷凝管 接引管接液瓶电热套T形管(弹簧夹) 温度计及套管分液漏斗量筒弯管 化学试剂:苯胺(化学纯) 20mL 四.实验装置图:【参见教材P82图3.8所示】

五.实验原理: 水蒸气蒸馏(Steam Distillation)原理,简言之,就是当水和不(或难)溶于水的化合物一起存在时,整个体系的蒸气压力根据道尔顿分压定律,应为各组分蒸气压力之和。即:P=P水+ P A(P A为与不(或难)溶化合物的蒸气压)。当P与外界大气压相等时,混合物就沸腾。这时的温度即为它们的沸点,所以混合物的沸点将比任何一组分的沸点都要低一些。而且在低于1000C的温度下随水蒸汽一起蒸馏出来。这样的操作叫水蒸气蒸馏。 水蒸汽蒸馏是用来分离和提纯液态或固态有机化合物的一种方法。 1.常用在下列几种情况下: (1). 某些沸点高的有机化合物,在常压蒸馏虽可与副产品分离,但易将其破坏。 (2). 混合物中含有大量树脂状杂质或不挥发性杂质,采用蒸馏、萃取等方法都难于分离。 (3). 从较多固体反应物中分离出被吸附的液体。 2.被提纯物质必须具备以下几个条件: (1). 不溶或难溶于水。 (2). 共沸腾下与水不发生化学反应。 (3). 在100℃左右时,必须具有一定的蒸气压(一般不小于1.33KPa) 。 3.基本原理: 当有机物与水一起共热时,整个体系的蒸气压力,根据分压定律(道尔顿Dalton分压定律) ,应为各组分蒸气压之和。 即:P=Pa+Pb 式中:P----代表总蒸气压;Pa----代表水的蒸气压;Pb----代表与水不相溶物质或难溶物质的蒸气压。 那么,当混合物中各组分蒸气压总和P等于外界大气压时,这时的温度即为它们的沸点,则液体沸腾。显然,混合物的沸点低于任何一个组分的沸点。 即:有机物可在比其沸点低的多的温度,而且在低于100℃的温度下随蒸气一起蒸馏出来,这样的操作叫做水蒸汽蒸馏。 因此,在常压下应用水蒸汽蒸馏就能在低于100℃的情况下将高沸点组分与水一起蒸馏出来。此法特别适用于分离那些在其沸点附近易分解的物质;也适用于从不挥发物质或不需要的树脂状物质中分离出所需的组分。蒸馏时混合物的沸点保持不变,直至其中一组分几乎完全移去,温度才上升至留在瓶中液体的沸点。 另外,根据两种物质在馏液中的相对质量(就是它们在蒸气中的相对质量) ,与它们的蒸气压和相对分子量成正比。 即M A/M B=M A×P A / M B×P B

实验4传热(空气—蒸汽)

实验四:传热(空气—蒸汽)实验 实验目的 1.了解间壁式换热器的结构与操作原理; 2.学习测定套管换热器总传热系数的方法; 3.学习测定空气侧的对流传热系数; 4.了解空气流速的变化对总传热系数的影响。 基本原理: 对流传热的核心问题是求算传热膜系数α,当流体无相变时对流传热准数关联式的一般形式为: (4-1) 对于强制湍流而言,Gr准数可以忽略,故 (4-2) 本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m、n和系数A。 用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归。本实验可简化上式,即取n=0.4(流体被加热)。这样,上式即变为单变量方程,再两边取对数,即得到直线方程: (4-3) 在双对数坐标中作图,找出直线斜率,即为方程的指数m。在直线上任取一点的函数值代入方程中,则可得到系数A,即:

(4-4) 用图解法,根据实验点确定直线位置有一定的人为性。而用最小二乘法回归,可以得到最佳关联结果。应用微机,对多变量方程进行一次回归,就能同时得到A、m、n。 对于方程的关联,首先要有Nu、Re、Pr的数据组。其准数定义式分别为: 实验中改变冷却水的流量以改变Re准数的值。根据定性温度(冷空气进、出口温度的算术平均值)计算对应的Pr准数值。同时,由牛顿冷却定律,求出不同流速下的传热膜系数α值。进而算得Nu准数值。 牛顿冷却定律: (4-5)式中: α—传热膜系数,[W/m2·℃]; Q—传热量,[W]; A—总传热面积,[m2]; △tm—管壁温度与管内流体温度的对数平均温差,

[℃]。 传热量Q可由下式求得: (4-6)式中: W—质量流量,[kg/h]; Cp—流体定压比热,[J/kg·℃]; t1、t2—流体进、出口温度,[℃]; ρ—定性温度下流体密度,[kg/m3]; V—流体体积流量,[m3/s]。 注意事项: (1)、学校的设备大都是需要用电为差计测量电流然后计算温度的,此套设备比较先进,采用了数字显示仪表直接显示温度。 (2)、关于排放不凝气:如果不打开放气阀,理论上套管内的压力应该不断增大,最后爆炸,实际上由于套管的密封程度不是很好,会漏气,所以压力不会升高很多,基本可以忽略。另外不凝气的影响在实际是实验中并不是很大,在仿真实验中为了说明做了夸大。 (3)蒸汽发生器:关于蒸汽发生器的控制和安全问题做了简化。

传热膜系数实验报告

化工原理实验报告 实验三 传热膜系数测定实验 实验日期:2015年12月30日 班级: 学生姓名: 学号: 同组人: 报告摘要 本实验选用牛顿冷却定律作为对流传热实验的测试原理,通过建立不同体系的传热系统,即水蒸汽—空气传热系统、分别对普通管换热器和强化管换热器进行了强制对流传热实验研究。确定了在相应条件下冷流体对流传热膜系数的关联式。此实验方法可以测出蒸汽冷凝膜系数和管内对流传热系数。采用由风机、孔板流量计、蒸汽发生器等组成的自动化程度较高的装置,让空气走内管,蒸汽走环隙,用计算机在线采集与控制系统测量了孔板压降、进出口温度和两个壁温,计算了传热膜系数α,并通过作图确定了传热膜系数准数关系式中的系数A 和指数m (n 取0.4),得到了半经验关联式。实验还通过在内管中加入混合器的办法强化了传热,并重新测定了α、A 和m 。 二、 目的及任务 1.掌握传热膜系数α及传热系数K 的测定方法; 2.通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 的方法; 3.了解工程上强化传热的措施。 三、基本原理 对流传热的核心问题是求算传热膜系数α,当流体无相变时对流传热准数关 系式的一般形式为:p n m Gr A Nu Pr Re 对于强制湍流而言。Gr 数可忽略,即

n m A Nu Pr Re = 本实验中,可用图解法和最小二乘法计算上述准数关系式中的指数m 、n 和系数A 。 用图解法对多变量方程进行关联时,要对不同变量Re 和Pr 分别回归。本实验可简化上式,即取n=0.4(流体被加热)。这样,上式即变为单变量方程,在两边取对数,得到直线方程为 Re lg lg Pr lg 4.0m A Nu += 在双对数坐标中作图,求出直线斜率,即为方程的指数m 。在直线上任取一点函数值带入方程中,则可得系数A ,即 m Nu A Re Pr 4.0= 用图解法,根据实验点确定直线位置有一定人为性。而用最小二乘法回归,可得到最佳关联结果。应用计算机辅助手段,对多变量方程进行一次回归,就能的道道A 、m 、n 。 对于方程的关联,首先要有Nu 、Re 、Pr 的数据组。其特征数定义式分别为 μρ du = Re , λμ Cp = Pr , λαd Nu = 实验中改变空气的流量,以改变Re 值。根据定性温度(空气进、出口温度的算数平均值)计算对应的Pr 值。同时,由牛顿冷却定律,求出不同流速下的传热膜系数值,进而求得Nu 值。 牛顿冷却定律为 Q=αA △t m 式中α——传热膜系数,W/(m 2.℃);

气—气传热综合实验操作讲义

深对其概念和影响因素的理解,并应用线性回归分析方法,确定关联式 Nu = A * Re * Pr 实验研究,测定其准数关联式 Nu = B * Re 中常数 B 、m 的值和强化比 Nu / Nu 0 ,了解强化 ② 对α i 的实验数据进行线性回归,求关联式 Nu=ARe Pr 中常数 A 、m 的值。 ② 对α i 的实验数据进行线性回归,求关联式 Nu=BRe 中常数 B 、m 的值。 气—气传热综合实验讲义 一、 实验目的: 1. 通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数 α i 的测定方法,加 m 0.4 中常数 A 、m 的值; 2. 通过对管程内部插有螺旋线圈和采用螺旋扁管为内管的空气—水蒸气强化套管换热器的 m 传热的基本理论和基本方式; 3. 了解套管换热器的管内压降 ?p 和 Nu 之间的关系; 二、 实验内容: 实验一: ① 测定 5~6 个不同流速下简单套管换热器的对流传热系数α i 。 m 0.4 ③ 测定 5~6 个不同流速下简单套管换热器的管内压降 ?p 1。 实验二: ① 测定 5~6 个不同流速下强化套管换热器的对流传热系数α i 。 m ③ 测定 5~6 个不同流速下强化套管换热器的管内压降 ?p 2 。并在同一坐标系下绘制普通管 ?p 1 ~Nu 与强化管 ?p 2 ~Nu 的关系曲线。比较实验结果。 ④ 同一流量下,按实验一所得准数关联式求得 Nu 0,计算传热强化比 Nu/Nu 0。 三、 实验原理 实验一 普通套管换热器传热系数及其准数关联式的测定 1. 对流传热系数α i 的测定 对流传热系数α i 可以根据牛顿冷却定律,用实验来测定。

教科版小学科学三年级下册水和水蒸气

《水和水蒸气》教学设计 【教学目标】 科学概念: 1、水变成水蒸气的过程叫蒸发,水蒸气变成水的过程叫凝结。 2、加热能加快水的蒸发。 过程与方法: 1、观察浅盘子中的水在阳光照射下会发生什么变化,同时结合生活中“水会干掉”的经验,讨论水的蒸发。 2、观察比较自然状态下和人工加热情况下水的蒸发现象的异同。 3、观察把一个大的玻璃杯倒扣在一个装满热水的小杯子上会出现什么现象。 情感、态度、价值观: 1、意识到细致的观察能获得更多的发现。 2、感受、体验物质变化的可逆性。 【教学重点】探究固态和气态的水之间可以相互转化和加快水蒸发的方法。 【教学难点】根据生活中的现象探究水的液态和气态之间的相互转化。 【教学准备】小组:浅碟子1只、半碟清水、记号笔1支,大的透明玻璃杯1只、小杯子1只、1小杯热水。 【教学过程】 一、水到哪里去了? 1、师:下雨之后我们常常都能看到地面上有些积水。天晴了,这些积水就会很快干掉的,那么这些水到哪里去了呢? 2、学生推测。(预设:可能到泥土里去了;可能被太阳晒干了,也许学生会说水蒸发了,那教师也可以问一句:如果验证你的说法呢?) 师:这些水去哪了呢?我们一起来做个实验探究一下吧,如何做呢? (学生思考后汇报)(预设:浅碟子中加好水,然后不盖盖子,看看水会不会减少等类似的方法。) 师:在做的过程中需要注意些什么呢? (预设:可能水的变化不大,所以刚开始先要在水面做一个标志,然后把浅碟子放在阳光下,一段时间后观察水面的变化。) 3、学生实验观察 师:有什么发现吗? (预设:浅碟子中的水减少一部分;碟子外没有水漏出来。) 师:水既没有流出去,也没有渗入碟子中,它怎么会减少了呢?

套管换热器传热实验实验报告数据处理

套管换热器传热实验实验报告数据处理 我们组做的是实验I : 1, Q=m s1c 1 △t 1 求K 得先求Q Q=m s 1C 1△t 1 ,其中,C 1=所以得先求m s 1 , C 1, △t 1, ◇ 1m s1 =V s1 ρ 要得求V s1,V s1=u 1A ,V s1 =C 0A 0ρρρ/o (2)-gR C 0为空流系数,C 0=0.855,A 0为空口面积,A 0的计算方法如下:A 0 =π4 d 02 , d 0=20.32 mm,故 A 0= π4 ×(20.32 1000 )2=3.243293×10-4 m 2 R 为压计差读数 A=π4 d 2 ,d 为内管内径=20mm , 用内插法求解空气密度 ρ 值 这样求得m s 1, ◇ 2 C 1 的求法为先查表的相近温度下空气的C 值,然后用内插法求得对应平均温 度对应的的C 1值 ◇ 3 求△t 1= t △ t 1 ,= t = t 1 + t 2 2 t 1 为进口温度 t 2 为出口温度 进口温度t 1的求解方法 由热电偶中的电位Vt ,按照公式求[]2 000000402.00394645.0t t V E t t ++=得

Et ,再由852.4901004.810608.1105574.15 43-??+?=---t E t 求得t 1值 出口温度t 2的求解方法 由热电偶中的电位Vt ,按照公式[]2 000000402.00394645.0t t V E t t ++=求得 Et ,再由852.49010 04.810608.1105574.15 43-??+?=---t E t 求得t 2值 由以上步骤求出 Q 2 ,由Q=KA △t m 求出K 值 K= Q A △t m Q 由第一步已经求出,A 为内管内径对应的面积,A=2π rL ,r=17.8mm=0.0178 m, A=2×3.14×0.0178×1.224=0.13682362 m 2 3 ,求Re ,Nu 流体无相变强制湍流经圆形直管与管壁稳定对流传热时,对流传热准数关联式的函数关系为: (,,)l Nu f Re Pr d = 对于空气,在实验范围内,Pr 准数基本上为一常数;当管长与管径的比值大于50 时,其值对 Nu 的影响很小;则 Nu 仅为 Re 的函数,故上述函数关系一般可以处理成: m Nu aRe = 式中,a 和 m 为待定常数。 Re=du ρ μ d=2×0.0178 m =0.0356 m , u=Vs/(π×0.01782 )μ 和ρ用内插法,先查表 的相近温度的μ,ρ,再用线性关系计算求得。 测量空气一侧管壁的中区壁温T W ,由热电偶按前面公式求得;由下式可以计算空气与管壁

化工原理传热实验步骤及内容

实验四传热实验 、实验目的 (1) 了解间壁式传热元件,掌握给热系数测定的实验方法。 (2) 学会给热系数测定的实验数据处理方法。 (3) 观察水蒸气在水平管外壁上的冷凝现象。 (4) 掌握热电阻测温的方法。 (5) 了解影响给热系数的因素和强化传热的途径 二、实验原理 在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。如图(4 - 1)所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。 图4-1间壁式传加程示意图 达到传热稳定时,有 Q -—爲)=卿/■沖仏一人.) -%4(丁-為)輛-场血(斥-咖 式中:Q —传热量,J / s ; m —热流体的质量流率,kg / s C PI—热流体的比热,J / (kg ? C); T i —热流体的进口温度,C; T2 —热流体的出口温度,C; m —冷流体的质量流率,kg / s (4-1 ) T

C p2 —冷流体的比热,J /(kg ? C ); 11 —冷流体的进口温度,C; t2 —冷流体的出口温度,C; 2 :-1 —热流体与固体壁面的对流传热系数,W / (m C ); A—热流体侧的对流传热面积,m; ";| —热流体与固体壁面的对数平均温差,C; 2 :-2 —冷流体与固体壁面的对流传热系数,W / (m C );A—冷流体侧的对流传热面积,m; |f\ —固体壁面与冷流体的对数平均温差,C; K —以传热面积A为基准的总给热系数,W / (m 2C); —冷热流体的对数平均温差,C; 热流体与固体壁面的对数平均温差可由式(4—2)计算, —[「J (4 - 2)亠4 一5 式中:T1 —热流体进口处热流体侧的壁面温度,C; TA2 —热流体出口处热流体侧的壁面温度,C。 固体壁面与冷流体的对数平均温差可由式(4—3)计算, r - :(4 —3) In切7 式中:t wi —冷流体进口处冷流体侧的壁面温度,C; t W2 —冷流体出口处冷流体侧的壁面温度,C。 热、冷流体间的对数平均温差可由式( 4 —4)计算, 当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4—1)得内管内壁面与冷空气或水的对流传热系数, 叫*-片) (4-5) 实验中测定紫铜管的壁温t wi、t w2;冷空气或水的进出口温度t l、t2;实验用紫铜管的 (4-4 )

实验四气汽对流传热综合实验报告

化学实验教学中心 实验报告 化学测量与计算实验Ⅱ 实验名称:气-汽对流传热综合实验报告 学生姓名:学号: 院(系):年级:级班 指导教师:研究生助教: 实验日期: 2017.05.26 交报告日期: 2017.06.02

(二)强化管换热器传热系数、准数关联式及强化比的测定 强化传热又被学术界称为第二代传热技术,它能减小初设计的传热面积,以减小换热器的体积和重量;提高现有换热器的换热能力;使换热器能在较低温差下工作;并且能够减少换热器的阻力以减少换热器的动力消耗,更有效地利用能源和资金。强化传热的方法有多种,本实验装置是采用在换热器内管插入螺旋线圈的方法来强化传热的。 螺旋线圈的结构图如图1所示,螺旋线圈由直径 3mm以下的铜丝和钢丝按一定节距绕成。将金属螺旋 线圈插入并固定在管内,即可构成一种强化传热管。 在近壁区域,流体一面由于螺旋线圈的作用而发生旋 转,一面还周期性地受到线圈的螺旋金属丝的扰动,因而可以使传热强化。由于绕制线圈的金属丝直径很细,流体旋流强度也较弱,所以阻力较小,有利于节省能源。螺旋线圈是以线圈节距H与管内径d的比值技术参数,且长径比是影响传热效果和阻力系数的重要因素。科学家通过实验研究总结了形式为αα=Bααα的经验公式,其中B和m的值因螺旋丝尺寸不同而不同。 采用和光滑套管同样的实验方法确定不同流量下得Rei和αα,用线性回归方法可确定B和m的值。 单纯研究强化手段的强化效果(不考虑阻力的影响),可以用强化比的概念作为评 ?,其中αα是强化管的努塞尔准数,αα0是普通管判准则,它的形式是:αααα0 ?>1,而且它的值越大,强化效果越好。 的努塞尔准数,显然,强化比αααα0

传热实验

序号:35 化工原理实验报告 实验名称:对流给热系数的测定 学院:化学工程学院 专业:化学工程与工艺 班级:化工09-3班 姓名:曾学礼学号09402010337 同组者姓名:周锃刘翰卿 指导教师:张亚静 日期:2011年10月11日

一、实验目的 1. 观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型; ; 2. 测定空气在园直管内强制对流给热系数α i 3. 应用线性回归分析方法,确定关联式Nu=ARe m Pr0.4中常数A、m的值; 4. 掌握热电阻测温的方法。 二、实验原理 在套管换热管器中,环隙通以水蒸气,内管管内通以空气,水蒸气冷凝放热以加热空气,在传热过程达到稳定后,有如下关系式: VρC p(t2-t1)=αi A i(t w-t)m(1) 式中:V-------被加热流体体积流量,m3/s ρ--------被加热流体密度,kg/m3 C p--------被加热流体平均比热,J/(kg·℃) αi --------流体对内管内壁的对流给热系数,W/(m2·℃) t1、t2------被加热流体流进、出口的温度,℃; A i--------内管的外壁、内壁的传热面积,m2 (T-T w)m-------水蒸气与外壁间的对数平均温度差,℃。 (T-T w)m=(T1-T w1)-(T2-T w2)/ ln[(T1-T w1)/(T2-T w2)] (2) (t w-t)m-------内壁与流体间的对数平均温度差,℃ (t w-t)m=[(t w1-t1)-(t w2-t2)]/ln[(t w1-t1)/(t w2-t2)] (3) 式中:T1、T2-------蒸汽进、出口温度,℃; T w1、T w2、t w1、t w2-------外壁和内壁上进出口温度,℃; 当内管材料的导热性能很好,即λ值很大时,且管壁厚度很薄时,可认为T w1=t w1,T w2=t w2,即为所测该点的壁温。 由(3)式可得:αi= VρC p(t2-t1)/A i(t w-t)m (4) 若能测得被加热流体的V、t1、t2,内管的换热面积A i,水蒸汽温度T,壁温T w1、T w2,就可以通过上式计算出对流给热系数αi。 1.流体在只管内强制对流时的给热系数,可以按下列半经验公式求得: αi =0.023λRe0.8Pr0.4/d i 式中:αi ------流体在直管内强制对流时的给热系数,W/(m2.℃); λ ------流体的导热系数,W/(m2.℃); d i-------内管直径,m; Re-------流体在管内的雷诺数,无因次; Pr -------流体的普朗克常数,无因次;

相关主题
文本预览
相关文档 最新文档