当前位置:文档之家› 天线主要性能指标和相关知识

天线主要性能指标和相关知识

天线主要性能指标和相关知识
天线主要性能指标和相关知识

天线主要性能指标和相关知识

天线的主要性能指标 1、方向图:

天线方向图是表征天线辐射特性空间角度关系的图形。以发射天线为例从不同角度方向辐射出去的功率或场强形成的图形。一般地用包括最大辐射方向的两个相互垂直的平面方向图来表示天线的立体方向图分为水平面方向图和垂直面方向图。平行于地面在波束最大场强最大位置剖开的图形叫水平面方向图;垂直于地面在波束场强最大位置剖开的图形叫垂直面方向图。

描述天线辐射特性的另一重要参数半功率宽度在天线辐射功率分布在主瓣最大值的两侧功率强度下降到最大值的一半(场强下降到最大值的 0.707 倍3dB 衰耗)的两个方向的夹角表征了天线在指定方向上辐射功率的集中程度。一般地GSM 定向基站水平面半功率波瓣宽度为 65°在 120°的小区边沿天线辐射功率要比最大辐射方向上低 9-10dB。

2、方向性参数不同的天线有不同的方向图为表示它们集中辐射的程度方向图的尖锐程度我们引入方向性参数。理想的点源天线辐射没有方向性在各方向上辐射强度相等方向是个球体。我们以理想的点源天线作为标准与实际天线进行比较在相同的辐射功率某天线产生于某点的电场强度平方 E2 与理想的点源天线在同一点产生的电场强度的平方 E02 的比值称为该点的方向性参数D=E2/E02。

3、天线增益增益和方向性系数同是表征辐射功率集中程度的参数但两者又不尽相同。增益是在同一输出功率条件下加以讨论的方向性系数是在同一辐射功率条件下加以讨论的。由于天线各方向的辐射强度并不相等天线的方向性系数和增益随着观察点的不同而变化但其变化趋势是一致的。一般地在实际应用中取最大辐射方向的方向性系数和增益作为天线的方向性系数和增益。

另外表征天线增益的参数有 dBd 和 dBi。DBi 是相对于点源天线的增益在各方向的辐射是均匀的;dBd 相对于对称阵子天线的增益dBi=dBd+2.15。相同的条件下增益越高电波传播的距离越远。

4、入阻输入阻抗输抗是指天线在工作频段的高频阻抗即馈电点的高频电压与高频电流的比值可用矢量网络测试分析仪测量其直流阻抗为 0Ω。一般移动通信天线的输入阻抗为

50Ω。

5、驻波比由于天线的输入阻抗与馈线的特性阻抗不可能完全一致会产生部分的信号反射反射波和入射波在馈线上叠加形成驻波其相邻的电压最大值与最小值的比即为电压驻波比 VSWR。假定天线的输入功率 P1反射功率 P2天线的驻波比 VSWR=(+)/(-)。一般地说移动通信天线的电压驻波比应小于 1.5但实际应用中 VSWR 应小于 1.2。

6、极化方式根据天线在最大辐射(或接收)方向上电场矢量的取向天线极化方式可分为线极化圆极化和椭圆极化。线极化

又分为水平极化垂直极化和±45o 极化。发射天线和接收天线应具有相同的极化方式一般地移动通信中多采用垂直极化或±45o 极化方式。

7、双极化天线隔离度双极化天线有两个信号输入端口从一个端口输入功率信号 P1dBm从另一端口接收到同一信号的功率P2dBm 之差称为隔离度即隔离度=P1-P2。

移动通信基站要求在工作频段内极化隔离度大于 28dB。

±45o 双极化天线利用极化正交原理将两副天线集成在一起再通过其他的一些特殊措施使天隔离度大于 30dB。

天线常识

一、天线性能指标

(1)天线输入阻抗天线输入阻抗是天线馈电点处的电压与电流之比。通常是一个复阻抗而且是频率的函数。

(2)驻波系数(VSWR)

驻波系数是天线馈线上的一个特征参数它反映了天线输入阻抗与馈线特性阻抗的匹配程度定义为馈线上最大电压与最小电压之比。

(3)增益 G 在天线输入功率相同的情况下某天线在最大辐射方向的场强平方与一理想的无方向性的点源在相同处产生的场强平方之比常用分贝表示。

(4)方向图天线方向图用来描述电(磁)场强度在空间的分布情况常用般功率波瓣宽度来表示方向图的宽度。

(5)极化特性天线极化特性表示天线在最大辐射方向上电场的极化形式。可分为线极化、圆极化和椭圆极化。

注:

增益的多种表达方式

在电信网络尤其是无线通信领域里我们经常会遇到 dBm、dBi、dB、dBc等与功率有关的单位许多维护工程师在对这些单位的理解上存在着混淆和误解造成计算失误。下面集中辩析这几项单位供广大电信职工参考。

1.dBm

dBm 用于表达功率的绝对值计算公式为:

10lg(P 功率值/lmw)

[例] 如果发射功率 P 为 10w则按 dBm 单位进行折算后的值应为:10lg(10w/1mw)=10lg(10000)=40dBm

30DBm=10lg(1W/1mW)

2.dBi、dBd

dBi 和 dBd 均用于表达功率增益两者都是一个相对值只是其参考的基准不一样。dBi 的参考基准为全方向性天线dBd 的参考基准为偶极子因此两者的值略有不同同一增益用 dBi 表示要比用dBd 表示大 2.15。

[例]对于增益为 16dBd 的天线其增益按单位 dBi 进行折算后为 18.5dBi(忽略小数点后为 18dBi)。

3.dB

dB 用于表征功率的相对比值计算甲功率相对乙功率大或小多少 dB 时按下面计算公式:

10lg(甲功率/乙功率)

[例]若甲天线的增益为 20dBd,乙天线的增益为 14dBd,则可

以说甲天线的增益比乙天线的增益大 6dB。

4.dBc

dBc 也是一个表征相对功率的单位其计算方法与 dB 的计算

方法完全一样。

一般来说dBc 是相对于载波功率而言的在许多情况下用来度量与载波功率的相对值如度量干扰(同频干扰、互调干扰、交调

干扰和带外干扰)、耦合、杂散等相对量值在采用 dBc 的地方原则上可以使用 dB 替代。

1.反射系数:P=反射波振幅/入射波振幅=传输线特性阻抗-负

载阻抗/传输线特性阻抗+负载阻抗 2.行波系数:K=电压最小值/电压最大值=反射波振幅-入射波振幅/反射

波振幅+入射波振幅在传输线中因为同时存在入射波和反射波,所以在传输线上任何一点的电压都是两波振幅之和. 3.驻波比:S=电压最大值/电压最小值, 综上所述,在传输线终端有负载时,传输线输入阻抗有以下性质: 1.传输线上距离终端四分之一波长

的奇数倍处的等效阻抗等于特性阻抗的平方除以终端负载. 2.传

输线上距离终端二分之一波长整数处的等效阻抗等于负载阻抗.

二、天线测量方法和常用仪器(1)输入阻抗和驻波系数的测量把天线直接接至测量仪器上就可进行输入阻抗和驻波系数的测量。常用仪器有:

网络分析仪、阻抗分析仪、阻抗电桥、驻波表等。

(2)方向图的测量常用旋转被测天线法进行测量。所需仪器设备有:天线测试转台、功率信号源、场强计及辅助天线(3)增益测量天线增益测量有比较法、射电天文法等常用比较法测量天线增益。所需仪器设备与方向图测量相同但还需已知增益的标准天线。

三、电波传播模式(1)天波传播指电波由天线发射后经电离层反射又到达地面的传播方式此种方式主要用于短波通信、广播和短波雷达。

(2)空间波传播指电波自天线发射后经直线路径直接到达接收点象

地面上的超短波通信、电视广播、调频广播以及卫星通信、卫星广播等。

(3)地波传播指电波沿地表面传播主要用于中长波广播、导航、短波地波通信等。

天线驻波比小常识

电压驻波比( VSWR )是射频技术中最常用的参数用来衡量部件之间的匹配是否良好。当业余无线电爱好者进行联络时当然首先会想到测量一下天线系统的驻波比是否接近 1:1

如果接近 1:1 当然好。常常听到这样的问题:但如果不能达到1 1 会怎样呢?驻波比小到几天线才算合格?为什么大小 1 81 这类老式的军用电台上没有驻波表?

R VSWR 及标称阻抗

发射机与天线匹配的条件是两者阻抗的电阻分量相同、感抗

部分互相抵消。如果发射机的阻抗不同要求天线的阻抗也不同。

在电子管时代一方面电子管本输出阻抗高另一方面低阻抗的同轴

电缆还没有得到推广流行的是特性阻抗为几百欧的平行馈线因此

发射机的输出阻抗多为几百欧姆。而现代商品固态无线电通信机

的天线标称阻抗则多为为 0 50 欧姆因此商品 R VSWR 表也是按0 50 欧姆设计标度的。

如果你拥有一台输出阻抗为 0 600 欧姆的老电台那就大可不必费心血用 0 50 欧姆的 R VSWR 计来修理你的天线因为那样反

而帮倒忙。只要

设法调到你的天线电流最大就可以了。

R VSWR 不是 1 1 时比较 R VSWR 的值没有意义

正因为 R VSWR 除了 1 1 以外的数值不值得那么精确地认定(除非有特殊需要)所以多数 R VSWR 表并没有象电压表、电阻

表那样认真标定甚至很少有 R VSWR 给出它的误差等级数据。由

于表内射频耦合元件的相频特性和二极管非线性的影响多数 R VSWR 表在不同频率、不同功率下的误差并不均匀。

R VSWR 都=1 1 不等于都是好天线

影响天线效果的最重要因素:谐振

让我们用弦乐器的弦来加以说明。无论是提琴还是古筝它的每一根弦在特定的长度和张力下都会有自己的固有频率。当弦以固有频率振动时两端被固定不能移动但振动方向的张力最大。中间摆动最大但振动张力最松弛。这相当于自由谐振的总长度为 2 1/2 波长的天线两端没有电流(电流波谷)而电压幅度最大(电压波腹)中间电流最大(电流波腹)而相邻两点的电压最小(电压波谷)。

我们要使这根弦发出最强的声音一是所要的声音只能是弦的固

有频率二是驱动点的张力与摆幅之比要恰当即驱动源要和弦上驱动点的阻抗相匹配。具体表现就是拉弦的琴弓或者弹拨的手指要选在弦的适当位置上。我们在实际中不难发现拉弓或者拨弦位置错误会影响弦的发声强度但稍有不当还不至于影响太多而要发出与琴弦固有频率不同的声响却是十分困难的此时弦上各点的振动状态十分复杂、混乱即使振动起来各点对空气的推动不是齐心合力的发声效率很低。

天线也是同样要使天线发射的电磁场最强一是发射频率必须和天线的固有频率相同二是驱动点要选在天线的适当位置。如果驱动点不恰当而天线与信号频率谐振效果会略受影响但是如果天线与信号频率不谐振则发射效率会大打折扣。

所以在天线匹配需要做到的两点中谐振是最关键的因素。

在早期的发信机例如本期介绍的 1 71 型报话机中天线电路只用串联电感、电容的办法取得与工作频率的严格谐振而进一步的阻抗配合是由线圈之间的固定耦合确定死的在不同频率下未必真正达到阻抗的严格匹配但是实际效果证明只要谐振就足以好好工作了。

因此在没有条件做到 R VSWR 绝对为 1 1 时业余电台天线最重要的调整是使整个天线电路与工作频率谐振。

天线的驻波比和天线系统的驻波比

天线的 R VSWR 需要在天线的馈电端测量。但天线馈电点常常高悬在空中我们只能在天线电缆的下端测量 VSWR 这样测量的是包括电缆的整个天线系统的 VSWR 。当天线本身的阻抗确实为0 50 欧姆纯电阻、电缆的特性阻抗也确实是 0 50 欧姆时测出的结果是正确的。

当天线阻抗不是 0 50 欧姆时而电缆为 0 50 欧姆时测出的R VSWR 值会严重受到天线长度的影响只有当电缆的电器长度正好为波长的整倍数时、而且电缆损耗可以忽略不计时电缆下端呈现的阻抗正好和天线的阻抗完全一样。但即便电缆长度是整倍波长但电缆有损耗例如电缆较细、电缆的电气长度达到波长的几十倍以上那么电缆下端测出的R VSWR 还是会比天线的实际 R VSWR 低。

所以测量 R VSWR 时尤其在 F UHF 以上频段不要忽略电缆的影响。

不对称天线

我们知道偶极天线每臂电气长度应为 4 1/4 波长。那么如果两臂长度不同它的谐振波长如何计算?是否会出现两个谐振点?

如果想清了上述琴弦的例子答案就清楚了。系统总长度不足4 3/4 波长的偶极天线(或者以地球、地网为镜象的单臂天线)只

有一个谐振频率取决于两臂的总长度。两臂对称相当于在阻抗最

低点加以驱动得到的是最低的阻抗。两臂长度不等相当于把弓子

偏近琴马拉弦费的力不同驱动点的阻抗比较高一些但是谐振频率

仍旧是一个由两臂的总长度决定。如果偏到极端一臂加长到 2

1/2 波长而另一臂缩短到 0 0 驱动点阻抗增大到几乎无穷大则成为端馈天线称为无线电发展早期用在汽艇上的齐柏林天线和现代

的 2 1/2 波长 0 R7000 垂直天线当然这时必须增加必要的匹配

电路才能连接到 0 50 欧姆的低阻抗发射机上。

偶极天线两臂不对称或者两臂周围导电物体的影响不对称会

使谐振时的阻抗变高。但只要总电气长度保持 2 1/2 波长不对称不是十分严重那么虽然特性阻抗会变高一定程度上影响 VSWR 但

是实际发射效果还不至于有十分明显的恶化。

r QRPer 不必苛求 VSWR

当 R VSWR 过高时主要是天线系统不谐振时因而阻抗存在很

大电抗分量时发射机末级器件可能需要承受较大的瞬间过电压。

早期技术不很成熟时高 R VSWR 容易造成射频末级功率器件的损坏。因此将R VSWR 控制在较低的数值例如 3 3 以内是必要的。

现在有些设备具有比较完备的高 R VSWR 保护当在线测量到的R VSWR 过高时会自动降低驱动功率所以烧末级的危险比 0 20 年以前降低了很多。但是仍然不要大意。

不过对于 P QRP 玩家讲来末级功率有时小到几乎没有烧末级的可能性。移动运用时要将便携的临时天线调到 VSWR R =1 1 却因为环境的变幻而要绞尽脑汁。这时不必太丧气。

1988 -9 1989 年笔者为 K BY1PK 试验 4W的的 CW/QRP 使用长度不足 5 1.5 米的三楼窗帘铁丝和长度为 5 1.5 米左右的塑料线做馈线用串并电容的办法调到天线电流最大测得 R VSWR 为无穷大却也联到了 JA 、 VK 、 U9 、H OH 等电台。后来做了一个小天调把把 R VSWR 调到 1 1 但对比试验中远方友台报告说R VSWR 的极大变化并没有给信号带来什么改进好像信号还变弱了些可能本来就微弱的信号被天调的损耗又吃掉了一些吧。

总之R VSWR 道理多多。既然有了业余电台总是免不了和VSWR打交道不妨多观察、积累、交流各自的心得吧。

天线系统和输出阻抗为 0 50 欧的发信机的匹配条件是天线系统阻抗为 0 50 欧纯电阻。要满足这个条件需要做到两点:第一天线电路与工作频率谐振(否则天线阻抗就不是纯电阻);第二选择适当的馈电点。

一些国外杂志文章在介绍天线时经常给出 R VSWR 的曲线。

有时会因此产生一种错觉只要 VSWR =1 1 总会是好天线。其实 VSWR=1 1 只能说明发射机的能量可以有效地传输到天线系

统。但是这些能量是否能有效地辐射到空间那是另一个问题。一副按理论长度作制作的偶极天线和一副长度只有 0 1/20 的缩短型天线只要采取适当措施它们都可能做到 VSWR =1 1 但发射效果肯定大相径庭不能同日而语。做为极端例子一个 0 50 欧姆的电阻它的 R VSWR 十分理想地等于 1 1 但是它的发射效率是 0 0 。

而如果 R VSWR 不等于 1 1 譬如说等于 4 4 那么可能性会有很多:天线感性失谐天线容性失谐天线谐振但是馈电点不对等等。在阻抗园图上每一个 R VSWR 数值都是一个园拥有无穷多个点。也就是说R VSWR 数值相同时天线系统的状态有很多种可能性因此两根天线之间仅用 R VSWR 数值来做简单的互相比较没有太严格的意义。

天线VSWR =1 1 说明天线系统和发信机满足匹配条件发信机的能量可以最有效地输送到天线上匹配的情况只有这一种。

本文不打算重复很多无线电技术书籍中关于电压驻波比的理论叙述只是想从感性认识的层面谈几个实用问题。

天线的主要性能指标和相关知识

天线的主要性能指标 1、方向图: 天线方向图是表征天线辐射特性空间角度关系的图形。以发射天线为例,从不同角度方向辐射出去的功率或场强形成的图形。一般地,用包括最大辐射方向的两个相互垂直的平面方向图来表示天线的立体方向图,分为水平面方向图和垂直面方向图。平行于地面在波束最大场强最大位置剖开的图形叫水平面方向图;垂直于地面在波束场强最大位置剖开的图形叫垂直面方向图。 描述天线辐射特性的另一重要参数半功率宽度,在天线辐射功率分布在主瓣最大值的两侧,功率强度下降到最大值的一半(场强下降到 最大值的0.707倍,3dB衰耗)的两个方向的夹角,表征了天线在指定方向上辐射功率的集中程度。一般地,GSM定向基站水平面半功 率波瓣宽度为65° 在120°的小区边沿,天线辐射功率要比最大辐射方向上低9-10dB。 2、方向性参数 不同的天线有不同的方向图,为表示它们集中辐射的程度,方向图的尖锐程度,我们引入方向性参数。理想的点源天线辐射没有方向性,在各方向上辐射强度相等,方向是个球体。我们以理想的点源天线作为标准与实际天线进行比较,在相同的辐射功率某天线产生于某点的电场强度平方E2与理想的点源天线在同一点产生的电场强度的平方E02的比值称为该点的方向性参数D=E2/E02? 3、天线增益 增益和方向性系数同是表征辐射功率集中程度的参数,但两者又不尽相同。增益是在同一输出功率条件下加以讨论的,方向性系数是在同一辐射功率条件下加以讨论的。由于天线各方向的辐射强度并不相等,天线的方向性系数和增益随着观察点的不同而变化,但其变化趋势是一致的。一般地,在实际应用中,取最大辐射方向的方向性系数和增益作为天线的方向性系数和增益。 另外,表征天线增益的参数有dBd和dBi。DBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称阵子天线的增益 dBi=dBd+2.15。相同的条件下,增益越高,电波传播的距离越远。 4、入阻输入阻抗 输抗是指天线在工作频段的高频阻抗,即馈电点的高频电压与高频电流的比值,可用矢量网络测试分析仪测量,其直流阻抗为0Q。 般移动通信天线的输入阻抗为50 Q。 5、驻波比 由于天线的输入阻抗与馈线的特性阻抗不可能完全一致,会产生部分的信号反射,反射波和入射波在馈线上叠加形成驻波,其相邻的电 压最大值与最小值的比即为电压驻波比VSWR假定天线的输入功率P1,反射功率P2,天线的驻波比VSWR=( +) / (-)。一般地说,移 动通信天线的电压驻波比应小于 1.5,但实际应用中VSWR应小于1.2。 6、极化方式 根据天线在最大辐射(或接收)方向上电场矢量的取向,天线极化方式可分为线极化,圆极化和椭圆极化。线极化又分为水平极化,垂 直极化和土45o极化。发射天线和接收天线应具有相同的极化方式,一般地,移动通信中多采用垂直极化或土45o极化方式。 7、双极化天线隔离度 双极化天线有两个信号输入端口,从一个端口输入功率信号P1dBm,从另一端口接收到同一信号的功率P2dBm之差称为隔离度,即隔 离度=P1-P2。 移动通信基站要求在工作频段内极化隔离度大于28dB。土45o双极化天线利用极化正交原理,将两副天线集成在一起,再通过其他的一 些特殊措施,使天隔离度大于30dB。 天线常识

CCD摄像机常见性能和主要性能指标要点

关键字:监控监控摄像机摄像机 CCD摄像机监视器CCD摄像机常见性能和主要性能指标 (一)摄像机清晰度 清晰度数是衡量摄像机优劣的一个重要参数,它指的是当摄像机摄取等间隔排列的黑白相间条纹时,在监视器(应比摄像机的分辨率高)上能够看到的最多线数。当超过这一线数时,屏幕上就只能看到灰蒙蒙的一片而不能再辨出黑白相间的线条。 工业监视用摄像机的分辨率通常在380~460线之间,广播级摄像机的分辨率则可达到700线左右。清晰度是由摄像器件像素多少决定的,显然摄像器件的像素越多,得到的图像越清晰,反之也然。清晰度越高,说明摄像机档次越高,反之越低。(二)摄像机最低照度 最低照度是最低照度是当被摄景物的光亮度低到一定程度而使摄像机输出的视频信号电平低到某一规定值时的景物光 亮度值。一般彩色摄像机的最低照度为2~3LUX,照度的测定是以在一定的镜头光圈系数为前提,因此,不能只看摄像机说明书中标明的最低照度,应按摄像机在同一光圈系数下其照度值的大小。最低照度越小,摄像机档次越高。相对于彩色摄像机而言,黑白摄像机由于没有色度处理而只对光线的强弱(亮度)信号敏感,所以黑白摄像机的照度比彩色摄像机照度要低,一般可做到

0.1LUX在F1.4时,至于微光摄像机则更低。有关光圈系数的知识请参阅镜头一节。 视频信号的标称值为1Vp-p,标准值为0.7Vp-p,最低照度时的视频信号值为1/3到1/2的标准植。所以摄像机在最低照度时的图像,决不会“如同白昼一样”。另外,摄像机在最低照度时产生的图像清晰度,是用电视信号测试卡进行测式的,其黑白相间的条纹,要求黑色反射率近于0%,白色反射率大于89.9%。而我们在现场观察时有时不具备这样的条件,比如:树叶和草地的反射率很低,反差很小,就不易获得清晰图像。因此实际使用当中不能以摄像机标称的最低照度作为衡量现场环境照度的标准。 (三)摄像机信噪比 信噪比也是摄像机的一个重要的性能指标。当摄像机摄取较亮场景时,监视器显示的画面通常比较明快,观察者不易看出画面中的干扰噪点;而当摄像机摄取较暗的场景时,监视器显示的画面就比较昏暗,观察者此时很容易看到画面中雪花状的干扰噪点。干扰噪点的强弱(也即干扰噪点对画面的影响程度)与摄像机信噪比指标的好坏有直接关系,即摄像机的信噪比越高,干扰噪点对画面的影响就越小。 所谓“信噪比”指的是信号电压对于噪声电压的比值,通常用符号S/N来表示。由于在一般情况下,信号电压远高于噪声电压,比值非常大,因此,实际计算摄像机信噪比的大小通常

摄像机的性能指标

摄像机的性能指标 更新日期:2009-10-24 14:58 在常用的摄像机中,根据数据接口的不同,可分为常规摄像机和数字式摄像机,前者输出标准的AV和S端子信号,后者以USB和IEEE1394为通信标准。 1. 常规摄像机的主要性能指标 (1)CCD尺寸(Image Sensor) 由于生产工艺的不同,CCD所采用的原材料可接受的刻蚀精度也不同,厂家常用的CCD尺寸有1/4寸和1/3寸两种规格,近期出现了1/2.7寸和1/1.8寸规格。 (2)CCD有效像素(Effective Pixels) 有效像素指CCD感光元件可受光信号、并转换成电信号的最大区域。PAL制下的CCD一般有效像素为:752(H)×585(V)。 (3)水平扫描线(Horizontal Resolution) 由于CCD元件的电信号采样是采用垂直和水平两方向交叉定位的方式来提取单点元素的RGB数值,所以水平和垂直扫描的精度直接影响着图像的精度。人们常以水平扫描的线数来衡量镜头的精度等级,作为通信用的专业摄像机,该数值一般要求在450以上,目前市面上的产品以480线为主流。 (4)光学变焦倍数(Lens Zoom) 目标物体的反射的光信号,需要经过光学镜头组,才能聚焦在CCD上,形成清晰的图像,光学镜头组所采用的玻璃透光性、滤光性是各厂家需要保证的根本要素。 此外,光学镜头组在超声波电机的带动下,能够实现的光学变焦倍数成为了一个面对用户最主要的指标。常见的倍数有8x、10x和12x,某厂家推出来的产品,该参数可以达到22x。 (5)数字变焦倍数(Digital Zoom)

数字变焦是采用软件差值计算的方式,将CCD形成的当前的图像进行局部取样,形成指定像素的信号。数字变焦倍数的数值依赖于CCD的有效像素和内置DSP芯片的处理能力,各厂家一般都提供10x和12x两档常规指标。 (6)信号制式(Video Signal) 信号制式一般有NTSC和PAL两种。根据中国的电视广播及通信的规范,中国地区适用PAL制。 (7)信号输出格式(Signal Output Format) 大家常见的视频信号都是采用AV Video复合信号,以及S-Video分离信号两种,后者相对来说信号质量较前者稳定。 (8)信噪比(Signal Noise Ratio) 衡量视频信号的指标是信号的信噪比,表示了信号中,能够提取的有效信号的比率,市面的各款摄像机的SNR都大于45dB。 2. USB1.1/2.0以及IEEE1394界面摄像头的性能指标 近年来,随着个人桌面视频会议系统的普及,采用USB和IEEE1394作为图像摄像机(俗称摄像头)输入界面的产品层出不穷。 USB的摄像头目前的市场占有率超过95%,其中采用USB1.1的产品占大部分,这类产品的性能可以从以下几个方面考量。 (1)感光元件(Image Sensor) 市面上的USB摄像头多采用CMOS,现在的CMOS生产工艺经过优化后,基本消除了元件老化的缺陷,并行输出的数据流量大,我们称之“二代CMOS”。 个别厂家亦推出了采用CCD为感光元件的产品。 (2)有效像素(Effective Pixels)

主要技术性能指标及参数

主要技术性能指标及参数 序号项目名称项目特征描述计量 单位 数量 1 水平输送机1.带宽550,长10m, 2.输送功率4kw,升降,线速度≤s, 3.处理能力:50t/h。 台 1 2 升降输送机1.带宽550,长15m 或18m, 2.输送功率,升降,线速度≤s, 3.处理能力:50-80t/h 台 1 3 卸粮机1.带宽550,8S+4D, 2.输送功率4kw,线速度≤s, 3.处理能力:50-100t/h 台 1 4 电动行走装仓 机 1.带宽550,12+6、含电动行走,新式方向盘, 2.输送,升降3kw,伸缩,行走 台 1 5 探粮器1.主机功率:1800w; 2.电源:220 50hz; 3.不锈钢管直径28mm。。 台 1 6 分样器适用于小麦、玉米、大豆等颗粒粮食样品的等量分样台 1 7 快速水分检测 仪 1.测量范围:3~35%(因样品种类而异) 2.显示分辨率:%, 3.测量精度:水分:干燥法的标准误差为%以下(水 分低于20%的全部样品), 4.测量品种:小麦、玉米等多个品种; 5.重复性误差:≤±%,重量:内置电子天平, 6.温度:自动温度补偿。 台 1 8 小麦容重器1.容重器大工作称重:1000±2g ; 2.容重器小工作称重:100g ; 3.容重器分辨力:1g ; 4.容重筒容积:1000± ; 5.供电电源:220v; 6.工作条件环境温度5℃-40℃ 7.相对湿度<90%RH ; 台 1

8.测量方式:组合式测量 9 玉米容重器1.容重器大工作称重:1000±2g ; 2.容重器小工作称重:100g ; 3.容重器分辨力:1g ; 4.容重筒容积:1000± ; 5.供电电源:220v; 6.工作条件环境温度5℃-40℃ 7.相对湿度<90%RH ; 8.测量方式:组合式测量 台 1 10 天平1.称量范围0-200g; 2.读取精度; 3.重复性±; 4.线性误差±; 5.称盘尺寸Ф80mm; 6.输出接口RS232C; 7.外型尺寸34cm××35cm(长*宽*高); 8.电源AC 110-240V; 台 1 11 害虫显微镜1.产品倍数:40-1600倍; 2.产品材质:全金属材质; 3.产品光源:LED上下电光源; 4.供电方式:电池; 5.产品配置:广角目镜、倍增镜、标本移动卡尺; 6.具有精细调节及微调功能 台 2 12 地磅1.称台规格:宽米、长16米、10mm-12mm(+, 2.称重量:100t; 3.数字高精度30吨桥式传感器; 4.不锈钢外壳数字仪表; 5.不锈钢防浪涌10线接线盒;衡器专用?4#主线;5H 防水外显屏; 6.称重管理软件一套; 7.附件含台式电脑、打印机; 8.含称台基础。 台 1

摄像机的选择和主要参数

摄像机的选择和主要参数 在闭路监控系统中,摄像机又称摄像头或CCD(Charge Coupled Device)即电荷耦合器件。 严格来说,摄像机是摄像头和镜头的总称,而实际上,摄像头与镜头大部分是分开购买的,用户根据目标物体的大小和摄像头与物体的距离,通过计算得到镜头的焦距,所以每个用户需要的镜 头都是依据实际情况而定的,不要以为摄像机(头)上已经有镜头。 摄像头的主要传感部件是CCD,它具有灵敏度高、畸变小、寿命长、抗震动、抗磁场、体积小、无残影等特点,CCD是电耦合器件(Charge Couple Device)的简称,它能够将光线变为电荷并可将电荷储存及转移,也可将储存之电荷取出使电压发生变化,因此是理想的摄象元件。是代替摄像管传感器的新型器件。 CCD的工作原理是:被摄物体反射光线,传播到镜头,经镜头聚焦到CCD芯片上,CCD根据光的强弱积聚相应的电荷,经周期性放电,产生表示一幅幅画面的电信号,经过滤波、放大处理,通过摄像头的输出端子输出一个标准的复合视频信号。这个标准的视频信号同家用的录像机、VCD机、家用摄像机的视频输出是一样的,所以也可以录像或接到电视机上观看。 CCD摄象机的选择和分类 CCD芯片就像人的视网膜,是摄像头的核心。目前我国尚无能力制造,市场上大部分摄像头采用的是日本SONY、SHARP、松下、LG等公司生产的芯片,现在韩国也有能力生产,但质量就要稍逊一筹。因为芯片生产时产生不同等级,各厂家获得途径不同等原因,造成CCD采集效果也大不相同。在购买时,可以采取如下方法检测:接通电源,连接视频电缆到监视器,关闭镜头光圈,看图像全黑时是否有亮点,屏幕上雪花大不大,这些是检测CCD芯片最简单直接的方法,而且不需要其它专用仪器。然后可以打开光圈,看一个静物,如果是彩色摄像头,最好摄取一个色彩鲜艳的物体,查看监视器上的图像是否偏色,扭曲,色彩或灰度是否平滑。好的CCD 可以很好的还原景物的色彩,使物体看起来清晰自然;而残次品的图像就会有偏色现象,即使面对一张白纸,图像也会显示蓝色或红色。个别CCD由于生产车间的灰尘,CCD靶面上会有杂质,在一般情况下,杂质不会影响图像,但在弱光或显微摄像时,细小的灰尘也会造成不良的后果,如果用于此类工作,一定要仔细挑选。 1、依成像色彩划分 彩色摄象机:适用于景物细部辨别,如辨别衣着或景物的颜色。 黑白摄象机:适用于光线不充足地区及夜间无法安装照明设备的地区,在仅监视景物的位置或移动时,可选用黑白摄象机。 2、依分辨率灵敏度等划分 影像像素在38万以下的为一般型,其中尤以25万像素(512*492)、分辨率为400线的产品最普遍。 影像像素在38万以上的高分辨率型。 机板型。针孔型。半球型。 3、按CCD靶面大小划分 CCD芯片已经开发出多种尺寸: 目前采用的芯片大多数为1/3”和1/4”。在购买摄像头时,特别是对摄像角度有比较严格要求的时候,CCD靶面的大小,CCD与镜头的配合情况将直接影响视场角的大小和图像的清晰度。 1英寸——靶面尺寸为宽12.7mm*高9.6mm,对角线16mm。 2/3英寸——靶面尺寸为宽8.8mm*高6.6mm,对角线11mm。 1/2英寸——靶面尺寸为宽6.4mm*高4.8mm,对角线8mm。 1/3英寸——靶面尺寸为宽4.8mm*高3.6mm,对角线6mm。 1/4英寸——靶面尺寸为宽3.2mm*高2.4mm,对角线4mm。

摄像机性能指标的测试方法

摄像机性能指标的测试方法 在不同使用环境下,怎样选购合适的摄像机,本文对摄像机的主要性能参数,测试方法和采购时应注意的事项介绍一些经验和看法 如何正确认识摄像机的分辨率指标 分辨率 分辨率是衡量摄像机优劣的一个重要参数,指的是当摄像机摄取等间隔排列的黑白相间条纹时,在监视器上人眼能够看到的最大线数,当超过这一线数时,屏幕上就只能看到灰蒙蒙的一片而不能分辨出黑白相间的线条。清晰度又分为水平分辨率和垂直分辨率。 测试方法 摄像机拍摄综合测试图,用目视法观察监视器上图像中心楔上能分辨的最大线数或十组中心清晰度线段能分辨的最大线数。 测试时应注意 (1)要使用成像质量好的镜头,因为镜头的好坏影响最终的测试结果。 (2)显示时使用黑白监视器,线数应在600线以上,如果使用彩色敬爱那时起,要将色饱和度旋纽调至最低,避免色度信号对亮度信号的干扰。 采购时应注意 (1)使用索尼、松下原装摄像机做横向对比,观察两种摄像机在分辨黑白线条组时差距; 原装机的性能指标真实可靠,通过对比,可以对采购摄像机的清晰度指标得出正确的结论。 (2)购买单板机时,有时配套的镜头成像质量较差,除了要测试中心分辨率外,还是测试四个角的分辨率,不能出现模糊和变形,否则,就要更换较好的镜头。 最低照度指标要有相关的条件 最低照度的概念 摄像机产生的亮度输出电平,是额定电平(700mv)的一半时,被摄物体的最小照度。 测试方法 (1)对比法:敬爱能够摄像机置于暗室,选择一部名厂的原装摄像机作对比,使用三个同型号的手动光圈镜头,暗室内装有调压器控制的200v白炽灯,以调压器调节电压的高低来调节暗室内灯的明暗,电压可以从0伏调到220伏,室内光亮也可以从最暗调至最亮,将两部摄像机分别对准层次丰富的物体,调低室内的光亮度,直至看不清物体的暗部层次,或者将镜头光圈调小一级作对比,根据名厂的原装摄像机标称的最低照亮度之推测出待测摄像机的最低照度值。 (2)仪器法:同样在暗室中测试,将摄像机对准十级灰度测试卡,调低室内的光亮度,直至摄像机输出的视频信号在示波器上的幅度降至350mv,再用测光表测量测试卡表面的照度值,计算出最低照度。 测试时应注意的事最低照度的数值与下列四个因素有关 (1)镜头的光圈 (2)光源的色温 (3)视频信号的幅度 (4)反射率(目标的反射率和背景) 只有表明以上四个相关条件,测试出的最低照度才是有意义的,不能抛开上述四项测试条件而单纯比较某品牌摄像机的照度标称值和另一个品牌摄像机的照度标称值去比较,否则根本不能得出那部摄像机的低照度特性更好的结论。

安防监控摄像机主要技术参数

摄像机的发展速度很快,从摄像管到CCD元件,以其构成的CCD摄像机具有体积小、重量轻、不受磁场影响、具有抗震动和撞击等特点,同时清晰度、照度、可靠性等指标大大提高而被 广泛应用。CCD是Charge Coupled Device( 电荷耦合器件)的缩写,它是一种半导体成像器件,因而具有灵敏度高、抗强光、畸变小、体积小、寿命长、抗震动等优点。 被摄物体的图像经过镜头聚焦至CCD芯片上,CCD根据光的强弱积累相应比例的电荷, 各个像素积累的电荷在视频时序的控制下,逐点外移,经滤波、放大处理后,形成视频信号 输出。视频信号连接到监视器或电视机的视频输入端便可以看到与原始图像相同的视频图像。 一、CCD摄像机的分类 ㈠按照成像色彩划分 CCD摄像机按成像色彩划分为彩色摄像机和黑白摄像机两种。除色度处理方面不同外, 其它原理基本一致。主要有光学系统、光电转换系统、信号处理系统组成。其中光电转换系 统是摄像机的核心。 自然图像通过光学镜头成像于摄像机的光靶面上,彩色摄像机的光学系统中使用相干分 色棱镜或特殊条状滤色镜将光信号分成红、绿、蓝三色光信号,光电转换系统通过摄像管或 CCD元件利用电视扫描方法把光图像信号转换成随时间变化的视频电信号,再经放大、处理、 编码而成为全电视信号。 ㈡按照分辨率划分 按照分辨率划分为25万像素左右,对应彩色330线/黑白400线的低档型;25万至38 万像素之间,对应彩色420线/黑白500线的中档型;38万像素以上,对应彩色大于或等于 4 60线黑白570线以上的高档型。 ㈢按照摄像机灵敏度划分 按照灵敏度可分为最低照度1至3lux的普通型;0.1lux 左右的月光型;0.01lux 以下的 星光型以及原则上可以为0Lux,采用红外光源成像的红外照明型。 ㈣按照CCD靶面尺寸划分 摄像机摄像器件(CCD)的尺寸分为1英寸、1/2英寸、1/3英寸、1/4英寸等。其中以1 /3英寸和1/2英寸最为常见。

常用监控摄像机的一些主要技术参数

常用监控摄像机的一些主要技术参数 (1)色彩 监控摄像机有黑白和彩色两种,通常黑白监控摄像机的水平清晰度比彩色监控摄像机高,且黑白监控摄像机比彩色监控摄像机灵敏,更适用于光线不足的地方和夜间灯光较暗的场所。黑白监控摄像机的价格比彩色便宜。但彩色的图像容易分辨衣物与场景的颜色,便于及时获取、区分现场的实时信息. (2)清晰度 分为水平清晰度和垂直清晰度两种。垂直方向的清晰度受到电视制式的限制,有一个最高的限度,由于我国电视信号均为PAL制式,PAL制垂直清晰度为400行。所以摄像机的清晰度一般是用水平清晰度表示。水平清晰度表示人眼对电视图像水平细节清晰度的量度,用电视线TVL表示。 过去选用黑白监控摄像机的水平清晰度一般应要求大于500线,彩色监控摄像机的水平清晰度一般应要求大于400线。目前,高清监控摄像机已经达到1080P. (3)照度 单位被照面积上接受到的光通量称为照度。Lux(勒克斯)是标称光亮度(流明)的光束均匀射在lm2面积上时的照度。监控摄像机的灵敏度以最低照度来表示,这是监控摄像机以特定的测试卡为摄取标,在镜头光圈为0.4时,调节光源照度,用示波器测其输出端的视频信号幅度为额定值的10%,此时测得的测试卡照度为该摄像机的最低照度。所以实际上被摄体的照度应该大约是最低照度的10倍以上才能获得较清晰的图像。 目前一般选用黑白监控摄像机的最低照度,当相对孔径为F/1.4时,最低照度要求选用小于0.1Lux;选用彩色监控摄像机的最低照度,当相对孔径为F/1.4时,最低照度要求选用小于0.2Lux。

(4)同步 要求监控摄像机具有电源同步、外同步信号接口。对电源同步而言,使所有的摄像机由监控中心的交流同相电源供电,使监控摄像机场同步信号与市电的相位锁定,以达到摄像机同步信号相位一致的同步方式。对外同步而言,要求配置一台同步信号发生器来实现强迫同步,电视系统扫描用的行频、场频、帧频信号,复合消隐信号与外设信号发生器提供的同步信号同步的工作方式。系统只有在同步的情况下,图像进行时序切换时就不会出现滚动现象,录、放像质量才能提高。 (5) 电源 监控摄像机电源一般有交流220V,交流24V,直流12V,可根据现场情况选择摄像机电源但推荐采用安全低电压。选用12V直流电压供电时,往往达不到摄像机电源同步的要求,必须采用外同步方式,才能达到系统同步切换的目的。 (6) 自动增益控制(AGC) 所有摄像机都有一个将来自CCD的信号放大到可以使用水准的视频放大器,其放大量即增益,等效于有较高的灵敏度,可使其在微光下灵敏,然而在亮光照的环境中放大器将过载,使视频信号畸变。为此,需利用摄像机的自动增益控制(AGC)电路去探测视频信号的电平,适时地开关AGC,从而使摄像机能够在较大的光照范围内工作,此即动态范围,即在低照度时自动增加摄像机的灵敏度,从而提高图像信号的强度来获得清晰的图像。 (7)白平衡 白平衡只用于彩色摄像机,其用途是实现摄像机图像能精确反映景物状况,有手动白平衡和自动白平衡两种方式。 A) 自动白平衡连续方式--此时白平衡设置将随着景物色彩温度的改变而连续地调整,范围为2800~6000K。这种方式对于景物的色彩温度在拍摄期间不断改变的场合是最适宜的,

天线主要性能指标和相关知识

天线主要性能指标和相关知识 天线的主要性能指标 1、方向图: 天线方向图是表征天线辐射特性空间角度关系的图形。以发射天线为例从不同角度方向辐射出去的功率或场强形成的图形。一般地用包括最大辐射方向的两个相互垂直的平面方向图来表示天线的立体方向图分为水平面方向图和垂直面方向图。平行于地面在波束最大场强最大位置剖开的图形叫水平面方向图;垂直于地面在波束场强最大位置剖开的图形叫垂直面方向图。 描述天线辐射特性的另一重要参数半功率宽度在天线辐射功率分布在主瓣最大值的两侧功率强度下降到最大值的一半(场强下降到最大值的 0.707 倍3dB 衰耗)的两个方向的夹角表征了天线在指定方向上辐射功率的集中程度。一般地GSM 定向基站水平面半功率波瓣宽度为 65°在 120°的小区边沿天线辐射功率要比最大辐射方向上低 9-10dB。 2、方向性参数不同的天线有不同的方向图为表示它们集中辐射的程度方向图的尖锐程度我们引入方向性参数。理想的点源天线辐射没有方向性在各方向上辐射强度相等方向是个球体。我们以理想的点源天线作为标准与实际天线进行比较在相同的辐射功率某天线产生于某点的电场强度平方 E2 与理想的点源天线在同一点产生的电场强度的平方 E02 的比值称为该点的方向性参数D=E2/E02。

3、天线增益增益和方向性系数同是表征辐射功率集中程度的参数但两者又不尽相同。增益是在同一输出功率条件下加以讨论的方向性系数是在同一辐射功率条件下加以讨论的。由于天线各方向的辐射强度并不相等天线的方向性系数和增益随着观察点的不同而变化但其变化趋势是一致的。一般地在实际应用中取最大辐射方向的方向性系数和增益作为天线的方向性系数和增益。 另外表征天线增益的参数有 dBd 和 dBi。DBi 是相对于点源天线的增益在各方向的辐射是均匀的;dBd 相对于对称阵子天线的增益dBi=dBd+2.15。相同的条件下增益越高电波传播的距离越远。 4、入阻输入阻抗输抗是指天线在工作频段的高频阻抗即馈电点的高频电压与高频电流的比值可用矢量网络测试分析仪测量其直流阻抗为 0Ω。一般移动通信天线的输入阻抗为 50Ω。 5、驻波比由于天线的输入阻抗与馈线的特性阻抗不可能完全一致会产生部分的信号反射反射波和入射波在馈线上叠加形成驻波其相邻的电压最大值与最小值的比即为电压驻波比 VSWR。假定天线的输入功率 P1反射功率 P2天线的驻波比 VSWR=(+)/(-)。一般地说移动通信天线的电压驻波比应小于 1.5但实际应用中 VSWR 应小于 1.2。 6、极化方式根据天线在最大辐射(或接收)方向上电场矢量的取向天线极化方式可分为线极化圆极化和椭圆极化。线极化

摄像机主要性能参数

摄像机基础培训(三) 一、CCD彩色摄像机的主要技术指标或测量方法 1、CCD彩色摄像机的主要技术指标 (1)CCD尺寸,亦即摄像机靶面。一般来说,尺寸越大,包含的像素越多,清晰度就越高,性能也就越好。在像素数目相同的条件下,尺寸越大,则显示的图像层次越丰富。 (2)CCD像素,是CCD的主要性能指标,它决定了显示图像的清晰程度,分辨率越高,图像细节的表现越好。CCD是由面阵感光元素组成,每一个元素称为像素,像素越多,图像越清晰。现在市场上大多以25万和38万像素为划界,38万像素以上者为高清晰度摄像机。 (3)水平分辨率。彩色摄像机的典型分辨率是在320到500电视线之间,主要有330线、380线、420线、460线、500线等不同档次。分辨率是用电视线(简称线TV LINES)来表示的,彩色摄像头的分辨率在330-500线之间。分辨率与CCD和镜头有关,还与摄像头电路通道的频带宽度直接相关,通常规律是1MHz的频带宽度相当于清晰度为80线。频带越宽,图像越清晰,线数值相对越大。分辨率是水平线的数量乘上。因此最高垂直分辨率为:NTSC :525 X =393 条;PAL :625 X = 470 条。水平分辨率测量方法: a、检验(解析)图:将摄影机直接拍摄检验图,在监视器上直接读取垂直及水平分辨率。当多个摄像机进行测试时,应使用相同镜头,(推荐使作定焦、二可变镜头),以测试卡中心圆出现在监视器屏幕的左右边为准,清晰准确的数出已给的刻度线共10组垂直线和10组水平线。分别代表着垂直清晰度和水平清晰度,并给出相应的线数。如垂直350线水平800线。此时最好用高线的黑白监视器。测试时可在远景物聚焦,也可边测边聚焦。最好能两者兼用,可看出此摄像机的差异(对远近会聚)。 b、频宽测量:使用示波器测量摄影机读取图像讯号频宽, 测量出频宽再乘

天线的几个重要参数介绍

一、天线的几个重要参数介绍 1.天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。 xx: 它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于 1.5。回波损耗: 它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于 14dB。 2.天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能

摄像机的选择和主要参数

摄像机的选择和主要参数 摄像机的选择和主要参数 在闭路监控系统中,摄像机又称摄像头或()即电荷耦合器件。严格来说,摄像机是摄像头和镜头的总称,而实际上,摄像头与镜头大部分是分开购买的,用户根据目标物体的大小和摄像头与物体的距离,通过计算得到镜头的焦距,所以每个用户需要的镜头都是依据实际情况而定的,不要以为摄像机(头)上已经有镜头。 摄像头的主要传感部件是,它具有灵敏度高、畸变小、寿命长、抗震动、抗磁场、体积小、无残影等特点,是电耦合器件()的简称,它能够将光线变为电荷并可将电荷储存及转移,也可将储存之电荷取出使电压发生变化,因此是理想的摄像元件。是代替摄像管传感器的新型器件。 的工作原理是:被摄物体反射光线,传播到镜头,经镜头聚焦到芯片上,根据光的强弱积聚相应的电荷,经周期性放电,产生表示一幅幅画面的电信号,经过滤波、放大处理,通过摄像头的输出端子输出一个标准的复合视频信号。这个标准的视频信号同家用的录像机、机、家用摄像机的视频输出是一样的,所以也可以录像或接到电视机上观看。 摄像机的选择和分类芯片就像人的视网膜,是摄像头的核心。目前我国尚无能力制造,市场上大部分摄像头采用的是日本、、松下、等公司生产的芯片,现在韩国也有能力生产,但质量就要稍逊一筹。因为芯片生产时产生不同等级,各厂家获得途径不同等原因,造成采集效果也大不相同。在购买时,可以采取如下方法检测:接通电源,连接视频电缆到监视器,关闭镜头光圈,看图像全黑时是否有亮点,屏幕上雪花大不大,这些是检测芯片最简单直接的方法,而且不需要其它专用仪器。然后可以打开光圈,看一个静物,如果是彩色摄像头,最好摄取一个色彩鲜艳的物体,查看监视器上的图像是否偏色,扭曲,色彩或灰度是否平滑。好的可以很好的还原景物的色彩,使物体看起来清晰自然;而残次品的图像就会有偏色现象,即使面对一张白纸,图像也会显示蓝色或红色。个别由于生产车间的灰尘,靶面上会有杂质,在一般情况下,杂质不会影响图像,但在弱光或显微摄像时,细小的灰尘也会造成不良的后果,如果用于此类工作,一定要仔细挑选。 1、依成像色彩划分彩色摄像机:适用于景物细部辨别,如辨别衣着或景物的颜色。黑白摄像机:适用于光线不充足地区及夜间无法安装照明设备的地区,在仅监视景物的位置或移动时,可选用黑白摄像机。 2、依分辨率灵敏度等划分影像像素在万以下的为一般型,其中尤以万像素(*)、分辨率为线的产品最普遍。影像像素在万以上的高分辨率型。 3、按靶面大小划分芯片已经开发出多种尺寸:目前采用的芯片大多数为"和"。在购买摄像头时,特别是对摄像角度有比较严格要求的时候,靶面的大小,与镜头的配合情况将直接影响视场角的大小和图像的清晰度。英寸靶面尺寸为宽*高,对角线。英

天线性能的主要参数

天线性能的主要参数 有方向图,增益,输入阻抗,驻波比,极化方式等。 1 天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。一般移动通信天线的输入阻抗为50Q。 xx: 它是行波系数的倒数,其值在 1 到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR应小于1.2。过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。 回波损耗: 它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在OdB的到无 穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。 0 表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于14dB。 2 天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而 使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅

摄像机四大关键参数图解

信噪比: 就是摄像机抵抗影像干扰的能力,信噪比越大约好。目前主流摄像机的信噪比是 的可以到60DB 超宽动态: 超宽动态是在非常强烈的对比下让摄像机看到影像的特色。具有280:1 的超宽动态范 围,统摄像机只具有的3:1 动态范围超出了90 倍。自然光线排列成从120,000Lux 到星 光夜里的0.00035Lux 。当摄像机从室内看窗户外面,室内照度为100Lux ,而外面风景的 照度可能是 52DB,最大 比传 1000:1

10,000Lux ,对比就是10,000/100=100:1 。这个对比人眼能很容易地看到,因为人眼能处理的对比度,然而传统的闭路监控摄像机处理它会有很大的问题,传统摄像机只有3:1 的对比性能,它只能选择使用1/60 秒的电子快门来取得室内目标的正确曝光,但是室外的影像会被清除掉(全白);或者换种方法摄像机选择1/6000 秒取得室外影像完美的曝光,但是室内的影像会被清除(全黑)。这是一个自从摄像机被发明以来就一直长期存在的缺陷。 背光补偿: 背光补偿提供在非常强的背景光线前面目标的理想的曝光。 一个不具有背光补偿的普通摄像机,当一个主要目标后面的非常亮的背景或一个点光源是不 可避免的,摄像机将取得所有近来光线的平均值并决定曝光的等级,这并不是一个好的方法,因为 当快门速度增加的时候,光圈会被关闭导致主要目标变得太黑而不被看见。为了克服这个问题,一

种称为背光补偿的方法通过加权的区域理论被广泛使用在多数摄像机上。影像首先被分割成7 块或6 个区域(两个区域是重复的),每个区域都可以独立加权计算曝光等级,例如中间部分就可以加到其余区块的9 倍,因此一个在画面中间位置的目标可以被看得非常清晰,因为曝光主要是参照中间区域的光线等级进行计算。然而有一个非常大的缺陷,如果主要目标从中闲移动到画面的上下左右位置,目标会变得非常黑,因为现在它不被区别开来已经不被加权。解决上面问题的唯一方法就是智能化摄像机,当主要目标移动时相应的加权区域立刻随之移动,这个技术称为超级背光补偿。数字讯号处理器首先将影像分割成320X240( 76,800 ) 个极微小的区域,每个区域都在不停地扫描寻找主要目标和过度曝光的像素,这些过度曝光的点将首先从计算方案中移除,剩下的灰度等级区域将用来计算曝光的等级。人工智能增强搜索主要目标并给以适当的加权等级以更深层调整到完美的曝光等级。用户会惊奇地发现数字讯号处理器是如此的快,不管主要目标移动到画面中的任意位置,曝光等级总是能直接跟进并取得清晰的影像。

天线的主要性能指标

天线的主要性能指标 表征天线性能的主要参数有方向图,增益,输入阻抗,驻波比,极化,双极化天线的隔离度,及三阶交调等。 1、方向图 天线方向图是表征天线辐射特性空间角度关系的图形。以发射天线为例,从不同角度方向辐射出去的功率或场强形成的图形。一般地,用包括最大辐射方向的两个相互垂直的平面方向图来表示天线的立体方向图,分为水平面方向图和垂直面方向图。平行于地面在波束最大场强最大位置剖开的图形叫水平面方向图;垂直于地面在波束场强最大位置剖开的图形叫垂直面方向图。 描述天线辐射特性的另一重要参数半功率宽度,在天线辐射功率分布在主瓣最大值的两侧,功率强度下降到最大值的一半(场强下降到最大值的 0.707倍,3dB衰耗)的两个方向的夹角,表征了天线在指定方向上辐射功率的集中程度。 一般地,GSM定向基站水平面半功率波瓣宽度为65o,在120o的小区边沿,天线辐射功率要比最大辐射方向上低9-10dB。 2、方向性参数 不同的天线有不同的方向图,为表示它们集中辐射的程度,方向图的尖锐程度,我们引入方向性参数。理想的点源天线辐射没有方向性,在各方向上辐射强度相等,方向是个球体。我们以理想的点源天线作为标准与实际天线进行比较,在相同的辐射功率某天线产生于某点的电场强度平方E2与理想的点源天线在同一点产生的电场强度的平方E02的比值称为该点的方向性参数 D=E2/E02。 3、天线增益 增益和方向性系数同是表征辐射功率集中程度的参数,但两者又不尽相同。

增益是在同一输出功率条件下加以讨论的,方向性系数是在同一辐射功率条件下加以讨论的。由于天线各方向的辐射强度并不相等,天线的方向性系数和增益随着观察点的不同而变化,但其变化趋势是一致的。一般地,在实际应用中,取最大辐射方向的方向性系数和增益作为天线的方向性系数和增益。 另外,表征天线增益的参数有dBd和dBi。DBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+ 2.15。相同的条件下,增益越高,电波传播的距离越远。 4、入阻输入阻抗 输抗是指天线在工作频段的高频阻抗,即馈电点的高频电压与高频电流的比值,可用矢量网络测试分析仪测量,其直流阻抗为0Ω。一般移动通信天线的输 入阻抗为50Ω。 5、xx 由于天线的输入阻抗与馈线的特性阻抗不可能完全一致,会产生部分的信号反射,反射波和入射波在馈线上叠加形成驻波,其相邻的电压最大值与最小值的比即为电压驻波比VSWR。假定天线的输入功率P1,反射功率P2,天线的驻波比VSWR=(+)/(-)。一般地说,移动通信天线的电压驻波比应小于 1.5,但实际应用xxVSWR应小于 1.2。 6、极化方式 根据天线在最大辐射(或接收)方向上电场矢量的取向,天线极化方式可分为线极化,圆极化和椭圆极化。线极化又分为水平极化,垂直极化和±45o极化。 发射天线和接收天线应具有相同的极化方式,一般地,移动通信中多采用垂直极化或±45o极化方式。

产品主要技术指标

1.产品主要技术指标 9

2.产品出厂缺省值 3.声光显示 3.1.正常工作状态下: 3.1.1.有效指令:嘟短声 3.1.2.无效指令:嘟长声 3.2.编程状态下: 3.2.1.绿灯常亮 3.2.2.有效指令:嘟嘟两声3.2.3.无效指令:嘟嘟嘟三声 9

4.撤销未完成的指令: 在键入指令没有全部完成前,按下[*]键,可以撤销该项指令 5.功能及设置 5.1.进入编程: [*]+[6位编程密码]嘟嘟,缺省:990101 5.2.修改编程密码: [0] +[输入6位新编程密码] +[重复输入6位新编程密码] 5.3.设置有效卡: [5] +[输入3位编码]嘟嘟 +[感应卡1]嘟、嘟嘟 +[感应卡2]嘟、嘟嘟 +…… +[感应卡n]嘟、嘟嘟 +[*]嘟嘟,完成加卡 5.3.1.3位编码:是001——500之间不可重 复数字。该编码是在卡丢失后删除卡 的重要方式,请发卡人员妥善保存卡 编码 5.3.2.连续设置有效卡时,每张卡的编码按 9

前一张卡的编码+1递增。例如输入编 码为015,再次读卡时,再次卡的编 码为016……依次类推 5.3.3.有效卡缺省个人密码:0000。 “0000”的个人秘密为无效密码,必 须将该密码修改为非“0000”的密码 才能生效。 5.4.删除有效卡: 5.4.1.编码方式删卡: [7] +[输入3位编码1]嘟嘟 +[输入3位编码2]嘟嘟 +…… +[输入3位编码n]嘟嘟 +[*]嘟嘟,完成删卡 5.4.2.感应方式删卡: [7] +[感应卡1]嘟、嘟嘟 +[感应卡2]嘟、嘟嘟 +…… +[感应卡n]嘟、嘟嘟 +[*]嘟嘟完成删卡 5.4.3.删除所有已设置卡: 请使用恢复出厂设置的方式 9

摄像头参数详细介绍

监控摄像头参数详细介绍 一、不可小瞧的镜头 镜头是摄像机的眼睛,为了适应不同的监控环境和要求,需要配置不同规格的镜头。比如在室内的重点监视,要进行清晰且大视场角度的图像捕捉,得配置广角镜头;在室外的停车场,既要看到停车场全貌,又要能看到汽车的细部,这时候需要广角和变焦镜头,在边境线、海防线的监控,需要超远图像拍摄。 1、镜头的主要参数 焦距(f):焦距是镜头和感光元件之间的距离,通过改变镜头的焦距,可以改变镜头的放大倍数,改变拍摄图像的大小。当物体与镜头的距离很远的时候,我们可用下面公式表达:镜头的放大倍数≈焦距/物距。增加镜头的焦距,放大倍数增大了,可以将远景拉近,画面的范围小了,远景的细节看得更清楚了;如果减少镜头的焦距,放大倍数减少了,画面的范围扩大了,能看到更大的场景。 镜头的主要参数 视场角:在工程实际中,我们常用水平视场角来反映画面的拍摄范围。焦距f越大,视场角越小,在感光元件上形成的画面范围越小;反之,焦距f越小,视场角越大,在感光元件上形成的画面范围越大。 光圈:光圈安装在镜头的后部,光圈开得越大,通过镜头的光量就越大,图像的清晰度越高;光圈开得越小,通过镜头的光量就越小,图像的清晰度越低。通常用F(光通量)来表示。F=焦距(f)/通光孔

径。在摄像机的技术指标中,我们可以常常看到6mm/F1.4这样的参数,它表示镜头的焦距为6mm,光通量为1.4,这时我们可以很容易地计算出通光孔径为4.29mm。在焦距f相同的情况下,F值越小,光圈越大,到达CCD芯片的光通量就越大,镜头越好。 2、镜头的分类 按视角的大小分类 按光圈分类 二、提高图像清晰的根本在于提高摄像机的感光能力 1、感光元件的作用 目前,主流监控摄像机的感光元件采用CCD元件,实际上就是光电转换元件。和以前的CMOS感光元件相比,CCD的感光度是CMOS的3到10倍,因此CCD芯片可以接受到更多的光信号,转换为电信号后,经视频处理电路滤波、放大形成视频信号输出。接受到的光信号越强,视频信号的幅值就越大。视频信号连接到监视器或电视机的视频输入端便可以看到视频图像。提高图像清晰的根本就在于提高摄像机的感光能力。

相关主题
文本预览
相关文档 最新文档