当前位置:文档之家› 线性代数教案设计

线性代数教案设计

线性代数教案设计
线性代数教案设计

线性代数

课程教案

学院、部

系、所

授课教师

课程名称线性代数

课程学时45学时

实验学时

教材名称

年月日

线性代数课程教案

授课类型 理论课 授课时间 3 节

授课题目(教学章节或主题):第一章 行列式

§1 二阶与三阶行列式 §2 全排列及其逆序数 §3 n 阶行列式的定义 §4 对换

本授课单元教学目标或要求:

1. 会用对角线法则计算2阶和3阶行列式。

2. 知道n 阶行列式的定义。

本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等): 基本内容:行列式的定义 1. 计算排列的逆序数的方法

设12n p p p 是1,2,,n 这n 个自然数的任一排列,并规定由小到大为标准次序。 先看有多少个比1p 大的数排在1p 前面,记为1t ; 再看有多少个比2p 大的数排在2p 前面,记为2t ; ……

最后看有多少个比n p 大的数排在n p 前面,记为n t ; 则此排列的逆序数为12n t t t t =+++ 。

2. n 阶行列式

121211

1212122212()

1

2(1)n n n

n t p p np p p p n n nn

a a a a a a D a a a a a a =

=

-∑

其中12n p p p 为自然数1,2,,n 的一个排列,t 为这个排列的逆序数,求和符号∑是对所有排列

12()n p p p 求和。

n 阶行列式D 中所含2n 个数叫做D 的元素,位于第i 行第j 列的元素ij a ,叫做D 的(,)i j 元。

3. 对角线法则:只对2阶和3阶行列式适用

1112

112212212122

a a D a a a a a a =

=-

11

1213

21

222311223312233113213231

32

33

132231122133112332

a a a D a a a a a a a a a a a a a a a a a a a a a a a a ==++---

重点和难点:理解行列式的定义

行列式的定义中应注意两点:

(1) 和式中的任一项是取自D 中不同行、不同列的n 个元素的乘积。由排列知识可知,D 中这样的

乘积共有!n 项。 (2) 和式中的任一项都带有符号(1)t -,t 为排列12()n p p p 的逆序数,

即当12n p p p 是偶排列时,对应的项取正号;当12n p p p 是奇排列时,对应的项取负号。

综上所述,n 阶行列式D 恰是D 中所有不同行、不同列的n 个元素的乘积的代数和,其中一半带正号,一半带负号。

例:写出4阶行列式中含有1123a a 的项。

解:11233244a a a a -和11233442a a a a 。

例:试判断142331425665a a a a a a 和324314512566a a a a a a -是否都是6阶行列式中的项。

解:142331425665a a a a a a 下标的逆序数为()4312650122016τ=+++++=,所以142331425665a a a a a a 是6阶行列式中的项。

324314512566a a a a a a -下标的逆序数为(341526)(234156)538ττ+=+=,所以324314512566a a a a a a -不是6阶行列式中的项。

例:计算行列式0

0010

020********

D =

解:0123(1)123424D +++=-???=

本授课单元教学手段与方法:讲授与练习相结合

首先通过二(三)元线性方程组的解的表达式引出二(三)阶行列式的定义。然后介绍有关全排列及其逆序数的知识,引出n 阶行列式的定义。

通过讨论对换以及它与排列的奇偶性的关系,引导学生了解行列式的三种等价定义。

本授课单元思考题、讨论题、作业: §1 P.26 1(1)(3) §2 2(5)(6)

本授课单元参考资料(含参考书、文献等,必要时可列出) 线性代数附册 学习辅导与习题选讲(同济第四版)

线性代数 课程教案

授课类型 理论课 授课时间 2 节

授课题目(教学章节或主题):第一章 行列式

§5 行列式的性质

§6 行列式按行(列)展开 §7 克拉默法则

本授课单元教学目标或要求: 1. 知道n 阶行列式的性质。

2. 知道代数余子式的定义和性质。

3. 会利用行列式的性质及按行(列)展开计算简单的n 阶行列式。 4. 知道克拉默法则。

本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等): 基本内容:

1. 行列式的性质

(1) 行列式D 与它的转置行列式T

D 相等。 (2) 互换行列式的两行(列),行列式变号。

(3) 行列式的某一行(列)中所有元素都乘以同一数k ,等于用数k 乘此行列式;或者行列式的

某一行(列)的各元素有公因子k ,则k 可提到行列式记号之外。

(4) 行列式中如果有两行(列)元素完全相同或成比例,则此行列式为零。

(5) 若行列式的某一列(行)中各元素均为两项之和,则此行列式等于两个行列式之和。

(6) 把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)的对应元素上去,行列

式的值不变。

2. 行列式的按行(列)展开

(1) 把n 阶行列式中(,)i j 元ij a 所在的第i 行和第j 列划去后所成的1n -阶行列式称为(,)i j 元ij a 的

余子式,记作ij M ;记(1)

i j

ij ij A M +=-,则称ij A 为(,)i j 元ij a 的代数余子式。

(2) n 阶行列式等于它的任一行(列)的各元素与对应于它们的代数余子式的乘积的和。即可以按第

i 行展开:

1122(1,2,,)i i i i in in D a A a A a A i n =+++= ; 或可以按第j 列展开:

1122(1,2,,)j j j j nj nj D a A a A a A j n =+++= .

(3) 行列式中任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。即

11220,i j i j in jn a A a A a A i j +++=≠ , 或

11220,i j i j ni nj a A a A a A i j +++=≠ .

3. 克拉默法则

含有n 个未知元12,,n x x x 的n 个线性方程的方程组

1111221121122222

1122n n n n n n nn n n

a x a x a x

b a x a x a x b a x a x a x b +++=??+++=??

??+++=? 当12,,,n b b b 全为零时,称为齐次线性方程组;否则,称为非齐次线性方程组。

(1) 如果方程组的系数行列式0D ≠,那么它有唯一解:(1,2,,)i

i D x i n D

=

= ,其中(1,2,,)i D i n = 是把D 中第i 列元素用方程组的右端的自由项替代后所得到的n 阶行列

式。

(2) 如果线性方程组无解或有两个不同的解,那么它的系数行列式0D =。

(3) 如果齐次线性方程组的系数行列式0D ≠,那么它只有零解;如果齐次线性方程组有非零

解,那么它的系数行列式必定等于零。

用克拉默法则解线性方程组的两个条件:(1) 方程个数等于未知元个数;(2) 系数行列式不等于零。

克拉默法则的意义主要在于建立了线性方程组的解和已知的系数以及常数项之间的关系.它主要适用于理论推导.

4. 一些常用的行列式

(1) 上、下三角形行列式等于主对角线上的元素的乘积。即

11

12111222212211221

2n n

nn nn

n n nn a a a a a a a a D a a a a a a a =

=

=

特别地,对角行列式等于对角线元素的乘积,即11

22

1122nn nn

a a D a a a a =

=

.

类似地,1(1)2,1

2

12,111

(1)

n

n n n n n n n a a D a a a a ---=

=- .

(2) 设11111

k

k kk a a D a a =

,11121n

n nn

b b D b b = ,则

111112*********k k kk k n n nk

n nn

a a a a D D D c c

b b

c c b b =

=

.

(3) 范德蒙(Vandermonde )行列式

1

2

2

221212

1

1

11

12111(,,)()n

n n n i j n i j n n n n

x x x V x x x x x x x x x x x ≥>≥---==

-∏

计算行列式常用方法:(1)利用定义;(2)利用性质把行列式化为上三角形行列式,从而算得行列

式的值。

重点和难点:行列式的计算,要注重学会利用行列式性质及按行(列)展开等基本方法来简化行列式的计算。

例:课本P.12例7—例9

例:课本P.21例13

例:课本P.25例16

本授课单元教学手段与方法:讲授与练习相结合

以从行列式的定义为切入口,引导学生探讨行列式的各种性质。通过大量的例题引导学生掌握如何利用行列式性质及按行(列)展开等基本方法来简化行列式的计算。

本授课单元思考题、讨论题、作业: 思考题

问:当线性方程组的系数行列式为零时,能否用克拉默法则解方程组?为什么?此时方程组的解为何?

答:当线性方程组的系数行列式为零时,不能否用克拉默法则解方程组,因为此时方程组的解为无解或有无穷多解。

本授课单元思考题、讨论题、作业:

§5 P.26 4(1)(2)(3),5(1)(2),7(1)(2) (5) §6 P.26 5 (4),7 (3) (6) §7 P.28 8(1),9

本授课单元参考资料(含参考书、文献等,必要时可列出) 线性代数附册 学习辅导与习题选讲(同济第四版)

线性代数 课程教案

授课类型 理论课 授课时间 2 节

授课题目(教学章节或主题):

第二章 矩阵及其运算 §1 矩阵 §2 矩阵运算 §3 逆矩阵 §4 矩阵分块法 本授课单元教学目标或要求:

掌握矩阵的定义,矩阵的加减法\数乘\转置\矩阵求逆\矩阵的行列式\分块矩阵等运算,了解矩阵 多项式运算

本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等):本章拟分3次课完成,第一讲: §1矩阵,§2矩阵的运算;第二讲: §3逆矩阵;第三讲: §4矩阵分块法 第一讲: §1矩阵,§2矩阵的运算; 基本内容:§1 矩阵:

一 矩阵的定义,

定义1 由M ×N 个数),,2,1;,,2,1(n j m i a ij ==组成的m 行n 列的数表

mn

m m n

n a a a a a a a a a 2

1222

2111211 称为m 行n 列矩阵,简称

M ×N 矩阵,为表示它是一个整体,总是加一个括弧,并用大写黑体字母表

示它,记作

?

????

????

???mn m m n n a a a a a a a a a 2

1

22221

11211

这M ×N 个数称为菊阵A 的元素,简称为元,数ij a 位于矩阵A 的第i 行j 列,称为矩阵A 的(I,J)元,以数

ij a 为(I,J)元的矩阵可简记为)(ij a 或n m ij a ?)(,M ×N 矩阵A 也记着n m A ?.

元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵

行数和列数都等于n 的矩阵称为n 阶矩阵或n 阶方阵, n 阶矩阵A 也记作n A . 只有一行的矩阵 )(21

n a a a A =

称为行矩阵,又称为行向量, 行矩阵也记作

),,,(21n a a a A =

只有一列的矩阵

????

??

? ??=n b b b A 21

称为列矩阵,又称为列向量.

两个矩阵的行数相等,列数也相等,称它们是同型矩阵,如果A=)(ij a ,B=)(ij b 是同型矩阵,,并且它们的对应元素相等,即

n j m i b a ij ij ,2,1,,,2,1(===),

那么就称矩阵A 与矩阵B 相等,级作

A=B

元素都是零的矩阵称为零矩阵,记作O,不同型的零矩阵是不同的.

§2 矩阵的运算

一 矩阵的加法

定义2 设有两个n m ?矩阵A=)(ij a 和B=)(ij b ,那么矩阵A 与B 的和记着A+B,规定为

?

??????

??

???+++++++++mn mn m m m m n n n n b a b a b a b a b a b a b a b a b a

2

21

12222

2221

211112121111

两个矩阵是同型矩阵时才能进行加法运算.

矩阵加法满足下列运算规律(设A,B,C 都是n m ?矩阵): (i ) A+B=B+A;

(ii )(A+B)+C=A+(B+C)

A=)(ij a 的负矩阵记为 -A=)(ij a -

A+(-A)=O 规定矩阵的减法为

A-B=A+(-B)

二 矩阵的数乘

定义3 数λ与矩阵A 的乘积记作A λ或λA ,规定为

?

????

???????=mn m m n n a a a a a a a a a A λλλλλλλλλλ

2

1

222

21

11211

矩阵数乘满足下列运算规律(设A,B 为n m ?矩阵,μλ,为数): (1) )()(A A μλλμ=; (2) A A A μλμλ+=+)( (3) B A B A λλλ+=+)(

重点,难点:矩阵乘矩阵:让学生充分理解矩阵乘矩阵的定义,特别强调前面矩阵的列等于后面矩阵的行的原因.说明矩阵乘法常态下不满足消去率,通过练习提高学生的计算准确率.

三 矩阵乘矩阵

定义4 设A=(ij a )是一个s m ?矩阵,B=(ij b )是一个n s ?矩阵,那么矩阵A 与矩阵B 的乘积是一个n m ?矩阵C=(ij c ),其中

)

,,2,1;,,2,1(1

2211n j m i b a b a b a b a c s

k kj

ik sj is j i j i ij ===+++=∑=

把此乘积记为 C=AB 且有

=????

?

?

? ??sj j j is i i b b b a a a 2121),,,(ij s

k kj ik sj is j i j i c b a b a b a b a ==+++∑=12211 例4 求矩阵

A=???? ??-20121301与????

??

?

?

?-=4311102

311

014B 的乘积

解 C=AB=???? ??-20121301?????

?

?

?

?-4311102

311

01

4

=???

?

??--1199129

例5 求矩阵

A=????

??--2142与B=?

??

? ??--6342

的乘积AB 与BA 解 AB=?

???

??--2142???? ??--6342=???? ?

?--1683216 BA=????

??--6342

???? ??--2142=???

? ??0000AB ≠ 对于两个n 阶方阵A,B,若AB=BA,称方阵A 与B 可交换

从上面等式可以得出结论:若O A ≠而0)(=-Y X A 也不能得出X=Y 的结论 矩阵的乘法虽不满足交换律,满足结合律和分配律

(1) (AB)C=A(BC)

(2) λλλλ)

()()(B A B A AB ==为数

(3) A(B+C)=AB+AC

(B+C)A=BA+CA

对于单位矩阵E,有

n m n n m n m n m m A E A A A E ????==, 即:

EA=AE=A

特殊矩阵: 1 单位矩阵;

E=???

?

???

?

?10001

0001

2 数量矩阵

=E λ???

?

??

?

?

?λλ

λ 000000

3 对角矩阵

??

??

??

?

?

?nn a a a 0

000

002211 4 ;三角矩阵

???????

??nn n n a a a a a a 0000

22211211

或??

??

?

??

??nn n n a a a a a a

2

1

2221

11

000 可以得到:

)()(n n n n n E A A A E λλλ==

表明纯量矩阵跟任何矩阵可交换 定义矩阵的幂为

kl l k l k l k A A A A A A A A A A ====+)(,,,1121 其中k 为正整数

例6 证明

???

?

??-=???? ??-??????

??n n n n n

c o s s i n s i n c o s c o s s i n

s i n c o s

证 用数学归纳法,1=n 时显然成立,设n =k 时成立,即 ???

?

?

?-=???? ??-????????k k k k k

cos sin sin cos cos sin sin cos

当1+=k n 时,有

???? ??-=???? ??-+????????k k k k k cos sin sin cos cos sin sin cos 1????

??-????cos sin sin cos =????

??-+---????????????????sin sin cos cos sin cos cos sin sin cos cos sin sin sin cos cos k k k k k k k k

=???

?

??+++-+????)1cos()1sin()1sin()1cos(k k k k

等式得证.

四 矩阵的转置

定义5 把矩阵A 的行换成同序数的列得到一个新矩阵,叫做A 的转置矩阵,记作T

A

A=??

???????

???mn m m n n a a a a a a a a a 2

1

22221

11211.则=T A ?

?

???

?

?

?????mn n n m m a a a a a a a a a 212221212111

A 的转置也是一种运算,满足 (1) A A T

T =)(

(2) T

T T B A B A +=+)( (3) T

T A A λλ=)(

(4) (AB)T

T

T

A B =

证明(4) 设s m ij a A ?=)(,B=n s ij b ?)(,记m n ij T T n m ij d D A B c C AB ??====)(,)(,有

∑==

s

k ki

jk ji b a

c 1

而T

B 的第i 行为),,,(21si i i b b b ,T

A 的第j 列为T

js j a a ),,(1 ,因此

∑∑====s

k ki jk s

k jk ki ij b a a b d 1

1

),,2,1;,,2,1(m j n i c d ji

ij ===

T

T

T

AB A B )(=

例7 已知

?

???

??-=231102A ,B=?

???

? ??-102324171 求T AB )(

解 因为

=AB ???? ??-231102????

?

??-102324171=???

? ??-1013173140

所以

?????

??-=1031314170)(T

AB

若A 是n 阶方阵,如果满足A A T

=,即

),,2,1,(n j i a a ji ij ==

那么A 称为对称矩阵.

例 设列矩阵X=T n x x x ),,,(21 满足1=X X T

,E 是n 阶单位阵,T

XX E H 2-=,证明H 是对称矩阵,且E HH

T

=

证 T T T XX E H )2(-= H

XX E XX E T

T T =-=-=22

所以H 是对称矩阵.

T

HH ==2

H 2)2(T XX E - =T

XX E 4-+))((4T T XX XX =T XX E 4-+))(4T T X X X X =T

XX E 4-+T

XX 4=E 五 方阵的行列式

定义6 由n 阶方阵A 的元素所构成的行列式(各元素位置不变),称为方阵A 的行列式,记作A 或

A det

.

A 满足下列运算规律(A,

B 为n 阶方阵,λ为数)

(1) A A T

=

(2)

A A n λλ=

(3) B A AB =,且BA AB =

例9 行列式A 的各个元素的代数余子式ij A 所构成的如下的矩阵

??

?

?

?

?

?

??nn n n n n A A A A A A A A A 212221212111

称为A 的伴随矩阵,试证

E A A A AA ==**

证明 设)(ij a A =,记)(ij b AA =*,则

ij jn in j i j i ij A A a A a A a b δ=+++= 2211 故 )()(E A A A AA ij ij ===*δδ 类似有

)())((

1

E A A A a A

A A ij ij n

k kj ki

===∑=*

δδ

本授课单元教学手段与方法:

讲授为主,练习为辅,主要让学生充分理解矩阵运算的定义,原则,从而掌握矩阵运算,并通过练习 提高学生运算的准确率.

本授课单元思考题、讨论题、作业: P53:3.4(1),(2);(3),(4)

本授课单元参考资料(含参考书、文献等,必要时可列出) 线性代数附册 学习辅导与习题选讲(同济第四版)

注:1.每单元页面大小可自行添减;2.一个授课单元为一个教案;3. “重点”、“难点”、“教学手段与方法”

部分要尽量具体;4.授课类型指:理论课、讨论课、实验或实习课、练习或习题课。

线性代数 课程教案

授课类型 理论课 授课时间 2 节

第二讲: §3逆矩阵 基本内容: §3 逆矩阵

定义7 对于n 阶矩阵A,如果有一个n 阶矩阵B,使 E BA AB ==

则说矩阵A 是可逆的,并把矩阵B 称为A 的逆矩阵,简称逆阵.记为1

-A 如果A 可逆,则A 的逆阵是唯一的.因为:设B,C 都是A 的逆阵,则有 B=BE=B(AC)=(BA)C=EC=C 定理1 若矩阵A 可逆,则0≠A 证 A 可逆,即有1

-A ,使E AA

=-1

,故11==-E A A 所以0≠A .

定理2 若0≠A ,则矩阵A 可逆,且 *

-=

A A

A

11

其中*

A 为A 的伴随矩阵. 证 由例9可知

E A A A AA ==*

*

所以有

E A A A

A A A

==*

*11 按照逆矩阵的定义知A 可逆,且有 *

-=

A A

A

11

当0=A 时称A 为奇异矩阵,否则称A 为非奇异矩阵,可逆矩阵就是非奇异矩阵.

推论 若)(E BA E AB ==或,则1

-=A B 证 1==?E B A ,故0≠A ,因而1-A 存在,有

1

111)()(----=====A E A AB A B A A EB B 逆阵满足下列运算:

(1) 若A 可逆,则1

-A 也可逆,且A A =--1

1)

(.

(2) 若A 可逆,,数0≠λ,则A λ可逆,且()

11

1

--=

A A λ

λ

(3) 若A,B 为同阶矩阵且可逆,则AB 也可逆,且

111)(---=A B AB

证 E AA AEA A BB A A B AB ====------111111)())((,由推论有: 111)(---=A B AB (4) 若A 可逆,,,则T

A 也可逆,且T T A A )()(11--= 证

E E A A A A T T T T ===--)()(11,由推论有: T T A A )()(11--=

当0≠A 时,定义

T T A A )()(11--= k k A A E A )(,10--==,k 为正整数 这样,当0≠A ,μλ,为整数,有

λμμλμλμλA A A A A ==+)(,

重点,难点:逆矩阵的求法.定理2说明通过求伴随矩阵的方式,让学生掌握矩阵求逆,并告知学生下一章里还有更简单的求逆方法.

例10 求二阶矩阵???

?

??d c b a 的逆阵. 解 bc ad A -=,????

??--=*a c

b d

A , 当0≠A 时,有 bc

ad A -=

-11

???

? ??--a c b d 例11 求方阵

???

?

? ??=343122321A

的逆阵.

解 2=A ,知A 可逆,A 的余子式

2

,5,42,6,62

,3,2333231232221131211-=-=-=-=-=-====M M M M M M M M M 得

????

?

??----=?????

??----=*2225634623323

13

322212

312111M M M M M M M M M A

所以

?????? ?

?---

-==*-111

2532323

1

11

A A A

例12 设

=A

????? ??343122321,?

???

?

??=???? ??=130231,3512C B

求矩阵X 使其满足

C AXB = 解 若11,--B A 存在,有

1

-A

111---=CB A AXBB

=X 1

1--CB A =???

??? ??---

-11125323

23

1????

?

??130231???? ?

?--2513

=????? ??-202011???? ?

?--2513=????

?

??---41041012 例13 设P=,,2001,4121Λ=?

??

? ??=Λ????

??P AP 求n

A 解 ???

?

??--==-112421,21

P P 1

1

2

2

1

,,,---Λ=Λ=Λ=P P A P P A P P A n

n

而 =Λ???? ??2001,???

? ??=Λ???? ??=Λn n

2001,,200122 所以

1

-Λ=P P A n

n

=???? ??--????? ?????? ??11242120014121n ???

?

??--???? ??=++112421212121n n

???

?

??----=???? ??----=++++++12221222222

42224211

122

11

n n n n

n n n n

定义 设

m m x a x a x a a x ++++= 2210)(φ 为x 的m 次多项式,A 为n 阶矩阵,记

m m A a A a A a E a A ++++= 2210)(φ

)(A φ称为矩阵A 的m 次多项式.,可证矩阵A 的两个多项式()A φ和()A f 是可交换的,即有

()()()()A A f A f A φφ=

A 的多项式可以象数x 的多项式一样相乘或分解因式.例如

3

2

3

233)(2)2)((A

A A E A E A A E A E A E -+-=--+=-+

容易证明 (1) 如果

1-Λ=P P A ,则1-Λ=P P A k k ,从而

)(A φm m A a A a A a E a ++++= 2210

11221110----Λ++Λ+Λ+=P Pa P Pa P Pa EP Pa m m 1

)(-Λ=P P φ

(2) 如果 ),,,(21n d i a g λλλ =Λ为对角阵,则),,,(21k

n k k k diag λλλ =Λ,从而

m m a a a E a Λ++Λ+Λ+=Λ 2210)(φ

??

????

?

?

?++??

??

?

??

?

?+??

?

?

?

??

??=m n m m

m n a a a λλλλλλ

2

12

110111

????

?

?

?

??=)()()(21n λφλφλφ

本授课单元教学手段与方法:

讲授为主,练习为辅,通过逆矩阵的定义及定理2的证明让学生充分掌握矩阵的求逆运算,并告 知学生在下一章里还可用更简练的方法计算逆矩阵 本授课单元思考题、讨论题、作业: P54:11(1),(3);12(1),(2);P55:19,22

本授课单元参考资料(含参考书、文献等,必要时可列出) 线性代数附册 学习辅导与习题选讲(同济第四版)

线性代数 课程教案

授课类型 理论课 授课时间 2 节

第三讲: §4矩阵分块法 基本内容:§4 矩阵分块法

. 对于行数和列数较高的矩阵A,运算时常采用分块法,使大矩阵的运算化成小矩阵的运算将矩阵A 用若干条纵线和横线分成许多小矩阵,每一个小矩阵称为A 的子块.以子块为元素的形式上的矩阵称 为分块矩阵.

例 将43?矩阵

????

?

??=3433

32

31

24232221

14131211a a a a a a a a a a a a A 可以分块为

(1) ???

??

??3433

32

31

24232221

14131211

a a a a a a a a a a a a (2) ???

?

? ??3433

32

31

242322

2114131211

a a a a a a a a a a a a (3) ????

? ??3433

32

31

2423222114131211

a a a a a a a a a a a a 分法(1)可记为

????

??=22211211

A A A A A 其中 ???? ??=22211211

11a a

a a A ,???

?

??=2423141312a a a a A ()3231

21a a A =,()343322a a A =

分块矩阵的运算规则与普通矩阵的运算规则类似,满足:

(1) 设矩阵A 与矩阵B 的行数相同,列数相同,采用相同的分块法,有

????? ??=sr s r A A A A A

1111,?

??

?? ??=sr s r B B B B B 1

111 其中,ij A 与ij B 的行数相同,列数相同,那么

?

??

?? ??++++=+sr sr s s r r B A B A B A B A B A 11

111111 (2) 设?

??

?? ??=sr s r A A A A A

1

111,λ为数,那么

?

??

?? ??=sr s r A A A A A λλλλλ

1

111 (3) 设A 为l m ?矩阵,B 为n l ?矩阵,分块成

????? ??=st s t A A A A A 1111,?

????

??=tr t r B B B B B 1

111

其中it i i A A A ,,21的列数分别等于tj j j B B B ,,21的行数,那么

=AB ????

? ??sr s r C C C C 1111

其中 ),,1;,,1(1

r j s i B A

C t

k kj

ik

ij ===

∑=

重点,难点: 分块矩阵的乘法运算,对于四阶且子块含有零矩阵,单位阵,对角阵的高阶,一般做四块分且尽量分出单位阵,零矩阵..

例14 设

??????

?

?

?---=???????

?

?-=02

111401102101

01,10

1101110010

0001B A 求AB

解 把A,B 分块成

???

?

??=?????

?

?

?

?---=???? ??=??????? ??-=222111

102

111401102

101

01,1011012100100001B B E B B E A O E A 则 =AB ???? ??E A O E 1???? ??222111B B E B =?

??? ??

++2212111111B A B B A E B 而 21111B B A +=????

??-1121???? ??-2101+???? ??--1101=?

???

??--1142 221B A +=???? ??-1121+???

?

??=???? ??13330214

所以 ????

??

? ??---=13113

34210210101AB (4) 设?

????

??=sr s r A A A A A

1111,则????? ??=T sr T r

T s T

T

A A A A A 1111

(5) 设A 为n 阶矩阵,若A 的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线 上的子块都是方阵,即

?

?????? ?

?=s A O O O A O O O A A

2

1 其中),2,1(s i A i =都是方阵,称A 为分块对角矩阵.

分块对角矩阵的行列式有下列性质:

s A A A A 21= 若),2,1(s i o A i =≠,则0≠A ,并有

????

?

??

?

?=----11

2

111

s A O

O O A O O O

A A

例15 设????

? ??=120130005A ,求1

-A

解 ???? ?

?=?????

??=2100120130005A A A , ???? ??--=???? ??=??? ??==--3211,1213,51),5(1221

11A A A A ??????

?

??--=-32011000511

A

对矩阵进行按行分快或按列分块:

n m ?矩阵A 有m 行,称为矩阵A 的m 个行向量,若第i 行记作

),,,(21in i i T i a a a =α

则矩阵A 记为

???

?

??

? ??=T m T T A ααα 21 n m ?矩阵A 有n 列,称为矩阵A 的n 个列向量,若第j 列记作

????

??

? ??=mj j j j a a a 21α

则 ),,,(21n a a a A =

对于矩阵s m ij a A ?=)(与矩阵n s ij b B ?=)(的乘积矩阵AB=C=n m ij c ?)(,若把行分成m 块,把B

《线性代数》教学中若干难点的探讨.doc

《线性代数》教学中若干难点的探讨- 摘要:在《线性代数》的教学过程中,有很多抽象的概念学生很难理解,比如线性相关、线性无关,极大线性无关组、向量组的秩等等。本文从笔者个人的教学实际出发,浅谈教学过程中的若干个教学难点,化抽象为具体,帮助学生理解并掌握这些难点,以提高学生对《线性代数》的学习兴趣。 关键词:线性相关;线性无关;极大线性无关组;向量组的秩 《线性代数》是高等学校理、工、经、管类各专业的一门重要基础课程。通过对本课程的学习,学生可以获得线性代数的基本概念、基本理论和基本运算技能,为后继课程的学习和进一步知识的获得奠定必要的数学基础。通过各个教学环节的学习,可以逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力以及自学能力,并具有比较熟练的运算能力和综合运用所学知识分析和解决问题的能力。另外,通过《线性代数》的学习,还可以培养学生的综合素质和提高学生的创新意识。因此,只有熟练掌握这门课程,才能较好地运用到各个专业中。由于该课程内容抽象,教学课时短,这无疑对教师的教学和学生的学习造成了极大的困扰。本文从笔者个人的教学实际出发,浅谈教学过程中的若干个教学难点,帮助学生理解并掌握这些难点,以提高学生对《线性代数》的学习兴趣。 一、线性相关性与线性无关性 线性方程组理论是线性代数的基本内容之一,而向量组的线性相关性和线性无关性又是解线性方程组的基础。教材第三章线性方程组开门见山,直接给出了线性相关及线性无关的定义。

线性相关是指一个向量组α1,α2,…,αs,如果存在一组不全为零的数λ1,λ2,…,λs,使得λ1α1+λ2α2+…+λsαs=0,则称该向量组α1,α2,…,αs线性相关。如果不存在这样一组不全为零的数,则称该向量组α1,α2,…,αs线性无关。单纯地称某向量组线性相关或线性无关,对于学生来说是比较抽象的,他们对这一定义总是感觉很模糊,很难理解,如何才能更好地更形象地理解这一定义呢?如果在教学中,把这块知识与解析几何联系起来,用几何知来解释什么是线性相关或线性无关,那么学生肯定更容易接受。例如,对于定义中λ1α1+λ2α2+…+λsαs=0,可以理解为b=(λ1,λ2,…,λs)这样的一个行向量。如果向量组有两个列向量构成,即α1,α2,则b=(λ1,λ2),λ1α1+λ2α2=0。若λ1≠0,则经过变换可以得到α1=■,这说明α1和α2共线。对于有三个向量构成的向量组,λ1α1+λ2α2+λ3α3=0,b=(λ1,λ2,λ3),若λ1≠0,经变换得到α1=■+■,这说明α1,α2,α3三个向量共面。 对于两个向量,线性相关指两向量平行(或者说是共线),此时只是在线上的关系,仅仅是一维,线性无关指两向量相交,确定了一个二维平面。线性无关提供了另一种维度,使得向量所在空间增加了一维。对于三个向量,线性相关指三向量共面,研究的是二维平面,而线性无关指三向量不共面,使得向量所在空间增加了一维,即三个向量若线性无关,那么它们不共面,存在于三维立体空间中。四个向量,五个向量,…,研究方法类似。结合几何知识,通过几何图像可以更直观地呈现出新的概念,学生更易于接受,而且还有助于提高学生对《线性代数》的学习兴趣。 二、极大线性无关组及向量组的秩

浅谈线性代数与计算机的关系

浅谈高等数学,线性代数与计算机的关系 以下是OIer们的各种观点,仅供参考. 1、如果程序中要使用算法,高等数学可能用得上。不过一般的程序,还是很难用得上高等数学的。 2、高等数学只是基础,一旦你进入数据结构、数据库或其它比较专业的东东,它的基础作用就很明显了! 3、其实关键是看你干什么,计算机编程也有很多方面,比如说你要搞图形图象处理建模,就肯定要线形代数方面的知识,但你如果是一般的编程,就不是那么明显。 4、思想,逻辑思维对一个程序员太重要了,多少时候,我们都需要在头脑里面把程序运行上几遍,这凭什么?因为程序员有出色的逻辑思维,而这种出色的逻辑思维从何处而来??数学数学还是数学.基础学科锻炼人的基础,没有地基何来高楼大厦,所以,我认为,不管是数学还是离散数学等等的相关东西都要好好学习?5、高数的作用:一是培养思维,二是算法分析,三是程序可能本身与高数有关。 6、如果你做图象处理的话 7、高等数学是一门基础学科,如果没有学过高数,那么看计算方法就可能象看天书似的了。如果你要做一名编程熟练工,可以不学它,否则好好学学吧! 8、高数就象是武林高手的内功,虽然不能用来击败对手,但是可以让你的招式更有杀伤力。当然必要的招式还是很重要的,至于象令狐冲那样的只用招式打天下的天才比较少。?9、思想,逻辑思维对一个程序员是很重要的,你不能只是学会click,click,click. 那样你是没有什么前途的。?10、说白了,高等数学是训练你的思维的。如果你是数学系的本科生,考研你可以考除了文学系和新闻系的任何一个科系,为什么?因为你的思维比较能跟得上拍。1?1、高等数学在一些常用数值计算算法上能用的上, 不过在一般的程序上是用不上的。不过小弟我听说高数在解密方面有用,如果你想当黑客就要好好学了, 呵呵~~~~~ 12、我希望你知道编程只是为了表现你的思维、你的创造力, 仅仅是一种表达方式,而数学是你能不断创新的基石。 13、数学是所有学科的基础,数学不好,什么都不可能学好,我看过一个报道,有的软件公司根本不要计算机专业的程序员,而是到数学系去找,经过短期的培训他们的编程能力肯定比不注重数学基础的程序员强,现在知道它的利害性了吧,好好学数学吧! 14、我认为那得看你是将来拿编程来干什么如果用与科学计算比如火箭发射那种计算 那数学和物理差一点都不行如果你是一个应用程序开发者那对数学的要求就不一定高 我在系里数学最差但编程最好这也是中国教育制度的缺陷不能尽展所长我学校里的计算机教学计划还是5年以前制定的学的都是理论没有实际的东西 15、高等数学对编程有何作用??数学是计算机的鼻祖,等你到商业的开发环境,比如做游戏开发,就需要数学基础很深的人工智能了,很多公司就找那些数学系的来做开发,对他们来

线性代数与概率论课程教学大纲

线性代数与概率论课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:线性代数与概率论 所属专业:材料物理与材料化学 课程属性:必修 学分:4 (二)课程简介、目标与任务; 本课程将对线性代数和概率论里的一些常见概念和基础知识进行讲解。线性代数里所涉及到的对向量和矩阵的分析和操作,在科学研究和工程技术中均有着广泛的应用。从向量和矩阵中抽象出来的线性空间和线性变换的概念,将为学生以后更深入的学习和实践提供必要的背景和知识准备。概率论是统计方向的理论基础,对于将来实际工作中的数据分析和处理有着指导性作用。这门72学时的课把线性代数和概率论放在一起讲实际上强度是比较大的。 线性代数部分先从行列式讲起,接着介绍关于向量组和矩阵的一些基本概念和运算。有了这些知识储备后,在第三章对于线性方程组问题给出了一个完整的解答。第四章对向量和矩阵的数学抽象引入了线性空间与线性变换,并对空间的代数结构和变换性质作了讨论。最后两章是关于矩阵的比较实用部分,包括特征值与特征向量,矩阵对角化与二次型。概率论部分先定义了样本空间与随机事件,接着引入概率的概念,列举了一些计算简单概率的方法和例子。随后对随机事件的量化导致了随机变量的引入。从第四章到第七章均是关于随机变量和随机变量函数的内容,我们讨论了一些常见分布及其数字特征,包括期望值,方差和关联函数(协方差)等。对于独立的随机变量序列,我们运用切比雪夫不等式证明了大数律,最后介绍了中心极限定理。 希望学生通过本课程的学习,能够熟悉线性代数里的一些基本概念和思考问题的方法,培养数学抽象思维的能力,理解和熟练掌握向量和矩阵的一些性质和相关运算,对于随机过程和随机变量亦有一个初步的具体认识。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 所需要的先修知识储备为基本的微积分,代数方程和一些矢量分析。线性代数的知识,包括向量,矩阵和二次型,在以后的学习中都会用到。线性空间和线性变换的概念在后继的理论课例如量子力学和群论的学习中将扮演重要角色。概率论是后继数理统计

《线性代数》课程教学大纲

《线性代数》课程教案大纲 课程代码:课程性质:专业基础理论课必修 适用专业:工科类各专业总学分数: 总学时数:修订年月: 编写年月:执笔:韩晓卓、李锋 课程简介(中文): 线性代数是理、工、经管各专业重要的基础课之一。它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,是数学的一个重要分支,其理论与方法已广泛应用于其它科学领域中。主要包括:矩阵、行列式、线性方程组、秩问题、矩阵的特征值和特征向量、二次型等内容。 课程简介(英文): , . , , . . , , , , , , . 一、课程目的 《线性代数》是高等院校工科专业学生必修的一门基础理论课。它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性。通过本课程的学习,使学生比较系统地获得线性代数中的行列式、矩阵、线性方程组、矩阵和向量组的秩,矩阵的特征值和特征向量等方面的基本概念、基本理论和基本方法,培养学生独特的代数思维模式和解决实际问题的能力,同时使学生了解线性代数在经济方面的简单应用,并为学生学习后继课程及进一步扩大数学知识面奠定必要的数学基础。 二、课程教案内容及学时分配 (一)教案内容 第一章行列式(学时) 教案内容:

二阶三阶行列式;阶行列式的定义;行列式的性质(证明选讲);行列式按行(列)展开(定理证明选讲,行列式按某行(列)展开选讲);克莱姆法则。 本章的重点与难点: 重点:行列式的性质;行列式按一行(列)展开定理;克莱姆法则的应用。 难点:阶行列式的定义的理解;阶行列式计算。 第二章矩阵(学时) 教案内容: 矩阵的概念;矩阵的运算(矩阵的加、减法;数乘;乘法;矩阵转置;方阵的幂;方阵的行列式);几种特殊的矩阵(对角矩阵,数量矩阵,三角形矩阵,单位矩阵,对称矩阵与反对称矩阵);分块矩阵(分块阵及其运算,分块对角阵);逆矩阵(可逆阵的定义;奇异阵,伴随阵与逆阵的关系;逆阵的性质,二阶上三角分块阵的求逆方法);本章的重点与难点: 重点:矩阵的运算规律;逆矩阵的性质以及求法; 难点:矩阵的乘积及分块矩阵的乘积;逆矩阵(抽象矩阵的逆矩阵)的求法。 第三章矩阵的初等变换与线性方程组(学时) 教案内容: 矩阵的初等变换(初等矩阵定义;初等矩阵与矩阵初等变换的关系。用初等变换求矩阵的逆);矩阵的秩(矩阵的秩的定义;矩阵的秩与其子式的关系;初等变换求矩阵的秩)。线性方程组的消元解法(消元解法与初等行变换的关系;线性方程组有唯一解、无穷多组解和无解的讨论;线性方程组有解的判别定理;齐次线性方程组有非零解的充分和必要条件); 本章的重点与难点: 重点:利用初等变换求矩阵的逆矩阵与矩阵的秩;利用初等变换求线性方程组的通解。 难点:利用初等变换求线性方程组的通解。

线性代数重点难点

自考《线性代数》重难点解析 2011-02-17 11:09:49 | 作者: min | 来源: 考试大 | 查看: 第一章行列式 一、重点 1、理解:行列式的定义,余子式,代数余子式。 2、掌握:行列式的基本性质及推论。 3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。 二、难点 行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。 三、重要公式 1、若A为n阶方阵,则│kA│= kn│A│ 2、若A、B均为n阶方阵,则│AB│=│A│。│B│ 3、若A为n阶方阵,则│A*│=│A│n-1 若A为n阶可逆阵,则│A-1│=│A│-1 4、若A为n阶方阵,λi(i=1,2,…,n)是A的特征值,│A│=∏λi 四、题型及解题思路 1、有关行列式概念与性质的命题 2、行列式的计算(方法)

1)利用定义 2)按某行(列)展开使行列式降阶 3)利用行列式的性质 ①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。 ②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。 ③逐次行(列)相加减,化简行列式。 ④把行列式拆成几个行列式的和差。 4)递推法,适用于规律性强且零元素较多的行列式 5)数学归纳法,多用于证明 3、运用克莱姆法则求解线性方程组 若D =│A│≠0,则Ax=b有唯一解,即 x1=D1/D,x2= D2/D,…,xn= Dn/D 其中Dj是把D中xj的系数换成常数项。 注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。 4、运用系数行列式│A│判别方程组解的问题 1)当│A│=0时,齐次方程组Ax=0有非零解;非齐次方程组Ax=b不是唯一解(可能无解,也可能有无穷多解) 2)当│A│≠0时,齐次方程组Ax=0仅有零解;非齐次方程组Ax=b有唯一解,此解可由克莱姆法

线性代数小论文

线性代数小论文 在学习了线性代数两个多月后,也算是对它有了一些了解。在此,我就从老师教学和我自身的学习方面谈谈我的体会,对教学改革提一些自己的意见。 首先,我想说明的是,大学里的学习是不能靠其他任何人的,只能靠自己,老师只是起到一个引导作用。所以教材是我们最重要的学习资源,如果没有书本,就是天才也不可能学好。我使用的线性代数教材是科学出版社出版李小刚主编的《线性代数及其应用》。我比较了一下这本书和其他线代教材的区别,它有个很大的特点就是,别的教材第一章讲的是行列式,而它却直接通过介绍高斯消元法引入了矩阵的概念,在学习了矩阵后才介绍行列式的计算。这是这本教材的优越之处,它包含了一个循序渐进的过程。但是,它也有许多的不足之处,就个人在看这本教材时,觉得它举得实例太少了,并且例子不太全面,本来线性代数是一门比较抽象的学科,加上计算量大,学时少,所以要学好它,就只有靠自己在课余时间多加练习,慢慢领悟那些概念性的东西。然后对于教材内容的侧重点,我觉得应该放在线性方程组这一块,因为它是其他问题的引出点,不管是矩阵,行列式,还是矩阵的秩和向量空间,都是为线性方程组服务的。我们对向量组的线性相关性的讨论,还有对矩阵的秩,向量组的秩的计算,都是为了了解线性方程组的解的情况。在线性方程组的求解过程中,我们运用了矩阵的行变换来求基础解系,当然这就相当于求极大无关组。还有对线性相关和线性无关的讨论,这也关系到线性方程组的解。所以在改革中,应该拿线性方程组为应用的实例,来一步一步的解剖概念和定理。当然一些好的、典型的解题方法,也应该用具体的例子来讲解,这是一本教材必须具备的。 其次,老师在教学中,也应该以一些具体的实例入手来教学,就像开尔文说的,数学只不过是常识的升华而已,所以如果脱离了实际应用,只是讲抽象的概念和式子,是很难明白的,并且有实例的对照,可以加深记忆理论知识。然后要注重易混淆概念的区别,必要时应该拿出来单独讲讲,比如矩阵和行列式的区别,矩阵只是为了计算线性方程而列的一个数据单而已,并无实际意义。而行列式和矩阵有本质的区别,行列式是一个具体的数值,并且行列式的行数和列数必须是相等的。其实老师在教学过程中,应该学会轻松一点,我不希望看到老师在讲台上讲得满头大汗,而学生坐在下面听得云里雾里的场面,这就需要老师能够精选一些内容讲解,不需要都讲,而其他相关的内容让学生自己通过举一反三就得到就可以了。老师可以自己选一些经典的例子来讲,而不一定要讲书上的例子。然后对于例子中的计算,老师就可以不用算了,多叫学生动动手,增加我们的积极性,并且这样也更能发现问题。再就是线性代数的课时少,这是一个客观存在的原因,所以更要精讲。而不需全部包揽。当然,若果能通过改革,增加课时是最好不过了。这也算一点小小的建议吧。 然后,自己在学习的过程中,也应该能够整体把握老师的意思,注意各个章节的联系,R.斯根普说过个别的概念一定要融入与其它概念合成的概念结构中才有效用。数学中的概念往往不是孤立的,理解概念间的联系既能促进新概念的引入,也有助于接近已学过概念的本质及整个概念体系的建立。如矩阵的秩与向量组的秩的联系:矩阵的秩等于它的行向量组的秩,也等于它的列向量组的秩;矩阵行(列)满秩,与向量组的线性相关和线性无关也有一定的联系。知识体系是一环扣一环,环环相连的。前面的知识是后面学习的基础,如用初等变换求矩阵的秩熟练与否,直接影响求向量组的秩及极大无关组,进一步影响到求由向量组生成的向量空间的基与维数;又如求解线性方程组的通解熟练与否,会影响到后面特征向量的求解,以及利用正交变换将二次型化为标准型等。因此,学习线性代数,一定要坚持温故而知新的学习方法,及时复习巩固,为此,老师课前的知识回顾以及学生提前预习是十分必要的。对于后来学的,应该多翻翻书看看前面是怎么说的,往往前面学习的内容是为后面做铺垫的,所以在学了后面的知识后,再看前面的知识,会对前面的知识有一个新的认识,会更

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

线性代数易错点及重点知识点

线性代数易错及重点知识点 翔翔总结,不晓得大家看得懂不 3 24712432的余子式是327134722412,而不是23271 上三角和下三角行列式都是a1a2a3.....an=A 反三角行列式为A*(-1)^n(n-1)/2 行列式的一行的代数余子式分别乘以另一行元素,值为零。 正反三角行列式如果不记得公式了,可以通过上下换行的形式变成正三角行列式。 克莱姆法则D=222112 11a a a a ,D1=22 2121a b a b D2=22211211a a a a x1=D1/D 同理x2=D2/D 范德蒙法则:行列式的值=(x n -x n-1)(x n -x n-2)……(x n -x 1)(x n-1-x n-2……)(x 2-x 1) 若一个线性方程组有非零解,则它的行列式式值等于零。 行列式中行叫c ,列叫r 写行列式变换过程中要在等号上写变换方法,如c2-c3.不然老师看不懂步骤,无法给分 化三角行列式先化第一列,在化第二列,按顺序来化,这样才不会出现问题。 n 维向量分横向量和列向量。 写向量时一定要记得在上面加箭头 任意一个n 维向量都能由n 个n 维单位向量线性表示 如果b1=k1a1+k2a2+k3a3,线性表示不一定要求k1,k2,k3不全为零。 如果一个向量a 线性相关,则a=0 由一个非零向量构成的向量组一定线性无关。即a ≠0则a 这个向量组线性无关。 含有零向量的向量组一定线性相关 例a1=(1,1)a2=(2,3)求这两个向量组是否线性相关 解:k1a1+k2a2=0 k1(1,1)+k2(2,3)=0 K1+2k2=0 k1+3k2=0 3 121≠0所以k 全是零解,所以线性无关 a3=a1+a2,则a1,a2,a3线性相关 一个向量组中的一个向量可由其他向量线性表示,那么这个向量组线性相关,能线性表示不一定要k 不全为零,但是线性相关一定要不全为零 两个向量线性相关除非他们对应分量成比例。 如果一个向量组一部分向量线性相关,则,整个向量组线性相关。 一个向量组线性无关,那么它的一部分也线性无关 向量组线性相关,减少其中几维一样线性相关,向量组线性无关,增加几维向量一样无关。 应用:要证线性相关,则增加维,如果增加后相关,则原向量组相关。 要证线性无关,则减少维,如果减少后无关,则原向量组无关。 要证线性相关,则增加向量个数,如果增加后相关,则原向量组相关。 要证线性无关,则减少向量个数,如果减少后无关,则原向量组无关。 向量个数大于维数一定线性相关 一个向量组的每个最大线性无关组中的向量个数一定相等 向量空间:线性无关组ab ……n 若a+b ……n 属于v Ramada a 属于v 则v 为向量空间v 的维数就是向量组的秩,a b ……n 称为空间的基

线性代数 与计算机

线性代数是一门应用性很强,而且理论非常抽象的数学学科,它主要讨论了矩阵理论、与矩阵结合的有限维向量空间及其线性变换的理论.在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、经济学、网络技术等无不以线性代数为基础.但是在线性代数中,大部分的计算太过繁琐.例如当把方程的阶次提高到了三元以上时,不但要求较高的抽象思维能力,而且也要求用十分繁琐的计算步骤才能解决问题,这使得大多数的工科学生对线性代数感到乏味枯燥[1] 当前学生在学习线性代数上也存在众多问题:学习没有计划,学习环节不完整,读书不求甚解,懒于动脑思考线性代数与实际的联系,学习过程中不善于查找相关资料等.这些普遍问题使得学生的学习与现实产生了严重的脱节.大学的学习内容、方法和要求,比起中学的学习发生了很大的变化,没有老师像在高中一样督促你学习,所以大部分的学生一进大学便放松了自己,就是认真学习的学生也是毫无计划,整天忙于被动的应付听课、完成作业和考试,缺乏主动自觉的学习,干什么都心中无数. 不但对线性代数的学习如此,线性代数本身的特点也使得大部分学生对线性代数生而畏之.例如,线性代数中多项式部分定义的繁琐难懂,最大公因式、不可约多项式、二次型等与实际应用的相脱离,向量的线性相关、线性空间、线性变换、欧式空间等问题概念的抽象性,行列式的求法、矩阵的相关计算容易出错,线性代数中有些知识需要进行大量的、机械的数值运算,在学生套用公式时,耗费了大量的时间和精力,又往往出错.例如:在求解行列式问题上,如果矩阵A为高阶方阵,且不具备特殊条件(比如为三角矩阵等),那么在求解矩阵A的行列式时,需要将矩阵A依次按行展开,将其化为多个三阶矩阵的和才可套用公式求出,期间过程繁琐,费时且容易出错,长期下来学生学习线性代数时搞不懂、弄不清,即使经过长期理论熏陶并经过复杂的计算过程将题目解答出来,也无法判断题目的对错,更不要说学生对线性代数的研究.所以使得很多同学对线性代数失去了兴趣.但是,以上问题若用计算机求解则可几步便求出答案,达到事半功倍的效果. 大部分学生不懂也不善于运用计算机解决线性代数问题,可能存在有如下几点原因: (1)喜欢文科类课程,对线性代数等数学学科没有兴趣,所以不愿去研究其解题方法,或者由于需要长期进行大量的计算,而对线性代数没有了兴趣;(2)对计算机软件不感兴趣,以至于运用软件求解计算生疏不懂;(3)不肯动脑研究计算机软件,懒于记忆软件中的常用函数;(4)想锻炼自己的动笔能力,喜欢用稿纸演算. 4.1中的例子只是根据经济学中投入产出模型简化了实际应用中的大量数据,意在说明运用计算机可以解决现实生活中普遍的问题.计算机不仅可以把复杂的运算过程变成简单的函数(如求矩阵的逆),既节省了大量的演算时间,又体会到了开动脑筋,运用自己的方法编写程序而得来的对数学的兴趣,还可以解决现实生活中比如经济、金融等方面的问题. 计算机已经成为我们生活中不可缺少的一部分,我们可以充分利用计算机为我们的学习、生活提供帮助.当然,前提是我们必须动脑,动手,勤于思考才行. 在计算机出现之前, 要解线性微分方程组是非常难的事情, 通常是要努力地找各种函数的原函数, 将一些积分算出来. 因此, 找原函数的技术得到广泛研究. 因为, 一旦找到了原函数, 积分的运算量就没有那么大了. 这就是到今天为止的高等数学教育还残留有过去的传统, 即对各种原函数的求解技巧津津乐道的重要原因. 但是, 实际情况中, 原函数并不总是存在的, 因此总需要数值解. 而在计算机出现之前, 数值解通过人工计算, 是相当耗时费力的. 而在计算机被大量使用之后, 情况就出现了改观, 计算机在极短的时间内, 比如在0.1秒的时间,

自考《线性代数》重难点解析与全真练习

自考《线性代数》重难点解析与全真练习 第一章行列式 一、重点 1、理解:行列式的定义,余子式,代数余子式。 2、掌握:行列式的基本性质及推论。 3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。 二、难点行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。 三、重要公式 1若A为n阶方阵,则|kA| = kn | A I 2、若A、B均为n阶方阵,AB丨=| A |。丨B丨 3、若A为n阶方阵,则|A* | = | A | n-1 若A为n阶可逆阵,则|A-1 | = | A | -1 4、若A为n阶方阵,入i (i=1 , 2,…,n)是A的特征值,| A | =口入i 四、题型及解题思路 1 、有关行列式概念与性质的命题 2、行列式的计算(方法) 1 )利用定义 2)按某行(列)展开使行列式降阶 3)利用行列式的性质 ①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。 ②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。 ③逐次行(列)相加减,化简行列式。 ④把行列式拆成几个行列式的和差。 4)递推法,适用于规律性强且零元素较多的行列式 5)数学归纳法,多用于证明 3、运用克莱姆法则求解线性方程组 若D = | A |丰0,则Ax=b有解,即 x1=D1/D, x2= D2/D ,…, xn= Dn/D 其中Dj是把D中xj的系数换成常数项。 注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。 4、运用系数行列式A 判别方程组解的问题 1)当| A | = 0时,齐次方程组Ax= 0有非零解;非齐次方程组解,也可 能有无穷多解) 2)当| A |丰0时,齐次方程组Ax= 0仅有零解;非齐次方程组克莱姆法则求出。 、重点 1 、理解:矩阵的定义、性质, 几种特殊的矩阵(零矩阵,上(下)对角矩阵,逆矩阵,正交矩阵,伴随矩阵,分块矩阵) 2、掌握: 1)矩阵的各种运算及运算规律 2)矩阵可逆的判定及求逆矩阵的各种方法Ax= b 不是解(可能无Ax= b 有解,此解可由三角矩阵,对称矩阵,

线性代数试题及答案

第一部分选择题单项选择题 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于(D) A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于(B) A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是(B) A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有(D ) A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于(C) A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则(D) A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中(C ) A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是(A) A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有(A) A.秩(A)

线性代数知识点归纳,超详细

线性代数复习要点 第一部分行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 行列式的定义 1.行列式的计算: ①(定义法) ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④若都是方阵(不必同阶),则 ⑤关于副对角线: ⑥范德蒙德行列式: 证明用从第n行开始,自下而上依次的由下一行减去它上一行的倍,按第一列展开,重复上述操作即可。 ⑦型公式: ⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨(递推公式法) 对阶行列式找出与或,之间的一种关系——称为递推公式,其中 ,,等结构相同,再由递推公式求出的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算. ⑩(数学归纳法) 2. 对于阶行列式,恒有:,其中为阶主子式;

3. 证明的方法: ①、; ②、反证法; ③、构造齐次方程组,证明其有非零解; ④、利用秩,证明; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系: 第二部分矩阵 1.矩阵的运算性质 2.矩阵求逆 3.矩阵的秩的性质 4.矩阵方程的求解 1.矩阵的定义由个数排成的行列的表称为矩阵. 记作:或 ①同型矩阵:两个矩阵的行数相等、列数也相等. ②矩阵相等: 两个矩阵同型,且对应元素相等. ③矩阵运算 a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减). b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为. c. 矩阵与矩阵相乘:设, ,则, 其中 注:矩阵乘法不满足:交换律、消去律, 即公式不成立.

线性代数原理的几个应用【文献综述】

毕业论文文献综述 数学与应用数学 线性代数原理的几个应用 一、前言部分 线性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位。在计算机飞速发展并且广泛应用的今天,计算机科学、统计学[1]、生物学、人口迁移模型等无不以线性代数为其理论和算法基础的一部分;该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的。随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。 线性代数课程在大学数学中占有重要的地位,学习线性代数课程,无论是对于比较全面地培养学生的数学思维、提高数学素质还是进一步学习其他课程打下基础,都有着非常重要的理论和现实意义。而我国的线性代数课程偏重于理论的运算验证等,传统的线性代数教材追求逻辑的严密性和理论体系的完整性,重理论而轻视实践,剥离了概念、原理和范例的几何背景与现实意义,导致教学不尽如人意[2]。 本文主要利用建模思想应用线性代数知识解决实际问题,即从问题实例出发,建立数学模型[3],引入线性代数的基本知识点,回到实际应用中去。事实上用这种方式进行教学,可以培养学生的创新能力,提高学生分析和解决问题的能力。实际上线性代数自身理论正是在解决离散数学问题,建立数学模型的过程中发展起来的。 通过线性代数的学习,我们发现它和实际生活有着密切的联系。因此本文的写作目的就是把线性代数的有关知识运用到解决实际问题中去。在本文中,我主要通过几个实际例子,建立相应的数学建模进行研究分析。具体方案是先采集大量有关数据,然后运用线性代数原理等知识,借助MATLAB[4]等计算机工具对数据进行处理和分析,最后得到一个最优的策划方案。

线性代数教案设计

线性代数 课程教案 学院、部 系、所 授课教师 课程名称线性代数 课程学时45学时 实验学时 教材名称 年月日 线性代数课程教案

授课类型 理论课 授课时间 3 节 授课题目(教学章节或主题):第一章 行列式 §1 二阶与三阶行列式 §2 全排列及其逆序数 §3 n 阶行列式的定义 §4 对换 本授课单元教学目标或要求: 1. 会用对角线法则计算2阶和3阶行列式。 2. 知道n 阶行列式的定义。 本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等): 基本内容:行列式的定义 1. 计算排列的逆序数的方法 设12n p p p 是1,2,,n 这n 个自然数的任一排列,并规定由小到大为标准次序。 先看有多少个比1p 大的数排在1p 前面,记为1t ; 再看有多少个比2p 大的数排在2p 前面,记为2t ; …… 最后看有多少个比n p 大的数排在n p 前面,记为n t ; 则此排列的逆序数为12n t t t t =+++ 。 2. n 阶行列式 121211 1212122212() 1 2(1)n n n n t p p np p p p n n nn a a a a a a D a a a a a a = = -∑ 其中12n p p p 为自然数1,2,,n 的一个排列,t 为这个排列的逆序数,求和符号∑是对所有排列 12()n p p p 求和。 n 阶行列式D 中所含2n 个数叫做D 的元素,位于第i 行第j 列的元素ij a ,叫做D 的(,)i j 元。 3. 对角线法则:只对2阶和3阶行列式适用 1112 112212212122 a a D a a a a a a = =-

计算机科学与技术专业《线性代数》课程教学大纲.

《线性代数》课程教学大纲 一、课程性质与目标 (一)课程性质 线性代数是全校各专业本科学生必修的一门重要基础理论课,它是处理和解决工程技术中一些实际问题不可缺少的有力工具,也是学习后续课程的重要基础。(二)课程目标 通过本课程的学习,使学员对线性代数的基本概念、基本理论和基本方法有较深入的理解,在此基础上具备初步应用线性代数的能力,为后续课程的学习奠定必要的基础。同时通过线性代数中基本概念的建立,基本理论的证明,基本方法的运用,培养学员的抽象思维能力、逻辑推理能力。 二、课程内容与教学 (一)课程内容 1、课程内容选编的基本原则 (1)、把握理论、技能相结合的基本原则。 (2)、注意教学内容与其他相关课程的联系和渗透。 (3)、结合中学数学课程教学实际,充实教学内容。 2、课程基本内容 (1)行列式 (2)矩阵 (3)向量与线性空间 (4)矩阵的特征值与特征向量 (5)二次型 (二)课程教学 1、注重数学思想与数学素养的培养,阐述所讲内容在整个理论体系中的作用和地位。 2、加强建立数学模型的思想和训练,提高学生的数学素养和创新能力。 3、在传授基础理论和基本技能的同时,加强学生分析实际问题和解决实际问题的能力。 4、注重课堂讲授、习题课、习题批改等环节。 三、课程实施与评价 (一)学时、学分 本课程总学时为48学时。建议在第一学期开设本课程。 (二)教学基本条件 1、教师 教师应具有良好的师德和较高的专业素质与教学水平,一般应具备讲师以上职称或本专业硕士以上学位。 2、教学设备 (1)配备多媒体教学设备。 (2)配置与教学内容相关的图书、期刊、音像资料等。

(三)课程评价 1、对学生能力的评价 (1)基本运算能力,包括运算速度及准确性。 (2)逻辑推理能力,包括逻辑思维的合理性和严密性。 2、采取教师评价为主的评价方法。 3、课程学习成绩由期末考试成绩(70%)和平时成绩(30%)构成。学期课程结束时评出阶段成绩,课程总成绩为两个学期阶段成绩相加之和,成绩评定可分为优、良、中、及格和不及格五个等级,也可采用百分制。 四、课程基本要求 第一章行列式 内容和要求:掌握排列的逆序数的计算及奇偶性的判定,理解n阶行列式的定义,熟练掌握行列式的性质和计算行列式的两种基本方法:三角化法和降阶法,了解计算行列式的其他多种方法:定义法,升阶法,分块法,拆边法,递推法,归纳法等,掌握Cramer法则。 重点:行列式的性质,行列式的计算,Cramer法则 第二章矩阵 内容和要求:理解矩阵的概念,掌握矩阵的运算及性质,深刻理解矩阵的初等变换、初等矩阵的概念以及它们之间的相互联系,了解分块矩阵的概念及运算,掌握可逆矩阵的概念及其判定条件,熟练掌握用初等变换法和伴随矩阵法求可逆矩阵的逆,掌握矩阵秩的定义,会利用初等变换法求矩阵的秩,熟练掌握用初等变换法求解线性方程组。 重点:矩阵的运算及性质,可逆矩阵的概念及其判定,逆矩阵的求法,初等变换与初等矩阵之间的联系,矩阵的秩及其求法,用初等变换法求解线性方程组。 第三章向量与线性空间 内容和要求:理解线性相关与线性无关的概念及性质,理解极大线性无关组的概念,掌握极大线性无关组的性质与求解,理解向量组的秩与矩阵的秩的关系,理解向量空间、线性空间及线性变换的概念,掌握线性变换的矩阵表示、基变换与坐标变换公式,会求向量的坐标和子空间的维数,了解生成子空间的定义;掌握线性方程组有解的判定条件;掌握齐次线性方程组基础解系的求法,会用解的结构来表示线性方程组的一般解;掌握含参线性方程组的几种求解方法。 重点:线性相关与线性无关的判断,极大线性无关组的性质与求解,向量组的秩与矩阵的秩之间的关系,线性空间的概念,基变换与坐标变换公式,线性变换的矩阵表示,齐次方程组基础解系的求法,一般线性方程组的解法。 第四章矩阵的特征值与特征向量 内容和要求:理解方阵特征值与特征向量的概念,熟练掌握特征值与特征向量的求法,掌握特征向量的性质,理解方阵相似的概念,掌握方阵相似对角化的充要条件及方法,掌握实对称矩阵的性质及其相似对角化的方法。 重点:方阵的特征值、特征向量的求法,方阵可相似对角化的判断以及对角化过程的实施。 第五章二次型 内容和要求:理解二次型及其线性替换(变换)的矩阵表示和矩阵合同的概念,

线性代数经管类——重点难点总结

4184线性代数(经管类)——重点难点总结 1、设n 阶矩阵A 的各行元素之和均为0,且A 的秩为n -1,则齐次线性方程组Ax =0的通解为_K(1,1,1….1)T 2、设A 是n m ?矩阵,已知0=Ax 只有零解,则以下结论正确的是(A ) A .n m ≥ B .b Ax =(其中b 是m 维实向量)必有唯一解 C .m A r =)( D .0=Ax 存在基础解系 解:αααααααααααααααα 100 101 101)())(()())(()(T T T T T T T T ==, 由于)13(23)2,3(=??? ? ??=T αα, 所以10010010113)13()(==ααααT T ??? ? ??=???? ??=466913)2,3(2313100 100ααT (标准答案). 6、已知4321,,,αααα线性无关,证明:21αα+,32αα+,43αα+,14αα-线性无关. 证:设0)()()()(144433322211=-++++++ααααααααk k k k , 即0)()()()(443332221141=++++++-ααααk k k k k k k k ,

因为4321,,,αααα线性无关,必有??? ?? ??=+=+=+=-000043322141 k k k k k k k k , 只有04321====k k k k ,所以21αα+,32αα+,43αα+,14αα-线性无关. 7、设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则() A.A =0/A/=0? B.A =E C.r (A )=n D.0

线性代数的学习方法和心得体会

线性代数的学习方法和心得体会 一、学习方法 今天先谈谈对线形空间和矩阵的几个核心概念的理解。这些东西大部分是凭着自己的理解写出来的,基本上不抄书,可能有错误的地方,希望能够被指出。但我希望做到直觉,也就是说能把数学背后说的实质问题说出来。 首先说说空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间。线形空间其实还是比较初级的,如果在里面定义了范数,就成了赋范线性空间。赋范线性空间满足完备性,就成了巴那赫空间;赋范线性空间中定义角度,就有了内积空间,内积空间再满足完备性,就得到希尔伯特空间。 总之,空间有很多种。你要是去看某种空间的数学定义,大致都是“存在一个集合,在这个集合上定义某某概念,然后满足某些性质”,就可以被称为空间。这未免有点奇怪,为什么要用“空间”来称呼一些这样的集合呢?大家将会看到,其实这是很有道理的。 我们一般人最熟悉的空间,毫无疑问就是我们生活在其中的(按照牛顿的绝对时空观)的三维空间,从数学上说,这是一个三维的欧几里德空间,我们先不管那么多,先看看我们熟悉的这样一个空间有些什么最基本的特点。仔细想想我们就会知道,这个三维的空间:1. 由很多(实际上是无穷多个)位置点组成;2. 这些点之间存在相对的关系;3. 可以在空间中定义长度、角度;4. 这个空间可以容纳运动,这里我们所说的运动是从一个点到另一个点的移动(变换),而不是微积分意义上的“连续”性的运动, 认识到了这些,我们就可以把我们关于三维空间的认识扩展到其他的空间。事实上,不管是什么空间,都必须容纳和支持在其中发生的符合规则的运动(变换)。你会发现,在某种空间中往往会存在一种相对应的变换,比如拓扑空间中有拓扑变换,线性空间中有线性变换,仿射空间中有仿射变换,其实这些变换都只不过是对应空间中允许的运动形式而已。

相关主题
文本预览
相关文档 最新文档