当前位置:文档之家› 第二十二章 抗心律失常药

第二十二章 抗心律失常药

第二十二章  抗心律失常药
第二十二章  抗心律失常药

一、心肌细胞的分类

心肌细胞按生理功能分为两类:一类为工作细胞,包括心房肌及心室肌,胞浆内含有大量肌原纤维,因而具有收缩功能,主要起机械收缩作用。除此以外,还具有兴奋性、传导性而无自律性。另一类为特殊分化的心肌细胞,包括分布在窦房结、房间束与结间束、房室交界、房室束和普肯耶纤维中的一些特殊分化的心肌细胞,胞浆中没有或很少有肌原纤维,因而无收缩功能,主要具有自律性,有自动产生节律的能力,同时具有兴奋性、传导性。无论工作细胞还是自律细胞,其电生理特性都与细胞上的离子通道活动有关,跨膜离子流决定静息膜电位和动作电位的形成。

根据心肌电生理特性,心肌细胞又可分为快反应细胞和慢反应细胞。

快反应细胞快反应细胞包括心房肌细胞、心室肌细胞和希-普细胞。其动作电位0相除极由钠电流介导,速度快、振幅大。快反应细胞的整个APD中有多种内向电流和外向电流参与。

慢反应细胞慢反应细胞包括窦房结和房室结细胞,其动作电位0相除极由L-型钙电流介导,速度慢、振幅小。慢反应细胞无I k1控制静息膜电位,静息膜电位不稳定、易除极,因此自律性高。有关两类细胞电生理特性的比较见表1。

表1 快反应细胞和慢反应细胞电生理特性的比较

参数快反应细胞慢反应细胞

静息电位-80~-95mV -40~-65mV

0期去极化电流I Na I Ca

0期除极最大速率200~700V/s 1~15V/s

超射+20~+40mV -5~+20mV

阈电位-60~-75mV -40~-60mV

传导速度0.5~4.0m/s 0.02~0.05m/s

兴奋性恢复时间3期复极后

10~50ms 3期复极后100ms以上

4期除极电流I f I k, I Ca, I f

二、静息电位的形成

静息电位(resting potential, RP)是指安静状态下肌细胞膜两侧的电位差,一般是外正内负。利用微电极测量膜电位的实验,细胞外的电极是接地的,因此RP是指膜内相对于零的电位值。在心脏,不同组织部位的RP是不相同的,心室肌、心房肌约为-80~-90mV,窦房结细胞-50~-60mV,普肯耶细胞-90~-95mV。

各种离子在细胞内外的浓度有很大差异,这种浓度差的维持主要是依靠位于细胞膜和横管膜上的离子泵。如Na-K泵(Na-K pump),也称Na-K-ATP酶,其作用将胞内的Na+转运至胞外,同时将胞外的K+转运至胞内,形成细胞内外Na+和K+浓度梯度。Na-K-ATP酶的磷酸化需要分解ATP,通常每分解一分子A TP可将3个Na+转运至膜外,同时将2个K+转运至膜内。

心肌细胞外Ca2+([Ca2+]0)和细胞内Ca2+([Ca2+]i)相差万倍,维持Ca2+跨膜浓度梯度的转运系统其一是位于细胞膜上的Na+/Ca2+交换体(Na+/Ca2+ exchanger),它的活动可被ATP 促进,但不分解A TP,因而也不直接耗能。Na+/Ca2+交换体对Na+和Ca2+的转运是双向的,可将Na+转入胞内同时将Ca2+排出胞外(正向转运),也可将Na+排出而将Ca2+转运至胞内(反向转运)。转运的方向取决于膜内外Na+、Ca2+浓度和膜电位。无论是正向还是反向转运,其化学计量学都是3个Na+与1个Ca2+的交换,Na+/ Ca2+交换电流(I Na/I Ca)为内向电流,电流方向与Na+流动的方向相一致,Na+内流而Ca2+外排。经Na+/ Ca2+交换排出Ca2+的过程是间接地以Na泵的耗能活动为动力的。另一个维持Ca2+跨膜梯度的转运系统是位于肌质网(sarcoplasmic reticulum, SR)膜上的Ca泵起着主要作用。Ca泵也称Ca-ATP酶,它每分解一分子ATP可将胞浆中2个Ca2+逆电化学梯度转动至SR内,使[Ca2+]i降低到0.1μmol·L-1以下。心肌细胞膜上也存在Ca-ATP酶,可逆电化学梯度将胞浆内Ca2+转运至胞外。

带电功率离子的跨膜流动将产生膜电位的变化,变化的性质和幅度决定于电流的方向和强度。离子电流的方向是以正电荷移动的方向来确定的;正电荷由胞外流入胞内的电流为内向电流,它引起膜的去极化;正电荷由胞内流出胞外的电流称为外向电流,它引起膜的复极化或超极化。心室肌、心房肌的RP能保持稳定,是由于静息状态下内向电流与外向电流大小相等,电荷在膜两侧的净移动为零。决定RP的离子电流主要是Na+和K+。原因是静息状态下膜对Ca2+几乎没有通透性,其作用可以忽略。Cl-是一个被动分布的离子,它不决定RP,

而是RP决定它的分布。以上分析表明一个稳定的RP,其外向的K+电流和内向的Na+电流相等。RP主要取决于膜的K+电导和Na+电导。膜对哪一种离子的电导更大,RP就更接近哪一种离子的平衡电位。静息时,K+电导》Na+电导,RP接近于K+平衡电位。

三、心肌细胞动作电位的产生机制

动作电位(action potential, AP)是指一个阈上刺激作用于心肌组织可引起一个扩布性的去极化膜电位波动。AP产生的基本原理是心肌组织受到刺激时会引起特定离子通道的开放及带电离子的跨膜运动,从而引起膜电位的波动。由于不同心肌细胞具有不同种类和特性的离子通道,因而不同部位的心肌AP的开关及其它电生理特征不尽相同。

(一)心室肌、心房肌和普肯耶细胞动作电位

心室肌、心房肌和普肯耶细胞均属于快反应细胞,AP形态相似。

心室肌AP复极时间较长(100~300ms),其特征是存在2期平台。AP分为0,1,2,3,4期。

0期:除极期,膜电位由-80~-90mV在1~2ms内去极化到+40mV,最大去极化速度可达200~400V/s。产生机制是电压门控性钠通道激活,Na+内流产生去极化。

1期:快速复极早期,膜电位迅速恢复到+10±10mV。复极的机制是钠通道的失活和瞬间外向钾通道Ito的激活,K+外流。在心外膜下心肌Ito电流很明显,使AP出现明显的尖锋;在心内膜下心肌该电流很弱,1期几乎看不到。

2期:平台期,形成的机制是内向电流与外向电流平衡的结果。平台期的内向电流有I Ca-L,I Na+/ Ca2+,以及慢钠通道电流。其中最重要的是I Ca-L,它失活缓慢,在整个平台期持续存在。

I Na+/ Ca2+在平台期是内向电流,参与平台期的维持并增加平台的高度。慢钠通道电流是一个对TTX高度敏感的钠电流,参与平台期的维持。参与平台期的外向电流有I k1,I k和平台钾通道电流I kp。I Ca-L的失活和I k的逐渐增强最终终止了平台期而进入快速复极末期(3期)。

3期:快速复极末期,参与复极3期的电流有I k,I k1和生电性Na泵电流。3期复极的早期主要是I k的作用,而在后期I k1的作用逐渐增强。这是因为膜的复极使I k1通道开放的概率增大,后者使K+外流增加并加速复极,形成正反馈,使复极迅速完成。

4期:自动除极期(又称舒张期自动除极期),主要存在于自律细胞,如普肯耶细胞和窦房结细胞。普肯耶细胞4期除极的最重要的内向电流为I f电流。由于它激活速度较慢,故它的4期除极速率较慢。在普肯耶细胞4期除极的后期,稳态的Na+窗电流参与自动除极过程。窦房结细胞参与4期除极的离子有延迟整流钾电流(I k),起搏电流(I f),电压门控性I Ca-L,I Ca-T。这些离子电流没有一个能独立完成窦房结的4期除极,外向I k衰减,相当于内

向电流逐渐加强,在4期除极中起主要作用,也是4期除极的主要机制;I f超极化激活,故在膜电位负值较大的细胞起较大作用;Ca2+内流主要参与4期后半部分的除极。

心房肌动作电位与心室肌相比,主要特点是:①1期复极较迅速,平台期不明显,因为心房肌I to电流较强而I Ca-L较弱;②3期复极和静息期有乙酰胆碱激活的钾通道K Ach参与。

普肯耶细胞属于快反应自律细胞,其AP与心室肌相比一个显著区别是具有4期自动除极过程。普肯耶细胞I k1电流较强,RP可达-90mV。0期最大除极速率高;它的I to电流较强,1期复极速度较快;它的平台期持续时间长,可达300~500ms。

(二)窦房结和房室结细胞动作电位

窦房结细胞属于慢反应细胞,其AP与心室肌相比一个特点是0期去极化幅度小,没有1期和2期,由0期直接过渡到3期,也具有4期自动除极过程。另一个特点是窦房结产生AP各时相的离子电流也与快反应细胞不同。0期去极化是I Ca-L激活引起的,激活过程较慢,故0期的去极化速度低。3期复极主要是由于I Ca-L的失活和I k的激活形成的,I KAch也参与了3期复极。

房室结细胞AP的0期除极速度与幅度略高于窦房结,而4期去极化速度较低。

四、心肌细胞的电生理特性

(一)兴奋性

1.心肌兴奋性的产生机制

兴奋性(excitability)是指心肌细胞受刺激后产生动作电位的能力。包括静息电位去极化到阈电位水平以及有关离子通道的激活两个环节。

对快反应细胞来说,形成AP的关键是钠通道的激活。当静息电位绝对值高于80mV时,所有钠通道都处于可开放状态,接受阈刺激即可产生动作电位。随着膜的去极化,电压门控钠通道开放的概率增大,当刺激能使膜电位去极化到某一临界值时,这一临界值称为阈电位(threshold potential),内向钠电流的强度充分超过了背景外向电流使膜迅速去极化形成AP 的0期。

慢反应细胞形成AP的关键是钙通道的激活而产生的。

2.影响兴奋性的因素

心肌兴奋性主要取决于静息膜电位的大小及阈电位水平。静息膜电位绝对值减小,阈电位水平下降均能提高心肌兴奋性。其中阈电位水平是最重要的。

决定阈电位的主要因素是钠通道的机能状态。虽然钠通道的关闭状态和失活状态都是不导通的,但它们对兴奋性的影响却是截然相反的。关闭状态的通道越多,兴奋性越高;而失

活状态通道所占的比例越大,细胞就越不容易兴奋。在此处简述一下钠通道的三种机能状态。根据钠通道的Hodgkin-Huxley(H-H)工作模型,电压依赖性钠通道受膜电位的影响,在不同电压影响下,通道蛋白发生构象变化而使通道不断转换于静息态(resting state)、开放状态(open state)和失活状态(inactive state)。通道内侧有m激活闸门和h失活闸门来控制通道的开启和关闭(图6-1-2)。静息时,m门位于通道内,使通道处于关闭状态,即静息态;兴奋时,在去极化作用下,m闸门激活而移出通道外,使通道开放,Na+内流,即为激活态;但在去极化作用下,原来位于通道外的h闸门也被激活,而以稍慢的速度移到通道内部,从而使通道开放瞬间后失活而关闭,即为失活态;随后在膜电位复极化的作用下,m和h闸门又逐渐移到原来的位置,即m闸门位于通道内,h闸门位于通道外,进入静息状态,此时兴奋恢复正常。单从电压依赖性上看,两个闸门几乎没有同时开放的可能性,但两个闸门的动力学参数相关很大,激活门开放的时间常数τm比失活门关闭的时间常数τh小得多,若刺激使膜从静息状态迅速去极化时,激活门迅速开放而失活门还未来得及关闭,钠通道便进入两个闸门都开放的激活状态,此时Na+内流。随着失活门随后的关闭,钠通道便进入失活状态。失活关闭状态的通道不能直接进入开放状态而处于一种不应期。只有在经过一个额外刺激使通道从失活关闭状态进入到静息关闭状态后,通道才能再度接受外界刺激而激活开放。这一过程称为复活(recovery)。钠通道的膜电位在-80~-90mV时,几乎全部通道都处于关闭状态,一旦迅速去极化,钠通道开放的概率也很高,较低程度的去极化就可以激活钠通道,因而阈电位较低(负值较大),兴奋性较高。随着静息电位的减小,失活闸门逐渐关闭或进入失活状态的钠通道越来越多,需较强的去极化才能激活钠通道,阈电位上移,兴奋性逐渐降低甚至消失。即RP的减小超过一定程度时阈电位会上移,使RP与阈电位的差距增大,兴奋性减小甚至消失。高血钾对心肌兴奋性的影响就是一个典型的实例。轻度高血钾使RP略微减小(如从-90mV减少至-80mV)时,阈电位无显著变化,RP与阈电位差距减少,故兴奋性升高;重度高血钾时RP进一步减小而使阈电位升高,兴奋性则降低。

此外,某些因素(如药物)通过改变钠通道激活和失活过程而影响兴奋性。例如1类抗心律失常药可使钠通道稳态失活曲线左移,阈电位上移,兴奋性降低。

3.兴奋性的恢复

心肌兴奋后,兴奋性暂时丧失,随着复极过程的进行,兴奋性又逐渐恢复,其机制为随着膜电位的增大,失活状态的钠通道或钙通道逐步进入关闭状态,即复活过程。复活是电压和时间依赖性的,在快反应细胞,钠通道复活过程为电压依赖性,根据复极过程中膜电位的变化,将心肌复极过程中的兴奋性分为以下几期:①绝对不应期,终止于3期复极至-55mV

左右,此期钠通道全部处于失活状态,不产生兴奋。②有效不应期,从0期开始终止于3期-66mV左右,比绝对不应期稍长,在此期的后段,强刺激可引起局部兴奋,但不产生扩布性的AP。③相对不应期,3期复极从-60mV至-80mV期间,此期有部分钠通道复活,兴奋性逐渐恢复,较强刺激有可能引起AP。④超常期,相当于3期复极至-80mV~-90mV之间,此期钠通道已近乎全部复活。

在慢反应细胞,兴奋性的恢复表现为较大的时间依赖性,兴奋性的恢复滞后于膜电位的恢复。

(二)自律性

自律性(automaticity)是指细胞在没有外界刺激的条件下自动地产生节律性兴奋的特性。通常以单位时间内产生AP的次数来衡量自律性的高低。自律性产生的机制是4期自动除极,参与4期自动除极的离子流前已叙述,最终结果形成一个净内向电流而使膜去极化。

在正常心脏,窦房结的自律性最高,70~80次/min;其次是房室交界,40~60次/min;心室传导系统自律性最低,15~40次/min。由于窦房结自律性最高,每当其它自律组织的兴奋还没有发放之前,窦房结的冲动已经扩布下来,而兴奋后的心肌细胞暂时处于不应期状态,导致其它自律组织的起搏活性始终表现不出来,成为潜在起搏点。窦房结为心脏的正常起搏点(pacemaker)。当窦房结病变,自律性降低到潜在起搏点之下,或是它所发放的冲动不能下传时(如窦房阻滞、房室传导阻滞),潜在起搏点有可能成为有效起搏点而发放冲动,形成异位心律(室性心律、交界性心律等)。潜在起搏点的自律性升高超过窦房结,将出现快速性心律失常。

(三)传导性

传导性(conductivity)心肌细胞膜的任何部位产生的兴奋不但可以沿整个细胞膜扩布,且可通过细胞间缝隙连接(gap junction)传导到另一个心肌细胞,从而引起整个心脏的兴奋和收缩。

窦房结发出的兴奋首先经心房肌和心房肌中的几条细小的传导束(房间束和结间束)传向房室和整个心房,再经房室交界到达房室束。兴奋进入心室传导系统后,沿走行于心内膜下的左束支和右束支及其进一步分支形成的普肯耶纤维,传导至心内膜下心肌,再传至心外膜侧。兴奋由窦房结发出经上述途径传遍整个心脏,总共约需时0.22s。

心脏传导性由0期去极化速度和幅度决定。快反应细胞0期除极化速率由钠内流决定,慢反应细胞0期除极化由钙内流决定,因而抑制钠内流或钙内流都可抑制传导。

心律失常的发生机制

一、心律失常发生的几个基本机制

窦房结是心脏的正常起搏点,窦房结的兴奋沿着正常传导通路依次传导下行,直至整个心脏兴奋,完成一次正常的心脏节律。这其中的任一环节发生异常,都会产生心律失常。

(一)自律性提高

1.正常自律机制改变正常自律机制改变是指参与正常舒张期自动除极化的起搏电流动力学和电流大小的改变而引起的自律性变化。窦房结起搏电流为钙内流,钙内流增加导致自律性升高,形成窦性心动过速。阻断起搏电流(I f)或钙电流(I Ca)均可使4期的去极化速率下降。β受体阻滞剂,迷走神经兴奋均可降低窦房结的自律性。反之,儿茶酚胺释放、激动β受体和心肌缺血等均可使4相斜率提高而增加自律性。

2.异常自律机制形成非自律性心肌细胞在某些条件下出现异常自律性称为异常自律机制形成。如工作肌细胞在缺血、缺氧条件下也会出现自律性。异常自律机制的发生可能是由于损伤造成细胞膜通透性增高和静息膜电位绝对值降低。这种异常自律性向周围组织扩布就会产生心律失常。

(二)触发活动

触发活动(triggered activity)指冲动的形成是由于紧接着一个动作电位后的第二次阈值除极化即后除极所造成。触发活动引起新的AP发放,形成异位节律,是一种常见的形成心律失常的机制。后除极可分为:

1.早后除极(early afterdepolarization, EAD)是一种发生在完全复极之前的后除极,通常发生于2、3相复极中。诱发早后除极的因素有药物、低血钾等。早后除极所触发的心律失常以尖端扭转型(torades de pointes)心动过速常见。

2.迟后除极(delayed faterdepolarization,DAD)是细胞内钙超载情况下,发生在动作电位完全或接近完全复极时的一种短暂的振荡性除极。DAD大都由于心肌细胞内Ca2+浓度增加及由Na+- Ca2+交换而导致Na+内流所致。细胞内钙超载时,激活钠钙交换电流,泵出1个Ca2+,泵入3个Na+,相当于Na+内流,引起膜除极,当达到钠通道激活电位时,引起动作电位。诱发迟后除极的因素有强心苷中毒、细胞外高钙及低钾等。

(三)折返

折返(reentry)是指一次冲动下传后,又可顺着另一环形通路折回而再次兴奋原已兴奋过的心肌,是引发快速型心律失常的重要机制之一。心脏的环行通道有解剖性环行通道和功

能性环行通路,故折返就存在上述两类。

1.解剖性环行通道在心脏存在构成折返环行通路的形态学基础有3种:①在窦房结附近的心房肌,围绕腔静脉而构成环行的心房肌。可形成心房颤动(Af)及心房扑动(AF);

②在房室结附近,若有异常侧支返回心房,在心房、房室结和心室间形成折返,如预激综合征(wolff-Parkinson-Write Syndrome, WPW syndrome);③心室壁普肯耶纤维末梢,由心内膜穿入再伸向心外膜心肌,发出二侧支形成三角形,若其中一支发生传导阻滞,可形成三角形结构的环形折返。解剖性折返的发生有三个决定因素:①存在解剖学环路;②环路中各部位不应期不一致;③环路中有传导性减慢的部位。

2.功能性环行通路在冲动向前扩布途中,若遇到心肌缺血损害而使传导被阻断,从而改变冲动由另一通道较缓慢的速度扩布,其后再回到原来的位点。功能性折返在无明显解剖环路时即可发生。

二、心律失常发生的离子通道靶点学说

心肌细胞膜上存在多种离子通道,如I Na,I Ca,I kr,I ks,I kur,I k1,I to,I kATP等,这些通道表达和功能的彼此平衡是心脏正常功能的基础。当某种通道的功能或表达异常时,通道间平衡被打破,将出现心律失常。如上述编码I Na,I kr,I ks通道的基因发生突变,引起Na+内流增加或K+外流减少,使心肌复极减慢,产生Q-T间期延长综合征。对I Na抑制过强,将出现传导阻滞,易诱发折返激动而致心律失常。I kur钾电流主要存在于心房,I kur的增强与房性心律失常(如房颤)发生密切相关。房扑及某些快速型室性心律失常发生时,APD的缩短是L-型钙电流在起主导作用。最佳靶点学说(The theory of the best targets)认为:I Na,I Ca,I kr,I ks,I kur,I to,I k1等与心律失常发生、发展及消除关系密切,是抗心律失常药物作用的最佳靶点。一个理想的抗心律失常药物应对上述靶点有作用,至少是二种以上。

三、心律失常发生的分子机制

有关心律失常的许多理论都是基于对心脏电生理的认识。心肌细胞离子通道的结构和功能的改变所引起离子流的变化则是心律失常发生机制中研究的焦点。心律失常的发病机制常常与心肌细胞复极化异常有关。任何离子通道蛋白的变化均有可能导致离子流异常而产生畸形的动作电位,最后体现在心电图上而显示出心律失常特征。QT间期延长综合征(long QT syndrome, LQTS)是目前第一个被肯定的由基因缺陷引起复极化异常的心肌细胞离子通道疾病,也是第一个从分子水平揭示了心律失常发生机制的疾病。LQTS是以心电图QT间期延长和发生恶性心律失常性晕厥及猝死为特征的一组症候群。如由QT间期延长而产生的尖端扭转型室性心动过速(torsade de pointes)。迄今为止,至少明确有八个基因的突变可引起心

肌细胞离子通道的功能异常而导致心律失常,包括钾通道基因KCNQ1(KvLQT1)、KCNE1(minK)、HERG、KCNE2(MiRP1)和KCNJ2;钠通道基因SCN5A;钙通道基因RYR2和锚蛋白B基因AnkyrinB。心律失常类型涉及到长LQTS、Brugada综合征、特发性室颤、儿茶酚胺性室颤、新生儿猝死、房室传导阻滞及房颤等。

(一)遗传性LQTS

1.LQT1

1996年Wang等用原位克隆的方法证实了LQT1的致病基因为KvLQT1,后被命名为KCNQ1。正常情况下,位于第11号染色体上的KvLQT1基因与位于21号染色体上的minK 基因编码的蛋白质共同形成有功能的I ks通道,控制心肌复极化过程。KvLQT1突变时心肌细胞I ks电流减小,心室复极化减慢导致QT间期延长。KvLQT1突变的类型有错义突变、无义突变、缺失/插入突变、移码突变和剪接突变。这些突变引起氨基酸替换或蛋白质合成中某些氨基酸的终止。基因突变的致病机制目前认为是,正常和突变KvLQT1亚单位的组合可形成异常I ks通道,KvLQT1突变是通过一种负显性机制或功能丧失机制发挥作用的。负显性是指KvLQT1突变型通过一种“毒性”作用干预正常野生型的功能使电流密度降低,而其他电流的动力学特征没有大的改变。功能丧失是指只有突变型失去活性。无论上述哪种机制都导致I ks减小,心肌复极时间延长,发生心律失常的危险性增加。不同的基因突变类型导致I ks通道功能异常的程度不同。LQT1占LQTS基因型的42%。

2.LQT2

Jiang等通过候选基因定位法确定了LQT2的致病基因是HERG基因。当位于7号染色体编码I krα亚基的HERG基因突变,导致畸变亚基的合成,畸变亚基不能与正常亚基组装成有功能的I kr通道,导致I kr电流减小或消失,从而使心肌细胞复极化过程减慢,QT间期延长。HERG突变的类型有错义突变、无义突变、缺失/插入突变、移码突变和剪接突变。多为错义突变,其变异的范围极广,几乎跨越整个亚基长度(包括N-末端和C-末端区域)。HERG变异可导致I kr电流的减少,目前其机制大致可归结为以下几点:一是HERG基因内缺失突变产生的异常亚基不能与正常亚基共同装配形成I kr通道,从而导致功能性(野生型)I kr通道数量减少,复极化I kr流的减弱;二是HERG错义突变产生的亚基与正常亚基共同装配成I kr通道时,单个突变亚基就能表现出丧失功能的变异通道表型(即显性负作用机制),结果造成通道功能丧失,从而复极化I kr流大为减少;三是由于基因突变,通道蛋白表达的数量和质量出现问题,蛋白转运定位障碍,合成的蛋白质滞留在内质网内,表现为表达数量不足,细胞膜通道减少,电流密度降低。LQT2占LQTS基因型的45%。

3.LQT3

Jiang和Wang等用侯选基因定位法确定了LQT3致病基因是SCN5A,位于3p21-24,是编码钠通道的基因。正常情况下,在心肌细胞动作电位除极时SCN5A编码的钠通道激活,形成动作电位的除极相,然后于复极时失活,通道关闭而突变的SCN5A编码的通道没有失活状态,或从失活状态恢复到静息状态的速度加快,在动作电位的复极相反复开放钠离子持续内流,这个持续内向钠电流扰乱了平台期的内外离子流间的平衡使复极化过程延长,导致QT间期延长。

SCN5A既是LQT3的致病基因,又与Brugada综合征、特发性室颤(IVF)、以及传导阻滞及新生儿猝死综合征(SIDS)有关。SCN5A突变类型有错义突变和缺失突变。

SCN5A编码2016个氨基酸,约260KD的细胞膜蛋白,该蛋白有4个同源区(DⅠ-D Ⅳ),每一区都有6个跨膜片段(S1-S6)。SCN5A在人心肌细胞高度表达,在骨骼肌、肝脏和子宫中不表达,最近发现在脑中也有表达。目前为止,LQT3占LQTS基因型的8%。

4.LQT4

LQT4的突变基因于1995年仅在法国一个65个家庭成员的家系中发现,位于4q25+27。基因表型为持续性长QT伴窦性心动过缓、心房颤动和T波异常。其致病基因终于揭晓,为锚蛋白Ankyrin B基因。锚蛋白Ankyrin B基因E1425G突变导致钠泵、钠/钙交换,1,4,5三磷酸肌醇受体细胞内分布失调,定位破坏,表达降低。致使心肌细胞期前收缩,成为心律失常的又一新的触发机制。

5.LQT5

LQT5的致病基因是kCNE1(minK)基因。MinK基因首次由Takumi等从鼠肾脏cDNA 库中克隆出来,定位在21q22.1-22.2。目前发现5个突变,全是错义突变。Mink编码一个含130个氨基酸,具有一个跨膜片段的短链蛋白。它与kvLQT1组合形成功能性钾通道I ks。MinK 基因的错义突变改变了I ks激活曲线的电压依赖性并加速通道的失活,进而使I ks电流减小,引起心肌复极延长,增加了发生心律失常的危险。LQT5占LQTS的3%。

6.LQT6

LQT6的致病基因是MiRP1(KCNE2)基因。MiRP1定位于21q22.1,现发现MiRP1 3个突变,全是错义突变。MiRP1是含123个氨基酸,只有一个跨膜片段的通道蛋白,与HERG 组合形成完整的I kr。MiRP1的3个突变使通道开放缓慢,关闭迅速,从而降低钾电流。

7.LQT7

现已确定LQT7的致病基因是KCNJ2基因。KCNJ2基因编码Kir2.1内向整流钾通道蛋

白,介导I k1电流,基因突变I k1电流减小,导致动作电位终末期延长,成为另一种长QT综合征的发生机制。

8.RYR2通道功能异常所致心律失常

RYR2基因是一种Ryanodine受体,与1,4,5三磷酯酰肌醇受体一样,是钙离子诱导的Ca释放通道家族中的一员,调节细胞内钙离子水平,维持细胞正常的生理功能。RYR2基因编码约5000个氨基酸残基,形成四聚体,位于肌细胞的肌浆网或非肌细胞的内质网上。在心肌细胞的肌浆网膜上,RYR2被心肌细胞2相内流的Ca2+所激活,促进肌浆网内的内贮钙的大量释放,引起心肌收缩。RYR2基因突变可引起家族性儿茶酚胺性多形性室性心动过速(CVT)及二型致心律失常性右室发育不良(ARVD2)。

表2 LQTS亚型及突变基因

遗传方式亚型染色体位置基因影响蛋白质影响电流常染色体显性LQT111P15.5 KvLQT1(KCNQ1) I ksα亚单位I ks↓

LQT2Tq 35-36 HERG I krα亚单位I kr↓

LQT33P 21-24 SCN5A I Na I Na↑

LQT44q 25-27 未知未知未知

LQT521q 22.1-22.2 mink(KCNE1) I ksβ亚单位I ks↓

LQT621q 22.1-22.2 MiRP1(KCNE2) I krβ亚单位I kr↓

LQT7未知- - - 常染色体隐性JLN111P15.5 KvLQT1(KCNQ1) I ksα亚单位I ks↓

JLN221q 22.1-22.2 mink(KCNE1) I krβ亚单位I kr↓

JLN3未知- - - (二)获得性LQTS

1.心力衰竭

目前认为心衰属于Long-QT综合征较常见的继发病之一,衰竭心脏的心肌细胞表现为动作电位延长,体内复极异常不稳。在心衰,动作电位延长表现为两种钾电流I to1和I k1的选择性下调,I to1电流下降多发生在转录水平。钾通道下调如在短期内产生适应,心动周期中除极延长,兴奋收缩耦联可缓解心输出量的下降。然而,钾通道下调如果不能长期适应,患者易发生后除极,导致复极不均一而产生室性心律失常。

2.药物诱发长QT综合征

很多心血管药物和非心血管药物均可诱发长QT综合征,特别是阻断I kr的药物。如Ia 类抗心律失常药物奎尼丁,Ⅲ类抗心律失常药物d-索他洛尔,抗精神病药硫利达嗪,抗组胺药特非那定及抗菌药物红霉素等,详见表2所列。这些药物都有阻断快速激活外向整流钾电流(I kr),延长心肌复极时间的作用。其诱发尖端扭转型室速发生的原因系由于APD过度延

长引发早后去极的触发活动及复极不均一所致。药物诱发长QT综合征,目前机制尚不清楚,可能原因是由于钾通道富足,表达量正常,但当单一通道发生突变,表达量减少,本身虽不引起临床症状,服用某种药物后则诱发心律失常。此外,离子通道基因的良性多态可能增加药物结合力和通道阻滞,如HERG钾通道孔道内孔的独特结构使药物容易进入而阻滞通道引起LQT2。LQTS发生与性别有关,往往女性发生率高于男性。

获得性LQTS还常发生于心肌缺血,心动过缓,代谢异常(如低血钾、低血镁及低血钙等电解质紊乱)及低蛋白饮食等。

三节药源性心律失常

药源性心律失常分为因药物明显影响心肌电生理过程而导致的心律失常及药物过量中毒产生心脏抑制所引起的心律失常。前者称为药物的致心律失常作用(proarrhythmia),是指药物在治疗量或治疗量以下诱发新的心律失常或加重原有的心律失常。后者为药物的毒性作用。

一、药物致心律失常的类型及机制

药物所致心律失常多种多样,可以是原有心律失常的加重,也可诱发新的心律失常。常见类型如下:

(一)诱发新的心律失常

1.室上性快速心律失常房性期前收缩及房性心动过速;非阵发性室上性心动过速。

2.室性快速心律失常尖端扭转型室速;持续性或非持续性室性心动过速;心室扑动或心室颤动。

3.过缓性心律失常窦性心动过缓或窦性停搏;房室传导阻滞。

(二)原有心律失常的加重

1.发作的持续时间、发生频率及异位节律的比例增加。

2.发作的类型加重。

(三)加重电生理试验致心律失常

1.非持续性室速转变为持续性室速。

2.较小的期前刺激就可诱发心律失常。

药物致心律失常作用的机制与疾病等引起心律失常的机制基本相同,也是由冲动形成异常,冲动传导异常或二者兼而有之引起。冲动形成异常多见于药物引起的早后去极(如奎尼丁)或迟后除极(如强心苷)的触发活动。冲动传导异常多见于药物的传导阻滞作用引起的

复极化不均一所形成的折返激动(如氟卡尼等)。自主神经系统调节改变心室有效不应期导致QT间期改变。抑制窦房结和房室结的功能,多见于β阻滞剂和胺碘酮。负性心肌收缩力作用而加重心力衰竭及相关的心律失常。心肌缺血及特异质反应如奎尼丁晕厥等均可产生致心律失常作用。

二、具有致心律失常作用的药物

(一)心血管系统药物

1.抗心律失常药物

几乎所有的抗心律失常药物都具有一定的致心律失常作用。Ⅰc类药恩卡尼、氟卡尼等易致持续性室性心动过速;Ⅰa类药奎尼丁和Ⅲ类药索他洛尔、溴苄铵等易致尖端扭转型室速;β受体阻滞药、钙通道阻滞药等易致室上性心律失常。

(1)Ⅰa类药物“奎尼丁晕厥”是由于奎尼丁诱发尖端扭转型室速所致。其发生率约0.5%~9%,大多数病人在用药后的1周内发生,少数病人可在用药一年后发生。普鲁卡因胺的致心律失常发生率远低于奎尼丁,其致心律失常主要发生在静脉给药时。QT间期过度延长,心动过缓,慢性充血性心衰,低血钾、低血镁等电解质紊乱均可提高药物致心律失常的可能性。

(2)Ⅰc类药物1988年心律失常抑制试验(Cardiac Arrhythmia Suppression Trials, CAST)的临床研究表明这类药物可增加心肌梗死后患者的病死率,主要原因是增加患者致死性心律失常的发生率。该类抗心律失常药诱发的心律失常多为单一形态的持续室性心动过速,其发生与折返形成密切相关。

(3)Ⅲ类药物Ⅲ类抗心律失常药物通过延长APD和ERP能有效地终止折返激动,抑制程序电刺激诱发的室性心动过速,降低除颤阈值。然而1994年对d-索他洛尔进行的临床试验(survival with oral d-sotalol, SWORD)结果显示,该药不但没有降低心肌梗死后病人的病死率,反而使其增加。与安慰剂组比,d-索他洛尔使病人死亡率增加一倍。女性病死率明显高于男性,病死率发生可能与d-索他洛尔诱发尖端扭转型室速密切相关。

2.扩血管药包括前列环素(prostacycline),普尼拉明(prenylamine),利多氟嗪(lidoflazine),苄普地尔(bepridil)。

3.正性肌力药包括氨力农(amrinone),米力农(milrinone),多巴酚丁胺(dobutamine),地高辛(digoxin)。

(二)非心血管系统药物

除了抗心律失常药物等心血管药物可致心律失常外,很多非心血管药物也可引起心律失

常。包括抗精神病药,如吩噻嗪类,氟哌啶醇;抗抑郁药,如丙米嗪(imipramine)、马普替林(maprotiline)、曲唑酮(trazodone);抗组胺药,如特非那定(terfenadine);抗微生物药物,如红霉素(erythromycin)、氯喹(chloroquine)等。

心律失常的治疗

(一)药物治疗

应用常用的Ⅰ-Ⅳ类抗心律失常药物及其它的具有抗心律失常作用的药物,如地高辛、腺苷、硫酸镁等。

(二)电学治疗

1.DC电复律;

2.导管射频消融术,切断快速性心律失常的冲动回路,适用于A V结折返性快速性心律失常,也适用于Af及AF;

3.埋植心复律除颤器(implantable cardiac defibrillator, ICD),适用于心室颤动或室性心动过速所致的心脏骤停;自发的持续性室性心动过速;原因不明的晕厥;LQT综合征等。

(三)基因治疗

近年来的一个研究趋向是心律失常的基因治疗,即通过转送目的基因到靶细胞获得表达来治疗基因缺陷疾病。在心血管领域应用较早的有转入β-肾上腺素受体和肌浆网钙泵改善心衰;转入热-休克蛋白70缩小缺血-再灌注梗塞面积等。转基因治疗心律失常亦在国际上愈来愈受到重视,心律失常发生的离子通道学机制为通道功能亢进或低下,其原因是由于通道基因突变使蛋白质结构发生改变,蛋白质合成后不能被运出内质网,造成细胞膜通道蛋白表达减少。如某些HERG基因突变引起的长QT综合征就是通过这一机制而发生的。通过转基因来高度表达HERG基因使动作电位缩短,实验中EAD消失,提示可治疗长QT综合征。又如Marban等在实验中转入猪心脏-室交界区G抑制蛋白亚基Gα1.2,结果使房-室传导减慢,预示可用来减慢房颤时的心室率。随着心律失常基因机制研究的不断深入,基因治疗必将成为医学界新的研究热点。

第二十二章 抗心律失常药

一、心肌细胞的分类 心肌细胞按生理功能分为两类:一类为工作细胞,包括心房肌及心室肌,胞浆内含有大量肌原纤维,因而具有收缩功能,主要起机械收缩作用。除此以外,还具有兴奋性、传导性而无自律性。另一类为特殊分化的心肌细胞,包括分布在窦房结、房间束与结间束、房室交界、房室束和普肯耶纤维中的一些特殊分化的心肌细胞,胞浆中没有或很少有肌原纤维,因而无收缩功能,主要具有自律性,有自动产生节律的能力,同时具有兴奋性、传导性。无论工作细胞还是自律细胞,其电生理特性都与细胞上的离子通道活动有关,跨膜离子流决定静息膜电位和动作电位的形成。 根据心肌电生理特性,心肌细胞又可分为快反应细胞和慢反应细胞。 快反应细胞快反应细胞包括心房肌细胞、心室肌细胞和希-普细胞。其动作电位0相除极由钠电流介导,速度快、振幅大。快反应细胞的整个APD中有多种内向电流和外向电流参与。 慢反应细胞慢反应细胞包括窦房结和房室结细胞,其动作电位0相除极由L-型钙电流介导,速度慢、振幅小。慢反应细胞无I k1控制静息膜电位,静息膜电位不稳定、易除极,因此自律性高。有关两类细胞电生理特性的比较见表1。 表1 快反应细胞和慢反应细胞电生理特性的比较 参数快反应细胞慢反应细胞 静息电位-80~-95mV -40~-65mV 0期去极化电流I Na I Ca 0期除极最大速率200~700V/s 1~15V/s 超射+20~+40mV -5~+20mV 阈电位-60~-75mV -40~-60mV

传导速度0.5~4.0m/s 0.02~0.05m/s 兴奋性恢复时间3期复极后 10~50ms 3期复极后100ms以上 4期除极电流I f I k, I Ca, I f 二、静息电位的形成 静息电位(resting potential, RP)是指安静状态下肌细胞膜两侧的电位差,一般是外正内负。利用微电极测量膜电位的实验,细胞外的电极是接地的,因此RP是指膜内相对于零的电位值。在心脏,不同组织部位的RP是不相同的,心室肌、心房肌约为-80~-90mV,窦房结细胞-50~-60mV,普肯耶细胞-90~-95mV。 各种离子在细胞内外的浓度有很大差异,这种浓度差的维持主要是依靠位于细胞膜和横管膜上的离子泵。如Na-K泵(Na-K pump),也称Na-K-ATP酶,其作用将胞内的Na+转运至胞外,同时将胞外的K+转运至胞内,形成细胞内外Na+和K+浓度梯度。Na-K-ATP酶的磷酸化需要分解ATP,通常每分解一分子A TP可将3个Na+转运至膜外,同时将2个K+转运至膜内。 心肌细胞外Ca2+([Ca2+]0)和细胞内Ca2+([Ca2+]i)相差万倍,维持Ca2+跨膜浓度梯度的转运系统其一是位于细胞膜上的Na+/Ca2+交换体(Na+/Ca2+ exchanger),它的活动可被ATP 促进,但不分解A TP,因而也不直接耗能。Na+/Ca2+交换体对Na+和Ca2+的转运是双向的,可将Na+转入胞内同时将Ca2+排出胞外(正向转运),也可将Na+排出而将Ca2+转运至胞内(反向转运)。转运的方向取决于膜内外Na+、Ca2+浓度和膜电位。无论是正向还是反向转运,其化学计量学都是3个Na+与1个Ca2+的交换,Na+/ Ca2+交换电流(I Na/I Ca)为内向电流,电流方向与Na+流动的方向相一致,Na+内流而Ca2+外排。经Na+/ Ca2+交换排出Ca2+的过程是间接地以Na泵的耗能活动为动力的。另一个维持Ca2+跨膜梯度的转运系统是位于肌质网(sarcoplasmic reticulum, SR)膜上的Ca泵起着主要作用。Ca泵也称Ca-ATP酶,它每分解一分子ATP可将胞浆中2个Ca2+逆电化学梯度转动至SR内,使[Ca2+]i降低到0.1μmol·L-1以下。心肌细胞膜上也存在Ca-ATP酶,可逆电化学梯度将胞浆内Ca2+转运至胞外。 带电功率离子的跨膜流动将产生膜电位的变化,变化的性质和幅度决定于电流的方向和强度。离子电流的方向是以正电荷移动的方向来确定的;正电荷由胞外流入胞内的电流为内向电流,它引起膜的去极化;正电荷由胞内流出胞外的电流称为外向电流,它引起膜的复极化或超极化。心室肌、心房肌的RP能保持稳定,是由于静息状态下内向电流与外向电流大小相等,电荷在膜两侧的净移动为零。决定RP的离子电流主要是Na+和K+。原因是静息状态下膜对Ca2+几乎没有通透性,其作用可以忽略。Cl-是一个被动分布的离子,它不决定RP,

第二十章 抗心律失常药

第二十章抗心律失常药 一、A1型题 1.宜用于治疗窦性心动过速的药物是() A.强心苷 B.利多卡因 C.奎尼丁 D.普萘洛尔 E.胺碘酮 2.易产生全身性红斑狼疮样不良反应的药物是() A.普萘洛尔 B.奎尼丁 C.维拉帕米 D.普鲁卡因胺 E.苯妥英钠 3.奎尼丁和普鲁卡因胺抗心律失常的主要机制是() A.促进K-外流 B.阻滞Na+内流 C.阻滞Ca2内流 D.阻滞K+内流 E.促进Na+内流 4.下列何药不能治疗快速型心律失常() A.利多卡因 I3.奎尼丁 C.美西律(慢心律) D.普罗帕酮 E.阿托品 5.治疗强心苷中毒引起的室性心律失常最宜选用() A.奎尼丁 B.利多卡因 C.苯妥英钠 D.普萘洛尔 E.普鲁卡因胺 6.胺碘酮的作用机制是() A.阻滞钠通道 B.促进钾外流C.阻断β受体 D.阻滞钙通道 E.阻滞钾通道 7.下列药物不是钠通道阻滞药的是() A.维拉帕米 B.奎尼丁 C.利多卡因 D.普鲁卡因胺 E.苯妥英钠 8.治疗室上性心律失常首选() A.利多卡因 B.普萘洛尔 C.奎尼丁 D.维拉帕米 E.普罗帕酮 9.可治疗室性心律失常和三叉神经痛的药是() A.尼群地平 B.苯妥英钠 C.普罗帕酮 D.奎尼丁 E.美西律 10.既具有局麻作用又具有抗心律失常作用的药物是() A.维拉帕米 B.普萘洛尔C.奎尼丁 D.利多卡因 E.普鲁卡因胺 二、A2型题 11.罗某,男,42岁。由于饮酒过量,心房率加快到380次/分,诊断为心房复律的首选药物是() A.普萘洛尔 B.普罗帕酮 C.苯妥英钠 D.利多卡因 E.奎尼丁 12.患者,女,53岁。近日工作繁忙,感到身体疲劳、阵发性心率加快。诊8 发性室上性心动过速,首选治疗药物是() A.胺碘酮 B.维拉帕米 C.奎尼丁 D.利多卡因 E.普鲁卡因胺 三、A3型题 13~14题共用题干

常用抗心律失常药 总结版

(一)ⅠA类——奎尼丁(适度阻滞Na+通道) 药理作用:抑制Na+内流,亦减少K+外流。 自律性下降,传导减慢,有效不应期延长 广谱抗心律失常药,尤其是房颤、房扑的复律治疗及其后的维持窦性心律。 对植物神经的影响:α受体(-),M受体(-) 奎尼丁不良反应: 药理作用引起的:(1)心律失常:传导阻滞——心动过缓或室性早搏; (2)复极过长——早后除极(EAD)——多形性(尖端扭转行)室性心动过速甚至奎尼丁晕厥 药物本身引起:(1)金鸡钠反应:耳鸣、头痛、恶心、呕吐、腹痛、腹泻、视力及听力减退等。 (2)过敏反应

(二)ⅠB类——利多卡因、苯妥英钠、美西律(轻度阻滞Na+通道) 利多卡因: 药理作用:抑制Na+内流,促进K+外流 降低自律性:浦肯野纤维,抑制4相Na+内流所致; 传导性:治疗剂量时,正常心肌无影响,缺血心肌(抑制Na+内流)减慢,对血钾降低或受损而部分除极心肌的心肌,因促进K+外流使浦肯野纤维超极化,加速传导; 有效不应期:相对延长,阻止2相Na+内流所致。 主要用于防治各种室性快速性心律失常。如:室早,室速,室颤。是治疗急性心梗引起的室性心律失常的首选用药。此外,对各种器质性心脏病引起的室性心律失常均可使用。 苯妥英钠:

药理作用与利多卡因类似 与强心苷竞争Na+--K+--ATP酶,是强心苷中毒引起的室性心律失常的首选药。 对传导的抑制作用较利多卡因弱,尤其适用于伴房室传导阻滞的强心苷中毒。 体内过程不如利多卡因好控制,可以口服,注射剂刺激性较强,副作用较多。 (三)ⅠC类——普罗帕酮、氟卡尼(重度阻滞Na+通道) 能明显降低0相上升最大速率而减慢传导速度。抑制4相Na+内流而降低自律性。 广谱,对室上性和室性心律失常均有效。 有致心律失常作用,增加病死率,近年主张作为二线抗心律失常药使用。 (四)Ⅱ类——普萘洛尔(心得安)、美托洛尔 药理作用: 抑制交感兴奋,抑制Ca+、Na+内流,促进K+外流。 ①β受体(-); ②降低自律性:窦房结、房室结; ③传导性(高浓度)减慢:较大剂量有膜稳定作用,减慢0相上升最大速率; ④对房室结ERP有明显延长作用。

抗心律失常药四大类

不同类型的抗心律失常药联合用药容易产生相互作用,如果用药不当可产生相互拮抗或产生严重毒性反应,下面是小编搜集的一篇相关论文范文,欢迎阅读参考。 抗心律失常药物是通过降低自律性,减少后除极、消除折返来降低异位起搏点的活动性,降低除极化组织的传导性、兴奋性,延长有效不应期。药物治疗主要是为预防和逆转心律失常引起的严重不良后果,如心力衰竭、心绞痛、心肌梗死、晕厥、心悸、濒死感、脑缺血及猝死等。因此,不需药物治疗的心律失常尽量不用药物。 1抗心律失常药四大类 1.1钠通道阻滞药(Ⅰ类)通过阻滞钠通道降低动作电位(APD)0相上升速率,降低自律性,不同程度抑制心肌细胞膜对Ca2+、K+的通透性,此外,也可延长快反应细胞的有效不应期(ERP)。 1.2β-受体阻滞药(Ⅱ类)通过阻断心脏β-受体,抑制交感神经兴奋所致的起搏电流、钠电流和L-型钙电流增加,导致4相舒张期除极速率减慢,降低起搏点的自律性,此外,也可降低APD0相的上升速率,从而减慢心脏的传导性。 1.3延长动作电位时程药(Ⅲ类)抑制钾通道,降低钾电流,延长心肌细胞APD时程及快反应细胞的ERP,但对心肌细胞APD幅度和去极化速率影响小。 1.4钙通道阻滞药(Ⅳ类)抑制L-型钙电流,提高APD的阈值,降低窦房结的自律性,减慢房室结的传导性。 2常用药物分析 2.1Ⅰ类药:钠通道阻滞药 2.1.1奎尼丁主要用于心房颤动、心房扑动电转复前的准备及预防复发,可减少阵发性室上性心动过速和反复发作的室性心动过速及房性、室性期前收缩。ⅠA类药。注意事项:①不良反应:一般不良反应为胃肠道反应及金鸡纳反应;心血管方面主要为心律失常、心室颤动和心室停搏;特异反应为呼吸困难,发绀等,与剂量无关;②服药期间检查:血压、心电图、血钾浓度、血小板计数等;③小剂量奎尼丁可与多种药物联合应用,提高疗效且可使不良反应减少;④由于奎尼丁可减少地高辛的经肾排泄而增加地高辛的血药浓度,易发生地高辛中毒,与地高辛联合应用时应减少地高辛的用量;⑤避免夜间给药;⑥静脉注射常引起严重的低血压,有较大的危险性[1]。 2.1.2利多卡因主要作用于蒲氏纤维和心室肌,抑制钠离子内流,促进钾离子外流。用于室性心律失常,特别是急性心肌梗死、溶栓治疗后及强心苷中毒所致的室性期前收缩、室性心动过速或心室颤动。ⅠB类药。注意事项:老年人及心力衰竭、心源性休克、肝功不良、心功能不全、严重器质性心脏病,开始用时应减量,最好不应超过常用剂量的1/2~2/3,并严密观察药效及不良反应,调整剂量。常见不良反应:头晕、倦怠、嗜睡、恶心、肌肉颤动、惊厥、神志不清、呼吸抑制、低血压、心动过缓等。大剂量可致严重窦缓、传导阻滞、惊厥及心脏停搏,意识丧失。过敏反应可致皮疹、水肿及呼吸停止。肝、肾功能障碍,肝血流量减少,充血性心力衰竭,严重心肌受损,低血容量及休克等患者慎用。 2.1.3苯妥英钠作用于利多卡因相似,尚有抑制钙离子内流的作用。用于洋地黄毒苷引起的室上性和室性心律失常及对利多卡因无效的心律失常。ⅠB类药。注意事项:苯妥英钠针剂有强碱性,宜用注射用水或生理盐水稀释,不宜肌内注射或静脉滴注。不良反应有胃肠道反应、皮疹、眼球震颤、精神异常,静脉注射

第二十二章 抗心律失常药

第二十二章抗心律失常药 [学习提纲] 一、心脏的电生理学基础 二、心律失常发生机制 ⑴折返(reentry):一次冲动下传后,又可顺着另一环行通路折回再次兴奋原已兴奋过 的心肌。 ⑵自律性升高:自律细胞在交感神经活性增高、低血钾、心肌细胞受到机械牵张时,动 作电位4相斜率增加,自律性升高;非自律性心肌细胞在缺血缺氧条件下也会出现异常自律性,发生心律失常。 ⑶后除极(afterdepolarization):心肌细胞在一个动作电位后产生一个提前的除极化,包 括早后除极和迟后除极,后除极的扩布即会触发心律失常。 ⑷基因缺陷。 ⑸离子靶假说。 三、抗心律失常药的基本作用机制:⑴降低自律性,可通过减慢4相自动除极速率、提高阈 电位、增加最大舒张电位、延长APD等方式。⑵防止后除极和触发活动。⑶消除折返: ①改变传导性②延长ERP。 四、抗心律失常药分类及常用药 (一)I类——钠通道阻滞药 1.Ia类药物:适度阻滞钠通道,减慢传导、延长复极 代表药:奎尼丁 [药理作用]抑制钠、钙、钾通道。降低自律性、延长不应期、减慢传导。抗M-胆碱,抗α-受体作用。 [临床应用]房颤、房扑、室上性和室性心律失常等。 [不良反应]“金鸡纳反应”;心动过缓及停搏;心动过速、室颤;房颤等患者可致心室率过速。 2.Ib类药物:轻度阻滞钠通道,略减慢传导或不变、加速复极 代表药:利多卡因 [药理作用]抑制Na+内流,促进K+外流,对浦肯野纤维的选择性作用,降低自律性、相对延长有效不应期、减慢传导。 [临床应用]主要用于室性心律失常(包括强心苷中毒所致的)。 [不良反应]大剂量引起中枢抑制、心动过缓、传导减慢,甚至出现完全性传导阻滞。 3.Ic类药物:重度阻滞钠通道,明显减慢传导,对复极影响小 代表药:普罗帕酮 [药理作用]降低浦肯野纤维及心室肌的自律性,明显减慢传导速度,延长ERP及 APD。轻度负性肌力作用。 [临床应用]室上性及室性早搏、心动过速以及房颤。 [不良反应]可致心律失常,如传导阻滞,窦房结功能障碍,加重心衰等。 (二)II类—— 肾上腺素受体拮抗药 代表药:普萘洛尔 [药理作用]降低自律性(包括窦性节律)、减少儿茶酚胺所致的迟后除极、减慢房室 结传导、延长不应期。 [临床应用]主要用于室上性心律失常,对交感神经过度兴奋所致窦性心动过速效果 良好;对运动和情绪激动所诱发的室性心律失常亦有效。

常用抗心律失常药总结版.doc

(一)Ⅰ A 类——奎尼丁(适度阻滞Na+通道) 药理作用:抑制Na+内流,亦减少K+外流。 自律性下降,传导减慢,有效不应期延长 广谱抗心律失常药,尤其是房颤、房扑的复律治疗及其后的维持窦性心律。 对植物神经的影响:α受体(-),M受体( -) 奎尼丁不良反应: 药理作用引起的:( 1 )心律失常:传导阻滞——心动过缓或室性早搏; (2)复极过长——早后除极( EAD )——多形性(尖端扭转行)室性心动过速甚至奎尼丁晕 厥 药物本身引起:( 1)金鸡钠反应:耳鸣、头痛、恶心、呕吐、腹痛、腹泻、视力及听力减 退等。 (2)过敏反应 (二)Ⅰ B 类——利多卡因、苯妥英钠、美西律(轻度阻滞Na+通道) 利多卡因: 药理作用:抑制Na+内流,促进K+外流 降低自律性:浦肯野纤维,抑制 4 相 Na+内流所致; 传导性:治疗剂量时,正常心肌无影响,缺血心肌(抑制Na+内流)减慢,对血钾降低或受损而部分除极心肌的心肌,因促进K+外流使浦肯野纤维超极化,加速传导; 有效不应期:相对延长,阻止 2 相 Na+内流所致。 主要用于防治各种室性快速性心律失常。如:室早,室速,室颤。是治疗急性心梗引起的室性心律失常的首选用药。此外,对各种器质性心脏病引起的室性心律失常均可使用。 苯妥英钠: 药理作用与利多卡因类似 与强心苷竞争Na+--K+--ATP酶,是强心苷中毒引起的室性心律失常的首选药。 对传导的抑制作用较利多卡因弱,尤其适用于伴房室传导阻滞的强心苷中毒。 体内过程不如利多卡因好控制,可以口服,注射剂刺激性较强,副作用较多。 (三)Ⅰ C 类——普罗帕酮、氟卡尼(重度阻滞Na+通道)

第二十二篇 抗心律失常药物

第二十二章抗心律失常药物 一、选择题 A型题 1.交感神经过度兴奋引起的窦性心动过速最好选用: A.苯妥英钠B.奎尼丁C.普萘洛尔 D.氟卡尼 E. 利多卡因 2.强心苷类药物中毒导致的心律失常最好选用: A.苯妥英钠B.普萘洛尔 C. 氟卡尼 D.维拉帕米 E. 普鲁卡因胺 3.奎尼丁的错误叙述是: A.适度阻滞心肌细胞膜上的钠通道 B.兼有α、M受体阻断作用 C.心肌中药物浓度为血浓度的10倍 D.为窄谱抗心律失常药 E.为奎宁的右旋体 4.对利多卡因叙述错误的是: A.可作为局麻药使用B.可降低自律性 C.是治疗室性心律失常的首选药物D.绝对延长有效不应期E.Ⅱ-Ⅲ度房室传导阻滞患者禁用 5.奎尼丁的电生理作用有: A.抑制0相除极,减慢传导,延长不应期 B.加快0相除极,加快传导,延长不应期

C.抑制0相除极,减慢传导,缩短不应期 D.加快0相除极,减慢传导,延长不应期 E.抑制0相除极,对传导和不应期无影响’ 6.利多卡因不宜用于哪种心律失常: A.室性早搏B.室性纤颤C.室上性心动过速 D.强心苷所致室性心律失常E.心肌梗塞所致室性心律失常7.下列哪项不属于奎尼丁的禁忌证: A.严重低血压B.心力衰竭C.严重房室传导阻滞 D.心房纤颤E.地高辛中毒 8.能加速奎尼丁代谢,使血药浓度降低的抗心律失常药是:A.普鲁卡因胺B.苯妥英钠C.普萘洛尔 D.维拉帕米E.以上都不是 9.对普鲁卡因胺的叙述错误的是: A.作用与奎尼丁相似但较弱B.能降低浦肯野纤维的自律性C.减慢传导速度D.延长有效不应期 E.较强的抗α受体和抗胆碱作用 10.具有明显促进K’外流的抗心律失常药是: A.利多卡因B.维拉帕米C.胺碘酮 D.普萘洛尔E.氟卡尼 11.能与强心苷竞争Na+-K+—ATP酶的抗心律失常药是:A.苯妥英钠B.地尔硫卓C.普萘洛尔 D.普罗帕酮E.胺碘酮

药理学考试重点精品习题-第二十四章-抗心律失常药

药理学考试重点精品习题-第二十四章-抗心律失常药

第二十四章抗心律失常药 一、选择题 A型题 1、决定传导速度的重要因素是: A 有效不应期 B 膜反应性 C 阈电位水平 D 4相自动除极速率 E 以上都不是 2、属于适度阻滞钠通道药(IA类)的是: A 利多卡因 B 维拉帕米 C 胺碘酮 D 氟卡尼 E 普鲁卡因胺 3、选择性延长复极过程的药物是: A 普鲁卡因胺 B 胺碘酮 C 氟卡尼 D 普萘洛尔 E 普罗帕酮 4、治疗窦性心动过缓的首选药是: A 肾上腺素 B 异丙肾上腺素 C 去甲肾上腺素 D 多巴胺 E 阿括品 5、防治急性心肌梗塞时室性心动过速的首选药是: A 普萘洛尔 B 利多卡因 C 奎尼丁 D 维拉帕米 E 普鲁卡因胺 6、治疗强心甙中毒引起的窦性心动过缓和轻度房室传导阻滞最好选用: A 阿括品 B 异丙肾上腺素 C 苯妥英钠 D 肾上腺素 E 麻黄碱 7、以奎尼丁为代表的IA类药的电生理是: A 明显抑制0相上升最大速率,明显抑制传导,APD延长 B 适度抑制0相上升最大速率,适度抑制传导,APD延长

C 轻度抑制0相上升最大速率,轻度抑制传导,APD不变 D 适度抑制0相上升最大速率,严重抑制传导,APD缩短 E 轻度抑制0相上升最大速率,轻度抑制传导,APD缩短 8、与利多卡因比较美西律的不同是: A 作用较弱 B 兼有α受体阻断作用 C 可供口服,作用持久 D 有较强的拟胆碱作用 E 不良反应较轻 9、细胞外K+浓度较高时能减慢传导,血K+降低时能加速传导的抗心律失常药是: A 索他洛尔 B 利多卡因 C 丙吡胺 D 氟卡尼 E 胺碘酮 10、可引起尖端扭转型室性心动过速的药物是: A 利多卡因 B 奎尼丁 C 苯妥英钠 D 普萘洛尔 E 维拉帕米 11、减弱膜反应性的药物是: A 利多卡因 B 苯妥英钠 C 奎尼丁 D 美西律 E 妥卡尼 12、有关胺碘酮的不良反应错误叙述是: A 可发生尖端扭转型室性心律失常 B 可发生肺纤维化 C 可发生角膜沉着 D 可致甲状腺功能亢进 E 可致甲状腺功能减退 13、心房纤颤复转后预防复发宜选用: A奎尼丁B普鲁卡因胺C普萘洛尔D胺碘酮E 苯妥英钠 14、能阻滞Na+、K+、C a2+ 通道的药物是: A利多卡因B维拉帕米C苯妥英钠D奎尼丁E普

常用抗心律失常药总结版

常用抗心律失常药-总结版

————————————————————————————————作者: ————————————————————————————————日期:

(一)ⅠA类——奎尼丁(适度阻滞Na+通道) 药理作用:抑制Na+内流,亦减少K+外流。 自律性下降,传导减慢,有效不应期延长 广谱抗心律失常药,尤其是房颤、房扑的复律治疗及其后的维持窦性心律。 对植物神经的影响:α受体(-),M受体(-) 奎尼丁不良反应: 药理作用引起的:(1)心律失常:传导阻滞——心动过缓或室性早搏; (2)复极过长——早后除极(EAD)——多形性(尖端扭转行)室性心动过速甚至奎尼丁晕厥 药物本身引起:(1)金鸡钠反应:耳鸣、头痛、恶心、呕吐、腹痛、腹泻、视力及听力减退等。(2)过敏反应 (二)ⅠB类——利多卡因、苯妥英钠、美西律(轻度阻滞Na+通道) 利多卡因: 药理作用:抑制Na+内流,促进K+外流 降低自律性:浦肯野纤维,抑制4相Na+内流所致;

传导性:治疗剂量时,正常心肌无影响,缺血心肌(抑制Na+内流)减慢,对血钾降低或受损而部分除极心肌的心肌,因促进K+外流使浦肯野纤维超极化,加速传导; 有效不应期:相对延长,阻止2相Na+内流所致。 主要用于防治各种室性快速性心律失常。如:室早,室速,室颤。是治疗急性心梗引起的室性心律失常的首选用药。此外,对各种器质性心脏病引起的室性心律失常均可使用。 苯妥英钠: 药理作用与利多卡因类似 与强心苷竞争Na+--K+--ATP酶,是强心苷中毒引起的室性心律失常的首选药。 对传导的抑制作用较利多卡因弱,尤其适用于伴房室传导阻滞的强心苷中毒。 体内过程不如利多卡因好控制,可以口服,注射剂刺激性较强,副作用较多。 (三)ⅠC类——普罗帕酮、氟卡尼(重度阻滞Na+通道) 能明显降低0相上升最大速率而减慢传导速度。抑制4相Na+内流而降低自律性。 广谱,对室上性和室性心律失常均有效。 有致心律失常作用,增加病死率,近年主张作为二线抗心律失常药使用。 (四)Ⅱ类——普萘洛尔(心得安)、美托洛尔 药理作用: 抑制交感兴奋,抑制Ca+、Na+内流,促进K+外流。 ①β受体(-); ②降低自律性:窦房结、房室结; ③传导性(高浓度)减慢:较大剂量有膜稳定作用,减慢0相上升最大速率; ④对房室结ERP有明显延长作用。 临床应用:? (1)适用于室上性心律失常,尤其是与交感过度活跃有关的,包括房颤、房扑及阵发性室上速(此时常与强心苷合用);也可用于焦虑或甲亢等引发的窦性心动过速(首选); (2)室性心律失常:对运动或情绪激动引发的效果良好;预防心梗所致的室性心律失常,死亡率下降25%。 普萘洛尔禁忌症: ①房室传导阻滞;②病窦综合症;③支气管哮喘;④慢性肺病;⑤严重心衰 (五)Ⅲ类——胺碘酮、索他洛尔 胺碘酮:

抗心律失常药试题

抗心律失常药的临床应用习题 一.选择题 (一)单项选择题 1.普萘洛尔的作用不包括( ) A.减慢心律 B. 减慢房室传导 C. 提到呼吸道阻力 D. 提高基础代谢率 2.利多卡因抗心律失常作用之一是( ) A.延长APD和ERP B. 仅缩短APD B.仅缩短ERP D. 相对延长ERP 2.治疗窦性心动过速首选下列哪一药物( ) A. 胺碘酮 B. 苯妥英钠 C. 普萘洛尔 D. 利多卡因 3.强心苷中毒所致的快速型心律失常的最佳治疗药物是(D) A. 维拉帕米 B. 胺碘酮 C. 奎尼丁 D. 苯妥英钠 4.治疗窦性心律过缓的首选药是( ) A. 奎尼丁 B. 阿托品 C. 普萘洛尔 D. 利多卡因 5.奎尼丁对下列哪一种心律失常无效( ) A. 心房颤动 B. 心房扑动 C. 室性期前收缩 D. 房性期前收缩 6.关于普萘洛尔抗心律失常作用,下述哪一项是错误的( ) A.抑制窦房结,减缓传导并延长其有效不应期 B.主要用于治疗室上性心律失常

C.在高浓度时,能抑制钠离子内流,降低浦肯野纤维的反应性 D.加快房室结和浦肯野纤维的传导 7.窦性心动过速最好选用() A. 苯妥英钠 B. 普萘洛尔 C. 氟卡尼 D. 利多卡因 8.治疗阵发性室上性心动过速最好选用() A. 苯妥英钠 B. 利多卡因 C. 普罗帕酮 D. 维拉帕米 9.具有抗癫痫作用的抗心律失常药是() A. 利多卡因 B. 维拉帕米 C. 苯妥英钠 D. 普鲁卡因胺 10.心室纤颤选用() A. 利多卡因 B. 维拉帕米 C. 普萘洛尔 D. 奎尼丁 (二)多项选择题 1.降低心肌异常自律性的方式有() A. 提高阀电位水平 B. 降低阀电位水平 C.增加最大舒张电位 D. 减慢动作电位4 相自动除极速率 E.增加动作电位4相自动除极速率 2.奎尼丁的药理作用包括() A. 降低浦肯野纤维及工作肌细胞的自律性 B. 减慢传导 C. 抑制钾外流,延长动作电位时程和有效不应期 D. 加快传导 E. 加快钾外流,缩短动作电位时程和有效不应期 二.简答题常用的抗心律失常药物如何分类?请每类列举一个药

药理学——抗慢性心功能不全药

药理学——抗慢性心功能不全药考情分析 啥叫~心功能不全? 一、强心苷类正性肌力药 【药动学】 1.吸收 洋地黄毒苷——口服吸收稳定完全,生物利用度90%~100%。地高辛——生物利用度60%~80%,个体差异大。

肝肠循环——部分经肝、胆进入肠道,而后被再吸收的现象。洋地黄毒苷肝肠循环较多。 2.分布 与血浆蛋白结合比例不同——洋地黄毒苷结合较多,地高辛结合较少; 分布于各组织中,以心、肾、骨骼肌最多。 3.代谢 洋地黄毒苷——脂溶性较高,主要在肝脏代谢。 地高辛——代谢转化较少; 毒毛花苷K、毛花苷C——很少在体内代谢。 4.排泄 洋地黄毒苷——排泄缓慢、作用持久,代谢产物及少量原形物经肾排泄。少量经肠道排出,可形成肝肠循环。 地高辛——60%~90%以原形经肾脏排出。 毒毛花苷K、毛花苷C——几乎全部以原形经肾排泄 【药理作用】 1.增强心肌收缩力(正性肌力作用) 2.减慢心率(负性频率作用) 3.抑制房室传导(负性传导作用) 4.对心肌耗氧量的影响 5.对心电图的影响 1.增强心肌收缩力(正性肌力作用) 选择性地加强心肌收缩力 ——使心肌收缩快速而有力 2.减慢心率(负性频率作用) 心率减慢作用对CHF患者有利 一方面:可使舒张期延长,使静脉回心血量更充分,而能排出更多血液; 另一方面:可获得更多的冠状动脉血液供应。 3.抑制房室传导(负性传导作用) ——对心脏电生理的影响: 降低窦房结自律性,心率减慢(P-P间期延长) 减慢房室结传导速度(P-R间期延长) 增高浦肯野纤维的自律性(易引起室性心律失常) 缩短心房和浦肯野纤维不应期。 “抑房扬室” 4.对心肌耗氧量的影响: 因加强收缩性——增加氧耗量; 因正性肌力作用——心输出量增加,能使心脏容积缩小,室壁张力下降,降低氧耗量; 总的氧耗量——降低。

药理-抗心律失常药习题集 附答案(优.选)

第十五章抗心律失常药 一.选择题 (一)单项选择题 1.普萘洛尔的作用不包括(D) A.减慢心律 B.减慢房室传导 C.提到呼吸道阻力 D.提高基础代谢率 2.普萘洛尔禁用与(A) A.支气管哮喘 B.典型心绞痛 C.甲亢 D.心律失常 3.利多卡因抗心律失常作用之一是(D) A.延长APD和ERP B.仅缩短APD B.仅缩短ERP D.相对延长ERP 4.治疗窦性心动过速首选下列哪一药物(C) A.胺碘酮 B.苯妥英钠 C.普萘洛尔 D.利多卡因 5.强心苷中毒所致的快速型心律失常的最佳治疗药物是(D) A.维拉帕米 B.胺碘酮 C.奎尼丁 D.苯妥英钠 6.治疗窦性心律过缓的首选药是(B) A.奎尼丁 B.阿托品 C.普萘洛尔 D.利多卡因 7.奎尼丁对下列哪一种心律失常无效(C) A.心房颤动 B.心房扑动 C.室性期前收缩 D.房性期前收缩 8.关于普萘洛尔抗心律失常作用,下述哪一项是错误的(D) A.抑制窦房结,减缓传导并延长其有效不应期

B.主要用于治疗室上性心律失常 C.在高浓度时,能抑制钠离子内流,降低浦肯野纤维的反应性 D.加快房室结和浦肯野纤维的传导 9.窦性心动过速最好选用(B) A.苯妥英钠 B.普萘洛尔 C.氟卡尼 D.利多卡因 10.治疗阵发性室上性心动过速最好选用(D) A.苯妥英钠 B.利多卡因 C.普罗帕酮 D.维拉帕米 11.具有抗癫痫作用的抗心律失常药是(C) A.利多卡因 B.维拉帕米 C.苯妥英钠 D.普鲁卡因胺 12.心室纤颤选用(A) A.利多卡因 B.维拉帕米 C.普萘洛尔 D.奎尼丁 13.下列属于广谱抗心律失常药(B) A.普罗帕酮 B.奎尼丁 C.苯妥英钠 D.维拉帕米 14.治疗心房颤动选用(D) A.利多卡因 B.维拉帕米 C.普萘洛尔 D.奎尼丁 15.起效慢,作用时间最长的药物(D) A.奎尼丁 B.利多卡因 C.维拉帕米 D.胺碘酮 (二)多项选择题 1.降低心肌异常自律性的方式有(ACD) A.提高阀电位水平 B.降低阀电位水平 C.增加最大舒张电位 D.减慢动作电位4相自动除

16、【药理学笔记】抗心律失常药

抗心律失常药 心律失常分类 缓慢型心律失常 窦性心动过缓(病窦综合征)、传导阻滞; 快速型心律失常 房性期前收缩、心房纤颤、心房扑动、室性期前收缩、阵发性室上性心动过速、室性心动过速、心室颤动 快速型心律失常发病机制 1、折返分析性折返和功能性折返; 2、异常节律点自律性升高; 3、后除极; 4、基因缺陷 抗心律失常药的基本电生理作用 降低自律性,减少后除极和触发活动,改变传导性,终止或取消折返激动,加快传导,取消单向传导阻滞,减慢传导,变单向传导阻滞为双向传导阻滞。改变不应期,终止或防止折返的发生,绝对延长ERP:延长APD、ERP,以延长ERP更显著;相对延长ERP:缩短APD、ERP,以缩短APD更显著,使相邻细胞不均一的ERP趋向均一化 抗心律失常药的基本作用机制 1、降低自律性:降低4相斜率、提高阈值、提高膜电位; 2、减少后除极; 3、消除折返: a改善传导,取消单向传导、 b减慢传导,变单向传导务双向传导、 c相对或绝对延长有效不应期,或使复极一致化。

抗心律失常药分类: I类:钠通道阻滞药: Ia(奎尼丁普鲁卡因胺)阻断INa, IK, and ICa, -APD, -ERP Ib(利多卡因美西律)阻断INa Ic(氟卡尼恩卡尼)阻断Ina。 共同的药理作用 1. 明显阻滞钠通道 2. 对传导的抑制作用较强 3. 抑制 4 相钠内流 4. 对复极过程影响;用途:室上性及室性早搏、心动过速及房颤;不良反应:致心律失常,如传导阻滞,窦房结功能障碍,加重心衰等。 II类:β受体阻断药 普萘洛尔、美托洛尔。阻断心脏β受体,抑制交感神经兴奋所致的起搏电流、钠电流和L-型钙电流增加, III类:延长APD药 胺碘酮。抑制多种钾电流,延长APD和ERP。 IV类:钙通道阻滞药 维拉帕米:抑制L型钙电流,降低窦房结自律性。 钠通道阻滞药 奎尼丁 直接作用 1降低自律性、 2减慢传导、 3延长ERP、 4防止后除极和触发活动;

24第二十四章 抗心律失常药

第二十四章抗心律失常药 【内容提示及教材重点】 了解正常心肌电生理,包括心肌细胞膜电位(兴奋性)、自律性、传导性和有效不应期等概念。 掌握心律失常发生的电生理学机制:(一)冲动形成障碍包括自律性异常、后除极和触发活动;(二)冲动传导障碍包括单纯性传导障碍、折返激动;(三)心肌复极过程减慢。 抗心律失常的基本电生理作用:(一)降低自律性:通过增加最大舒张电位、减慢4相自动除极速率、上移阈电位、延长动作电位时程即延长心动周期等方式;(二)减少后除极和触发活动:通过加速复极、提高阈电位水平、增加最大舒张电位等三种方式;(三)取消折返:通过增加或降低膜反应性而改变传导性,延长不应期等方式。 抗心律失常药的分类及主要代表药(根据Vaughan Williams分类法): Ⅰ类钠通道阻滞药,分为ⅠA、ⅠB、ⅠC三个亚类:代表药分别为奎尼丁、普鲁卡因胺;利多卡因、苯妥英钠;普罗帕酮。 Ⅱ类β-肾上腺素受体阻断药:代表药有普萘洛尔。 Ⅲ类延长动作电位时程药:代表药有胺碘酮。 Ⅳ类钙通道阻滞药:代表药有维拉帕米。 掌握各类抗心律失常药对心肌电生理的影响及主要的临床应用: 奎尼丁:降低自律性、减慢传导、延长不应期,适用于房颤、房扑、室上性和室性心动过速的转复和预防以及频发性室上性和室性早搏的治疗。 普鲁卡因胺:作用与奎尼丁相似但较弱,较奎尼丁起效快,临床主要用于室性心动过速,尤其是抢救急性病例如急性心肌梗死时的心律失常。 利多卡因:降低自律性、减慢传导、缩短APD和ERP(相对延长不应期),适用于室性心律失常的治疗,是急性心肌梗死急性期引起室性心律失常的首选药。 苯妥英钠:作用相似于利多卡因,用于室性心律失常尤其是强心苷中毒所致的室性心律失

常用抗心律失常药分类及用法

(一) I类药物阻断心肌和心脏传导系统的钠通道,具有膜稳定作用,降低动作电位0相除极上升速率和幅度,减慢传导速度,延长APD和ERP。对静息膜电位无影响。 Ⅰa类适度阻滞钠通道,复活时间常数1~10s,以延长ERP 最为显著。 1. 奎尼丁(Ia):是最早应用的抗心律失常药物。适应症:口服适用于房性早搏、心房颤动、阵发性室上性心动过速,预激综合征合并室上心律失常,室性早搏、室性心动过速及颤动或心房扑动经电转复后的维持治疗。肌注及静注已不用。 用法用量:1、口服:第1天,每次0.2g,每2小时1次,连续5次;如无效而又无明显毒性反应,第2天增至每次0.3g、第3天每次0.4g,每2小时1次,连续5次。每日总量一般不宜超过2g。恢复正常心律后,改给维持量,每日0.2~0.4g。若连服3~4日无效或有毒性反应者,应停药。2、静注:在十分必要时采用,并须在心电图观察下进行。每次0.25g,以5%葡萄糖液稀释至50ml缓慢静注。小儿每次2mg/kg。

注意事项:1、用于纠正心房颤动、心房扑动时,应先给洋地黄饱和量,以免心律转变后心跳加快,导致心力衰竭。2、奎尼丁与地高辛联合应用时,由于奎尼丁可减少地高辛的经肾排泄而增加地高辛的血浓度,故联合应用时应减少地高辛的用量。3、每次给药前应仔细观察心律和血压改变,并避免夜间给药。在白天给药量较大时,夜间也应注意心律及血压。4、患心房颤动的病人,用药过程中,当心律转至正常时,可能诱发心房内血栓脱落,产生栓塞性病变,如脑栓塞、肠系膜动脉栓塞等,应严密观察。5、对于有应用奎尼丁的指征,但血压偏低或处于休克状态的病人,应先提高血压、纠正休克,然后再用。如血压偏低是由于心动过速、心脏排血量小所造成,则应一面提高血压,一面使用奎尼丁。6、严重心肌损害的病人和孕妇忌用。7、静注常引起严重的低血压,有较大的危险性,须注意。禁用于有严重心肌病变。Ⅱ或Ⅲ度房室传导阻滞、洋地黄中毒、原有Q-T间期延长、妊娠、严重肝肾功能损害及对本品有过敏反应者,慎用于Ⅰ度房室传导阻滞、显著心动过缓、低血压、重症肌无力者。每次服药前要检查血压、心率和心律,并记录心电图,避免低血钾。 不良反应:1、心血管系统:本品有促心律失常作用,产生心脏停搏及传导阻滞,较多见于原有心脏病患者,也可发生室性早搏、室性心动过速及室颤。诱发室性心动过速(扭转性室性心动过速)或室颤,可反复自发自停,发作时伴晕厥现象,此作用与剂量无关,可发生于血药浓度尚在治疗范围内或以下时。本品可使血管扩张产生

第十九节抗心律失常药

第十九章抗心律失常药 心律失常是心动频率和节律的异常。可分为两类,即缓慢型:包括心动过缓,传导阻滞等。用阿托品或异丙肾上腺素治疗。过速型:包括房性早搏、房性心动过速、心房颤动、心房扑动、阵发性室上性心动过速、室性早搏、室性心动过速及室性颤动等,是本节讨论的药物。 第一节心律失常的电生理学基础 一、正常心肌电生理 (一)心肌细胞的动作电位(Ap)和静息电位(Rp)P167图22-1。 (二)心肌细胞电生理特性 1、自律性:4相自动去极化。 2、传导性:(1)膜电位水平(2)O相去极速率P167图22-1。 3、有效不应期(ERP)数值大,心肌不起反应的时间延长,不易发生快速型 心律失常P168 图22-4。 二、心律失常发生的电生理学机制 (一)冲动形成障碍 1、自律性增高:自律细胞4相除极速度加快,最大舒张电位变小或阈电位变 大均可使冲动形成增多。 2、后除极和触发活动:根据后除极发生的时间不同,可将其分为早后除极 (EAD)和晚后除极(DAD)P169 图22-5。 (二)冲动传导障碍 1、单纯性传导障碍:包括传导减慢,传导阻滞及单向传导阻滞。 2、折返激动:指一个冲动沿着曲线的环形通路返回到其起源的部位,并可再 次激动而继续向前传播的现象。是起引心律失常的重要原因之一。P169 图 22-6。 第二节抗心律失常药的基本电生理作用及药物分类(一)降低自律性:通过增加最大舒张电位,或减慢4相自动除极速率,或上移阈电位等。 (二)减少后除极与触发活动:1、减少早后除极;2、减少晚后除极。 (三)改变膜反应性而改变传导性,终止或取消折返激动。 1、增强膜反应性加快传导,取消单向传导阻滞,终止折返激动。 2、降低膜反应性减慢传导,变单向阻滞为双向阻滞而终止折返激动。

药理学习题十二(抗心律失常药)练习题库及参考答案

第二十一章抗心律失常药章节练习题库 及参考答案 一、填空题: 1.抗心律失常药中的Na+阻滞剂有_________ ,___________ ,促进K+外流的药物有 奎尼丁普鲁卡因胺利多卡因苯妥英钠 2.奎尼丁可通过__________ 传导,使单向阻滞 ___________ 而取消折返。利多卡因则通过__________ 传导,使单向阻滞___________ 而取消折返。 减慢变为双向阻滞加快消除 3.治疗缓慢型心律失常宜选用的药物是__________ 、___________ 。 阿托品异丙肾上腺素 4.利多卡因为__________ 抗心律失常药,仅适用于 ____________ 心律失常,且特别适用于危重病人。 窄谱室性 5.因奎尼丁具有__________ 作用,故治疗心房纤颤时常与 ____________ 合用,目的是为了__________ 。 抗胆碱强心苷减慢心室率 6.室上性心动过速最好选用__________ 和___________ 。 普萘洛尔维拉帕米 7.奎尼丁降低心肌自律性和减慢传导的机理分别是_________ 和________ 。抗心律失常药钙拮抗剂的代表药是_________ ,主要用于治疗 ________ 。 抑制4相Na+内流; 抑制0相Na+内流;维拉帕米;阵发性室上性心动过速 8.胺碘酮对心肌最显著的电生理特性影响是________ ,临床主要用于_________ 。 延长心房肌、心室肌和浦氏纤维的APD和ERP;房扑、房颤和阵发性室上性心动过速 9.治疗阵发性室上性心动过速的首选药是_________ ,治疗窦性心动过速的首选药是 ,利多卡因可选择性作用于,促进降低其自律性,临床上主要用于。 维拉帕米;普萘洛尔;心室肌浦氏纤维;促进4相K+外流;室性心律失常 10.治疗浓度奎尼丁主要抑制________ 的自律性,对________ 的自律性影响很弱。 异位起博点; 窦房结

第二十二章抗心律失常药

第二十二章抗心律失常药 一、选择题 A型题 1、决定传导速度的重要因素是: A.有效不应期 B.膜反应性 C.阈电位水平 D.4相自动除极速率 E.以上都不是 2、属于适度阻滞钠通道药(IA类)的是: A.利多卡因 B.维拉帕米 C.胺碘酮 D.氟卡尼 E.普鲁卡因胺 3、选择性延长复极过程的药物是: A.普鲁卡因胺 B.胺碘酮 C.氟卡尼 D.普萘洛尔 E.普罗帕酮 4、治疗窦性心动过缓的首选药是: A.肾上腺素 B.异丙肾上腺素 C.去甲肾上腺素 D.多巴胺 E.阿括品 5、防治急性心肌梗塞时室性心动过速的首选药是: A.普萘洛尔 B.利多卡因 C 奎尼丁 D.维拉帕米 E.普鲁卡因胺 6、治疗强心甙中毒引起的窦性心动过缓和轻度房室传导阻滞最好选用: A.阿括品 B.异丙肾上腺素 C.苯妥英钠 D.肾上腺素 E.麻黄碱 7、以奎尼丁为代表的IA类药的电生理是: A.明显抑制0相上升最大速率,明显抑制传导,APD延长

B.适度抑制0相上升最大速率,适度抑制传导,APD延长 C.轻度抑制0相上升最大速率,轻度抑制传导,APD不变 D.适度抑制0相上升最大速率,严重抑制传导,APD缩短 E.轻度抑制0相上升最大速率,轻度抑制传导,APD缩短 8、与利多卡因比较美西律的不同是: A.作用较弱 B.兼有α受体阻断作用 C.可供口服,作用持久 D.有较强的拟胆碱作用 E.不良反应较轻 9、细胞外K+浓度较高时能减慢传导,血K+降低时能加速传导的抗心律失常药是: A.索他洛尔 B.利多卡因 C.丙吡胺 D.氟卡尼 E.胺碘酮 10、可引起尖端扭转型室性心动过速的药物是: A.利多卡因 B.奎尼丁 C.苯妥英钠 D.普萘洛尔 E.维拉帕米 11、减弱膜反应性的药物是: A.利多卡因 B.苯妥英钠 C.奎尼丁 D.美西律 E.妥卡尼 12、有关胺碘酮的不良反应错误叙述是: A.可发生尖端扭转型室性心律失常 B.可发生肺纤维化 C.可发生角膜沉着 D.可致甲状腺功能亢进 E 可致甲状腺功能减退 13、心房纤颤复转后预防复发宜选用:

药理学考试重点精品习题_第二十四章_抗心律失常药

第二十四章抗心律失常药 一、选择题 A型题 1、决定传导速度的重要因素是: A 有效不应期 B 膜反应性 C 阈电位水平 D 4相自动除极速率 E 以上都不是 2、属于适度阻滞钠通道药(IA类)的是: A 利多卡因 B 维拉帕米 C 胺碘酮 D 氟卡尼 E 普鲁卡因胺 3、选择性延长复极过程的药物是: A 普鲁卡因胺 B 胺碘酮 C 氟卡尼 D 普萘洛尔 E 普罗帕酮 4、治疗窦性心动过缓的首选药是: A 肾上腺素 B 异丙肾上腺素 C 去甲肾上腺素 D 多巴胺 E 阿括品 5、防治急性心肌梗塞时室性心动过速的首选药是: A 普萘洛尔 B 利多卡因 C 奎尼丁 D 维拉帕米 E 普鲁卡因胺 6、治疗强心甙中毒引起的窦性心动过缓和轻度房室传导阻滞最好选用: A 阿括品 B 异丙肾上腺素 C 苯妥英钠 D 肾上腺素 E 麻黄碱 7、以奎尼丁为代表的IA类药的电生理是: A 明显抑制0相上升最大速率,明显抑制传导,APD延长 B 适度抑制0相上升最大速率,适度抑制传导,APD延长 C 轻度抑制0相上升最大速率,轻度抑制传导,APD不变

D 适度抑制0相上升最大速率,严重抑制传导,APD缩短 E 轻度抑制0相上升最大速率,轻度抑制传导,APD缩短 8、与利多卡因比较美西律的不同是: A 作用较弱 B 兼有α受体阻断作用 C 可供口服,作用持久 D 有较强的拟胆碱作用 E 不良反应较轻 9、细胞外K+浓度较高时能减慢传导,血K+降低时能加速传导的抗心律失常药是: A 索他洛尔 B 利多卡因 C 丙吡胺 D 氟卡尼 E 胺碘酮 10、可引起尖端扭转型室性心动过速的药物是: A 利多卡因 B 奎尼丁 C 苯妥英钠 D 普萘洛尔 E 维拉帕米 11、减弱膜反应性的药物是: A 利多卡因 B 苯妥英钠 C 奎尼丁 D 美西律 E 妥卡尼 12、有关胺碘酮的不良反应错误叙述是: A 可发生尖端扭转型室性心律失常 B 可发生肺纤维化 C 可发生角膜沉着 D 可致甲状腺功能亢进 E 可致甲状腺功能减退 13、心房纤颤复转后预防复发宜选用: A 奎尼丁 B 普鲁卡因胺 C 普萘洛尔 D 胺碘酮 E 苯妥英钠 14、能阻滞Na+、 K+、C a2+ 通道的药物是: A 利多卡因 B 维拉帕米 C 苯妥英钠 D 奎尼丁 E 普萘洛尔

相关主题
文本预览
相关文档 最新文档