当前位置:文档之家› 电压采集电路设计.(DOC)

电压采集电路设计.(DOC)

电压采集电路设计.(DOC)
电压采集电路设计.(DOC)

目录

一、设计目的 ................................................................................................................... - 2 -

二、设计内容 ................................................................................................................... - 2 -

三、整体设计方案设计..................................................................................................... - 2 -

四、设计任务 ................................................................................................................... - 3 -

五、硬件设计及器件的工作方式选择............................................................................... - 3 -

1、硬件系统设计方框图:.................................................................................................- 3 -

2、中断实现:8259A工作方式选择及初始化..................................................................- 4 -

3、定时功能实现:8253的工作方式及初始化................................................................- 4 -

4、数码管显示及ADC的数据传输:8255的工作方式及初始化 ...................................- 5 -

5、模拟电压转换为数字量:ADC0809的初始化.............................................................- 5 -

6、地址编码实现:74LS138及逻辑器件 ..........................................................................- 6 -

7、显示功能:数码管显示.................................................................................................- 6 -

六、软件设计 ..............................................................................................................................- 7 -

1、主程序流程图.................................................................................................................- 7 -

2、中断子程序.....................................................................................................................- 7 -

3、显示子程序.....................................................................................................................- 8 -

4、初始化.............................................................................................................................- 9 -

8295A初始化流程图 ...................................................................................................- 9 -

8253初始化流程图......................................................................................................- 9 -

8255初始化流程图......................................................................................................- 9 -

5、程序清单及说明.......................................................................................................... - 10 -

七、本设计实现功能 ...................................................................................................... - 13 -

八、元件清单 ................................................................................................................. - 14 -

九、所遇问题与小结 ...................................................................................................... - 14 -

1、问题与解决.................................................................................................................. - 14 -

2、小结体会...................................................................................................................... - 15 - 附:系统硬件连线图 ............................................................................................................... - 16 -

一、设计目的

1、了解和掌握74LS138、8253、8255A、ADC0809等可编程接口芯片、中断控制

器8259以及LED显示器的原理和功能;

2、能用上面的接口芯片构建一个简单的系统控制对象;

3、进一步了解计算机得工作原理,接口技术,提高计算机硬件,软件综合应用

能力,即对微机原理,接口技术,汇编语言程序设计进行综合训练;

4、掌握接口电路的综合设计与使用。

二、设计内容

利用《微型计算机原理课程》中所学的主要可编程接口芯片74LS138、8253、8255A、ADC0809和中断控制器8259设计一个模拟电压采集电路。采用ADC0809设计一个单通道模拟电压采集电路,要求对所接通道变化的模拟电压值进行采集,采集来的数字量送至数码管LED指示,采集完100个数据后停止采集过程。

三、整体设计方案设计

首先模拟电压量通过ADC0809转换为数字量D,定时器8253计时,计时结束后向8259A发出中断请求,CPU响应中断,接受8255的数据量D,并进行运算。当进行了100次数据采集之后,将平均电压通过8255送到数码管显示。通过编码器,对器件进行地址选择。

四、设计任务

1、选用8088CPU和适当的存储器芯片、接口芯片完成相应的功能。

2、画出详细的硬件连接图。

3、画出各程序的详细框图。

4、给出RAM地址分配表及接口电路的端口地址。

5、给出设计思路。

6、给出程序所有清单并加上必要的注释。

7、完成设计说明书。

五、硬件设计及器件的工作方式选择

1、硬件系统设计方框图:

2、中断实现:8259A工作方式选择及初始化

芯片简要介绍:8259A是专门为了对8086/8088进行中断控制而设计的芯片,它是可以用程序控制的中断控制器。单个的8259A能管理8级向量优先级中断。在不增加其他电路的情况下,最多可以级联成64级的向量优先级中断系统。8259A有多种工作方式,能用于各种系统。各种工作方式的设定是在初始化时通过软件进行的。在总线控制器的控制下,8259A芯片可以处于编程状态和操作状态.编程状态是CPU使用IN或OUT指令对8259A 芯片进行初始化编程的状态。

主要功能:而在本设计中,8259的主要作用是当8253延时完毕之后,让C PU响应中断,发命令给8255,接收ACD0809的电压信号。所以,只要开通825 9A的一路中断(本设计开通了IR0)即可。

工作方式选择:单片8259AA,上升沿有效,初始化时写入,IR0~IR7的中断号为08H~0FH,一般全嵌套,费缓冲方式1,正常中断结束,CPU为8088,允许IR0中断,非循环优化级方式,L2~L0无效,不设置EOI命令。

3、定时功能实现:8253的工作方式及初始化

芯片简要介绍:8253内部有三个计数器,分别成为计数器0、计数器1和计数器2,他们的机构完全相同。每个计数器的输入和输出都决定于设置在控制寄存器中的控制字,互相之间工作完全独立。每个计数器通过三个引脚和外部联系,一个为时钟输入端CLK,一个为门控信号输入端GATE,另一个为输出端OUT。每个计数器内部有一个8位的控制寄存器,还有一个16位的计数初值寄存器CR、一个计数执行部件CE和一个输出锁存器OL。

频率选择与计算:8253的最高工作频率为2.6MHz,而ADC的最高工作

时,而且考虑到程序运行频率为100KHz(100us),所以在选择参考频率f

ref

时的指令的时间,参考与计数器所装的数N的乘积:f

*N,应远大于100us,

ref

为:2MHz,则N的取值为:十进制的500可取为1ms。若取参考频率f

ref

(01F4H)。

工作方式选择:工作方式2被称作速率波发生器。进入这种工作方式,OUTi输出高电平,装入计数值n后如果GATE为高电平,则立即开始计数,OUTi保持为高电平不变;待计数值减到“1”和“0”之间, OUTi将输出宽度为一个CLKi周期的负脉冲,计数值为“0”时,自动重新装入计数初值n,实现循环计数,OUTi将输出一定频率的负脉冲序列,其脉冲宽度固定为一个CLKi周期,重复周期为CLKi周期的n倍。所以当每次计数完毕后,OUTi放出一个负脉冲,用于触发中断。并且由于装数N小于FFFFH,所以只要一个计数器即可。

所以,本次设计可选择计数器0,工作方式2,装数N为01F4H。

4、数码管显示及ADC的数据传输:8255的工作方式及初始化

芯片简要介绍:8255是一个并行输入/输出的LSI芯片,多功能的I/O器件,可作为CPU总线与外围的接口。具有24个可编程设置的I/O口,即使3组8位的I/O口为PA口,PB口和PC口.它们又可分为两组12位的I/O口, A组包括A口及C口(高4位,PC4~PC7),B组包括B口及C口(低4位,PC0~P C3).A组可设置为基本的I/O口,闪控(STROBE)的I/O闪控式,双向I/O3种模式;B组只能设置为基本I/O或闪控式I/O两种模式,而这些操作模式完全由控制寄存器的控制字决定。

工作方式:PA口接数码管的位选,PB口接ADC0809的数据线D0~D7,P C口接数码管的位选,三个接口的工作方式均为方式0。

5、模拟电压转换为数字量:ADC0809的初始化

8路输入通道,8位A/D转换器,即分辨率为8位。转换时间为100μs。单个+5V电源供电,模拟输入电压范围0~+5V,不需零点和满刻度校准。ADC0809的工作过程是:首先输入3位地址,并使ALE=1,将地址存

入地址锁存器中。此地址经译码选通8路模拟输入之一到比较器。START上升沿将逐次逼近寄存器复位。下降沿启动 A/D转换,之后EOC输出信号变低,指示转换正在进行。直到A/D转换完成,EOC变为高电平,指示A/D 转换结束,结果数据已存入锁存器,这个信号可用作中断申请。当OE输入高电平时,输出三态门打开,转换结果的数字量输出到数据总线上。

参考电压V+为5V,V-为0V,工作电压为5V。

6、地址编码实现:74LS138及逻辑器件

74LS138为3—8译码器,本设计需要地址选择的器件有3个(8259A,8 255,8253),所以只要一个74LS138即可。CPU的数据传输线A0~A3分别接芯片的A0~A3,CPU的A4~A6分别接74LS138的A,B,C,而其他位通过与门接74LS138的S3(S3为高电平有效)。而74LS138的输出Y0接8259A,Y 1接8255,Y2接8253。从而得出器件的地址编码如下表:

7、显示功能:数码管显示

本设计通过两位数码管进行电压大小的显示,其中一位为各位,另一位为小数点后第一位。通过8255进行动态显示。

六、软件设计

1、主程序流程图

2、中断子程序

3、显示子程序

4、初始化

8295A初始化流程图

8253初始化流程图

8255初始化流程图

5、程序清单及说明

DATAS SEGMENT

DATA1 DB 3FH,06H,56H,66H,7DH,07H,7FH,6FH,77H,7CH,39H,5EH;数码管显示向量表

SUM DD 00H;数字电压的累加变量

N DB 00H;采集数据的次数

V DB 00H;显示的数字电压量

DATAS ENDS

CODES SEGMENT

ASSUME CS:CODES,DS:DATAS,SS:STACKS

START:

MOV AX,DATAS

MOV DS,AX

MOV SI,OFFSET DATA1

MOV AL,13H;ICW1,单片8259A,上升沿有效,初始化时写入ICW4

OUT 10H,AL

MOV AL,08H;ICW2,IR0~IR7的中断号为08H~0FH

OUT 11H,AL

MOV AL,80H;ICW4,一般全嵌套,费缓冲方式1,正常中断结束,CPU为8088 OUT 11H,AL

MOV AL,0FEH;OCW1,允许IR0中断

OUT 11H,AL

MOV AL,00H;OCW2,非循环优化级方式,L2~L0无效,不设置EOI命令

OUT 10H,AL

CLI;关中断,填写中断向量表

MOV AX,0

MOV ES,AX

MOV AX,OFFSET INTP

CLD

STOSW;将中断服务程序首址偏移值送20H

MOV AX,SEG INTP

STOSW;将中断服务程序首址段值送20H

STI;开中断

MOV AL,34H;选择计数器0,工作方式2,先写低8为再写高8位OUT 33H

MOV AL,0F4H;给低8位赋值

OUT 30H,AL

MOV AL,01H;给高8位赋值

OUT 30H,AL

MOV AL,82H;均为工作方式0,A、C口输出,B口输入

OUT 23H,AL

A: MOV DI,OFFSET SUM;把显示的数送给V

MOV AX,DI

MOV DI,OFFSET V

DIV AX,100

MUL AL,50

DIV AX,256

MOV DI,OFFSET V

MOV DI,AX

MOV DI,OFFSET SUM;SUM清零

MOV DI,OFFSET N;N清零

MOV DI,00H

B: MOV DI,OFFSET N

CMP DI,100

JE A

MOV DI,OFFSET X

MOV AX,DI

MOV CX,AX*50/256; 由于显示位为两位,所以把显示的电压扩大10倍,则可以显示小数点后的一位

MOV AL,01H;选择低位段选

OUT 22H,AL

MOV BL,CL-10H;分离低位的数

MOV AL,(BL+SI)

OUT 20H,AL;送低位数的段选

CALL DELAY;延时

MOV AL,02H;选择高位的位选

OUT 22H,AL

MOV BL,CL/10;分离高位的数

MOV AL,(BL+SI);

OUT 20H,AL;送高位数的段选

CALL DELAY;延时

JMP B;返回

START ENDP

INTP PROC NEAR

IN AL,21H;读取数字电压量

MOV DI,OFFSET SUM

AND AX,00001111B

ADD DI,AX;SUM=SUM+采集数字电压

MOV DI,OFFSET N;采集累加次数加1

MOV CL,DI

MOV CH,CL+1

MOV DI,CH

IRET

INTP ENDP

MOV AH,4CH

INT 21H

CODES ENDS

END START

七、本设计实现功能

从附图的硬件连线图中,Vin口送入模拟电压量,然后再数码管上显示电压的大小,其中上面的为个位,下面的为小数点后第一位。系统大概每隔0.1s进行100次数据采集完整的,然后把平均量送到数码管显示。

八、元件清单

九、所遇问题与小结

1、问题与解决

1)虽然ADC芯片在课程中没有设计到,通过上网查阅资料,了解芯片管脚及其

主要功能。

2)关于各种器件地址如何进行编码。由于本设计系统比较简单,主要通过与门

及3-8译码器,运用比较简单的编址方法进行解决。

3)关于8088的一些其他连线。从硬件图可以看到,没有给出完整的芯片管脚图,

由于如RESET、REDAY、DEN、VCC、GND管脚不影响功能实现,所以只画出影响功能实现的管脚图。

2、小结体会

通过本次微机课程设计,更加进一步的理解了课本上的知识,并能够加以扩展,从而应用于实践当中,在软件DXP中,画出了硬件系统图。并分别画出了程序流程图,并写出了程序。这几天的课程设计令我受益匪浅,由于一开始不熟悉,找元件、布线花了不少时间,遇到一些不懂的地方就上网或者问用过的同学寻求解决方案。很多平时模棱两可的知识点都认真复习并实践了,毕竟看程序和写程序是有很大区别的。

在设计程序的过程中,我不仅对以前学过的汇编语言进行了重温和查漏补缺,而且对程序整体的把握和细节的处理能力得到了很大的提高。

对微机接口技术及编程技巧提升了认识,意识到我们所学的东西将来都是要付诸实践的,所以一切要从实际情况出发,理论联系实际,这样才能真正发挥我们所具备的能力。

附:系统硬件连线图

各种电压电流采样电路设计

常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM)系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM的系统硬件大致可以分成三部分,即主电路部分、控制 电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM的桥式换流电路的直流侧电压信号和电流信号;电网电压 同步信号采样电路即电网电压同步信号。 信号调 理 TMS320 LF2407A DSP 键盘显示 电路电压电流信号驱动电路保护电路 控制电路检测与驱动 电路主电路 图2-1 DSTATCOM系统总体硬件结构框图 1.1常用电网电压同步采样电路及其特点 1.1.1 常用电网电压采样电路 1 从D-STATCOM的工作原理可知,当逆变器的输出电压矢量与电网电压矢 量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM 工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变 器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统 的输出频率,即该误差可忽略不计。其中R5=1K,C4=15pF,则时间常数错误!未找到引用源。<

电气控制电路设计规范

电气控制电路设计规范(1) 【引入】电器图以各种图形、符号和突显等形式来表示电气系统中各电器设备、装置、元器件的相互连接关系。电器图是联系电气设计、生产、维修人员的工程语言,能正确、熟练的识读电气图是从业人员必备的基本技能。 一、电气图的作用与分类 为了表达电气控制系统的设计意图,便于分析系统工作原理、安装、调试和检修控制系统,必须采用统一图形符号和文字符号。 1.电气系统图和框图 2.电气原理图 3.电器布置图 4.电器安装接线图 5.功能图 6.电气元件配置明细表 二、电气图阅读的基本方法 1.电气图阅读的基本方法 1)主电路分析 2)控制电路分析 3)辅助电路分析 4)联锁和保护环节分析 5)总体检查 2.电气图阅读 1)主电路阅读 2)阅读控制电路

三、电气控制电路设计规范 1.电气工程制图内容 电气控制系统是由若干电器元件按照一定要求连接而成,从而实现设备或装置的某种控制目的。为了便于对控制系统进行设计、分析研究、安装调试、使用维护以及技术交流,就需要将控制系统中的各电器元件及其相互连接关系用一个统一的标准来表达,这个统一的标准就是国家标准和国际标准,我国相关的国家标准已经与国际标准统一。用标准符号按照标准规定的方法表示的电气控制系统的控制关系的就称为电气控制系统图。 电气控制系统图包括电气系统图和框图、电气原理图、电气接线图和接线表三种形式。各种图都有其不同的用途和规定的表达方式,电气系统图主要用于表达系统的层次关系,系统内各子系统或功 能部件的相互关系,以及系统与外界的联系;电气原理图主要用于表达系统控制原理、参数、功能及逻辑关系,是最详细表达控制规律和参数的工程图;电气接线图主要用于表达各电器元件在设备中的具体位置分布情况,以及连接导线的走向。对于一般的机电装备而言,电气原理图是必须的,而其余两种图则根据需要绘制。绘制电气接线图则需要首先绘制电器位置图,在实际应用中电气接线图一般 与电气原理图和电器位置图一起使用。 国家标准局参照国际电工委员会(IEC)颁布的标准,制定了我国电气设备有关国家标准。有关的国家标准有GB472—1984《电气图用图形符号》、GB698—1986《电气制图》、GB509—1985《电气技术中的项目代号》和GB715—1987《电气技术中的文字符号制定通则》。 2.电气工程制图图形符号和文字符号 按照GB472—1984《电气图用图形符号》规定,电气图用图形符号是按照功能组合图的原则,由一般符号、符号要素或一般符号加限定符号组合成为特定的图形符号及方框符号等。一般符号是用 以表示一类产品和此类产品的特征的简单图形符号。 文字符号分为基本文字符号和辅助文字符号。基本文字符号又分单字母文字符号和双字母文字符号两种。单字母符号是按拉丁字母顺序将各种电气设备、装置和元器件划分为23类,每一大类电器 用一个专用单字母符号表示,如“ K”表示继电器、接触器类,“ R'表示电阻器类。当单字母符号不能满足要求而需要将大类进一步划分,以便更为详尽地表述某一种电气设备、装置和元器件时采用双字母

电压采集电路设计.(DOC)

目录 一、设计目的 ................................................................................................................... - 2 - 二、设计内容 ................................................................................................................... - 2 - 三、整体设计方案设计..................................................................................................... - 2 - 四、设计任务 ................................................................................................................... - 3 - 五、硬件设计及器件的工作方式选择............................................................................... - 3 - 1、硬件系统设计方框图:.................................................................................................- 3 - 2、中断实现:8259A工作方式选择及初始化..................................................................- 4 - 3、定时功能实现:8253的工作方式及初始化................................................................- 4 - 4、数码管显示及ADC的数据传输:8255的工作方式及初始化 ...................................- 5 - 5、模拟电压转换为数字量:ADC0809的初始化.............................................................- 5 - 6、地址编码实现:74LS138及逻辑器件 ..........................................................................- 6 - 7、显示功能:数码管显示.................................................................................................- 6 - 六、软件设计 ..............................................................................................................................- 7 - 1、主程序流程图.................................................................................................................- 7 - 2、中断子程序.....................................................................................................................- 7 - 3、显示子程序.....................................................................................................................- 8 - 4、初始化.............................................................................................................................- 9 - 8295A初始化流程图 ...................................................................................................- 9 - 8253初始化流程图......................................................................................................- 9 - 8255初始化流程图......................................................................................................- 9 - 5、程序清单及说明.......................................................................................................... - 10 - 七、本设计实现功能 ...................................................................................................... - 13 - 八、元件清单 ................................................................................................................. - 14 - 九、所遇问题与小结 ...................................................................................................... - 14 - 1、问题与解决.................................................................................................................. - 14 - 2、小结体会...................................................................................................................... - 15 - 附:系统硬件连线图 ............................................................................................................... - 16 -

基于Arduino的电压有效值测量电路设计与实现v1

综合实验1 一、实验题目 基于Arduino的电压有效值测量电路设计与实现 二、项目背景 Arduino是源自意大利的一个基于开放原始码的软硬件平台,该平台包括一片具备简单I/O功效的电路板以及一套使用类似Java、C语言的Processing/Wiring开发环境。Arduino 可用来开发独立运作、并具互动性的电子产品,也可以开发与PC相连的周边装置,同时能在运行时与PC上的软件进行交互。 Arduino的电路板硬件可以自行焊接组装,也可以购买已组装好的成品;而开发环境软件则可通过网络免费下载与使用。目前Arduino的硬件部分支持Atmel的A Tmega 8、ATmega 168、ATmega 328等微处理器。此外,Arduino方案获得2006年Prix Art Electronica电子通讯类方面的荣誉奖。Arduino的硬件电路参考设计部分是以知识共享(Creative Commons;CC)形式提供授权,相应的原理图和电路图都可以从Arduino网站上获得。 Arduino特点: ●开放原始码的电路图设计,程式开发界面免费下载,也可依需求自己修改; ●具有多通道的数字I/O、模拟输入、PWM输出; ●具有10bit的ADC; ●Arduino 可使用ISCP线上烧入器,自行将新的IC芯片烧入“bootloader”; ●可依据官方电路图,简化Arduino模组,完成独立运作的微处理控制; ●可快速、简单、方便地与传感器、各式各样的电子元件、电子电路进行连接; ●支援多样的互动程序,如Flash、Max/Msp、VVVV、Processing等; ●使用低价格的微处理控制器; ●可通过USB接口供电。 三、实验目的 1、熟悉Arduino最小系统的构建和使用方法;

电流检测电路设计

课程设计报告题目:电流检测电路设计 课程名称:电子信息工程课程设计 学生姓名:焦道楠 学生学号:1314020114 年级:2013级 专业:电子信息工程 班级:(1)班 指导教师:王留留 电子工程学院制 2016年3月

目录 1 绪论 (1) 2 设计的任务与要求 (1) 2.1 课程设计的任务 (1) 2.2 课程设计的要求 (1) 3 设计方案制定 (1) 3.1 设计的原理 (1) 3.2 设计的技术方案 (2) 4 设计方案实施 (3) 4.1 单片机模块 (3) 4.2 传感器模块 (4) 4.3 A/D转换模块 (5) 4.4 LCD12864点阵液晶显示模块 (6) 5 各模块PCB图 (7) 5.1 单片机模块 (7) 5.2 传感器模块 (7) 6 系统的程序设计 (9) 7 心得体会 (10) 参考文献 (10)

电流检测电路设计 学生:焦道楠 指导教师:王留留 电子工程学院电子信息工程专业 1 绪论 在电学中的测量技术涉及的范围非常广,广泛应用于学校、工业、工厂、科研等各种领域,供实验室和工业现场测量使用。随着电子技术的不断发展,在数字化和智能化不断成为主体的今天,电压、电流测量系统中占有非常重要的位置。我们在分析和总结了单片机技术的发展历史及发展趋势的基础上,以实用、可靠、经济的设计原则为目标,设计出全数字化测量电压电流装置。系统主要以AT89C51单片机为控制核心,整个系统由中央控制模块、A/D转换模块、LED显示模块组成。可实现对待测电压、电流的测量,在数码管上显示。本次课程设计我所做的项目是基于单片机的电流检测系统,主要用到A/D转换和数码管显示。近几年来,单片机已逐步深入应用到工农业生产各部门以及人们生活的各个方面。各种类型的单片机也根据社会的需求而相继开发出来。单片机是一个器件级的计算机系统,实际上它是一个微控制器或微处理器。由于它功能齐全,体积小,成本低,因此它可以应用到所有的电子系统中。AT89C51是一种带4K字节闪存的可编程可插除只读存储器的单片机。单片机的可擦除只读存储器可以反复的擦除多次,该器件采用ATMEL高密度非易失性存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能的8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器。 2设计的任务与要求 2.1 课程设计的任务 利用单片机及其相关知识,设计一个电流检测电路。 2.2 课程设计的要求 (1)画出相应电流检测电路的原理图,并进行检测,生成PCB板; (2)编写程序,实现电流检测功能; (3)情况允许的情况下,做出实物,并估算其成本。 3设计方案制定 3.1 设计的原理

项目十七 电气控制电路设计与测绘

电气控制技术项目教程——项目17 河北承德技师学院 李凤梅

项目十七电气控制电路设计与测绘 学习目标 知识目标: 熟悉电气控制电路设计的基本原则、方法。 掌握电气控制电路的测绘方法。 技能目标: 能设计简单生产机械的电气控制电路。 能对生产设备的电气控制电路进行测绘。

任务一电气控制电路的设计原则 一、电气控制电路的设计原则 1.最大限度满足生产设备对电气控制电路的控制要求和保护要求。 2 .在满足生产工艺要求的前提下,力求电路简单、经济、 合理。 3 .保证控制的安全性和可靠性。 4 .操作和维修方便。 你知道电路设计 是根据什么原则 进行的吗?

二、电气控制电路的设计内容1.确定电力拖动方案和控制方案。 2.选择拖动电动机的结构形式、 型号和容量。 3.设计电气控制系统原理图。 4.绘制电气安装位置图、电气系统互连图。 5.设计和选择电气设备元器件,并列出电器元件明细表。 6.编写电气控制系统工作原理和使用说明书。 你知道电 路设计的 内容有哪 些吗?任务一电气控制电路的设计原则

三、电气控制电路的设计方法 常用的电气控制电路的设计方法有: 经验设计法 逻辑分析设计法(逻辑设计法) 经验设计法是根据生产工艺的要求去选择适当的基本控制环节或经过考验成熟的电路,按各部分的联锁条件组合起来并加以补充和修改,综合成满足控制要求的完整电路。 经验设计法——一般设计简单电路经常使用 逻辑分析设计法,是根据生产工艺的要求,利用逻辑代数来分析、化简、设计电路的方法。 逻辑分析设计法———一般设计较复杂电路使用一般技术人员常用经验设计法 任务一电气控制电路的设计原则

电动车辆动力电池组电压采集电路设计

电动车辆动力电池组电压采集电路设计 作者:张彩萍, 张承宁, 李军求 作者单位:北京理工大学机械与车辆工程学院,100081 刊名: 电气应用 英文刊名:ELECTROTECHNICAL APPLICATION 年,卷(期):2007,26(12) 被引用次数:3次 参考文献(4条) 1.朱正动力电池组分布式管理系统设计及实车试验 2006 2.卢居霄;黄文华;陈全世电动汽车电池管理系统的多路电压采集电路设计[期刊论文]-电源技术 2006(05) 3.何朝阳;戴君蓄电池在线监测系统的设计与实现[期刊论文]-今日电子 2006(10) 4.童诗白;华成英模拟电子技术基础 2000 本文读者也读过(3条) 1.张彩萍.张承宁.李军求.张玉璞.ZHANG Cai Ping.ZHANG Cheng Ning.LI Jun Qiu.ZHANG Yu Pu电动车用动力电池状态检测与显示系统设计[期刊论文]-电子技术应用2008,34(9) 2.赵慧勇.罗永革.王保华.刘珂路.Zhao Huiyong.Luo Yongge.Wang Baohua.Liu Kelu多路电压采集单元模块仿真设计[期刊论文]-湖北汽车工业学院学报2010,24(2) 3.卢居霄.黄文华.陈全世电动汽车电池管理系统的多路电压采集电路设计[期刊论文]-电子设计应用2006(5) 引证文献(3条) 1.张彩萍.张承宁.李军求.张玉璞电动车用动力电池状态检测与显示系统设计[期刊论文]-电子技术应用 2008(9) 2.雷晶晶.李秋红.龙泽.王太宏.张金顶锂电池组单体电压精确检测方法[期刊论文]-电源技术 2012(3) 3.雷晶晶.李秋红.陈立宝.张金顶.王太宏动力锂离子电池管理系统的研究进展[期刊论文]-电源技术 2010(11)引用本文格式:张彩萍.张承宁.李军求电动车辆动力电池组电压采集电路设计[期刊论文]-电气应用 2007(12)

外加电压检测复位电路设计方案

外加电压检测复位电路设计方案 1.6.5 PIC单片机的外接电压检测复位电路举例1.设计思路有许多型号单片机的内部均不具备掉电复位功能,即使对于内部包含该功能的PIC单片机,其复位门槛电压值是固定不可更改的,有时不能满足用户的需求,因此,外加电压检测复位电路也是较常见的设计方案。对于片内带有掉电复位功能BOR的PIC单片机,在使用外接电压检测复位电路时,就必须将内部BUR功能禁止,方法是将系统配置字的BUDEN位设置为0。对于内部不带BOR功能的PIC单片机,其电源控制寄存器PCUN没有BOR标志位,无法准确识别由外接电压检测复位电路引起的单片机复位,因此在程序执行过程中在MCLR 引脚施加了人工复位信号引起的复位。与外接电压检测复位电路相关的单片机片内等效电路如图1所示,从该图可以看出,外接电压检测复位电路时,单片机内部的两个定时器不参与工作。 图1 与外接电压检测复位电路相关的单片机片内等效电路2.电路设计(1)外接分立元件电压检测复位电路。下面给出了两种不利用分离元器件搭建的电压检测复位电路。电路工作原理是,当VDD下降到某一门槛值时,三极管截止,从而使MCLR端电平变低,迫使单片机复位。图2中该门槛值为VDD<Vz十0.7V,其中Vz是稳压管的稳定电压的值,而图3中该门槛值为VDD<0.7V(R1+R2)/R1。 图2 外加电压检测复位电路(VDD<Vz十0.7V) 图3 外加电压检测复位电路(VDD<0.7V(R1+R2)/R1)(2)外接专用芯片电压检测复位电路。图4所示为一种利用专用芯片HT70XX搭建的电压检测复位电路。台湾HOLTEK公司研制的HT70XX系列集成电路是一组采用CMOS工艺制造的电源欠压检测器,其包装形式有三脚直插式封装和贴片式封装两种。 图4 由HT70XX构建的外加电压检测复位电路(本文转自电子工程世界:)

微电流检测资料

目录 1、设计背景 (1) 2、设计方案选择 (1) 2.1典型的微电流测量方法 (1) 2.1.1开关电容积分法[1] (1) 2.1.2运算放大器法 (2) 2.1.3场效应管+运算放大器法 (2) 2.2总体设计方案 (3) 3、具体设计方案及元器件的选择 (4) 3.1稳流信号源问题 (4) 3.2I/V转换及信号滤波放大 (5) 3.2.1前级放大 (5) 3.2.2滤波及后级放大电路 (6) 3.2.3运算放大器的选取 (6) 3.3量程自动转换 (6) 3.4信号采集处理 (7) 4、软件仿真结果 (8) 5、参考资料 (9)

微电流测试电路设计 1、设计背景 微电流是指其值小于-6 10A的电流,微电流检测属于微弱信号检测的一个分支,是一门针对噪声的技术,它注重的是如何抑制噪声和提高信噪比。该技术在军事侦察、物理学、化学、电化学、生物医学、天文学、地学、磁学等许多领域具有广泛的应用。我们所研究的微电流检测主要针对电力系统中的绝缘材料,因为现代国民经济对电力供应的依赖性日益增大,电力系统的规模、容量也在不断扩大。而电气设备的绝缘材料往往是电力系统中的重要组成部分,绝缘材料的漏电流情况严重会造成电力系统的重大损失。微电流检测是通过对泄漏电流的测量来评估绝缘材料状况的有效方法。近年来,针对微弱电流的信噪改善比SNIR已能达到1了,目前国内做得比较好的单位是南京大学,其独家生产的ND-501型微弱信号检测实验综合装置己被国内至少76家高等院校使用。但其产品价格昂贵,少则几千元,多则几万元,例如HB-831型pA级电流放大器、HB-834型四通道pA级电流放大器、HB-838型八通道pA级电流放大器的售价分别为4100元/台、13000元/台、22000元/台。所以,研制高精度、寿命长、成本低、电路简单的微电流检测仪具有重要的现实意义及理论参考价值。为了达成目标,我们需要重点考虑以下几个问题: 10 A(本设计要求)的稳流信号源的实现(1)如何获得实验信号,即电流为12 问题; (2)如何将微弱电流信号转换成易于操作的信号; (3)怎样将微弱信号提取放大; (4)如何实现量程的自动转换问题; (5)将实际中的模拟信号转换成数字信号; (6)实现对数字信号的处理和显示。 2、设计方案选择 2.1典型的微电流测量方法 2.1.1开关电容积分法[1] 开关电容式微电流测量方法的前级是在利用开关电容实现电流向电压转换的同时对电压信号进行调制和放大,达到微伏级;后级电路通过选频放大电路实

常用电流和电压采样电路

2常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM )系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM 的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM 的桥式换流电路的直流侧电压信号和电流信号;电网电压同步信号采样电路即电网电压同步信号。 图2-1 DSTATCOM 系统总体硬件结构框图 2.2.11 常用电网电压同步采样电路及其特点 .1 常用电网电压采样电路1 从D-STATCOM 的工作原理可知,当逆变器的输出电压矢量与电网电压矢量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM 工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC 滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统的输出频率,即该误差可忽略不计。其中R 5=1K Ω,5pF,则时间常数错误!未 因此符合设计要求;第二部分由电压比较器LM311构成, 实现过零比较;第三部分为上拉箝位电路,之后再经过两个非门,以增强驱动能力,满足TMS320LF2407的输入信号要求。 C 4=1找到引用源。<

三相电源检测介绍

三相电源检测系统设计三相电源检测系统设计 摘 要 本设计采用AT89C51单片机实现三相电压与电流的检测。该设计可检测三相交流电压(AC220V×3)及三相交流电流(A、B、C 线电流0~5A)。本系统的变压器、放大器、A/D 转换和计算产生的综合误差满足5%的精度要求。输出采用128×64 LCD 方式显示,单片机电源部分直接由AC220V 交流电经整流、滤波、稳压供电。系统采用数字时钟芯片和8kB 的RAM 进行存储器的扩展。 关键词关键词::三相交流电 AD 转换 变压器 LCD 显示 8KB RAM

1.引言 当前电力电子装置和非线性设备的广泛应用,使得电网中的电压、电流波形发生严重畸变,电能质量受到严重的影响和威胁;同时,各种高性能家用电器、办公设备、精密试验仪器、精密生产过程的自动控制设备等对供电质量敏感的用电设备不断普及对电力系统供电质量的要求越来越高,电能质量问题成为各方面关注的焦点,电能质量检测是当前的一个研究热点,有必要对三相电信号进行采样,便于进一步分析控制。 目前,精度要求不高的交流数字电压表大多采用平均值原理,只能测量不失真时的正弦信号有效值,因此受到波形失真的限制而影响测量精度和应用范围。真有效值数字仪表可以测量在任何复杂波形而不必考虑波形种类和失真度的特点以及测量精确度高、频带范围宽、响应速度快的特点而得到广泛应用。提高系统的测量精度、稳定性特性是设计中的关键。 真有效值的数字电压数字电压表和以往的仪表有所不同的是可以检测波形复杂的三相交流电压电流。这些都是以单片机为基础的智能化仪表,同时充分表明单片机是一个应用于对象体系的智能化工具。 本设计用单片机进行三相电压与电流的硬件检测系统。该系统检测三相交流电压(AC220V×3)及三相交流电流(A、B、C线电流0~5A)。本系统的变压器、放大器、A/D转换和计算产生的综合精度满足5%要求。输出显示采用128×64点阵的LCD,单片机电源由AC220V交流供电通过变压与整流稳压电路实现。系统配有数字时钟芯片、8kB的RAM存储器扩展芯片。 2总体设计方案 总体设计方案框架如图2-1所示,由交流信号处理部分、A/D转换电路、51单片机控制、数据存储器电路、LCD显示电路以及稳压电源电路组成。 图2-1总体系统原理图

开关量采集电路设计

开关量采集电路设计 开关量采集电路适用于对开关量信号进行采集,如循环泵的状态信号、进出仓阀门的开关状态等开关量。污染源在线监控仪可采集16路开关信号,输入24V 直流电压;设定当输入范围为18~24VDC 时,认为是高电平,被监视的设备处于工作状态;当输入低于18VDC 时,认为是低电平,被监视的设备处于停止状态。 为了避免电气特性及恶劣工作环境带来的干扰,该电路采用光电耦合器TLP521对信号实现了一次电-光-电的转换,从而起到输入\输出隔离的作用。 同时,还安装有LED 工作指示灯,可以使用户对每一通路的工作情况一目了然。其中一路的开关量采集电路如图1所示: 图 1 开关量采集电路 光耦TLP521将红外发光二极管和发光三级管相互绝缘的组合在一起,发光二极管为输入回路,它将电能转换成光能;发光三极管为输出回路,它将光能再转换成电能,实现了两部分电路的电气隔离。 当输入范围为18 ~24VDC 时,认为是高电平,此时光耦导通,电阻R10、R14和发光二极管共同构成输入回路。 根据光耦导通时电流为4 ~10mA ,当输入最高电压24V 时, mA V R R mA V 42414101024<+<,即Ω<+<Ωk R R k 614104.2 当输入低于18V 时认为是低电平,此时光耦的工作电流肯定低于4m A ,此时光耦不导通,电阻 R10、 R14和R12共同构成输入回路,所以: mA R R R V 412 141018<++,即R10+R14+R12>Ω。在设计中,选择R10=R12=2 k Ω,R12=1 k Ω。 光耦导通的最小电流为4mA ,根据光耦的电流传输比CTR(Current Transfer

三相电信号采集电路设计方案

引言 当前,电力电子装置和非线性设备的广泛应用,使得电网中的电压、电流波形发生畸变,电能质量受到严重影响和威胁;同时,各种高性能家用电器、办公设备、精密试验仪器、精密生产过程的自动控制设备等对供电质量敏感的用电设备不断普及对电力系统供电质量 的要求越来越高,电能质量问题成为近年来各个方面关注的焦点,电能质量监测是当前国际上的一个研究热点[1],有必要对三相电信号进行高精度采集,便于进一步分析控制,提高电能质量。对电力参数的采样方法主要有两种,即直流采样法和交流采样法。直流采样法采样的是整流变换后的直流量,软件设计简单,计算方便,但测量精度受整流电路的影响,调整困难。交流采样法则是按一定规律对被测信号的瞬时值进行采样,再按一定算法进行数值处理,从而获得被测量,因而较之直流采样法更易获得高精度、高稳定性的测量结果[2]。 三相电信号采集电路设计 三相电信号采集电路框架 三相电信号采集电路的框架如图1所示。三相电压电流信号经过电压电流互感器转换为较低的电压信号。其中A相的电压信号经过波形调整成为频率与A相电压信号相同的方波信号,用于测量频率。同时将转换后方波频率信号进行频率的整数倍放大作为A/D转换的控

制信号。经过六路互感器降压后,将信号送入AD7656进行A/D转换,转换完的数字信号就可以供于DSP/MCU进行数据分析。 电压电流互感器的选用 电压/电流互感器均采用湖北天瑞电子有限公司TR系列检测用 电压输出型变换器。电压互感器采用检测用电压输出型电压变换器TR1102-1C,如图2为其结构图,规格为300V/7.07V,非线性度比差<+/-0.1%,角差<=+/-5分。电流互感器采用检测用电压输出型电流变换器TR0102-2C,规格为5A/7.07V,非线性度比差<+/-0.1%,角差<=+/-5分。 电源电路 AD7656共有两种模拟信号输入模式,一是模拟输入信号为二倍的参考电压(2.5V)即+/-5V之间,另一种是四倍的参考电压即+/-10V 之间。为提高采样的精度,本电路采用输入信号为+/-10V之间,因此需要+/-10V~+/-16.5V之间电源供电。AD7656同时需要5V的AVCC

变频器电路图-整流、滤波、电源及电压检测电路

变频器电路图-整流、滤波、电源及电压检测电路 以下仅仅对变频器电路图-整流、滤波、电源及电压检测电路的分析,好象论坛上发不了图纸. 1. 整流滤波部分电路 三相220V电压由端子J3的T、S、R引入,加至整流模块D55(SKD25-08)的交流输入端,在输出端得到直流电压,RV1是压敏电阻,当整流电压超过额定电压385V时,压敏电阻呈短路状态,短路的大电流会引起前级空开跳闸,从而保护后级电路不受高压损坏。整流后的电压通过负温度系数热敏电阻RT5、RT6给滤波电容C133、C163充电。负温度系数热敏电阻的特点是:自身温度超高,阻值赿低,因为这个特点,变频器刚上电瞬间,RT5、RT6处于冷态,阻值相对较大,限制了初始充电电流大小,从而避免了大电流对电路的冲击。 2. 直流电压检测部分电路 电阻R81、R65、R51、R77、R71、R52、R62、R39、R40组成串联分压电路,从电阻上分得的电压分别加到U15(TL084)的三个运放组成的射极跟随器的同向输入端,在各自的输出端得到跟输入端相同的电压(输出电压的驱动能力得到加强)。U13(LM339)是4个比较器芯片,因为是集电集开路输出形式,所以输出端都接有上接电阻,这几组比较器的比较参考电压由Q1(TL431)组成的高精度稳压电路提供,调整电位器R9可以调节参考电压的大小,此电路中参考电压是6.74V。如果直流母线上的电压变化,势必使比较器的输入电压变化,当其变化到超过6.74V的比较值时,则各比较器输出电平翻转,母线电压过低则驱动光耦U1(TLP181)输出低电平,CPU接收这个信号后报电压低故障。母线电压过高则U10(TL082)的第7脚输出高电平,通过模拟开关U73(DG418)从其第8脚输出高电平,从而驱动刹车电路,同时LED DS7点亮指示刹车电路动作。由整流二极管D5、D6、D7、D18、D19、D20组成的整流电路输出脉动直流电,其后级的检测电路可对交流电压过低的情况进行实时检测,检测报警信号也通过光耦U1输出。 3. 电源电路 U62(VIPER100SP)是内部带场效应管的开关电源控制芯片。母线电压+VPW通过保险F1加到开关变压器T1的第2脚,T1的第1脚和第2脚是初级线圈,U62内部集成了特别的启动电路,电路启动后,T1次级3、4、5脚输出的感应脉冲经整流滤波后得到电压检测电路所需的正负电压,正电压也同时提供给U62以维持其工作。T1其它次级输出的感应脉冲经整流滤波后分别供应U、V、W三相上桥光耦驱动所需电压(+VHU,0VHU)(+VHV,0VHV)(+VHW,0VHW),还有其它控制电路所需电压(+VSI,0VSI,-VSI)。芯片U56(LM2575S-ADJ)是一个PWM开关式输出稳压芯片,将+VSI电压降压并稳定为5V(+VSI5)供给CPU等芯片所需电路。 对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。图2.1是它的结构图。

基于DAQmx的模拟电压生成与采集系统设计

基于DAQmx的模拟电压生成与采集系统设计 在Labview中,快速Express VI和底层DAQmx VI都可以实现数据采集。快速VI简单、方便、易用,在实现功能相对单一的数据采集任务时经常选用;然而,底层VI却可以灵活地实现功能比较复杂的数据采集任务。另外,底层VI的执行效率高于快速VI。因此,在实际应用中,选择使用底层VI。基于这一思想,本设计选用底层VI,借助于NI USB6009数据采集卡以及数据采集卡配置软件MAX(Measurement&Automation Explorer),在Labview 中生成并采集电压模拟信号。 一、总体方案设计 本系统前面板的虚拟界面如图1所示。 图1 系统前面板

1、前面板功能说明与使用方法 (1)系统实现的功能 系统运行状态下,选择好通道,配置相应参数后,按下绿色“启动”按钮,生成的电压波形和采集到的电压波形分别在各自的波形图表中显示出来,生成电压频率由数值显示控件显示,指示灯由红变绿,表示数据生成与采集程序正在运行。按下红色“停止”按钮,波形图表所显示的数据定格,指示灯由绿变红,表示数据生成与采集程序停止运行。再次按下“启动”(或“停止”)按钮,数据生成与采集程序继续(或停止)运行。按下蓝色“退出系统”按钮,整个程序停止运行,“启动”和“停止”不再具有启停功能。 (2)界面的使用方法 第一步,运行程序。 第二步,配置参数。 首先,选择生成电压的输出通道以及采集电压的输入通道。由于采用了NI USB6009数据采集卡,在MAX中创建了相应任务,这里选用USB-6009/ao0和USB-6009/ai0通道。 然后,配置输出电压最大和最小伏值、输出速率与每周期点数。NI USB6009模拟电压的输出伏值是0-5V,最大最小伏值设置时要在这个范围中进行;输出速率配置的是ms数,数值越大,输出波形变化越缓慢;每周期点数越多,生成的波形越平滑,越接近正弦波。 最后配置通道采样数。USB6009支持的采样数为1-1024,超限系统会以对话框的形式报错,并指出原因。 第三步,操作按钮。 按下“启动”按钮,如若配置参数正确,波形图表显示波形,数值显示控件显示显示输出频率。 按下“停止”按钮,同时停止数据的生成与采集。 再次按下“启动”按钮,继续生成和采集数据。 按下“退出系统”按钮,整个程序终止运行。 补充说明,如若在运行状态下修改程序,需要再次“启动”后,方能实现新配置参数下数据的生成与采集;而“启动”按钮在“停止”按钮按下,即“停止”状态下才生效。所以,在启动状态下调整参数配置,需要先转换到停止状态,配置好后,重新转换到启动状态。 另外,也可以在运行程序之前,首先完成参数的配置。 2、程序框图的总体架构 本系统程序框图如图2所示。

基于单片机的直流电压检测系统设计_课程设计说明书

山东建筑大学 课程设计说明书 题目:基于单片机的直流电压检测系统设计课程:单片机原理及应用B课程设计 院(部):信息与电气工程学院 专业:通信工程 班级:通信111 姓名:张安珍 学号:2011081342 指导教师:张君捧 完成日期:2015年1月

目录 摘要......................................................... I I 正文.. (1) 1 设计目的和要求 (1) 3 设计内容和步骤 (2) 3.1单片机电压测量系统的原理 (2) 3.2 单片机电压测量系统的总体设计 (3) 3.2.1 硬件选择 (4) 3.2.2 软件选择 (4) 3.3 硬件电路的设计 (4) 3.3.1 输入电路模块设计 (4) 3.3.2 LM7805稳压电源电路介绍 (5) 3.3.3 显示模块电路设计 (5) 3.3.4 A/D转换设计 (7) 3.3.5 单片机模块的简介 (9) 3.4系统软件的设计 (12) 3.4.1主程序的设计 (12) 3.4.2 各子程序的设计 (14) 总结与致谢 (16) 参考文献 (17) 附录一系统整体电路图 (18) 附录二 A/D转换电路的程序 (19) 附录三 1602LCD显示模块的程序 (21)

摘要 随着电子科学技术的发展,电子测量成为广大电子工作者必须掌握的手段。对测量的精度和功能的要求也越来越高,而电压的测量甚为突出,因为电压的测量最为普遍。本设计在查阅了大量前人设计的数字电压表的基础上,利用单片机技术结合A/D转换芯片ADC0832构建了一个直流数字电压表。本文首先简要介绍了单片机系统的优势,然后详细介绍了直流数字电压表的设计流程,以及硬件系统和软件系统的设计。 本文介绍了基于89S51单片机的电压测量系统设计,介绍1602LCD液晶的功能和ADC0832的转换原理。该电路设计简单,方便。该设计可以测量0~5V的电压值,并在1602LCD液晶上显示出来。 本系统主要包括三大模块:主程序模块、显示模块、A/D转换模块,绘制点哭原理图与工作流程图,并进行调试,最终设计完成了该系统的硬件电路,在软件编程上,采用了c语言进行编程,开发了显示模块程序,A/D转换程序。 关键词:89S51单片机;1602LCD液晶;ADC0832

电压电流采样电路设计

- 常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM)系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM的桥式换流电路的直流侧电压信号和电流信号;电网电压同步信号采样电路即电网电压同步信号。 控制电路电路主电路 图2-1 DSTATCOM系统总体硬件结构框图 常用电网电压同步采样电路及其特点 1.1.1 常用电网电压采样电路1 从D-STATCOM的工作原理可知,当逆变器的输出电压矢量与电网电压矢量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 】 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统的输出频率,即该误差可忽略不计。其中R5=1K ,C4=15pF,则时间常数 <

相关主题
文本预览
相关文档 最新文档