当前位置:文档之家› 岩石力学总结

岩石力学总结

岩石力学总结
岩石力学总结

第一章

岩块:是指不含显著结构面的岩石块体,是构成岩体的最小岩石单元体

结构面:是指地质历史发展过程中,在岩体内部形成的具有一定的延伸方向和长度,厚度相对较小的地质界面或带。(结构面根据地质成因不同分为原生,构造和次生结构面)(结构面对工程岩体的完整性、渗透性、物理力学性质及盈利传递等都有显著地影响)

岩体:是指在地质历史过程中形成的,由岩石单元体(或称岩块)和结构面网络组成的,具有一定的结构并赋存予一定的天然应力状态和地下水等地质环境中的地质体。

第三章

渗透系数的物理意义是介质对某种特定流体的渗透能力,岩石的参透系数表征的就是岩石对水的渗透能力,其取决于岩石的物理性质和结构特征例如岩石中孔隙和裂隙的大小

岩石遇水后体积增大的特性成为岩石的膨胀性

岩石的膨胀性大小主要通过膨胀力和膨胀率两个指标来体现,测定方法由平衡加压法,压力恢复法和加压膨胀法

第四章

弹性指物体在外力作用下发生变形,而当撤除外力后能够恢复原状的性质(线性,非线性)

塑性是指物体在外力的作用下发生不可逆变形的性质

脆性是指物体在力的作用下变形很小时即发生破坏的性质

延性是指物体在力的作用下破坏前能够发生大量的应变的性质,其中主要是塑性变形

黏性指的是在力的作用下物体能够抑制瞬间变形,使变形因时间效应而滞后的性质

岩石单轴压缩试验的目的:通过测定岩石试件在单轴压缩应力条件下的应变值,绘制应力-应变曲线,分析岩石的变形特性,并计算岩石的变形指标

岩石的应变可分为三种:轴向应变εa(试样沿压力方向长度的相对变化)、横向应变εc(试样在垂直于压力的方向上长度的相对变化)和体应变εv(试样体积的相对变化)

岩石典型的全应力-应力曲线:1.微裂隙闭合阶段(OA段)2.弹性变形至微破裂稳定发展阶段(ABC 段)3.裂隙非稳定发展和破坏阶段(CD段)4.破坏后阶段(D点以后)

岩石典型的全应力-应力曲线决定于岩石的矿物质成分和结构特征

岩石记忆:逐级一次循环加载条件下,其盈利-应变曲线的外包线与连续加载条件下的曲线基本一致,说明加、卸过程并未改变岩石变形的习性,这种现象成为~

回滞环:每次加荷、卸荷曲线都不重合,且围成一环形面积,成为~

疲劳强度:岩石的破坏产生在反复加、卸荷曲线与应力-应变全过程交点处。这时的循环加、荷试验所给定的应力,成为疲劳强度。

岩石流变力学特性主要包括以下几个方面:(1)蠕变现象:当应力保持恒变时,应变随时间逐渐增长的过程(2)应力松弛:当应变保持恒定时,应力随时间逐渐减小的过程(3)流动特征:时间一定时,应变速率与应力大小的关系(4)长期强度:在长期何在持续作用下岩体的强度

蠕变是指岩石在恒定的荷载作用下,变形随时间逐渐增大的性质

蠕变分为稳定蠕变和非稳定蠕变稳定蠕变型是岩石在较小的恒定应力作用下,变形随时间增加到一定程度后就趋于稳定,最后变形保持一个常数,不在随时间增大。非稳定蠕变型是岩石承受的恒定荷载比较大,当超过某一临界值时,变形随时间的增加不仅不会保持常数,反而变形速率逐渐增加,最终导致岩体的整体失稳破坏了

一个典型的非稳定型蠕变曲线分为瞬间弹性变形阶段、一次蠕变阶段、二次~、三次~

岩石的强度是指岩石对荷载的抗力,或者成为岩石抵抗破坏的能力

岩石的强度有:抗压强度、抗拉强度和抗剪强度。抗剪强度又有抗剪断强度,抗切强度和弱面的剪切强度三种。

岩石的破坏形式:脆性、延性、弱面剪切破坏

岩石的抗压强度是指岩石试件在单轴压力作用下,抵抗破坏的极限能力,他在数值上等于破坏时的最大压应力

岩石单轴抗压强度的影响因素:矿质成分、结晶程度和颗粒大小、胶结情况、生成条件、风化作用、密度、水的作用、试件尺寸影响、试件形状的影响、加荷速率的影响

岩石的抗拉强度是岩石试样在单轴拉力作用下,抵抗破坏的极限能力,或极限强度,在数值上等于试样破坏时的最大拉应力

岩石抗剪强度的测定方法:直接剪切试验(直剪)、楔形剪切试验(斜剪)和三轴剪切试验(三轴剪)

直剪试验的优点是简单方便,不需要特殊设备,目前除了用来测定整体性岩石的抗剪强度及软弱结构面强度外,还可以用来测定岩石与混凝土之间的以及不同岩石之间的强度。缺点是所用的时间的尺寸较小,不易反应岩石中的裂隙、层理等弱面的情况。同时试样手剪面积上的应力分布也不均匀,如果所加水平力偏离剪切面,则还要引起弯矩,误差较大

第五章

岩体的力学性质,一方面取决于它的受力条件,另一方面还受岩体的地质特征及其赋存环境条件的影响。其影响因素主要包括:组成岩体的岩块材料性、结构面的发育特征及其性质、岩体的地质环境条件,尤其是天然应力及地下水条件,其中结构面的影响是岩体的力学性质不同于岩块力学性质的本质原因。

岩体变形试验主要用来测定岩体的变形指标

岩体强度参数的主要方法有岩体结构面直剪试验、岩体直剪试验、单轴抗压试验和三轴剪切试验

岩体结构面直剪试验可以分为:在结构面未扰动情况下进行的第一次剪断,通常称为抗剪断试验;剪断后,沿剪断面进行的剪切试验,成为抗剪试验

岩体的弹性波速受岩体岩性、建造组合和结构面发育特征以及岩体应力等因素的影响

工程岩体波动测试常常采用声波单孔测井法(一发双收试验),跨孔测试法(一发一收试验),CT层析成像技术

法向刚度Kn是反应结构面法相变形性质的重要参数。其定义未在法向应力作用下,结构面产生单位法向变形所需要的盈利。(具体实验分为室内压缩试验和现场压缩试验)

结构面的剪切变形有如下特征:1.结构面的剪切变形曲线均为非线性曲线2.结构面的峰值位移Δu 受其风化程度的影响3.对同类结构面而言,遭受风化的结构面,剪切刚度比未风化的1/2~1/4 4.结构面的剪切刚度具有明显的尺寸效应5.结构面的剪切刚度随法向应力的增大而增大

影响结构面抗剪强度的因素主要包括结构面的形态、连续性、胶结充填特征及岩壁性质、次生变化和受力历史等等。

结构面分为:平直无填充结构面,粗糙起伏无填充的结构面、非贯通断续结构面及有填充的软弱结构面

结构面的抗剪强度主要来源于结构面的微咬合作用和胶黏作用,且与结构面的壁岩性质及其平直光滑程度密切相关

剪胀效应(或爬坡效应):当法向应力较小时,在剪切过程中,上盘岩体主要是沿结构面产生滑动破坏,这时由于剪胀效应,增加了结构面的摩擦强度

啃断效应:当法向应力达到一定值后,其破坏将由结构面滑动转化为剪断凸起而破坏,引起所谓的啃断效应

按充填物的颗粒成分,可将有充填的结构面分为泥化夹层、夹泥层、碎屑夹泥层及碎屑夹层

影响岩体变形性质的因素:组成岩体的岩性、结构面发育特征、荷载条件、试件尺寸、试验方法和温度等等

结构面的影响包括结构面方位、密度、填充特征及其组合关系等方面的影响,成为结构效应

岩体的抗剪强度主要受结构面、应力状态、岩块性质、风化程度及其含水状态等因素的影响

把赋存于原岩中由各种地质作用、结构运动、岩体自重、水、温度、地震等引起的应力场称为岩体的天然应力场,又称原岩应力场或初始应力场,而由于人类工程活动对原岩的扰动,如开挖、填方、上部建筑物的修建等引起的应力,称为附加应力场

地壳中长期存在着一种促使构造运动发生和发展的内在力量,这就是构造应力

构造应力分为:1.原始构造应力2.残余构造应力3.现代构造应力(活动构造应力)

鉴别岩石工程工区地质构造应力场特征第一步工作就是要找出岩体压性构造形迹,即确定区域性质构造线,第二步是确定构造形迹的次序,最后确定最新构造应力场,找出主应力方向

构造线方向可以从以下的构造形迹中寻找:1.褶皱轴的走向,即背斜轴面、向斜轴面、倒转褶皱轴面的走向,尤其是紧密线性褶皱轴面的走向最具代表性2.逆断层的走向3.区域性陡倾、直立岩层的走向4.矿脉的走向

岩体中天然水平应力可以概括为如下特点:1.岩体中水平天然应力以应力为主,出现拉应力者甚少,且多具局部性质2.大部分岩体中的水平应力大于铅直应力3.岩体中两个水平应力

σhmaxσhmin通常都不相等4.在单薄的山体、谷坡附近以及未受构造变动的岩体中,天然水平应力均小于铅直应力

天然应力比值系数:岩体中天然水平应力与铅直应力比定义为~(随深度增加而减小)

扁千斤顶法:1硐室壁上布置一对或多对测点,每对测点的间距d0视所采用的引伸仪尺寸而定2.在两侧点之间的中线处,用金刚石锯切割一道狭缝槽3.把扁千斤顶塞入狭缝槽内,并用混凝土填充狭缝槽,使千斤顶与洞壁岩体紧密胶结在一起4.对扁千斤顶泵入高压油,通过千斤顶对狭缝两壁岩体加压

第七章

岩体分级因素的选择遵循原则:重要性原则、独立性原则、易测性原则

完整性系数Kv定义为岩体和岩石纵波波速比值的平方

修正的岩芯采取率:将钻孔中直接获取的岩芯总长度,扣除破碎岩芯和软弱夹泥的长度,再与钻孔总进尺之比。

BQ修正考虑地应力、软弱结构面、地下水等不利因素的影响:

[BQ]=BQ-100(K1+K2+K3)

K1-地下水影响修正系数。K2-软弱结构面影响修正系数。K3-天然应力影响修正系数

RMR系统分级指标由岩石强度、RQD值、结构面间距、结构面条件(粗糙度、密度、填充等)以及地下水等五个指标组成

第八章

在岩石力学中,将开挖出现的应力变化成为应力重分布,洞室周围发生应力重新分布的岩体成为围岩,围岩中应力重分部后形成的新的应力状态成为重分部应力状态。

求取衬砌和围岩各自承担的内水压力可采用两种方法:内压分配法和抗力系数法

围岩抗力系数:围岩抗力的大小反映了围岩抵抗衬砌向围岩方向变形能力的强弱,围岩抗力系数就是描述这种抵抗能力的一个指标,用K表示。其定义:是洞壁围岩产生一个单位径向变形所需要的内水压力

确定围岩抗力系数的方法有:直接测定法,计算法和工程地质类比法

岩体可划分为整体状、块状、层状、碎裂状和散体状五种结构类型

破坏形式:1整体状和块状主要有岩爆、脆性开裂及块体滑移2层状岩体围岩沿层面张裂、安慰你去内鼓3.碎裂状表现为塌方和滑动4.散体状以拱形冒落为主

围岩压力:支护与衬砌上必然要受到岩石的压力,围岩将在重分布应力作用下产生过量的塑性变形或松动破坏,进而引起施加于支护衬砌上的压力,成为~

分类:按围岩压力的形成机理,可将其划分为形变围岩压力、松动围岩压力和冲击围岩压力

影响围岩压力的因素:1.洞室形状和大小2.地质构造 3.支护形式和刚度4.支衬时间5.硐室深度6.施工方法

计算松动围岩压力的方法:平衡拱理论、太沙基理论及块体极限平衡理论

塌落拱:洞室开挖以后,如不及时支护,洞顶岩体由于应力集中使岩石破碎并不断塌落而形成一个拱形,成为~

(关于推求压力拱形状方面)普氏理论的基本假设:1.假设围岩是没有凝聚力的散粒体2.由于围岩被假设为无黏性散粒体,因此塌落拱不承受拉应力3.采用压力拱理论,围岩中必须能形成压力拱(或平衡拱)4.洞室上方应有足够厚度的稳定岩体,以保证平衡拱能形成

不能用压力拱理论(普氏理论)计算围岩压力的情况:1.岩石坚固性系数fk<0.8,洞室埋置深度H小于2倍压力拱高度(H<2h)或小于压力拱跨度的2.5倍(H<5b1或H<5b)

2.用明挖法建造的地下结构

3.坚固性系数f k<0.3的土,如淤泥、粉砂、饱和软黏土

太沙基理论中假定岩石为散粒体,并具有一定的凝聚力(基本假设:1.假设洞室围岩岩体是具有黏聚力c的散粒体2.假设洞室围岩的破坏是洞顶岩体沿两个竖直破裂滑动)

第十章

岩坡的失稳情况,从破坏形态上来看,可分为岩石崩塌和滑坡两种

边坡稳定的影响因素:1.结构面2.边坡外形改变3.岩体力学性质的改变4.各种外力直接作用

分析岩坡稳定性的方法:刚体极限平衡法、赤平面投影法、有限元法以及模拟试验法

平面滑动的一般条件:1.滑动面的走向必须与坡面平行或接近平行2.滑动面必须在边坡面露出,即滑动面的倾角β必须小于坡面的倾角α 3. 滑动面的倾角β必须大于该平面的摩擦角φ 4.岩体中必须存在对于滑动阻力很小的分离面,以定出滑动的侧面边界

平面滑动分析的假设:1.滑动面及张裂缝的走向平行于坡面2.张裂缝垂直,其充水深度为Zw. 3.沿张裂缝底进入滑动面渗漏,张裂缝与破趾间的长度内水压力按线性变化至零

第十一章

地基承载力:是指地基单位面积上承受荷载的能力,一般分为极限承载能力和容许承载能力。地基处于极限平衡状态时,所能成承受的荷载即为极限承载力。

岩基的承载力分析:1.根据地基基础规范确定岩基承载力2.用现场岩体载荷试验确定承载力3.用饱和单轴抗压强度试验确定承载力

大坝失稳情况:一是岩基中的岩体强度远远大于坝体混凝土强度,同时岩体坚固完整且无显著软弱结构面。二是在岩基内部存在着节理、裂隙和软弱夹层,或者存在着其他不利于稳定的结构面,在此情况下岩基容易产生深层滑动。

坝基承受的荷载大部分是由坝体直接传递来的,主要有坝体及其上永久设备的自重、库区的静水压力、泥沙压力、浪压力、扬压力等

坝基的破坏分为三种:表面滑动、浅层滑动和深层滑动

简论岩石力学及其工程应用的发展战略

简论岩石力学及其工程应用的发展战略 近三十年来,特别是近十余年,无论国内和国外,岩石力学及其工程应用获得了突 飞猛进的发展,学术交流空前活跃,许多相邻学科的工作者被吸引到岩石力学领域中来.一方面,岩石力学的许多分支领域得到不同程度的探索和发展;另一方面,岩石力 学与其相邻学科的相互结合也在向纵深发展.这当然是很可喜的. 当前岩石力学的主要成就似可归纳如下: ——开展了大量的试验研究工作,取得了一大批有价值的经验数据,并丰富了岩石 力学模型的研究: ——开展了岩石力学的大量的数值分析计算工作,积累了大批计算软件,可以考虑 岩石的弹性、塑性、粘性和断裂等各种特性的多种情况; ——发展了现场观测和监测技术,为工程的安全和岩石力学理论的检验,提供了相 当坚实的物理基础; ——发展了岩石力学模型试验和模拟技术(包括计算机模拟试验),为探索天然岩 石的整体特性作出了有意义的努力; ——拓展了岩石力学的研究领域和应用范围,例如水利工程风险分析中的水库诱发 地震预测问题,核电站的环境分析中的核废料的储存和处理问题,都被包括在岩石力学 研究范围之内. 岩石力学的研究现状表明,它的确还有许多不足之处,如不认真研究改进,最终将会阻碍岩石力学的进一步发展。 首先,目前岩石力学研究工作,绝大多数只限于天然岩石的单项研究,这种研究虽然是非常需要的,但必须与天然岩石的整体特性的研究结合起来.这是因为局限于天然岩石的单项研究.并不能很好地反映岩石在天然状态下的整体性质,因为后者并不是前者的简单的叠加.很遗恨,这方面并没有获得完满的解决,一个突出的例子,就是计算参数的取得,目前多只凭经验,还没有一套公认的准则可供遵从. 共次.岩石不能只认为是单相(固相)的,从这一点出发而建立的岩石力学模型当然是不完善的(尽管当前的研究成果多是如此).因为这与事实不符.天然岩石是一种三相(固相、液相和气相)介质,虽然有时可以当作单相介质来考虑而没有太夹的误差, 但在许多情况下是不可以这样做的.例如水工建设和水下探矿中,大多数场合是不能忽视水的作用的;在油气田开发中,还必须进一步考虑气相的作用. 第三,目前研究岩石静力学方面的多,研究岩石动力学方面的太少.不仅因为工程上常常遇到动力学问题,例如爆破,振动、地震等,而且有许多课题,表面上看似乎是可以当作静力学问题来研究,实际上却是与动力学密切相关的问题.例如岩质边坡的失稳,就是一个由静态转化为动态的问题。Vajont滑坡直到现在还被人们所研究,就是因为这一滑坡为什么会有这样高速滑落问题一直没有获得很好解决的原故. 第四,坦率地说,目前岩石力学的研究,还没有真正走到工程设计中去.其中的原因是多方面的,但重要韵是,没有能够发展出一整套岩石工程技术与方法供工程设计人员应用,因而还不能完全取代原有的~·套技术和方法显示出自己特有的优越性来.岩石力学的工程应用不够这一不足之处,直接危及岩石力学向纵深发展.因为岩石力学的工程应用的广泛深入,反过来会促进岩石力学不断地向深度和广度进军. 因此,岩石力学及其工程应用的发展战略,笔者认为,必须按照天然岩石的实际情况,并服务于工程建设的需要这一基本原则来进行. 例如,天然岩石不仅是多相的,而且是处在一种系列状态中:在地表,它受风化和众多裂隙切割而多处于松散状态,普氏理论适用这种情况;在较浅处,主要受裂隙控制,因而

《岩石力学与工程》蔡美峰版总结

《岩石力学与工程》内容概要总结 地应力是存在于地层中的为受工程扰动的天然应力。也称为岩体初始应力、绝对应力或原岩应力。 地质软岩:单轴抗压强度小于25MPa的松散、破碎、软化及风化膨胀性一类岩体的总称。 工程软岩:工程力作用下能产生显著性变形的工程岩体。声发射:材料在受到外载荷作用时,其内部贮存的应变能快速释放产生弹性波,发生声响。 岩石岩石地下工程:地下岩石中开挖并临时获永久修建的各种工程。 围岩:在岩石地下地下工程中,由于受开挖影响而发生应力状态改变的周围岩体。 锚喷支护:锚杆与喷射混凝土联合支护的简称。 边坡:岩体、土体在自然重力作用或人为作用而形成一定倾斜度的临空面。 岩石:自然界各种矿物的集合体,是天然地质作用的产物。 容重:岩石单位体积的重量。根据含水情况将岩石的容重分为天然容重、干容重、饱和容重。孔隙性:天然岩石中包含着数量不等、成因各异的孔隙和裂隙。 孔隙率:指岩石孔隙的体积与岩石总体积的比值,以百分数表示。分为总孔隙率、总开孔隙率、大开孔隙率、小开孔隙率、和闭孔隙率。孔隙率愈大,岩石力学性能越差。 水理性:岩石与水相互作用时所表现的性质。 包括岩石的吸水性、透水性、软化性和抗冻性。 岩石强度:岩石在各种载荷作用下达到破坏时所能承受的最大应力。 单轴抗压强度:岩石在单轴压缩载荷作用下达到破坏前所能承受的最大压应力。 岩石破坏形式:x状共轭斜面剪切破坏。这种破坏形式是最常见的破坏形式;单斜面剪切破坏。这两种破坏都是由于破坏面上的剪应力超过极限引起的。 拉伸破坏:横向拉应力超过岩石抗拉极限引起的。 流变破坏:岩石的三轴抗压强度:岩石在三向荷载作用下,达到破坏时所能承受的最大压应力。 莫尔强度包络线:同一种岩石对应各种应力状态下破坏莫尔应力圆外公切线。直线型、抛物线型、双曲线型。 点载荷试验:试验所获得的强度指标值可以用做岩石分级的一个指标。点载荷实验装置是便携式的,可带到岩土工程现场去做实验。点载荷试验对试件的要求不严格。缺点是要根据经

岩体力学的发展展望及发展方向

岩体力学的发展展望及发展方向 张永伟学号:201020407 岩石力学是研究岩石和由它组成的地质体在外力作用下力学行为的一门应用固体力学学科。岩体力学是在岩石力学的基础上发展起来的一门新兴学科,是一门的年轻的学科,特别是在中国前景广阔,“岩石力学的未来在中国”。 岩体力学作为岩土工程三大基础学科(岩体力学、土力学、基础工程学)之一,在工程设计和施工中,岩体力学问题往往具有决定性的作用,例如:英吉利海底隧道,日本青函海底隧道,美国赫尔姆斯水电站地下厂房,加拿大亚当贝克水电站地下压力管道,巴西伊太普水电站,尼亚加拉水电站,以及我国葛洲坝水利工程等的新建,都提出了许多岩体力学方面的棘手问题,而这些问题对工程的进行具有决定意义。因此,岩体力学的发展直接关系到工程开发的深度和广度。 一、岩体力学的发展 岩体力学是在岩石力学的基础上发展起来的一门学科,一般认为它形成于20世纪50年代末,其主要标志是1957年法国的J.Talobre 所著的《岩石力学》的出版,以及1962年国际岩石力学学会的成立。岩体力学的发展经历了如下几个阶段:(一)连续介质岩石力学阶段。二次世界大战之前至20世纪60年代为岩体力学的产生与早期发展阶段。在此阶段,人们仅简单地将岩体看作一种连续介质材料,利用固体力学理论进行岩体的力学特性分析,将岩体力学等同于材料力学,处理实际问题主要靠经验,往往效果较差。(二)裂隙岩体力学阶段。

大约在20世纪60-70年代,国际上正式将裂隙岩体的力学性质研究作为岩体力学的一个中心课题,并且提出了(碎裂)岩体力学概念,将岩体力学研究推向了一个崭新的阶段,即裂隙岩体力学阶段。(三)岩体结构力学阶段。20世纪60年代末,人们提出了“岩体结构”的概念,及至70年代中期“岩体结构”便在岩体力学研究中起指导作用,并且由此诞生了“岩体结构的力学效应”这一具有划时代意义的科研命题。(四)地质工程岩体力学阶段。随着各种大型或特大型岩体工程的兴建,例如超过300 m的高坝及跨海大桥或其他高架工程等,它们的规模、形状、分布及组合等变化很大,往往引出不少岩体力学问题,而要解决这些问题又涉及到很多地质问题,有时可能关系到面积超过十平方公里、深达几公里的地质体。而今的岩体力学与地质研究工作密切相关,必须是多学科协同操作,方能有所作为。因此岩体力学的发展进入地质工程岩体力学阶段。 二、岩体力学在地质灾害防治中的应用 今年舟曲泥石流地质灾害再次引起了人们对地质灾害的重视。 岩体力学在地质灾害防治中的应用,作为研究方向,开展崩塌、滑坡、泥石流和采空地面塌陷等地质灾害方面的研究,是岩体力学重要的发展方向之一,对于保护人民群众生命财产安全具有重要的意义。 地质灾害监测与预警、地质灾害危险性评估、地质灾害防治等都需要岩体力学的知识和手段。 对于山东省而言由于地下采矿而产生的采空地面塌陷,近几年频

高等岩石力学试题答案1

1. 简述岩石的强度特性和强度理论,并就岩石的强度理论进行简要评述。 答:岩石作为一种天然工程材料的时候,它具有不均匀性、各向异性、不连续等特点,并且受水力学作用显著。在地表部分,岩石的破坏为脆性破坏,随着赋存深度的增加,其破坏向延性发展。 岩石强度理论是判断岩石试样或岩石工程在什么应力、应变条件下破坏。当然岩石的破坏与诸多因素有关,如温度、应变率、湿度、应变梯度等。但目前岩石强度理论大多只考虑应力的影响,其他因素影响研究并不深入,故未予考虑。 (1). 剪切强度准则 a. Coulomb-Navier 准则 Coulomb-Navier 准则认为岩石的破坏属于在正应力作用下的剪切破坏,它不仅与该剪切面上剪应力有关,而且与该面上的正应力有关。岩石并不沿着最大剪切应力作用面产生破坏,而是沿其剪切应力和正应力最不利组合的某一面产生破裂。即: ?στtan +=C 式中?为岩石材料的内摩擦角,σ为正应力,C 为岩石粘聚力。 b. Mohr 破坏准则 根据实验证明:在低围压下最大主应力和最小主应力关系接近于线性关系。但随着围压的增大,与关系明显呈现非线性。为了体现这一特点,莫尔准则在压剪和三轴破坏实验的基础上确定破坏准则方程,即: ()στf = 此方程可以具体简化为斜直线、双曲线、抛物线、摆线以及双斜直线等各种曲线形式,具体视实验结果而定。 虽然从形式上看,库仑准则和莫尔准则区别只是在于后者把直线推广到曲线,但莫尔准则把包络线扩大或延伸至拉应力区。 c. 双剪的强度准则 Mohr 强度准则是典型的单剪强度准则,没有考虑第二主应力的作用。我国学者俞茂宏从正交八面体的三个主应力出发,提出了双剪强度理论和适用于岩土介质的广义双剪强度理论,并得到了双剪统一强度理论: () 3211t b b σσσασ=+--α ασσσ++≤1312 ()t b b σασσσ=-++31211 αασσσ++≥1312 式中α和b 为两个材料常数,是岩石单轴抗拉强度。在主应力空间里,上式代表一个以静水应力轴为中心轴具有不等边十二边形截面的锥体表面。 (2). 屈服强度准则 a. Tresca 屈服准则

高等岩石力学答案

3、简述锚杆支护作用原理及不同种类锚杆的适用条件。 答:岩层和土体的锚因是一种把锚杆埋入地层进行预加应力的技术。锚杆插入预先钻凿的孔眼并固定于其底端,固定后,通常对其施加预应力。锚杆外露于地面的一端用锚头固定,一种情况是锚头直接附着在结构上,以满足结构的稳定。另一种情况是通过梁板、格构或其他部件将锚头施加的应力传递于更为宽广的岩土体表面。岩土锚固的基本原理就是依靠锚杆周围地层的抗剪强度来传递结构物的拉力或保持地层开挖面自身的稳定。岩土锚固的主要功能是: (1)提供作用于结构物上以承受外荷的抗力,其方问朝着锚杆与岩土体相接触的点。 (2)使被锚固地层产生压应力,或对被通过的地层起加筋作用(非顶应力锚杆)。

(3)加固并增加地层强度,也相应地改善了地层的其他力学性能。 (4)当锚杆通过被锚固结构时.能使结构本身产生预应力。 (5)通过锚杆,使结构与岩石连锁在一起,形成一种共同工作的复合结构,使岩石能更有效地承受拉力和剪力。 锚杆的这些功能是互相补允的。对某一特定的工程而台,也并非每一个功能都发挥作用。 若采用非预应力锚杆,则在岩土体中主要起简单的加筋作用,而且只有当岩土体表层松动变位时,才会发挥其作用。这种锚固方式的效果远不及预应力锚杆。效果最好与应用最广的锚固技术是通过锚固力能使结构与岩层连锁在一起的方法。根据静力分析,可以容易地选择锚固力的大小、方向及其荷载中心。由这些力组成的整个力系作用在结构上,从而能最经济有效地保持结构的稳定。采用这种应用方式的锚固使结构能抵抗转动倾倒、沿底脚的切向位移、沿下卧层临界面上的剪切破坏及由上举力所产生的竖向位移。 岩土的锚杆类型: (1)预应力与非预应力锚杆 对无初始变形的锚杆,要使其发挥全部承载能力则要求锚杆头有较大的位移。为了减少这种位移直至到达结构物所能容许的程度,一般是通过将早期张拉的锚杆固定在结构物、地面厚板或其他构件上,以对锚杆施加预应力,同时也在结构物和地层中产生应力,这就是预应力锚杆。 预应力锚杆除能控制结构物的位移外,还有其它有点: 1安装后能及时提供支护抗力,使岩体处于三轴应力状态。 2控制地层与结构物变形的能力强。 3按一定密度布臵锚杆,施加预应力后能在地层内形成压缩区,有利于地层稳定。 4预加应力后,能明显提高潜在滑移面或岩石软弱结构面的抗剪强度。 5张拉工序能检验锚杆的承载力,质量易保证。 6施工工艺比较复杂。 (2)拉力型与压力型锚杆 显而易见,锚杆受荷后,杆体总是处于受拉状态的。拉力型与压力型锚杆的主要区别是在锚杆受荷后其固定段内的灌浆体分别处于受拉或受压状态。拉力型锚杆的荷载是依赖其固定段杆体与灌浆体接触的界面上的剪应力(粕结应力)由顶端(固定段与自由段交界处)向底端传递的。锚杆工作时,固定段的灌浆体易出现张拉裂缝.防腐件能差。

岩石力学研究的现状和未来

岩石力学研究的现状和未来 引言 岩石力学是运用力学原理和方法来研究岩石的力学以及与力学有关现象的 一门新兴科学。它不仅与国民经济基础建设、资源开发、环境保护、减灾防灾有密切联系,具有重要的实用价值,而且也是力学和地学相结合的一个基础学科。 岩石力学的发生与发展与其它学科一样,是与人类的生产活动紧密相关的。早在远古时代,我们的祖先就在洞穴中繁衍生息,并利用岩石做工具和武器,出现过“石器时代”。公元前2700年左右,古代埃及的劳动人民修建了金字塔。公元前6世纪,巴比伦人在山区修建了“空中花园”。公元前613-591年我国人民在安徽淠河上修建了历第一座拦河坝。公元前256-251年,在四川岷江修建了都江堰水利工程。公元前254年左右(秦昭王时代)开始出钻探技术。公元前218年在广西开凿了沟通长江和珠江水系的灵渠,筑有砌石分水堰。公元前221-206年在北部山区修建了万里长城。在20世纪初,我国杰出的工程师詹天佑先生主持建成了北京-张家口铁路上一座长约1公里的八达岭隧道。在修建这些工程的过程中,不可避免地要运用一些岩石力学方面的基本知识。但是,作为一门学科,岩石力学研究是从20世纪50年代前后才开始的。当时世界各国正处于第二次世界大战以后的经济恢复时期,大规模的基本建设,有力地促进了岩石力学的研究与实践。岩石力学逐渐作为一门独立的学科出现在世界上,并日益受到重视。

目前国际上已建和正建的大坝,高度超过300m,地下洞室的开挖跨度超过50m,矿山开采深度超过4000m,边坡垂直高度达1000m,石油开采深度超过9000m,深部核废料处理需要考虑的时间效应至少为1万年,研究地壳形变涉及的深度达50-60km,温度在1000oC以上,时间效应为几百万年。今后,随着能源、交通、环保、国防等事业的发展,更为复杂、巨大的岩石工程将日益增多。但是,国际上有许多工程由于对岩石力学缺乏足够的研究,而造成工程事故。其中最的是法国马尔帕塞(Malpasset)拱坝垮坝及意大利瓦依昂(Vajont)工程的大滑坡。 马尔帕塞薄拱坝,坝高60m,坝基为片麻岩,XXXX年左坝肩沿一个倾斜的软弱面滑动,造成溃坝惨剧,400余人丧生。瓦依昂双曲拱坝,坝高261.6米,坝基为断裂十分发育的灰岩。XXXX年大坝上游左岸山体发生大滑坡,约有2.7-3.0亿立米的岩体突然下塌,水库中有5000万立米的水被挤出,击起250米高的巨大水浪,高150米的洪波溢过坝顶,死亡3000余人。近年来,虽然岩石力学得到突飞猛进的发展,但与岩体失稳有关的大坝崩溃,边坡滑动,矿山瓦斯爆炸,围岩地下水灾害等惨剧仍时有发生。诸如此类的工程实例,都充分说明能否安全经济地进行工程建设,在很大程度上取决于人们是否能够运用近代岩石力学的原理和方法去解决工程上的问题。当前世界上正建和拟建的一些巨型工程及与地学有关的重大项目都把岩石力学作为主要研究对象。第一节国际岩石力学与岩石工程发展动态一、国际岩石力学学会成立前(XXXX)的概况 在国际岩石力学学会成立前,尤其是上世纪二战以后,为适应经济发展的迫切需要,各国都相继建立了一些机构对岩石力学进行专题研究。当时各国有代表性的研究机构如下:美国:(1)美国军部工程兵团(ACE,ArmyCorpsofEngineersU.S.A).

完整版重庆大学岩石力学总结

重庆大学岩石力学总结第一章 1岩石中存在一些如矿物解理,微裂隙,粒间空隙,晶格缺陷,晶格边界等内部缺陷,统称微结构面。2岩石的基本构成是由组成岩石的物质成分和结构两大方面来决定。3岩石的结构是指岩石中矿物颗粒相互之间的关系,包括颗粒的大小,形状,排列,结构连接特点及岩石中的微结构面。其中以结构连接和岩石中的微结构面对岩石工程性质影响最大。4岩石中结构连接的类型主要有两种:结晶连接,胶结连接。5岩石中的微结构面是指存在于矿物颗粒内部或矿物颗粒及矿物集合体之间微小的弱面及空隙。它包括矿物的解理,晶格缺陷,晶粒边界,粒间空隙,微裂隙等。6矿物的解理面指矿物晶体或晶粒受力后沿一定结晶方向分裂成的光滑平面。7岩石的物理性质是指由岩石固有的物质组成和结构特征所决定的比重,容重,孔隙率,岩石的密度等基本属性。8岩石的孔隙率是指岩石孔隙的体积与岩石总体积的

比值。9岩石的水理性:岩石与水相互作用时所表现的性质称为岩石的水理性。包括岩石的吸水性,透水性,软化性和抗冻性。 10 岩石的天然含水率w m w m w表示岩石中水的质量,岩石的烘干质量m rd m rd 11 岩石在一定条件下吸收水分的性能称为岩石的吸水性。它取决于岩石孔隙的数量,大小,开闭程度和分布情况。表征岩石吸水性的指标有吸水率,饱和吸水 率和饱水系数。岩石吸水率w a m o m dr. m dr为岩石烘干质量,m o为岩石浸 m dr 水48 小时后的总质量。 12岩石的饱水率是岩石在强制状态下(高压,真空或煮沸)岩石吸入水的质量与岩石烘干质量的比值。13岩石的透水性:岩石能被水透过

的性能。可用渗透系数衡量。主要取决于岩 石孔隙的大小,方向及相互连通情况。q x k dh A K 为岩石的渗透系数,h 为 dx 水头的高度,A为垂直于X方向的截面面积,qx 为沿X方向水的流量。透 水性物理意义:是介质对某种特定流体的渗透能力,渗透系数的大小取决于岩石的物理特性和结构特征。 14岩石在反复冻融后强度降低的主要原因:1构成岩石的各种矿物的膨胀系数不同,当温度变化时,由于矿物的胀缩不均而导致岩石结构的破坏。2当温度降到0℃以下时,岩石孔隙的水结冰,体积增大约%9,会产生很大的膨胀压力,使岩石的结构发生改变甚至破坏。15进行岩石强度实验选用的试件必须是完整岩块,而不应包含节理裂隙。16岩石强度指标值受下列因素影响:①试件尺寸②试件形状③试件三维尺寸比例④加载速率(加载速率越多,所测岩石强度指标值越高⑤湿度

最新常见岩石力学参数

几种常见岩石力学参数汇总 2010年9月2日 参考资料:《构造地质学》,谢仁海、渠天祥、钱光谟编,2007年第2版,P25-P37。 1.泊松比的变化范围: 2.弹性模量的变化范围:

3.常温常压下强度极限: 4.内摩擦角和内聚力的变化范围: 一、课程名称:中国戏曲介绍课时:2个学时 二、背景分析:戏曲是中国文化的瑰宝,同学们对中国戏曲 还不够了解,不能经常接触戏曲。 三、教学内容:中国戏曲 四、教学目标:初步了解中国戏曲的相关知识,并学会哼唱具有代表性的戏曲,简要说出

他们的起源 五、教学过程: 【引入课程】1、先介绍董永和七仙女的故事,然后放[天仙配],为讲戏曲作铺垫,将同学们带入戏曲的氛围中 【初步了解】1、介绍戏曲相关知识中国戏曲主要是由民间歌舞、说唱和滑稽戏三种不同艺术形式综合而成。它起源于原始歌舞,是一种历史悠久的综合舞台艺术样式。经过汉、唐到宋、金才形成比较完整的戏曲艺术,它由文学、音乐、舞蹈、美术、武术、杂技以及表演艺术综合而成,约有三百六十多个种类。它的特点是将众多艺术形式以一种标准聚合在一起,在共同具有的性质中体现其各自的个性。[1]中国的戏曲与希腊悲剧和喜剧、印度梵剧并称为世界三大古老的戏剧文化,经过长期的发展演变,逐步形成了以“京剧、越剧、黄梅戏、评剧、豫剧”五大戏曲剧种为核心的中华戏曲百花苑。[2-5]中国戏曲剧种种类繁多,据不完全统计,中国各民族地区地戏曲剧种约有三百六十多种,传统剧目数以万计。其它比较著名的戏曲种类有:昆曲、粤剧、淮剧、川剧、秦腔、晋剧、汉剧、河北梆子、河南坠子、湘剧、黄梅戏、湖南花鼓戏等。放[刘海砍樵] 2、戏曲行当 生、旦、净、丑各个行当都有各自的形象内涵和一套不同的程式和规制;每个都行当具有鲜明的造型表现力和形式美。 3、艺术特色 综合性、虚拟性、程式性,是中国戏曲的主要艺术特征。这些特征,凝聚着中国传统文化的美学思想精髓,构成了独特的戏剧观,使中国戏曲在世界戏曲文化的大舞台上闪耀着它的独特的艺术光辉。 4、唱腔 第一种是抒情性唱腔,其特点为速度较缓慢,曲调婉转曲折,字疏腔繁,抒情性强。它宜于表现人物深沉而细腻的内心感情。许多剧种的慢板、大慢板、原板、中板均厉于这-类。放[女驸马] 第二种是叙事性唱腔,其特点为速度中等,曲调较平直简朴,字密腔简,朗诵性强。它常用于交代情节和叙述人物的心情。许多剧种的二六、流水等均属于这一类。放[花木兰] 第三种是戏剧性唱腔,其特点为曲调的进行起伏较大,节奏与速度变化较为强烈,唱词的安排可疏可密。它常用于感情变化强烈和戏剧矛盾冲突激化的场合。各戏剧中的散板、摇板等板式曲调都属于这一类。 5、国五大戏曲剧种

岩石力学课后思考题

岩石:是由各种造岩矿物或岩屑在地质作用下按一定规律组合而形成的多种矿物颗粒的集合体,是组成地壳的基本物质。 岩体:是相对于岩块而言的,是指地面或地下工程中范围较大的、由岩块(结构体)和结构面组成的地质体。 岩石结构:是指岩石中矿物颗粒的大小、形状、表面特征、颗粒相互关系、胶结类型特征等。岩石构造:是指岩石中不同矿物集合体之间及其与其他组成部分之间在空间排列方式及充填形式。 岩石的密度:是指单位体积岩石的质量,单位为kg/ 3 m。 块体密度:是指单位体积岩石(包括岩石孔隙体积)的质量。 颗粒密度:是岩石固相物质的质量与其体积的比值。 孔隙性:把岩石所具有的孔隙和裂隙特性,统称为岩石的孔隙性。 孔隙率:岩石试件中孔隙体积与岩石试件体积之比 渗透系数:岩石渗透系数是表征岩石透水性的重要指标,渗透系数K 在数值上等于水力梯度为 1 时的渗流速度,单位为cm/s 或m/d。 软化系数:软化系数K R 为岩石试件的饱和抗压强度σ cw (MPa)与干抗压强度σ c (MPa)的比值。 岩石的膨胀性:是指岩石浸水后发生体积膨胀的性质。 岩石的吸水性:岩石在一定的实验条件下吸收水分的能力,称为岩石的吸水性,其吸水量的大小取决于岩石孔隙体积的大小及其敞开或封闭的程度等。 扩容:是指岩石在外力作用下,形变过程中发生的非弹性的体积增长。 弹性模量:是指在单向压缩条件下,弹性变形范围内,轴向应力与试件轴向应变之比,即E =σ ε 。 变形模量:是指岩石在单轴压缩条件下,轴向应力与轴向总应变(为弹性应变ε e 和塑性应变ε p 之和)之比。 泊松比:在单向载荷作用下,横向应变( ε x = ε y )与轴向应变( ε z )之比。 脆性度:通常把抗压强度与抗拉强度的比值称为脆性度,n = c t δ δ 尺寸效应:岩石试件的尺 寸越大,则强度越低,反之越高,这一现象称为尺寸效应。 常规三轴试验:常规三轴试验的应力状态为σ 1 > σ 2 = σ 3 > 0 ,即岩石试件受轴压和围压作用,试验主要研究围压(σ 2 = σ 3 )对岩石变形、强度或破坏的影响。 真三轴试验:真三轴试验的应力状态为σ 1 > σ 2 > σ 3 > 0 ,即岩石试件在三个彼此正交方向上受到不相等的压力,试验的主要目的是研究中间主应力(σ 2 )的影响。 岩石三轴压缩强度:是指岩石在三轴压缩荷载作用下,试件破坏时所承受的最大轴向压应力。流变性:是指介质在外力不变条件下,应力或应变随时间而变化的性质。 蠕变:是指介质随在大小和方向均不改变的外力作用下,介质的变形随时间的变化而增大的现象。 松弛:是指介质的变形(应变)保持不变时,内部应力随时间变化而降低的现象。 弹性后效:是指对介质加载或卸载时,弹性应变滞后于应力的现象。其是一种延迟发生的弹性变形和弹性恢复,外力卸除后最终不留下永久变形。 岩石长期强度:岩石的强度是随外载作用时间的延长而降低,通常把作用时间t → ∞ 的强度(最低值)S ∞ 称为岩石长期强度。 强度准则:它表征岩石破坏条件的应力状态与岩石强度参数间的函数关系,一般可以用破坏条件下(极限应力状态)的应力间关系σ 1 = f (σ 2 , σ 3 ) 或τ = f (σ ) 来表示。通过强度准则判断岩石在什么样应力、应变条件下破坏。 岩石结构与岩石构造有何区别?并举例加以说明。岩石结构是指岩石中矿物颗粒的大小、形状、表面特征、颗粒相互关系、胶结类型特征等。岩石颗粒间连接方式分为结晶连接和胶结连接两类。岩石构造是指岩石中不同矿物集合体之间及其与其他组成部分之间在空间排列方式及充填形式。如层理、片理、流面等。 岩石颗粒间连接方式有哪几种?岩石颗粒间连接方式分为结晶连接和胶结连接两类。

(完整版)重庆大学-博士、硕士岩石力学考题2

重庆大学二零零五年博士生(秋季)入学考试试题一、论述岩石的流变特性以及蠕变变形曲线特征。 (20分) 二、论述摩尔判据的基本内容,并简要评述摩尔判据的优缺 点。(20分) 三、什么是初始地应力?试论述初始地应力的成因及其分布 规律。(20分) 四、评述岩石在复杂应力条件下的的变形特性。 (20分) 五、论述在单轴压缩载荷作用时岩石试件的端部约束效应。 (20分) 重庆大学博士生入学考试试题答案

一、论述岩石的流变特性以及蠕变变形曲线特征(20分) 所谓岩石的流变性质就是指岩石的应力-应变关系与时间因素有关的性质,包括蠕变、松弛与弹性后效三个方面。所谓蠕变是指当载荷不变时,变形随着时间而增长的现象;所谓松弛是指当应变保持不变时,应力 随着时间增长而减小的现象;所谓弹性后效是指当加载或卸载时,弹性应变滞后于应力的现象。 岩石的蠕变变形特性曲线可以通过单轴或三轴压缩、扭转或弯曲等蠕变实验来进行研究。实验表明,在恒定载荷作用下,只要有充分长的时间,应力低于或高于弹性极限均能产生蠕变现象。但在不同的恒 定载荷下,变形随时间增长的蠕变曲线却有差异。岩石的蠕变曲线不仅与应力大小、性质及岩石种类有 关、而且还与其所在的物理环境如温度、围压、湿度等因素有关,上图为岩石的一典型蠕变曲线。当在 岩石试件上施加一恒定载荷,岩石立即产生一瞬时弹性应变ε e (OA段)。这种变形往往按声速完成,可 以近似认为在t=0完成,其应变为ε e =σ/E。若载荷保 持恒定且持续作用,应变则随时间缓慢地增长,进入到 蠕变变形阶段,将蠕变变形一般可分成三个阶段:(1)第 一蠕变阶段(AB段),也称过渡蠕变阶*段,在这个阶段内, 蠕变为向下弯曲的形状,也就是说曲线的斜率逐渐变小, 若在这一阶段之中(曲线上某一点E)进行卸载,则应变沿 着曲线EFG下降,最后应变为零、其中EF曲线为瞬时弹 性应变之恢复曲线,而FG曲线表示应变随时间逐渐恢复 为零;(2)第二蠕变阶段(BC段), 也称稳定蠕变阶段,蠕 变变形曲线近似一倾斜直线,即蠕变应变率保持常量, 一直持续到C点。若在这一阶殷中进行卸载,则应变沿 曲线HIJ逐渐恢复趋近于一渐近线,最后保留一定永久应变;(3)第三蠕变阶段(CD段),也称加速蠕变阶段,应变率由C点开始迅速增加,达到D点,岩石即发生破坏,这一阶段完成时间较短,严格地说,这 一阶段可分为两个区间:即发育着延性变形但尚未引起破坏的阶段(CP段)和微裂隙剧烈发展导致变形剧 增和引起破坏的阶段(PD段),它相当于褶皱形成后的断裂形成阶段。 同一种岩石,其载荷值越大,在第二阶段持续的时间也就越短,第三阶段破坏出现也就越快。在载 荷很大的情况下,几乎加载之后立即产生破坏。一般中等载荷,所有的三个蠕变变形阶段表现得十分明 显。任何一个蠕变变形阶段的持续时间,都取决子岩石类型、载荷值及温度等因素。 二、论述摩尔判据的基本内容,并简要评述摩尔判据的优缺点(20分)。 摩尔假定是摩尔于1900年提出的一种剪切破坏理论,该理论认为岩石受压后产生的破坏主要是由 于岩石中出现的最大有效剪应力所引起,并提出当剪切破坏在一平面上发生时,该破坏平面上的法向应 力σ和剪应力τ由材料的函数特征关系式联系: |τ|=f(σ) 按摩尔假定可以看出:①岩石的破坏强度是随其受力条件而变化的,周向应力越高破坏强度越大; ②岩石在三向受压时的破坏强度仅与最大和最小主应力有关,而与中间主应力无关;③三向等压条件下,摩尔应力圆是法向应力σ轴上的一个点圆,不可能与摩尔包络线相切,因而岩石也不可能破坏;④岩石 的破裂面并不与岩石中的最大剪应力面相重合,而是取决于其极限摩尔应力圆与摩尔包络线相切处切点 的位置,这也说明岩石的破裂不仅与破裂面上的剪应力有关,也与破裂面上出现的法向正应力和表征岩 性的内聚力和内摩擦角有关。 摩尔判据的优点是:①在判断复杂应力状态下岩石是否发生破坏以及破坏面的方向时,很简单,也 很方便;②能比较真实地反映岩石的抗剪特性;③可以解释为什么在三向等拉时会发生破坏,而在三向 等压时不会发生破坏。但其缺点是:①只考虑了最大主应力和最小主应力对岩石破坏强度的影响,而忽 略了中间主应力的作用,实验表明中间主应力对岩石破坏强度是有一定程度影响的;②摩尔判据不适用 于含有结构面的岩石试件,尽管岩石中的结构面会严重地影响岩石试件的破坏强度;③摩尔判据只适用 于剪切,对受拉区研究不够充分,不适于膨胀或蠕变破坏。 三、什么是初始地应力?试论述初始地应力的成因及其分布规律(20分)。 回答要点: 初始地应力 初始地应力是指未受到任何工程扰动的岩体在天然状态下所具有的内应力,主要由岩体自重及地质 构造作用所引起,地形、地质构造、地震力、水压力、热应力等也会在一定的时间和空间范围内一定程 度上影响到岩体中的初始地应力。

岩石力学发展史

岩石力学是伴随着采矿、土木、水利、交通等岩石工程的建设和数学、力学等学科的进步而逐步发展形成的一门新兴学科,按其发展进程可划分四个阶段: (1)初始阶段(19世纪末~20世纪初) 这是岩石力学的萌芽时期,产生了初步理论以解决岩体开挖的力学计算问题。例如,1912年海姆(A.Heim)提出了静水压力的理论。他认为地下岩石处于一种静水压力状态,作用在地下岩石工程上的垂直压力和水平压力相等,均等于单位面积上覆岩层的重量,即γH。朗金(W.J.M.Rankine)和金尼克也提出了相似的理论,但他们认为只有垂直压力等于γH,而水平压力应为γH乘一个侧压系数,即λγH。朗金根据松散理论认为;而金尼克根据弹性理论的泊松效应认为。其中,λ、υ、φ分别为上覆岩层容重,泊松比和内摩擦角,H为地下岩石工程所在深度。由于当时地下岩石工程埋藏深度不大,因而曾一度认为这些理论是正确的。但随着开挖深度的增加,越来越多的人认识到上述理论是不准确的。 (2)经验理论阶段(20世纪初~20世纪30年代) (3)该阶段出现了根据生产经验提出的地压理论,并开始用材料力学和结构力学的方法分析地下工程的支护问题。最有代表性的理论就是普罗托吉雅柯诺夫提出的自然平衡拱学说,即普氏理论。该理论认为,围岩开挖后自然塌落成抛物线拱形,作用在支架上的压力等于冒落拱内岩石的重量,仅是上覆岩石重量的一部分。于是,确定支护结构上的荷载大小和分布方式成了地下岩石工程支护设计的前提条件。普氏理论是相应于当时的支护型式和施工水平发展起来的。由于当时的掘进和支护所需的时间较长,支护和围岩不能及时紧密相贴,致使围岩最终往往有一部分破坏、塌落。但事实上,围岩的塌落并不是形成围岩压力的惟一来源,也不是所有的地下空间都存在塌落拱。进一步地说,围岩和支护之间并不完全是荷载和结构的关系问题,在很多情况下围岩和支护形成一个共同承载系统,而且维持岩石工程的稳定最根本的还是要发挥围岩的作用。因此,靠假定的松散地层压力来进行支护设计是不合

高等岩石力学试题答案(2012)

1..简述岩石的强度特性和强度理论,并就岩石的强度理 论进行简要评述。 答:岩石作为一种天然工程材料的时候,它具有不均匀性、各向异性、不连续等特点,并且受水力学作用显著。在地表部分,岩石的破坏为脆性破坏,随着赋存深度的增加,其破坏向延性发展。 岩石强度理论是判断岩石试样或岩石工程在什么应力、应变条件下破坏。当然岩石的破坏与诸多因素有关,如温度、应变率、湿度、应变梯度等。但目前岩石强度理论大多只考虑应力的影响,其他因素影响研究并不深入,故未予考虑。 (1). 剪切强度准则 a.Coulomb-Navier准则 Coulomb-Navier准则认为岩石的破坏属于在正应力作用下的剪切破坏,它不仅与该剪切面上剪应力有关,而且与该面上的正应力有关。岩石并不沿着最大剪切应力作用面产生破坏,而是沿其剪切应力和正应力最不利组合的某一面产生破裂。即:? τtan σ =C +

式中?为岩石材料的内摩擦角,σ为正应力,C为岩石粘聚力。 b. Mohr破坏准则 根据实验证明:在低围压下最大主应力和最小主应力关系接近于线性关系。但随着围压的增大,与关系明显呈现非线性。为了体现这一特点,莫尔准则在压剪和三轴破坏实验的基础上确定破坏准则方程,即:()σ τf = 此方程可以具体简化为斜直线、双曲线、抛物线、摆线以及双斜直线等各种曲线形式,具体视实验结果而定。 虽然从形式上看,库仑准则和莫尔准则区别只是在于后者把直线推广到曲线,但莫尔准则把包络线扩大或延伸至拉应力区。 c. 双剪的强度准则 Mohr强度准则是典型的单剪强度准则,没有考虑第二主应力的作用。我国学者俞茂宏从正交八面体的三个主应力出发,提出了双剪强度理论和适用于岩土介质的广义双剪强度理论,并得到了双剪统一强度理论:

岩石力学总结

第一章 岩块:是指不含显著结构面的岩石块体,是构成岩体的最小岩石单元体 结构面:是指地质历史发展过程中,在岩体内部形成的具有一定的延伸方向和长度,厚度相对较小的地质界面或带。(结构面根据地质成因不同分为原生,构造和次生结构面)(结构面对工程岩体的完整性、渗透性、物理力学性质及盈利传递等都有显著地影响) 岩体:是指在地质历史过程中形成的,由岩石单元体(或称岩块)和结构面网络组成的,具有一定的结构并赋存予一定的天然应力状态和地下水等地质环境中的地质体。 第三章 渗透系数的物理意义是介质对某种特定流体的渗透能力,岩石的参透系数表征的就是岩石对水的渗透能力,其取决于岩石的物理性质和结构特征例如岩石中孔隙和裂隙的大小 岩石遇水后体积增大的特性成为岩石的膨胀性 岩石的膨胀性大小主要通过膨胀力和膨胀率两个指标来体现,测定方法由平衡加压法,压力恢复法和加压膨胀法 第四章 弹性指物体在外力作用下发生变形,而当撤除外力后能够恢复原状的性质(线性,非线性) 塑性是指物体在外力的作用下发生不可逆变形的性质 脆性是指物体在力的作用下变形很小时即发生破坏的性质 延性是指物体在力的作用下破坏前能够发生大量的应变的性质,其中主要是塑性变形 黏性指的是在力的作用下物体能够抑制瞬间变形,使变形因时间效应而滞后的性质 岩石单轴压缩试验的目的:通过测定岩石试件在单轴压缩应力条件下的应变值,绘制应力-应变曲线,分析岩石的变形特性,并计算岩石的变形指标 岩石的应变可分为三种:轴向应变εa(试样沿压力方向长度的相对变化)、横向应变εc(试样在垂直于压力的方向上长度的相对变化)和体应变εv(试样体积的相对变化) 岩石典型的全应力-应力曲线:1.微裂隙闭合阶段(OA段)2.弹性变形至微破裂稳定发展阶段(ABC 段)3.裂隙非稳定发展和破坏阶段(CD段)4.破坏后阶段(D点以后) 岩石典型的全应力-应力曲线决定于岩石的矿物质成分和结构特征 岩石记忆:逐级一次循环加载条件下,其盈利-应变曲线的外包线与连续加载条件下的曲线基本一致,说明加、卸过程并未改变岩石变形的习性,这种现象成为~ 回滞环:每次加荷、卸荷曲线都不重合,且围成一环形面积,成为~ 疲劳强度:岩石的破坏产生在反复加、卸荷曲线与应力-应变全过程交点处。这时的循环加、荷试验所给定的应力,成为疲劳强度。 岩石流变力学特性主要包括以下几个方面:(1)蠕变现象:当应力保持恒变时,应变随时间逐渐增长的过程(2)应力松弛:当应变保持恒定时,应力随时间逐渐减小的过程(3)流动特征:时间一定时,应变速率与应力大小的关系(4)长期强度:在长期何在持续作用下岩体的强度 蠕变是指岩石在恒定的荷载作用下,变形随时间逐渐增大的性质 蠕变分为稳定蠕变和非稳定蠕变稳定蠕变型是岩石在较小的恒定应力作用下,变形随时间增加到一定程度后就趋于稳定,最后变形保持一个常数,不在随时间增大。非稳定蠕变型是岩石承受的恒定荷载比较大,当超过某一临界值时,变形随时间的增加不仅不会保持常数,反而变形速率逐渐增加,最终导致岩体的整体失稳破坏了 一个典型的非稳定型蠕变曲线分为瞬间弹性变形阶段、一次蠕变阶段、二次~、三次~ 岩石的强度是指岩石对荷载的抗力,或者成为岩石抵抗破坏的能力 岩石的强度有:抗压强度、抗拉强度和抗剪强度。抗剪强度又有抗剪断强度,抗切强度和弱面的剪切强度三种。 岩石的破坏形式:脆性、延性、弱面剪切破坏 岩石的抗压强度是指岩石试件在单轴压力作用下,抵抗破坏的极限能力,他在数值上等于破坏时的最大压应力

高等岩石力学练习题详解

岩体力学习题 1、何谓岩体力学? 谈谈你对岩体力学的认识和看法。 1)岩体力学是力学的一个分支学科,是研究岩体在各种力场作用下变形与破坏规律的理论及其实际应用的科学,是一门应用型基础学科。 2)认识和看法:对于岩体力学的认识看法,主要还是体现在其形成发展的过程以及研究对象内容所囊括的重要意义。 岩体力学的形成和发展,是与岩体工程建设的发展和岩体工程事故分不开的。岩块物理力学性质的试验,地下洞室受天然水平应力作用的研究,可以追溯到19世纪的下半叶。20世纪初出现了岩块三轴试验,1920年,瑞士联合铁路公司采用水压洞室法,在阿尔卑斯山区的阿姆斯特格隧道中,进行原位岩体力学试验,首次证明岩体具有弹性变形性质。1950~1960年,岩体力学扩大了应用范围,从地下洞室围岩稳定性研究扩展到岩质边坡和地基岩体稳定性研究等。1957年,法国的J.塔洛布尔著《岩石力学》,从岩体概念出发,较全面系统地介绍了岩体力学的理论和试验研究方法及其在水电工程上的应用。至50年代末期,岩体力学形成了一门独立的学科。60年代以来,岩体力学的发展进入了一个新的历史时期,研究内容和应用范围不断扩大,对不连续面力学效应和岩体性能进行了研究,取得了成果和发展;有限元法、边界元法、离散元法先后被引入,岩体中天然应力量测的加强与其分布规律不断被揭示。 岩体力学的理论基础直接来源于弹塑性力学,同时也包含了理论力学、材料力学等方面的知识,只是研究对象细化到了岩土体这一材料上,故而其研究的重要意义在于:大量岩体工程的开展必须要保证其既安全稳定又经济合理,所以要通过准确地预测工程岩体的变形与稳定性、正确的工程设计和良好的施工质量等来保证。其中,准确地预测岩体在各种应力场作用下的变形与稳定性,进而从岩体力学观点出发,选择相对优良的工程场址,防止重大事故,为合理的工程设计提供岩体力学依据,是工程岩体力学研究的根本目的和任务。岩体力学的发展是和人类工程实践分不开的。起初,由于岩体工程数量少,规模也小,人们多凭经验来解决工程中遇到的岩体力学问题。因此,岩体力学的形成和发展要比土力学晚得多。随着生产力水平及工程建筑事业的迅速发展,提出了大量的岩体力学问题。诸如高坝坝基岩体及拱坝拱座岩体的变形和稳定性;大型露天采坑边坡、库岸边坡及船闸、溢洪道等边坡的稳定性;地下洞室围岩变形及地表塌陷;高层建筑、重型厂房和核电站等地基岩体的变形和稳定性;以及岩体性质的改善与加固技术等等。对这些问题能否做出正确的分析和评价,将会对工程建设和生产的安全性与经济性产生显著的影响,甚至带来严重的后果。 2、何谓岩块、岩体? 试比较岩块与岩体,岩体与土有何异同点? 1)岩块:指不含显著结构面的岩石块体,是构成岩体的最小岩石单元体。 2)岩体:指在地质历史过程中形成的,由岩块和结构面网络组成的,具有一定的结构并赋存于一定的天然应力状态和地下水等地质环境中的地质体,是岩体力学研究的对象。 3)岩块与岩体:岩块是构成岩体的最小岩石单元体,岩体包含岩块; 岩体与土:土不具有刚性的联结,物理状态多变,力学强度低等,因而也不具有岩体的结构面。 3、何谓岩体分类? RMR 分类和Q 分类各自用哪些指标表示? 怎样求得? 1)岩体分类:在工程地质分组的基础上,通过对岩体的的一些简单和容易实测的指标,将工程地质条件与岩体参数联系起来,并借鉴已建的工程设计、施工和处理等方面成功与失败的经验教训,对岩体进行归类的一种方法。

(完整版)重庆大学岩石力学往年题

这是我自己搜集的,答案可能不全,仅供参考。 1. 试论述岩石的水理性 岩石与水相互作用时所表现的性质称为 岩石的水理性。包括岩石的吸水性、透水性、软化性和抗冻性。 A 天然含水率 天然状态下岩石中水的质量m w 与岩石的 烘干质量m dr 的比值,称为岩石的天然含水率,以百分率表示,即: %100?= dr m m ω ? B 吸水性 定义:岩石在一定条件下吸收水份的性能。 影响因素:孔隙的数量、大小、开闭程度和分布情况等。 表征岩石吸水性指标吸水率、饱和吸水率、饱水系数。 (1)吸水率a ω是岩石在常压下吸入水的质量与其烘干质量dr m 的比值,即 %1000?-= dr dr a m m m ω 式中,0m 为烘干岩样浸水48小时后的总质量。 (2)饱和吸水率是岩石在强制状态下岩石吸入水的质量与岩样烘干质量的比值,即 %100?-= dr dr sa sa m m m ω 式中,sa ω为岩石的饱和吸水率;dr m 为真 空抽气饱和或煮沸后之间的质量(kg )。 (3)饱水系数w k 是指岩石吸水率与饱和率的比值,即 %100?= sa a w k ωω C 透水性 透水性:岩石能被水透过的性能 达西定律:当地下水沿着岩石中的孔隙或裂隙流动时,其水流速度与水力梯度成正比,即 dl dh k l h h K -=?--=12ν D 软化性 定义:岩石浸水后强度降低的性能 软化系数:c cw c σση= 式中:c η为岩石的软化系数 cw σ为饱水岩样的抗压强度(MPa) c σ为自然风干岩样的抗压强度(MPa) E 抗冻性 定义:岩石抵抗冻融破坏的性能,岩石的抗冻性常用抗冻系数来表示。 抗冻系数: %100?-= c cf c f c σσσ 式中,f c 为岩石的抗冻系数,c σ为岩石动容钱的抗压强度(kpa )。cf σ为岩样冻融后的抗压强度(kpa )。 2.论述影响岩石力学性质的主要因素 (A )水对岩石力学性质的影响 地下水包括结合水和重力水。对岩石力学性质影响的5个方面:连接作用、润滑作用、水楔作用、孔隙压力作用、溶蚀及潜蚀作用 (B )温度对岩石力学性质的影响 随着温度的增高,岩石的延性加大,屈服点降低,峰值强度也降低。 (C )加载速度对岩石力学性质的影响 随着加荷速度的降低,岩石的延性加大,屈服点降低,峰值强度也降低。 (D )围压对岩石力学性质的影响 随着围压的增高,岩石的延性加大,屈服点增加,峰值强度也增加。 (E )风化对岩石力学性质的影响 主要表现在以下3个方面: 产生新的裂隙、矿物成分发生变化、结构和构造发生变化 3.试论述岩体中的初始地应力及分布规律 a.定义:地应力是存在于地层中的未受工程扰动的天然应力,也称岩体初始应力、绝对应力或原岩应力。 b.组成:自重应力、构造应力、热应力、地震应力、扰动应力 c. 地应力的成因 大陆板块边界受压、地幔热对流、地心引力、岩浆侵入、地温梯度、地表剥蚀等引起的地应力场。 d.地应力分布的基本规律(归纳) 1)地应力是一个具有相对稳定的非稳定应力场,它是时间和空间的函数 2)实测垂直应力基本等于上覆岩层的重量 3)水平应力普遍大于垂直应力

相关主题
文本预览
相关文档 最新文档