当前位置:文档之家› 储罐液位控制系统程序

储罐液位控制系统程序

储罐液位控制系统程序
储罐液位控制系统程序

储罐液位控制系统

——计算机控制技术课程设计

①核心:单片机89s52

②片外扩展:8KB RAM存储器6264,I/O口扩展8155

③转换器:ADC0809,DAC0832

④锁存器等:74HC373,74H377,74HC245和3-8译码器74HC138

⑤输入/输出部件:6个LED,4个按键

89S52的RD及PSEN用与门接在一起后送入6264的OE端,使得

6264既可以作为数据存储器,也可以作为程序存储器。

①液位信号(电压值)从ADC0809的IN0引脚输入,A/D 转换后存储。

②液位给定值由键盘设定,与液位信号比较得出偏差值。若超限,则报警,LED4现实P,同时以P1.0驱动报警器,以P1.1驱动蜂鸣器。 ③按达林算法计算控制器的输出值。

④输出值经D/A 转换得到模拟电压值并输出。

⑤液位信号的电压值经标度转换后,变为液位值存储,送LED 显示。

6

个LED显示如图a所示。LED5显示H或L,LED4为超限指示,LED3~LED0显示液位值,LED1数码管加小数点,显示围为000.0~999.9。

显示器与键盘设置

LED5 LED4 LED3 LED2 LED1 LED0

H 1 9 9.

5

⑥键盘设定液位的高低报警限。采用4键方式,4个按键的功能如图b所示。显示与键盘循环扫描,无键按下时,LED显示实时液位,右键按下时,进入液位报警限的修改。先按选择键方可进入修改,先按其他3个键无效。进入修改状态后,待修改的显示位LED5闪动,按+或-键可循环选择H或L,同时后4位LED显示对应的液位值。按确认件后调到下一个待修改的显示为LED3并闪动,按+或-键循环修改0~9数字,再按确认键调到下一位置,如此进行,知道4个数字修改完毕后退出修改状态。在修改状态时,若不按确认键,则8秒后退出修改状态。从视觉舒适的角度考虑,数字应为每0.4秒闪动一次。

显示器与键盘设计

选择+ - 确定

①数据采集:A/D转换,采样周期为10s。

②数字滤波:采用5个数平均滤波法。

③标度转换:将液位变送器的标准电压信号转换为液位值。

④动态显示:动态循环显示。

⑤键盘扫描:读键值并判断功能。

⑥控制计算:达林算法。

⑦控制输出:D/A转换。

⑧报警处理:超过高、低报警器限时驱动报警灯及蜂鸣器。

//实现程序//

#include

#include

#define uchar unsigned char

#define uint unsigned int

uchar xdata *p=0x0000;

uchar xdata *p1=0x2000;

uint getdata;//采样值

uint w=0,jishi8=0;//计数加长计时,时间

uint yh,yl,ye;//液位高低限及期望值

sbit jingdeng=P1^0;

sbit jingsheng=P1^1;

uchar code table[]={ //段码

0x3f,0x06,0x5b,0x4f,

0x66,0x6d,0x7d,0x07,

0x7f,0x6f,0x77,0x7c,

0x39,0x5e,0x79,0x71,0x76,0x73,0x38};//19个字符uchar dispbuf[4]={0,0,0,0};

float e[2]={0,0},u[6]={0,0,0,0,0,0};

float con=0;

jingdeng=0;//警灯

jingsheng=0;//,蜂鸣器初始化

viod main()

{

void intdingshi();//定时器初始化

//键盘扫描及修改设定值//

void keyscan();

//实时液位显示//

void led();

//达林算法实现,DAC控制输出//

void dalin();

void control();//输出控制量

//报警程序//

void baojing();

while(1)

{

//键盘扫描及修改设定值//

keyscan();

//实时液位显示//

led();

//达林算法实现,DAC控制输出//

dalin();

control();//输出控制量

//报警程序//

baojing();

}

}

viod delay(uchar i) //延时

{

while(i--)

_nop_();

}

//实现每八秒采样一次//

void intdingshi()//定时器初始化

TMOD=0x01;

IT0=1;

TH0=0x3C;

TL0=0xB0;//定时50ms

TR0=1;//启动定时器

EA=1;//开中断

ET0=1;

void dingshi() interrupt 1 //定时器0中断,实现八秒定时{

TH0=0x3C;

TL0=0xB0;//定时50ms

w++;

jishi8++;

while(w==200)

{

p=0x8000;//指针ADC地址

*p=0x00;//qi dong

EX0=1;//打开外部中断0,采样一次

w=0;

}

TR0=1;//启动定时器

}

void waibu() interrupt 0 //外部中断0,实现ADC采样5次,取平均值{

uint i=0,a5=0;

p=0x8000;//指针ADC地址

P0=*p;

getdata=P0;

a5=a5+getdata;

i++;

if(i==5)

{

qy=a5/5;//平均滤波

i=0;

a5=0;

}

//实时液位显示//

void led()

{

dispbuf[3]=qy/100;

dispbuf[2]=(qy%100)/10;

dispbuf[1]=(qy%100)%10;

dispbuf[0]=int((qy-dispbuf[3]*100-dispbuf[2]*10-dispbuf[0])*10); p=0xC000;

*p=0xFE;

p1=0xE000;

*p1=table[dispbuf[0]];

delay(5);

*p=(*p)<<1;

*p1=table[dispbuf[1]];

delay(5);

*p=(*p)<<1;

*p1=table[dispbuf[2]];

delay(5);

*p=(*p)<<1;

*p1=table[dispbuf[3]];

delay(5);

}

//达林算法实现,DAC控制输出//

void dalin()

{

e[0]=qy-ye;//求出输入误差

u[0]=0.9355*u[1]+0.0645*u[5]+0.8377*e[0]-0.8054*e[1];

过程控制系统课程设计报告报告实验报告

成都理工大学工程技术学院《过程控制系统课程设计实验报告》 名称:单容水箱液位过程控制 班级:2011级自动化过程控制方向 姓名: 学号:

目录 前言 一.过程控制概述 (2) 二.THJ-2型高级过程控制实验装置 (3) 三.系统组成与工作原理 (5) (一)外部组成 (5) (二)输入模块ICP-7033和ICP-7024模块 (5) (三)其它模块和功能 (8) 四.调试过程 (9) (一)P调节 (9) (二)PI调节 (10) (三)PID调节 (11) 五.心得体会 (13)

前言 现代高等教育对高校大学生的实际动手能力、创新能力以及专业技能等方面提出了很高的要求,工程实训中心的建设应紧紧围绕这一思想进行。 首先工程实训首先应面向学生主体群,建设一个有较宽适应面的基础训练基地。通过对基础训练设施的 集中投入,面向全校相关专业,形成一定的规模优势,建立科学规范的训练和管理方法,使训练对象获得机械、 电子基本生产过程和生产工艺的认识,并具备一定的实践动手能力。 其次,工程实训的内容应一定程度地体现技术发展的时代特征。为了适应现代化工业技术综合性和多学科交叉的特点,工程实训的内容应充分体现机与电结合、技术与非技术因素结合,贯穿计算机技术应用,以适应科学技术高速发展的要求。应以一定的专项投入,建设多层次的综合训练基地,使不同的训练对象在获得对现代工业生产方式认识的同时,熟悉综合技术内容,初步建立起“大工程”的意识,受到工业工程和环境保护方面的训练,并具备一定的实用技能。 第三,以创新训练计划为主线,依靠必要的软硬件环境,建设创新教育基地。以产品的设计、制造、控制乃至管理为载体,把对学生的创新意识和创新能力的培养,贯穿于问题的观测和判断、创造和评价、建模和设计、仿真和建造的整个过程中。

储罐液位控制系统设计.

储 罐 液 位 控 制 系 统 设 计 学号:000000000 姓名: 0000000

目录 设计任务与要求--------------------------------------------------------------3 一、本课程设计系统概述-------------------------------------------------------4 1、系统原理--------------------------------------------4 2、系统结构图---------------------------------------------------------------4 3、控制方案说明------------------------------------------------------------5 4、系统组成及原理--------------------------------------5 二、硬件设计-----------------------------------------------------------------------6 1、单片机最小系统电路设计------------------------------6 2、水位检测传感器的选用------------------------------------------------8 3、稳压电路的设计---------------------------------------------------------8 4、光报警电路的设计------------------------------------9 5、水泵的介绍-----------------------------------------10 6、继电器控制水泵加水电路-----------------------------14 7、电源电路-------------------------------------------16 8、看门狗技术-------------------------------------------------------------16 三、软件设计---------------------------------------------------------------------19 1、系统总流程图----------------------------------------------------------19 2、系统总程序-----------------------------------------20 四、小结---------------------------------------------------------------------------22 五、参考文献---------------------------------------------------------------------23

卧式储罐不同液位下的容积(质量)计算

卧式储罐不同液位容积(质量)计算椭圆形封头卧式储罐图 参数: l:椭圆封头曲面高度(m); l i:椭圆封头直边长度(m); L:卧罐圆柱体部分长度(m); r:卧式储罐半径(d/2,m); d:卧式储罐内径,(m) h:储液液位高度(m); V:卧式储罐总体积(m3); ρ:储液密度(kg/m3) V h:对应h高度卧罐内储液体积(m3); m h:对应h高度卧罐内储液重量(kg); 椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。简化模型图如下。

以储罐底部为起点的液高 卧式储罐内储液总体积计算公式: ()()()? ???????? ? ?++??? ??+=2----arcsin 3212 222πr h r r r h r r h Lr L r V h 若密度为ρ,则卧式储罐内储液总重量为: h h V m ρ= 表1 卧式储罐不同液位下容积(重量)

该计算公式推导过程如下 卧式储罐不同液位 下的容积简化计算公 椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。 以储罐中心为起点的液高

(1)椭圆球体部分 该椭圆球体符合椭圆球体公式: 2222221x y z a b c ++= 其中a=b=r ,则有222 221x y z a c ++= 垂直于y 轴分成无限小微元,任一微元面积为: 22()yi c S a y a π= - 当液面高度为h 时,椭圆球体内液氨容积为 V1=h yi a S dy -? 2 2 ()h a c a y dy a π-=-?33 2 2()33c h a a h a π=-+ (2)直段筒体部分: 筒体的纵断面方程为222x y a += 任一微元的面积为 yj S = 则筒体部分容积为: 2h yj a V S -=?h a L -=?2 (arcsin )2 h La a π =+ (arcsin )2 2 h a π π- ≤≤ (3)卧式储罐储液总体积 总容积为V=V1+V2,

罐区液位计和紧急切断阀的设置及联锁要求规范合集

罐区液位计和紧急切断阀的设置及联锁要求规范合集 01 GB50074-2014《石油库设计规范》 设置要求: 15.1 自动控制系统及仪表 15.1.1容量大于100m3的储罐应设液位测量远传仪表,并应符合下列规定: 1 液位连续测量信号应采用模拟信号或通信方式接入自动控制系统; 2 应在自动控制系统中设高、低液位报警; 3 储罐高液位报警的设定高度应符合现行行业标准《石油化工储运系统罐区设计规范》SH/T 3007的有关规定; 4 储罐低液位报警的设定高度应满足泵不发生汽蚀的要求,外浮顶储罐和内浮顶储罐的低液位报警设定高度(距罐底板)宜高于浮顶落底高度0.2m 及以上。

15.1.4用于储罐高高、低低液位报警信号的液位测量仪表应采用单独的液位连续测量仪表或液位开关,并应在自动控制系统中设置报警及联锁。 联锁要求: 15.1.2 下列储罐应设高高液位报警及联锁,高高液位报警应能同时联锁关闭储罐进口管道控制阀: 1 年周转次数大于6次,且容量大于或等于10000m3的甲B、乙类液体储罐; 2 年周转次数小于或等于6次,且容量大于20000m3的甲B、乙类液体储罐; 3 储存I、II级毒性液体的储罐。 15.1.3 容量大于或等于50000m3的外浮顶储罐和内浮顶储罐应设低低液位报警。低低液位报警设定高度(距罐底板)不应低于浮顶落底高度,低低液位报应能同时联锁停泵。 15.1.4用于储罐高高、低低液位报警信号的液位测量仪表应采用单独的液位连续测量仪表或液位开关,并应在自动控制系统中设置报警及联锁。 条文说明: 15.1.4 “单独的液位连续测量仪表或液位开关”是指,除了“应设液位测量远传仪表”外,还需设置一套专门用于储罐高高、低低液位报警及联锁的液位 测量仪表。 " 设置及联锁要求: 15.1.2 下列储罐应设高高液位报警及联锁,高高液位报警应能同时联锁关闭储罐进口管道控制阀; 15.1.7 一级石油库的重要工艺机泵、消防泵、储罐搅拌器等电动设备和控制阀门除应能在现场操作外,尚应能在控制室进行控制和显示状态。二级石油库的重要工艺机泵、消防泵、储罐搅拌器等电动设备和控制阀门除应能在现场操作外,尚宜能在控制室进行控制和显示状态。 15.1.11 一级石油库消防泵的启停、消防水管道及泡沫液管道上控制阀的开关均应在消防控制室实现远程启停控制,总控制台应显示泵运行状态和控制阀的阀位信号。" 条文说明: 15.1.7 这样规定可以实时监测电动设备状态,及时处理异常情况。 15.1.11 本条规定是为了保证快速启动消防系统,及时对火灾实施扑救。

水塔水位控制系统课程设计报告

北京理工大学珠海学院 课程设计 课程设计(C) 学院:信息学院 专业班级: 学号: 学生姓名: 指导教师: 201 年月日 北京理工大学珠海学院

北京理工大学珠海学院 课程设计任务书 2011 ~2012 学年第 1 学期 学生姓名:专业班级:自动化 指导教师:工作部门:信息学院 一、课程设计题目水塔水位控制系统 二、课程设计内容: 1、硬件设计 (1)用80C51设计一个单片机最小控制系统。其中P1.0接水位下限传感器,P1.1接水位上限传感器,P1.2输出经反相器后接光电耦合器,通过继电器控制水泵工作,P1.3输出经反相器后接LED,当出现故障时LED闪烁;P1.4输出经反相器后接蜂鸣器,当出现故障时报警。 (2)用塑料尺、导线等设计一个水塔水位传感器。其中A电级置于水位10CM处,接5V电源的正极,B级置于水位15CM处,经4.7K下拉电阻接单片机的P1.0口,C 电级置于水位的20CM处,经4.7K下拉电阻接单片机的P1.1口。 (3)设计一个单片机至水泵的控制电路。要求单片机与水泵之间用反相器、光电耦合器和继电器控制,计算出LED限流电阻,接好继电器的续流二极管。 2、软件设计 (1)根据功能要求画出控制程序流程图。 (2)根据控制程序流程图编写80C51汇编语言或C51程序。 三、功能要求: 1、水塔水位下降至下限水位时,启动水泵,水塔水位上升至上限水位则关闭水泵。 2、水塔水位在上、下限水位之间时,水泵保持原状态。 3、供水系统出现故障时,自动报警。 四、调试 1、在Kerl-uvision上单步调试,观察累加器寄存器存储器的运行之间是否正常。 2、将程序下载到仿真仪上,进行模拟仿真,检查程序工作是否正常。 3、将模拟水塔、传感器、控制电路和水泵联成一个完整的系统,进行整机调试,观察系统工作是否正常。 撰搞人教研室主任院长 签名 日期2010.10.6

储罐保温计量监控系统设计----储罐液位控制

西安石油大学 课程设计 题目储罐保温计量监控系统设计----储罐液位控制 学院电子工程学院 班级自动化1002班 学号 学生 指导老师阮岩 二零一三年六月 目录 一.课程设计任务书 (3) 二.基本工艺流程 (4) 三.组态软件及发展历史 (4) 四.仪表选型 (5) 五.系统分析和方框流程图 (6) 六.PID参数的整定 (6) 七.组态软件运行画面............................................ . (7)

八.设计体会 (10) 九.参考资料 (10) 《自动化仪表和过程控制》 课程设计任务书 题目储罐保温计量监控系统设计----储罐液位控制 学生姓名学号314 专业班级自1002 设计内容和要求 本次课程设计的目的是熟悉过程控制系统的组态和调试,掌握自动化仪表和过程控制的基本使用,加深和巩固本课程及相关课程的知识,要求完成如下内容: 1.熟悉储罐保温系统的工艺流程,并在其工艺流程图上标注储 罐液位控制,液位高报警(SP=2.85m) 2.依据工艺流程和基本数据, 对所用仪表作出选型; 3.对控制回路画出方框图,写出所选控制规律,及参数整定方法; 4.了解组态软件的历史、发展及国内外现状,熟悉组态软件的使用,利用力控组态软件做出储罐保温计量监控系统的组态设计,并在报告中写出组态过程如:I/O端口分配、I/O点组态参数说明、控制回路组态说明等。最终要求做出工艺流程画面、趋势画面、报警画面,并利用软件提供的模拟对象,实现系统的自动控制。5.完成课程设计报告。 起止时间2013年 6 月17 日至2013 年 6 月23 日指导教师签名2013年6月26日系(教研室)主任签名2013年6月28日

储罐控制系统

毕业论文 题目:基于组态王6.5 的串级PID 液位控制系统设计学院:东北石油大学秦皇岛分校 专业:生产过程自动化 姓名:李秋峰 指导教师:刘文龙 摘要 开发经济实用的教学实验装置、开拓理论联系实际的实验内容,对提高课程教学实验水平,具有重要的实际意义。就高校学生的实验课程来讲,由于双容水箱液位控制系统本身具有的复杂性和对实时性的高要求,使得在该系统上实现基于不同控制策略的实验内容,需要全面掌握自动控制理论及相关知识。 本文通过对当前国内外液位控制系统现状的研究,选取了PID 控制、串级PID 控制等策略对实验系统进行实时控制,通过对实验系统结构的研究,建立了单容水箱和双容水箱实验系统的数学模型,并对系统的参数进行了辨识,利用工业控制软件组态王6.5,并可通用于ADAM 模块及板卡等的实现方案,通过多种控制模块在该实验装置上实验实现,验证了实验系统具有良好的扩展性和开放性。 关键词:双容水箱液位控制系统串级PID控制算法组态王6.5 智能调节仪 目录 前言 (1) 第一章串级液位控制系统介绍 (2) 1.1 国内外研究现状. (2) 1.1.1 液位控制系统的发展现状 (2) 1.1.2 液位控制系统算法的研究现状 (2) 1.2 PID 控制算法的介绍 (3) 1.2.1 PID 控制算法的历史 (3) 1.2.2 PID 控制各环节作用 (4) 1.3 串级控制系统介绍 (4) 第二章水箱液位控制系统的建模 (5) 2.1 水箱液位控制系统的构成 (6) 2.2 液位控制的实现 (5) 2.3 单容水箱建模............................................................................. (5) 2.4 双容水箱建模 (6) 2.4.1 双容水箱数学模型 (6)

单片机水位控制系统课程设计

课程设计(论文) 题目名称: 课程名称: 学生姓名: 学号: 学院: 指导教师:

课程设计任务书

目录 摘要 (4) 引言 (5) 1几种方案的比较 (6) 1.1 简单的机械式控制方式 (6) 1.2 复杂控制器控制方案 (6) 1.3通过水位变化上下限的控制方式 (6) 2水塔水位控制原理 (8) 3电路设计 (9) 3.1原件的介绍 (9) 3.2引脚功能 (10) 3.3 水位检测接口电路 (13) 3.4报警接口电路 (14) 3.5 存储器扩展接口电路.................. .. (14) 4系统软件设计 (15) 4.1 流程图 (15) 4.2程序 (16) 5实验仿真 (18) 6结语 (19)

7参考文献 (19) 摘要 随着微电子工业的迅速发展,单片机控制的智能型控制器广泛应用于电子产品中,为了使学生对单片机控制的智能型控制器有较深的了解。经过综合分析选择了由单片机控制的智能型液位控制器作为研究项目,通过训练充分激发学生分析问题、解决问题和综合应用所学知识的潜能。另外,水位控制在高层小区水塔水位控制,污水处理设备和有毒,腐蚀性液体液位控制中也被广泛应用。通过对模型的设计可很好的延伸到具体应用案例中。设计一种基于单片机水塔水位检测控制系统。该系统能实现水位检测、电机故障检测、处理和报警等功能,实现超高、低警戒水位报警,超高警戒水位处理。介绍电路接口原理图,给出相应的软件设计流程图和汇编程序,并用Proteus软件仿真。实验结果表明,该系统具有良好的检测控制功能,可移植性和扩展性强。 关键词:单片机;水位检测;控制系统;仿真

储罐液位控制系统程序

储罐液位控制系统 ——计算机控制技术课程设计 ①核心:单片机89s52 ②片外扩展:8KB RAM存储器6264,I/O口扩展8155 ③转换器:ADC0809,DAC0832 ④锁存器等:74HC373,74H377,74HC245和3-8译码器74HC138 ⑤输入/输出部件:6个LED,4个按键 89S52的RD及PSEN用与门接在一起后送入6264的OE端,使得

6264既可以作为数据存储器,也可以作为程序存储器。 ①液位信号(电压值)从ADC0809的IN0引脚输入,A/D 转换后存储。 ②液位给定值由键盘设定,与液位信号比较得出偏差值。若超限,则报警,LED4现实P,同时以P1.0驱动报警器,以P1.1驱动蜂鸣器。 ③按达林算法计算控制器的输出值。 ④输出值经D/A 转换得到模拟电压值并输出。 ⑤液位信号的电压值经标度转换后,变为液位值存储,送LED 显示。 6

个LED显示如图a所示。LED5显示H或L,LED4为超限指示,LED3~LED0显示液位值,LED1数码管加小数点,显示围为000.0~999.9。 显示器与键盘设置 LED5 LED4 LED3 LED2 LED1 LED0 H 1 9 9. 5 ⑥键盘设定液位的高低报警限。采用4键方式,4个按键的功能如图b所示。显示与键盘循环扫描,无键按下时,LED显示实时液位,右键按下时,进入液位报警限的修改。先按选择键方可进入修改,先按其他3个键无效。进入修改状态后,待修改的显示位LED5闪动,按+或-键可循环选择H或L,同时后4位LED显示对应的液位值。按确认件后调到下一个待修改的显示为LED3并闪动,按+或-键循环修改0~9数字,再按确认键调到下一位置,如此进行,知道4个数字修改完毕后退出修改状态。在修改状态时,若不按确认键,则8秒后退出修改状态。从视觉舒适的角度考虑,数字应为每0.4秒闪动一次。 显示器与键盘设计 选择+ - 确定 ①数据采集:A/D转换,采样周期为10s。

分离器液位自动控制系统的研制与应用

为了解决零散井站点的天然气和原油在分离过程中,因为不能自动调节和控制分离器内的液位,造成天然气进入储油罐或原油进入气管线的难题,利用分离器现有的部件,通过加装干簧管远传、数显表、记录仪、电磁阀、报警器等仪器,研发制造出了一种分离器液位自动控制系统。该系统具有自动化程度高,实现了分离器自动完成气液分离,连续计量及液位超限报警等功能,避免了现有技术需要人工操作,值班员工24小时盯住液位计进行量油,一旦值班人员精力不集中,将会造成天然气管线内进入液体,储液罐内进入天然气等事故的发生。 关键词:自动控制,信号远传,运行安全,降本增效 在油田开发过程中有大量的区块含油面积小,呈零散分布,区块间生产的油气不能进行汇集处理,只能在井站点自行气液分离,液体进入储液罐,通过罐车外运,天然气除自用外,多余的气量供给附近的用户。 通过人工来调节排液阀门的开度,使分离器进、出液量在相对时间内保持平衡,但因油井生产状态及用户用气量的不同,使分离器进、出液量不平衡,当进液量多,出液量少时,就会发生分离器内的液体进入到天然气管线内,堵塞气线,不但损坏设备造成经济损失,而且降低企业的声誉;当进液量少,出液量多,气、液一同从排液阀中排出,进入到储液罐内,使大量的天然气外泄,既损失了气量又对环境造成污染,还造成了安全隐患。针对以上所述的困难,应研发、设计一种具有高度自动化分离器液位自动控制系统,从而解决现有技术中

的难题。 一、改进思路及方案实施 1.设计思路。 将分离器液体排出阀由普通阀门改为自动控制开关的电磁阀,原来由人工操作控制的分离器液位高度,实现由电信号自动控制,同时该系统具有自动报警功能,在值班室设有报警装置,当分离器计量排液系统不能自动排液,分离器内的液位超过上下警戒位时,报警系统开始启动运行,发出声光警报,提示工人及时进行排除。通过在现有的计量系统基础上进行改动,在实现以上功能的同时,做到既不违反安全规定,又尽量减少投入。 尽量利用分离器现有的磁翻板液位计中的功能,根据磁翻板液位计内的磁浮标随分离器内液位高低发生移动,磁浮标移动到什么位置,就在什么位置发出磁力线的特性,在磁翻板液位计上下计量标高处及在分离器上下液位警戒位处磁感电器元件,当磁浮标达到计量标高时,磁感电器元件在磁浮标磁力线的作用上,通过仪表转换成控制电磁阀的电信号,实现分离器排液阀门根据高度的设定值实现自动开关;如果出现故障不能自行关闭和开启排液阀时,磁浮标将继续上行或下移,到达分离报警高度时,磁感电器元件转变成报警信号,值班室内的警铃或警灯开始运行,警示值班人员去排除故障,故障不排除,警示不停。 2.组成及特征。 分离器液位自动控制系统主要由分离计量系统、信号传输系统、

上水箱液位控制系统-过控课设

摘要 在过程工业中被控制量通常有以下四种: 液位、压力、流量、温度。而液位不仅是工业过程中常见的参数,且便于直接观察,也容易测量。过程时间常数一般比较小。以液位过程构成实验系统,可灵活地进行组态,实施各种不同的控制方案。液位控制装置也是过程控制最常用的实验装置。国外很多实验室有此类装置,如瑞典LUND大学等。很多重要的研究报告、模拟仿真均出自此类装置! 本次设计也是基于这套水箱液位控制装置来实现的。这套系统由多个水箱,液位检测变送器,电磁流量计,涡轮流量计,自动调节阀,控制面板等喝多器件构成。 液位控制的发展从七十年代到九十年代经历了几个阶段,控制理论由经典控制理论到现代控制理论,再到多学科交叉;控制工具由模拟仪表到DCS,再到计算机网络控制;控制要求与控制水平也由原来的简单、安全、平稳到先进、优质、低耗、高产甚至市场预测、柔性生产。而其中应用最广泛的就是PID 控制器。 这次首先是用一天半的时间让我们熟悉各种建模的方法。学会建立了最初的四种模型。接着后几天就是开始熟悉各种控制系统,以及运用它们去控制水箱的液位,从而更加深刻的理解控制的概念。并且在过程中,要熟练学会调整PID的参数,学会使用MATLAB等。 关键词:水箱液位;PID控制;串级控制;前馈控制;经验凑试法

目录 1引言 (1) 2 实验设备 (2) 2.1 THJ-FCS型或THJ-3型高级过程控制系统实验装置 (2) 2.2计算机及相关软件。 (6) 2.2.1 SIMATIC WinCC简介 (6) 2.2.2 监控界面 (7) 3 设备工作原理及运行过程 (8) 3.1 设备工作原理 (8) 3.2 控制系统流程图 (9) 3.3系统投运及步骤 (10) 4 参数整定与结果分析 (12) 4.1 参数整定 (12) 4.1.1 比例(P)调节 (12) 4.1.2 比例积分(PI)调节 (14) 4.1.3 比例积分微分(PID)调节 (17) 4.2 结果分析 (19) 总结 (20) 参考文献 (21)

传感器储油罐液位检测系统设计

东北石油大学 课程设计 2013年7月16日

任务书 课程传感器课程设计 题目储油罐液位检测系统设计 专业学号 主要容: 本文主要是针对类似油罐等封闭式液体的液位的测量,在考虑了各种液位测量方式后,根据前文所述,决定要超声波作为主要手段,采用脉冲回波测量法。综合运用传感器的基本原理绘出装配草图,选择合适的传感器,设计控制电路。绘出硬件电路图,对参数进行计算,确认元器件的工作电流、电压、频率和功耗等参数能满足电路指标的要求,最终完成对储油罐液位的测量。 基本要求: 1、利用已学不同种类传感器,设计储油罐液位测量电路。 2、最终完成对储油罐液位的测量。 主要参考资料: [1]黄贤武,筱霞.传感器原理与应用[M].:电子科技大学,2004. [2]洋.电子制作—电子电路设计与制作[M].:科学,2005.8. [3]国钧,绍业,王凤翥.图书馆目录[M].:高等教育,1957.8. [4]施文康,余晓芬.检测技术[M].:机械工业,2010. 完成期限2013.7.12—2013.7.16 指导教师 专业负责人 2013年7 月16 日

摘要 超声波液位测量是一种非接触式的测量方式,它是利用超声波在同种介质中传播速度相对恒定以及碰到障碍物能反射的原理研制而成的。与其它方法相比(如电磁的或光学的方法),它不受光线、被测对象颜色的影响,对于被测物处于黑暗、有灰尘、烟雾、电磁干扰、有毒等恶劣的环境下有一定的适应能力。因此,研究超声波在高精度测距系统中的应用具有重要的现实意义。试设计储油罐(圆柱体型)液位、温度的实时监测系统。 对现采用的油罐测量技术作对比,选用合适的测量技术,保证原油储罐的安全,降低劳动强度,取得良好的经济效益。 关键词:储油罐;液位测量;仪表;现状

大型化工项目罐区SIS系统设计

大型化工项目罐区SIS系统设计 近年来随着技术得发展,化工项目与炼油项目得规模越来越大,其配套得罐区也越来越大,储存得介质也越来越复杂。而不同于一般得油库,其操作比较频繁,误操作可能性较大,而误操作引起得后果也比较严重,给企业造成经济损失、对环境造成破坏。因此罐区设计中对于可燃、毒害介质得安全控制要尤其重视。本文主要介绍了某大型化工项目配套罐区,根据可燃、毒害介质得特性与储存量进行重大危险源得辨识,综合考虑安全与投资,采用独立得安全仪表系统(SIS)进行安全控制。 关键词: 安全仪表系统;重大危险源辨识;罐区 0 引言 一直以来,化工项目得罐区一般根据石油库设计规范进行设计,而此规范,并没有要求设置安全仪表系统。但就是化工项目得罐区不同于一般得石油库或者储备库,它得特点就是:单罐罐容小、介质种类复杂、毒害介质多。由于储罐容量一般较小,储罐得仪表设置都比较简单,介质本身得危险性往往被忽视。 本项目设计中,充分考虑了介质得危险性并兼顾投资要求,对于属于重大危险源介质得储罐设置了独立得安全仪表系统(SIS),用于防冒罐得高高液位联锁控制。 1 设置SIS 系统得必要性 化工项目罐区得介质种类复杂,可燃毒害介质多,发生事故后危害巨大。罐区一旦发生事故,将会对上下游得工艺都产生影响,连带着相关装置都需要停产,损失不小。 减少罐区得安全事故可以更好得保证工厂得正常生产,提高效益。不因节省初次投入而增大事故风险。 现行化工项目配套得罐区大多采用分散控制系统(DCS)进行操作控制及连锁。DCS 系统具有控制功能完善多样、易操作、易扩展及维护方便等特点,但就是并不适用于安全控制。对于化工项目罐区要比一般油库操作更加频繁,误操作得概率就更大。这时采用一套安全性更高得、容错能力强、具有故障自诊断功能、顺序事件记录功能(SOE)得安全仪表系统(SIS)就十分必要了。 2011 年8 月5 日,国家安全生产监督管理总局发布第40 号令,要求“涉及毒性气体、液化气体、剧毒液体得一级或者二级重大危险源,配备独立得安全仪表系统(SIS)”。 2 确定SIS 系统得设置原则 2、1 对储罐及介质分类

液位控制系统的特点及应用

淮安嘉可自动化仪表有限公司 液位控制系统的特点及应用范围 概述 液位控制系统由液位传感器、中间电缆、液位控制显示器构成,可以实时显示当前液位值,配合控制箱实现对水泵、电磁阀、电动阀、声光报警器、接触器、电动调节阀、启动柜等的控制。适用于水池、水罐、水箱水塔、集水坑、集水井等场合的液位控制,可选自动补水功能。 系统特点 1、精确可靠,品质稳定,全天候工作,使用寿命长; 2、红色发光柱模拟实际水位,上下升降直观生动; 3、安装简便,主机可装在值班室、控制室、中控机房消防中心等易于观察的地方; 4、设置数据保存在EEPROM存储器中(断电不丢失); 5、独特抗干扰设计,信号传输距离长达5公里(传感器离信号接收主机的距离); 6、测量量程可选可定做; 7、多种传感器可供选择,全面适应卫生要求、腐蚀性、高温、结晶结垢、高压、带搅拌、粘稠、挥发性液体浆体等; 8、全开放式菜单,所有控制点均可连续地、自由地调节设置,产品内置PLC控制系统,使用者无需具备任何PLC知识就能轻松实现显

淮安嘉可自动化仪表有限公司 示、控制、报警等目标的设置。 系统技术参数 ●测量对象:浆体、液体 ●测量范围:0-0.3~60米(量程可选可指定) ●环境湿度:0~100%RH ●测量精度:0.2% ●响应灵敏:0.01s~16s连续可调 ●稳定性能:长期工作稳定性优于0.1% ●供电电源:220VAC/24VDC ●输出信号:继电器、4-20mA、RS485等可选 ●环境温度:-30~65℃ ●介质温度:-40~200℃ ●防护等级:传感器防护等级IP68 ●主机馈电:主机自带24VDC稳压馈电 ●主机尺寸:160*80*100mm ●显示方式:高亮度LED数字显示,发光柱模拟液位上下升降显示●报警设置:在量程范围内可任意设定 ●控制设置:在量程范围内可任意设定 ●使用寿命:设备正常使用寿命8~10年 ●接液膜片材质:316L不锈钢、哈氏合金、聚四氟乙烯、PTFE、 钛、钽、铂金等

水位控制器课程设计

河南科技学院机电学院电子课程设计报告(论文) 题目:水位控制器 专业班级: 电气工程及其自动化132班 姓名:************ 时间:2014.12.28~2015.01.10 指导教师:张伟邓丽媛 完成日期:2015年01月10日

水位控制器设计任务书 1.设计目的与要求 设计一个水塔或锅炉水位控制电路,准确地理解有关要求,独立完成系统设计,要求所设计的电路具有以下功能: (1)多点水位实时采集和显示功能; (2)当水位低时,启动水泵自动加水,达到高水位时自动停止水泵; (3)当达到警戒水位(高水位或低水位)时,电路能够自动报警提示; (4)具备报警消音控制功能; (5)所设计的电路具有一定的抗干扰能力。 2.设计内容 (1)画出电路原理图,正确使用逻辑关系; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出。 3.编写设计报告 写出设计的全过程,附上有关资料和图纸,有心得体会。 4.答辩 在规定时间内,完成叙述并回答问题。

目录 1 引言 (1) 2 总体设计方案 (1) 2.1 设计思路 (1) 2.1.1水位控制系统的流程图 (2) 2.1.2水位控制系统的流程 (2) 2.2总体设计框图 (2) 3 设计原理分析 (2) 3.1逻辑关系表 (2) 3.2控制原理 (3) 3.3 总控制电路 (3) 3.4局部仿真电路 (3) 3.5显示电路 (3) 4 总结与体会 (4) 参考文献 (5) 附录1 (6) 附录2 (7)

引言 随着现代科技的发展,智能化是未来科技发展的趋势。而且水是人类不可缺少的一部分,所以自动供水是非常重要的。水位控制乃为自动供水的核心。本文采用简单的数模电知识,运用逻辑电路控制电路。 总体设计方案 下图1为水位控制原理图。在水箱内的不同高度安装1根水位监测器,以感知 水位变化情况,能用数码管显示水箱的液位,液位分1,2,3档,当检测到水位低 于1档时,发出缺水报警,并通过继电器打开电磁阀M1M2向水箱供水,当水位超过1 档时,停止缺水报警,但M2继续供水,当水位超过2档时,M1开始供水,M2停止工 作直到水位达到3档为止,关闭电磁阀。接+5V电源,1,2,3各通过一个霍尔元件, 当磁悬浮球经过霍尔元件时使霍尔元件表面产生压差并对外产生一个电压信号经 过处理后进入控制性系统。 设计思路 图 1 图 2

自动控制原理浮球液位控制系统课程设计

安徽工业大学 课程设计说明书 课程名称自动控制原理课程设计 学院电气与信息工程学院 专业班级自132 姓名李嘉明 学号139064403 指导教师贺容波 设计时间2016.6.17---2016.6.27 题目 15. 浮球液位控制系统及要求:图 1 所示为液位控制系统,假设稳态输入流量为 Q ,稳态输出流量为 Q ,稳态水头为 H ,稳态导阀的位移为 X = 0 ,稳态阀的位置为 Y 。假设设定点 R 对应于稳态水头 H ,设定点是固定的。又假设扰动输入流量 qd 在 t = 0 时刻作用于水箱, qd 的量值很小。 要求: 1. 建立系统的传递函数,并画出结构图; 2. 当扰动输入量 qd 为单位阶跃函数时,试分析系统的时域性能; 3. 当系统不稳定时,用根轨迹校正系统并确定系统校正装置参数,画出系统波特图,指出校正方法;如果系统是稳定的,那么就设计一个二阶不稳定系统,用根轨迹进行分析并确定系统校正装置参数,画出系统波特图,指出校正方法; 4. Matlab 进行仿真验证。

目录 1设计题目与题目分析 (1) 1.1设计题目 (1) 1.2题目分析 (1) 2建立系统传递函数及结构图.....................................................................................错误!未定义书签。 2.1系统传递函数..................................................................................................错误!未定义书签。 2.2系统结构图............................................................................................错误!未定义书签。 3分析时域性能 (3) 3.1暂态性能 (3) 3.2稳态性能 (3) 4判断系统稳定性,分析并校正 (3) 4.1设计一个二阶不稳定系统 (3) 4.2对系统进行校正 (5) 5Matlab仿真验证 (6) 5.1校正前系统Bode图 (7) 5.2校正后系统Bode图 (7) 5.3单位阶跃响应曲线 (8) 5.4Simulink模型图 (8) 6校正装置电路图与电路参数 (9) 7设计结论 (9) 8心得体会 (9) 9参考文献 (10)

罐区自动化系统设计规定SDEP-SPT-IN2005-2008

目 次 前言 (2) 1 范围 (3) 2 规范性引用文件 (3) 3 罐区自动化及仪表选型 (3) 3.1 罐区自动化 (3) 3.2 储罐的计量及检测 (3) 3.3 罐区监控管理系统 (4) 3.4 罐区安全仪表系统(SIS) (5) 3.5 火灾及气体检测系统(FGS,或GDS和FAS) (5) 3.6 仪表选型 (5) 4 罐区控制室 (6) 5 仪表供电、供气、伴热及接地 (6) 5.1 仪表供电 (6) 5.2 仪表供气 (6) 5.3 仪表伴热 (6) 5.4 仪表接地 (6) 附录A(资料性附录)储罐的形式与选用 (7)

前 言 本标准是根据《关于中国石化工程建设标准研究与编制项目启动会议纪要》(集团公司[2006]第1号)编制的。 本标准共分5章和1个附录,附录A为资料性附录。 本标准主要内容有: 罐区自动化及仪表选型,罐区控制室,仪表供电、供气、伴热及接地等工程设计的最低要求。 主编单位:中国石化工程建设公司 参编单位:中国石化集团洛阳石油化工工程公司 中国石化集团上海工程有限公司 中国石化集团宁波工程有限公司 中国石化集团南京设计院 主要起草人:龙蔚泓 林 融 张平 本标准于2008年首次发布。

1 范围 本标准规定了罐区自动化及仪表选型,罐区控制室,仪表供电、供气、伴热及接地等工程设计的最低要求。 本标准适用于中国石化新建石油炼制、石油化工工程项目的罐区自动控制仪表及自动化系统设计。 注:储罐的形式与选用参见附录A。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单或修订版均不适用于本标准。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 50074-2002 石油库设计规范 SH 3007-1999 石油化工储运系统罐区设计规范 3 罐区自动化及仪表选型 3.1 罐区自动化 3.1.1 目的 罐区自动化应能达到保障安全,杜绝跑、冒、漏、窜;自动开启阀门,节省人力,减轻劳动强度;提高调度水平和储罐利用率;强化管理以及为全局管理提供可靠的数据和信息,提高企业的经济效益的目的。 3.1.2 自动控制水平 3.1.2.1 为满足工艺过程对自动控制系统的高水平要求,以及全厂控制系统水平的总体要求,并为罐区及全厂的信息管理建立基础,罐区采用分散控制系统(DCS),主要过程参数都送入DCS进行调节、记录、显示、报警等操作,罐区内主要机泵、阀门的运行状态均送入DCS进行显示。 3.1.2.2 罐区自动化系统由罐区监控管理系统和罐区安全联锁系统组成,主要用于完成生产作业、操作管理和安全保护三个方面的内容。 3.1.2.3 罐区监控管理系统可由分散型控制系统(DCS)构成,DCS应具有良好的自动控制和信息集成的功能。可以实现与生产装置操作和管理的有机结合。 3.1.2.4 罐区安全保护系统应根据罐区中联锁回路的整体安全度等级(SIL)而确定,可由安全仪表系统(SIS)构成,其主要完成报警联锁、事故紧急处理和安全停车等功能。 3.1.2.5 罐区的可燃性气体、有毒气体检测报警,应根据需要连接FGS,或GDS和FAS系统、罐区监控管理系统或联锁系统。 3.1.2.6 罐区的信息管理应采用通讯的方式将DCS等控制系统的有关数据上传至全厂信息管理系统。 3.1.2.7 除本标准规定外,罐区自动化系统设计尚应满足GB 50074和SH 3007的有关要求。 3.2 储罐的计量及检测 3.2.1 计量 储罐计量应包括: a) 库存计量——盘点库存,要求测量数据可靠、稳定和具有适当的精度(企业自定),主要包括油品的重量、体积、液位; b) 输转计量——企业购入和销售的计量,精度必须符合国家计量精度要求,主要包括输转前后油品的重量差、体积差,用于企业间结算(精度应达到:国内0.35%、国际0.2%); c) 倒罐计量——企业内部生产用倒罐工艺的实施过程的监控,主要包括液位、体积或重量等参数,要求测量数据可靠、稳定; d) 安全监督——为杜绝跑、冒、漏、窜,减少经济损失和环境污染,应检测液位、体积、温度等参

储罐液位控制系统程序

储罐液位控制系统 ——计算机控制技术课程设 计 ①核心:单片机 89s52 ②片外扩展:8KB RAM 存储器6264,I/O 口扩展 8155

③转换器:ADC0809,DAC0832 ④锁存器等:74HC373,74H377,74HC245和3-8译码器74HC138 ⑤输入/输出部件:6个LED,4个按键 89S52的RD及PSEN用与门接在一起后送入6264的OE端,使得6264既可以作为数据存储器,也可以作为程序存储器。

①液位信号(电压值)从ADC0809的IN0引脚输入,A/D转换后存储。 ②液位给定值由键盘设定,与液位信号比较得出偏差值。若超限,则报警,LED4现实P,同时以P1.0驱动报警器,以P1.1驱动蜂鸣器。 ③按达林算法计算控制器的输出值。 ④输出值经D/A转换得到模拟电压值并输出。 ⑤液位信号的电压值经标度转换后,变为液位值存储,送LED显示。6个LED显示如图a所示。LED5显示H或L,LED4为超限指示,LED3~LED0显示液位值,LED1数码管加小数点,显示范围为000.0~999.9。

显示器与键盘设置 LED5 LED4 LED3 LED2 LED1 LED0 H 1 9 9. 5 ⑥键盘设定液位的高低报警限。采用4键方式,4个按键的功能如图b所示。显示与键盘循环扫描,无键按下时,LED显示实时液位,右键按下时,进入液位报警限的修改。先按选择键方可进入修改,先按其他3个键无效。进入修改状态后,待修改的显示位LED5闪动,按+或-键可循环选择H或L,同时后4位LED显示对应的液位值。按确认件后调到下一个待修改的显示为LED3并闪动,按+或-键循环修改0~9数字,再按确认键调到下一位置,如此进行,知道4个数字修改完毕后退出修改状态。在修改状态时,若不按确认键,则8秒后退出修改状态。从视觉舒适的角度考虑,数字应为每0.4秒闪动一次。 显示器与键盘设计 选择+ - 确定 ①数据采集:A/D转换,采样周期为10s。 ②数字滤波:采用5个数平均滤波法。 ③标度转换:将液位变送器的标准电压信号转换为液位值。

双容水箱液位串级控制系统课程设计

双容水箱液位串级控制系统课程设计 1. 设计题目 双容水箱液位串级控制系统设计 2. 设计任务 图1所示双容水箱液位系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中设置调节阀,为保持下水箱液位恒定,支路二则通过变频器对下水箱液位施加干扰。试设计串级控制系统以维持下水箱液位的恒定。 1 图1 双容水箱液位控制系统示意图 3. 设计要求 1) 已知上下水箱的传递函数分别为: 111()2()()51p H s G s U s s ?==?+,22221()()1()()()201 p H s H s G s Q s H s s ??===??+。 要求画出双容水箱液位系统方框图,并分别对系统在有、无干扰作用下的动态过程进行仿真(假设干扰为在系统单位阶跃给定下投运10s 后施加的均值为0、方差为0.01的白噪声); 2) 针对双容水箱液位系统设计单回路控制,要求画出控制系统方框图,并分别对控制系统在有、无干扰作用下的动态过程进行仿真,其中PID 参数的整定要求写出整定的依据(选择何种整定方法,P 、I 、D 各参数整定的依据如何),对仿真结果进行评述; 3) 针对该受扰的液位系统设计串级控制方案,要求画出控制系统方框图及实施方案图,对控制系统的动态过程进行仿真,并对仿真结果进行评述。 4.设计任务分析

系统建模基本方法有机理法建模和测试法建模两种,机理法建模主要用于生产过程的机理已经被人们充分掌握,并且可以比较确切的加以数学描述的情况;测试法建模是根据工业过程的实际情况对其输入输出进行某些数学处理得到,测试法建模一般较机理法建模简单,特别是在一些高阶的工业生产对象。对于本设计而言,由于双容水箱的数学模型已知,故采用机理建模法。 在该液位控制系统中,建模参数如下: 控制量:水流量Q ; 被控量:下水箱液位; 控制对象特性: 111()2()()51 p H s G s U s s ?==?+(上水箱传递函数); 22221()()1()()()201p H s H s G s Q s H s s ??= ==??+(下水箱传递函数)。 控制器:PID ; 执行器:控制阀; 干扰信号:在系统单位阶跃给定下运行10s 后,施加均值为0、方差为0.01的白噪声 为保持下水箱液位的稳定,设计中采用闭环系统,将下水箱液位信号经水位检测器送至控制器(PID ),控制器将实际水位与设定值相比较,产生输出信号作用于执行器(控制阀),从而改变流量调节水位。当对象是单水箱时,通过不断调整PID 参数,单闭环控制系统理论上可以达到比较好的效果,系统也将有较好的抗干扰能力。该设计对象属于双水箱系统,整个对象控制通道相对较长,如果采用单闭环控制系统,当上水箱有干扰时,此干扰经过控制通路传递到下水箱,会有很大的延迟,进而使控制器响应滞后,影响控制效果,在实际生产中,如果干扰频繁出现,无论如何调整PID 参数,都将无法得到满意的效果。考虑到串级控制可以使某些主要干扰提前被发现,及早控制,在内环引入负反馈,检测上水箱液位,将液位信号送至副控制器,然后直接作用于控制阀,以此得到较好的控制效果。 设计中,首先进行单回路闭环系统的建模,系统框图如下: 可发现,在无干扰情况下,整定主控制器的PID 参数,整定好参数后,分别改变P 、I 、D 参数,观察各参数的变化对系统性能的影响;然后加入干扰(白噪声),比较有无干扰两

相关主题
文本预览
相关文档 最新文档