当前位置:文档之家› 焦炉的结构和设备知识

焦炉的结构和设备知识

焦炉的结构和设备知识
焦炉的结构和设备知识

《焦炉结构与设备》

一、教学内容:

(一)、焦炉整体结构概述

(二)、护炉铁件

(三)、焦炉加热设备

(四)、荒煤气导出设备

(五)、焦炉机械

(六)、附属设备和修理装置

二、学习目的:

了解焦炉的整体结构,掌握护炉铁件、蓄热室、燃烧室、炭化室及荒煤气导出道的结构。

目录

第一章焦炉整体构造

一、焦炉炉型的分类

二、现代焦炉的结构

1.1 炭化室

1.2 燃烧室

1.3 斜道区

1.4 蓄热室

1.5 小烟道

1.6 炉顶区

1.7 焦炉基础平台、烟道、烟囱

第二章炼焦炉的机械与设备

2.1 护炉铁件

2.1.1 护炉铁件的作用

2.1.2 保护板和炉门框

2.1.3 炉柱、拉条和弹簧

2.1.4 炉门

2.2 焦炉加热设备

2.2.1 加热煤气设备

2.2.2 焦炉的煤气管系

2.2.3 交换设备

2.2.4 废气设备

2.3 荒煤气导出设备

2.3.1 高压氨水及水封上升管盖装置2.3.2 上升管与桥管

2.3.3 集气管与吸气管

2.4 焦炉机械

2.4.1 装煤车

2.4.2 拦焦车

2.4.3 推焦车

2.4.4 熄焦车和电机车

2.5 附属设备和修理装置

2.5.1 炉门修理站

2.5.2 余煤单斗机和埋刮板提升机2.5.3 悬臂式起重机和电动葫芦

2.5.4 推焦杆更换装置

第一章焦炉整体结构

一、焦炉炉型的分类:

现代焦炉因火道结构,加热煤气种类及其入炉方式,实现高向加热均匀性的方法不同等分成许多型式。

因火道结构形式的不同,焦炉可分为二分式焦炉,双联火道焦炉及少数的过顶式焦炉。

根据加热煤气种类的不同,焦炉可分为单热式焦炉和复热式焦炉。

根据煤气入炉的方式不同,焦炉可分为下喷式焦炉和侧入式焦炉。

二、现代焦炉的结构:

(一)、现代焦炉虽有多种炉型,但都有共同的基本要求:

1)焦并长向和高向加热均匀,加热水平适当,以减轻化学产品的裂解损失。

2)劳动生产率和设备利用率高。

3)加热系统阻力小,热工效率高,能耗低。

4)炉体坚固、严密、衰老慢、炉龄长。

5)劳动条件好,调节控制方便,环境污染少。

(二)、JN型焦炉及其基础断面

图1.1 JN型焦炉及其基础断面

现代焦炉主要由炉顶区、炭化室、燃烧室、斜道区、蓄热室、烟道区(小烟道、分烟道、总烟道)、烟囱、基础平台和抵抗墙等部分组成,蓄热室以下为烟道与基础。炭化室与燃烧室相间布置,蓄热室位于其下方,内放格子砖以回收废热,斜道区位于蓄热室顶和燃烧室底之间,通过斜道使蓄热室与燃烧室相通,炭化室与燃烧室之上为炉顶,整座焦炉砌在坚固平整的钢筋混凝土基础上,烟道一端通过废气开闭器与蓄热室连接,另一端与烟囱连接口根据炉型不同,烟道设在基础内或基础两侧。以下分别加以介绍:

1.1 炭化室

炭化室是煤隔绝空气干馏的地方,是由两侧炉墙、炉顶、炉底和两侧炉门合围起来的。炭化室的有效容积是装煤炼焦的有效空间部分;它等于炭化室有效长度、平均宽度及有效高度的乘积。炭化室的容积、宽度与孔数对焦炉生产能力、单位产品的投资及机械设备的利用率等均有重大影响。炭化室顶部还设有1个或2个上升管口,通过上升管、桥管与集气管相连。

炭化室锥度:为了推焦顺利,焦侧宽度大于机侧宽度,两侧宽度之差叫做炭化室锥度。炭化室锥度随炭化室的长度不同而变化,炭化室越长,锥度越大。在长度不变的情况下,其锥度越大越有利于推焦。生产几十年的炉室,由于其墙面产生不同程度的变形,此时锥度大就比锥度小利于推焦,从而可以延长炉体寿命。

1.2 燃烧室

双联式燃烧室每相邻火道连成一对,一个是上升气流,另一个是下降气流。双联火道结构具有加热均匀、气流阻力小、砌体强度高等优点,但异向气流接触面较多,结构较复杂,砖形多,我国大型焦炉均采用这种结构。每个燃烧室有28个或32个立火道。相邻两个为一对,组成双联火道结构。每对火道隔墙上部有跨越孔,下部除炉头一对火道外都有废气循环孔。砖煤气道顶部灯头砖稍高于废气循环孔的位置,使焦炉煤气火焰拉长,以改善焦炉高向加热均匀性和减少废气氮氧化物含量,还可防止产生短路。

图1.2 JN型焦炉斜道区结构图

1.3 斜道区

燃烧室与蓄热室相连接的通道称为斜道。斜道区位于炭化室及燃烧室下面、蓄热室上面,是焦炉加热系统的一个重要部位,进人燃烧室的焦炉煤气、空气及排出的废气均通过斜道,斜道区是连接蓄热室和燃烧室的通道区。由于通道多、压力差大,因此斜道区是焦炉中结构

最复杂,异形砖最多,在严密性、尺寸精确性等方而要求最严格的部位。斜道出口处设有火焰调节砖及牛舌砖,更换不同厚度和高度的火焰调节砖,可以调节煤气和空气接触点的位置,以调节火焰高度。移动或更换不同厚度的牛舌砖可以调节进人火道空气。

1.4 蓄热室

蓄热室位子斜道下部,通过斜道与燃烧室相通,是废气与空气进行热交换的部位。蓄热室预热煤气与空气时的气流称为上升气流,废气称为下降气流。在蓄热室里装有格子砖,当由立火道下降的炽热废气经过蓄热室时,其热量大部分被格子砖吸收,每隔一定时间进行换向,上升气流为冷空气,格子砖便将热量传递给冷空气。通过上升与下降气流的换向,不断进行热交换。

1.5 小烟道

小烟道位于蓄热室的底部,是蓄热室连接废气盘的通道,上升气流时进冷空气,下降气流时汇集废气。

1.6 炉顶区

炼焦炉炭化室盖顶砖以上的部位称为炉顶区,在该区有装煤孔、上升管孔、看火孔、烘炉孔、拉条沟等。

烘炉孔是设在装煤孔,上升管座等处连接炭化室与燃烧室的通道。烘炉时,燃料在炭化室两封墙外的烘炉炉灶内燃烧后,废气经炭化室,烘炉孔进入燃烧室。烘炉结束后,用塞子砖堵死烘炉孔。

图1.3 JN型焦炉炉顶

1.7 分烟道、总烟道、烟囱、焦炉基础平台

蓄热室下部设有分烟道,来自各下降蓄热室的废气流经废气盘,分别汇集到机侧成焦侧分烟道,进而在炉组端部的总烟道汇合后导向烟囱根部,借烟囱抽力排人大气。烟道用钢筋混凝土浇灌制成,内砌勃土衬砖。分烟道与总烟道连接部位之前设有吸力自动调节翻板,总烟道与烟囱根部连接部位之前设有闸板,用以分别调节吸力。焦炉基础平台位于焦炉地基之上。位于炉体的底部,它支撑整个炉体,炉体设施和机械的重量,并把它传到地基上去。

图1.4 下喷式焦炉的基础结构型式

第二章炼焦炉的机械与设备

2.1 护炉铁件

焦炉砌体的外部应按装护炉设备,如图2-1 。这些护炉设备包括:炉门框和保护板,护炉柱、纵横拉条、弹簧及炉门等。炉门采用弹簧刀边,弹簧门栓、悬挂式空冷炉门,炉门对位时位置的重复性好,弹性刀边对炉门框能始终保持一定压力,防止炉门冒烟冒火。

保护板为工字型大保护板,有效保护了炉头免受破坏。

炉柱采用单H型钢,沿焦炉高向设置七线小弹簧。在纵横拉条的端部设有弹簧组,能均匀地对炉体施加一定压力,保证了焦炉整体结构的完整和严密。2.1.1 护炉设备的作用利用可调节的弹簧的势能,连续地向砌体施加足够的、分布均匀合理的保护性压力,使砌体在自身膨胀和外力作用下仍能保持完整、严密,从而保证焦炉的正常生产。

图2.1 护炉设备装配简图

2.1.2 保护板

保护板与炉门框的主要作用是将保护性压力均匀合理地分布在砌体上,同时保证炉头砌体、保护板、炉门框和炉门刀边之间的密封。

2.1.3弹簧

弹簧分大小弹簧两种。由大小弹簧组成弹簧组,安装在焦炉机、

焦侧炉柱的上下横拉条上。炉柱的高向不同部位还装有几组小弹簧。弹簧能反映出炉柱对炉体施加的压力,使炉柱靠紧保护板,又能控制炉柱所受的作用力,以免炉柱受力过大。炉柱上下弹簧组所受的压力,指示出炉体所受的总负荷。小弹簧所受的压力只能指示出各点负荷的分布情况。

2.1.3 炉柱

炉柱是用工字钢(或槽钢)焊接而成的,也可由特制的方型的空心钢制成,安装在机、焦侧炉头保护板的外面,由上下横拉条将机、焦两侧的炉柱拉紧。上部横拉条的机侧和下部横拉条的机焦两侧均装有大弹簧。焦侧的上部横拉条因受焦并推出时烧烤,故不设弹簧。炉柱内沿高向装有若干小弹簧。炉柱通过保护板和炉门框承受炉体的膨胀压力。即护炉铁件主要靠炉柱本身应力和弹簧的外加力给炉体以保护性压力。炉柱还起着架设机、焦侧操作台、支撑集气管的作用。大型焦炉的蓄热室单墙上还装有小炉柱,小炉柱经横梁与炉柱相连,借以压紧单墙,起保护作用。

2.1.3 拉条

焦炉用的拉条分为横拉条和纵拉条两种。横拉用50mm的低碳钢圆钢制成,沿燃烧室长向安装在炉顶和炉底。上部拉条放在炉顶的砖槽沟内,下部拉条埋设在机、焦侧的炉基平台里(见图2-2-5)

从一些焦炉上横拉条损坏的情况看,上升管孔,装煤孔等温度较高处,最为严重。这些部位的拉条直径往往变细,上升管附近除温度较高外,还有氨水的腐蚀,故拉条变细更快。拉条变细可由大弹簧的负荷经常变小来发现。为了延长拉条的使用期限,可在上述易损部位增加套管,并对装煤孔、上升管根部等处经常修补、灌浆、严防串漏,冒火烧坏拉条。此外,在出炉操作中应防止在装煤孔和炉顶表面积存余煤,这些积煤燃烧使拉条温度升高。当烧除炭化室墙的石墨时,如炉门不严或装煤口漏气,石墨燃烧产生的热量也会使通过装煤孔附近的拉条温度剧增。炭化室装煤不满,负压操作都会引起上升管结石墨堵塞荒煤气的导出,也使装煤孔处冒烟冒火烧坏拉条。

2.1.4 炉门与炉门框

一般炉门靠横铁螺栓将炉门顶紧,摘挂炉门时用推焦车和拦焦车上的拧螺栓机构将横铁螺栓松、紧,操作时间较长,而且作用力难于控制。弹簧门栓利用弹簧的压力将炉门顶紧,操作时间短,炉门受力稳定,还可简化摘挂炉门机构。弹簧门栓由于不能改变刀边对炉门框的压力,所以常同敲打刀边结合,以求对炉门框的轻度变形或局部积聚焦油渣的适应性。

炉门框是固定炉门的,为此要求炉门框有一定的强度和刚度,加工面应光滑平直,以使与炉门刀边严密接触,密封炉门。炉门框安装时,应垂直对正,火直接接触炉柱,起保护炉柱的作用,故不能过矮。生产中,炉门框的刀封面应保持清洁,炉门刀边才能与其严密接触,避免冒烟冒火。四周均匀填好密封材料,并使其压紧。炉门框周边的筋可以减少炉门冒出的烟。

图2-2-13 自封式刀边炉门

2.2 焦炉加热设备

焦炉加热煤气设备有煤气管系、煤气预热器、废气盘、煤气交换机。焦炉加热设备的作用是向炼焦炉输送和调节加热用煤气和空气以及排出燃烧后的废气。焦炉采用焦炉煤气加热和混合煤气加热两套系统。加热煤气主管上设有温度、压力、流量的测量和调节装置。各项操作参数的测量、显示、记录、调节和低压报警都由自动控控制仪表来完成。

煤气预热器焦炉煤气系统设有煤气预热器,以保证入炉煤气温度的稳定。由于焦炉煤气中含有萘和焦油在低温时容易析出,堵塞管道和管件,故设煤气预热器供气温低时预热煤气,以防冷凝物析出。气温高时,煤气从旁通道通过。

煤气预热器一般为列管立式蒸汽加热器,管内走煤气,管间通蒸汽。侧入式焦炉的煤气管系,一般由煤气总管经预热器在交换机端分为机、焦侧两根主管,煤气再经支管,交换旋塞,水平砖煤气道进入各个火道。各种炉型的高炉煤气管系的布置基本相同,由总管来的煤气分配到机焦两侧的两根高炉煤气主管,再经支管,交换旋塞,小烟道进入蓄热室,预热后送入燃烧室的火道。

2.2.2焦炉的煤气管系

图2-2-15 JN型焦炉的煤气管系

图2-2-16 JN型焦炉入炉煤气管道配置图

2.2.3 交换设备

下喷式焦炉,焦炉煤气交换旋塞如图2-2-18 。旋塞是入炉煤气设备中的重要部件,要定期清洗,保持严密光滑,保证自由截面畅通。特别是下喷式焦炉的交换旋塞,因为交换煤气和进入除碳空气是在同一旋塞上进行,如旋塞不严,换向时由于除碳空气与泄漏的煤气混合易产生爆鸣,损害炉体。一些厂采用油泵集中往各交换旋塞加稀润滑油,可保证芯子和外壳内表面光滑严密,对消除爆鸣也有明显效果。

焦炉煤气旋塞芯子为锥形三通结构,旋塞外壳上与气流垂直的一侧开有与大气相通的除碳孔,当切断煤气时由此孔进入空气,烧除砖煤气道和烧嘴处的石墨。交换搬把后面设有压紧弹簧,并可用其后螺栓调节弹簧压力。高炉煤气的交换旋塞结构与此相似,但芯子是两通的,外壳无除碳孔,且体积较大,旋塞后部无压紧弹簧。

图JN型焦炉交换系统图

2.2.4 废气盘

废气盘又叫交换开闭器,是控制调节进入焦炉的空气、煤气及排出废气的装置。目前国内外有多种型式的废气盘,大体上可分为两种类型,一种是同交换旋塞相配合的提杆式双砣盘型;另一种为杠杆式分别传动的煤气交换砣型。

(1)提杆式双砣盘型废气盘废气盘由筒体及两叉部组成。两叉部内有两条通道,一条连高炉煤气接口管和煤气蓄热室的小烟道;另一条连接进风口和空气蓄热室的小烟道。废气连接筒经烟道弯管与分烟道接通。筒体内设两层砣盘,上砣盘的套杆套在下砣盘的杆芯外面,芯杆经小链与交换拉条连接。

用高炉煤气加热时,空气叉上部的空气盖板与交换链连接,煤气叉上部的空气盖板关死。上升气流时,筒体内两个砣盘落下(图2-2-19 ),上砣盘将煤气和空气隔开,下砣盘将筒体与烟道弯管隔开;下降气流时,煤气交换旋塞靠单独的拉条关死,空气盖板在废气交换链提起两层砣盘的同时关闭。使两叉

部与烟道接通排废气。

用焦炉煤气加热时,两叉部的两个空气盖板均与交换链连接,上砣盘可用卡具支起使其一直处于开启状态,仅用下砣盘开闭废气。上升气流时,砣盘落下,空气盖板提起;下降气流时则相反。

(2)杠杆式废气盘与提杆式废气盘双砣型相比(如图2-2-20 ),用高炉煤气砣代替高炉煤气交换旋塞,通过杠杆、卡轴和扇形轮等转动废气砣和煤气砣,省去了高炉煤气交换拉条,每一个蓄热室单独设一个废气盘,便于调节。

2.3荒煤气导出设备

荒煤气导出设备包括上升管、桥管、阀体、水封盖、集气管、吸气弯管、高低压氨水管道以及相应的操作台等。其作用主要是:顺利导出焦炉各炭化室内发生的荒煤气,保持适当、稳定的集气管压力,既不致因煤气压力过高而引起冒烟冒火,又要使各炭化室在结焦过程中始终保持正压;将荒煤气适度冷却,保持适当的集气管温度,既不致因温度过高而引起设备变形、操作条件恶化和增大煤气净化系统的负荷,又要使焦油和氨水保持良好的流动性,以便顺利排走。

2.3.1 高压氮水及水封上升管盖装置

高压氨水无烟装煤是在桥管部位喷射高压氨水,使上升管和炉顶空间形成较大吸力,可把装煤时产生的煤气和烟尘,及时、顺利地导入集气管内,避免逸出炉外污染环境。

2.3.2 上升管和桥管

上升管直接与炭化室相连,由钢板焊接成或铸造而成,内部衬以耐火砖。桥管为铸铁弯管,桥管上设有氨水喷嘴和蒸汽管。水封阀靠水封翻板及其上的喷洒氨水形成水封,切断上升管与集气管的连接。翻板打开时,上升管与集气管联通,见图2-2-13 。

2.3.3 集气管和吸气管

集气管是用钢板焊接而成的圆型或槽型的管子,沿整个炉组长向置于炉柱的托架上,以汇集各炭化室来的荒煤气。集气管上部每隔一个炭化室设有带盖的清扫孔,以清扫沉积于底部的焦油和焦油渣。通常上部还设有氨水喷嘴,以进一步冷却煤气。

集气管通过“”型管、焦油盒与吸气管相连(见图2-2-13 )。

集气管中的氨水、焦油和焦油渣等靠集气管的坡度及液体的位差流走。

集气管一端装有清扫氨水喷嘴和事故用水的工业水管。每个集气管上还设有两个放散管,停氨水时因集气管压力过大或开工时放散用。集气管的一端或两端设有水封式焦油盒,以备定期捞出沉积的焦油渣。“”型管专供荒煤气排出,其上装有手动或自动的调节翻板,用以调节集气管的压力。“”型管的下方焦油盒仅供通过焦油、氨水。经“”型管和焦油盒后,煤气与焦油、氨水又汇合于吸气管,为使焦油、氨水顺利流至回收车间的气液分离器并保持一定的流速,吸气管应有0.01-0.015 的坡度。

集气管分单、双两种形式。单集气管多布在焦炉的机侧,它具有投资省、钢材用量少,炉顶通风较好等优点,但装煤时炭化室内气流阻力大,容易冒烟、冒火。炉顶机、焦两侧都装有上升管和集气管时,称双集气管。两侧集气管间,有横贯焦炉的煤气管联接,见图2-2-14 。

煤气由炭化室两侧析出而汇合于吸气管,从而降低集气管两端的压力差,使全炉炭化室压力分布较均匀;装煤时降低了炉顶空间的煤气压力,减轻了冒烟冒火,易于实现无烟装煤;生产时荒煤气在炉顶空间停留时间短,减少了化学产品的分解,有利于提高化学产品的产量和质量;结焦末期由于机、焦侧集

气管的压力差,使部分荒煤气经炉顶空间环流,降低了炉顶空间温度和石墨的形成。双集气管还有利于实现炉顶机械化清扫炉盖等操作。但双集气管投资多,炉顶通风较差,使操作条件变坏。

桥管上装有高低压氨水喷嘴,通过三通球阀切换用于喷洒低压氨水以降低荒煤气温度或喷射高压氨水来配合装煤车的顺序装煤,较顺利地将大部分的荒煤气导入集气管,而装煤时产生的部分烟气则经除尘装煤车抽吸导入集尘干管,送至除尘地面站,实现无烟装煤操作。集气管设置高压氨水清扫装置,供定期分段清扫使用,这样减轻了工人的劳动强度。

2.4焦炉机械

焦炉机械包括:装煤车、拦焦车、推焦车和熄焦车、电机车,用以完成炼焦炉的装煤出焦任务。这些机械除完成上述任务外,还要完成许多辅助性工作。主要有:

1)、装煤孔盖和炉门的开关,平煤孔盖的开闭。

2)、炭化室装煤时的平煤操作。

3)、平煤时余煤的处理回收。

4)、炉门、炉门框、上升管的清扫。

5)、炉顶及机、焦侧操作平台的清扫。

6)、装备水平高的车辆还设有消烟除尘的环保设施。

为完成这些工作,设有各种机械和机构,它们都顺轨道沿炉组方向移动。使用这些车辆和机械,基本上使焦炉的操作实现全部机械化。

全套焦炉机械是按5-2推焦串序进行操作,采用单元程序控制,并带有手控装置。推焦机和电机车之间设有事故联锁装置。各司机室设有载波电话,提高设备运行的安全性和可靠性。

2.4.1 装煤车

装煤车为除尘式装煤车。采用一点定位、机械揭闭装煤孔盖以及机械清扫上升管。设计采用螺旋给料、顺序装煤,并设有炉顶清扫装置。煤塔漏咀的开闭和煤塔震煤的操作均在司机室内控制,方便可靠。司机室密闭隔热,内设空调,改善了操作条件。

为了实现无烟装煤操作,装煤车上设与焦侧集尘干管对接的套筒,下煤导套等。

2.4.2 拦焦车

1.1 用途及功能

拦焦机为右型结构,它设置在焦炉焦侧操作台的轨道上,其作用是取装焦侧炉门和推焦时将焦碳导入熄焦车内,同时将推焦过程中产生的烟气通过集尘罩收集后经接口阀导入集尘干管中,减少焦炉烟气对大气的污染,同时具有清扫炉门、炉框和炉台清扫的功能,减少了工人的劳动量。

本机的运转操作均在司机室内运行,各装置即可采用单元程序控制又可进行手动操作。1.2 总体结构

拦焦机由钢结构组成框架,其他各种机构合理布置,配合梯子、栏杆、平台等辅助设施共同组成了一个有机的整体。

它由钢结构、走行装置、导焦装置、取门装置、炉门清扫装置、清框装置、炉台清扫装置、头尾焦处理装置、集尘装置、润滑装置、气路、液压配管、液压装置、电气系统、空调装置等十几部分组成。

2.4.3 推焦机

1.设备的组成及用途

本设备——推焦机是在焦炉机侧的轨道上运行,并按一定的工艺程序对焦炉进行一系列操作,主要功能是取、装机侧炉门,将红焦从焦炉炭化室推出,炉门、小炉门、炉框清扫、头尾焦处理、推焦炭化室小炉门开闭、平煤、余煤处理等。本设备的操作均早司机室内操作,走行为手动操作,其它通过按钮进行自动及手动操作。

2.总体布置

各装置在设备上的布置位置,大体为走行平台布置有走行装置,一层平台上设有推焦、取门、清门、清框、头尾焦处理、炉台清扫、液压系统等,二层平台上设有平煤、小炉门清扫、司机室、电气室、空调及空净系统等。.

3、结构及工作原理

本设备总体设计采用五炉距一次对位结构,以推焦装置为中心,平煤、清框装置设在左边,取门、清门、小炉门清扫装置设在右边,出炉按5-2顺序进行,在推焦的同时以对上一炉进行平煤和下一炉小炉门清扫操作。取门装置与炉框清扫装置分别布置在推焦装置的两边,通过S轨道旋转实现一次对位操作。

2.4.4 熄焦车和电机车

2.1 结构

熄焦车是由车架、转向架、左右端壁、前后侧壁、车门、底板、栅栏、开门机构以及制动装置所组成。左右端壁、前后侧壁、底板、车门都装有耐热板,耐热板由铸铁制成。底板与前侧壁之间用铸钢斜撑支承,以加强车箱的强度和刚性,并减少前侧壁因受热而引起的变形。底板与水平面成28°斜角,以便卸焦时让焦炭顺利流出。

2.2 工作原理

2.2.1 熄焦车的开门机构采用齿轮、齿条传动。齿条与驱动气缸的活塞杆,通过销轴铰接在一起,气缸两端进气,带动齿条前后移动,装在传动主轴上的齿轮与齿条啮合,这样在齿条的移动过程中使得齿轮转动,主轴也转动,从而使装在主轴两端的摆杆带动推杆将熄焦车的车门打开(或关闭),以达到卸焦和关门的目的。

2.2.2 熄焦车上开门机构的摆杆可以在圆周上旋转128°角。在128 °摆角的两极限位置上有刚性限位及限位开关,以保证左右车门开启位置在650±20mm 范围内。限位开关只起车门开到极限位置时的信号提示作用。

2.2.3 熄焦车是通过电机车牵引的,开门气缸的气源在电机车上,来自电机车的压缩空气通过软管连接器,以及气路传给气缸。电机车可以在熄焦车的两端

挂钩牵引,压缩空气可以在熄焦车的两端接通,当电机车在熄焦车的左端挂钩时,关闭熄焦车上气路的右端球阀,当电机车在熄焦车的右端挂钩时,关闭熄焦车上气路的左端球阀。

2.2.4 制动装置为空气闸瓦式制动,来自电机车的气体通过制动气缸及拉杆使转向架上的制动装置的闸瓦压紧车轮已达到制动的目的。

2.4..4.2 电机车

结构及工作原理

电机车主要由上部的车体、下部的走行装置、制动装置、气路系统、空调系统及电气系统组成。

在电机车上可通过高走台直接进入焦炉焦侧炉台,司机室置于车外偏侧,视线较好,空压机电气柜置于机器室内,冷风机用压缩机置于司机室外,在靠炉侧设有风包2台及电源滑线支架。

车体由机器室、司机室、平台、走梯及栏杆等结构件组成,各部分之间采用螺栓联接,现场安装后联接件间焊接固定。

机器室为一钢结构件,上部开有检修孔,方便检修,靠走梯处开有边门,进出方便,顶部铺有花纹钢板,对整车而言,机器室顶部为一平台。

司机室由平台支撑,置于车外侧,司机室顶蓬和侧壁均使用隔热材料,内壁用彩涂板装饰。室内设有操作台,讯号联络装置,为改善工作条件还设有空调机一台。

走行装置主要由传动机构、车架、车钩、碟簧、制动装置等组成。

传动机构为两套,各自驱动一对轮对,每套均由电动机通过万向轴连接卧式减速机,减速机的末级齿轮为剖分式的,装配时与车轮轴刚性联接,传动机构与车架的联接为半刚性、半弹性联接,另设有空气闸瓦制动器以适用接焦时

慢速运行。车架是一个主要由低合金钢焊成的钢结构件,强度高、刚度大。轮对与车架的支承为弹性支承,采用组合碟簧,轴承箱为导框式,置于车架的导框中,车架通过碟簧置于轴承箱上。为达到更加良好的制动效果, 制动采用气动闸瓦式制动器与盘式制动器共同制动,闸瓦材料选用高磷铸铁。

气路系统为电机车的制动,熄焦车车箱开启、关闭及熄焦车的制动提供气源动力。系统设置2台空气压缩机,常规为一用一备。压缩空气由贮气装置贮存,然后通过各种控制元件向执行元件供气,以完成各自的动作,车箱开启及关闭由电磁阀控制,电机车制动由电磁阀控制。

系统设置的贮气装置由2台风包组成,总贮气量为3.4m3,工作压力为0.45~0.7Mpa,在一次充气后可满足多次循环操作的需要,以至在空压机故障时仍可将熄焦车车箱内焦炭卸完。

2.5 附属设备和修理装置

焦炉除主体机械设备外,还设有必要的附属设备和修理装置,以补充和保证各项作业的顺利进行,这些设备和装置主要有:

2.5.1 炉门修理站

为满足炉门的日常循回检修,在炉台或炉间台设置炉门修理站。机械化炉门修理站设有炉门旋转架,由电动卷扬机或液压装置和一系列滑轮传动使旋转架起落,可将炉门放平检修和竖直还原,同时还能旋转180°供检修炉门背面使用。

2.5.2 余煤单斗机和埋刮板提升机

余单斗机是将推焦车卸下的余煤提升到炉顶上部煤塔旁的小斗内的机械。由支撑结构架和固定在支撑架上的导向滑轮以及运行在支撑架轨道上的翻斗组成。其传动装置为电动机通过减速机驱动卷扬机滚筒转动,由钢绳拉动翻斗运行,提升煤料。余单斗机的操作是自动化的,其行程由限位开关控制,自动停车,并可自动启动和还回。

大型焦炉则没有余单斗机,由推焦车、拦焦车等设备本身自带埋刮板提升机、平煤溜槽、链式刮板机处理余煤和头尾焦。

2.5.3 悬臂式起重机和电动葫芦

悬臂式起重机设于焦炉炉顶部端台,电动葫芦悬挂安装于焦炉炉台两端的轨道梁上部。用以吊运设备,部件、耐火材料等。一般都由电机、减速机、卷筒、钢绳、滑轮、控制装置等组成。

2.5.4推焦杆更换装置

一般在炉端台上,有四排能够移动的小车设于专用的轨道上,小车上可以储放推焦杆,供推焦杆更换或检修使用。

在小炉门标高处设置检修平煤杆的架轮,以供储放或更换平煤杆之用。

在焦炉的端台或间台,还设有砂轮机。

在焦炉地下室及烟道等处设有水泵,以定期排出积水或作防洪使用。

空气压缩机主要结构说明

空气压缩机主要结构说明 空气压缩机,也就是通常所说到的空压机。空气压缩机是工业现代化的基础产品,常说的电气与自动化里就有全气动的含义;而空气压缩机就是提供气源动力,是气动系统的核心设备机电引气源装置中的主体,它是将原动(通常是电动机)的机械能转换成气体压力能的装置,是压缩空气的气压发生装置,我国的空气压缩机行业的市场规模均为8%以上的增速增长,市场规模扩张迅速。 空气压缩机的主要结构 1、压缩机构部分:气缸,活塞,进排气阀等部件。气缸体和气缸盖上有四个气阀孔,两件两派 2、传动机构部分:由皮带轮,曲轴,连杆,十字头等组成。通过传动机构,由马达传递的旋转运动变为往复直线运动。 3、密封部分:一级和二级气缸密封分别由一组填料组成。密封环和活塞杆通过拉伸弹簧的预紧力和气体压力夹紧和密封。 4、润滑系统系统:传动机构的润滑系统由油泵、过滤器、滤油器和压力表组成。 5、冷却部分:由冷却水管、中间冷却器、后冷却器组成。冷却水从主进水管进入中间冷却器冷却,并且在排出之后,冷却水分别进入第一和第二级气缸的水腔内。 6、减压阀和压力控制系统:减压阀和压力控制系统控制压缩机排气压力在预定的操作范围内进行运转。当储罐中的压力超过规定值时,压缩机停止吸入并使压缩机无负载运行以降低功耗的。减荷阀为平衡时,借阀的启闭控制进气或停止进气,下部有一个小活塞,小活塞腔与电磁阀和过度考虑的减压阀连接。小活塞腔是大气压。当储气罐的压力超过额定值时,压力控制系统运行(电磁阀进气连接),气体进入小活塞腔,推动活塞上压弹簧,关闭阀门,停止进气和压力下降后的压力控制系统。统一操作(电磁阀进气口断开),减压阀自动打开,压缩机进入正常运行状态。 7、安全保护部分:分别由安全阀和电气保护组成。当排出压力超过规定值时,安全阀自动打开。安全阀分为一级或二级安全阀,一级安全阀的开启压力为0.24~0.3Mpa。

煤气安全知识

煤气安全知识 山西省安全专家卢水龙 第一章煤气 第一节煤气来源 目前本地方所用的煤气多属于焦化生产过程中所产生的煤气,注:叫做焦炉煤气,也称焦炉气。它属于炼焦生产过程中煤在高温状态下熔融后所产生的一种物质(混合煤气)。 煤气属于化学危险品的第五类(易燃易爆类)。 所谓易燃易爆化学物品,系指国家标准GB12268—90《危险货物品名表》中以燃烧、爆炸为主要特性的压缩气体、液化气体、、易燃固体、自燃物品和遇湿易燃物品、氧化剂和以及毒害品、腐蚀品中部分易燃易爆化学物品。 例如:焦炉煤气、、硝化甘油、火箭燃料、三硝基甲苯(TNT炸药)、三乙基铝、等。 一般认为,只要同时满足了以下三个特征,即为危险品。 1.具有爆炸性、易燃、毒害、腐蚀、放射性等性质; 2.在生产、运输、使用、储存和回收过程中易造成人员伤亡和财产损毁; 3.需要特别防护的。 如果此类危险品为,那么它就是(煤气当然满足了)。

根据《》(国家令10号),危险生产企业是指依法设立且取得营业执照的,从事危险生产经营的企业,包括最终产品或中间产品列入《危险名录》的危险化学品的生产使用经营企业。 危险化学品在生产使用经营过程中的危险性比较大,易发生事故,但不一定属于危险化学品都发生事故。所以我们国家早在2000年制定颁布(GB18218—2009) 《》,在2009年3月1日修定为标准《》,于2009年12月1日起实施,本标准代替GB18218—2000《重大危险源辨识》。对从事生产经营储存危险化学品的危险源程度进行辨识,是否构成重大。危险化学品重大是指长期地或临时地生产、加工、使用及储存危险化学品,且危险化学品的数量等于或者超过临界量的单元。 《法》解释为:重大是指长期地或者临时地生产、搬运、使用或者储存危险物品,且危险物品的数量等于或者超过临界量的单元(包括场所和设施)。 《法》第33条规定:生产经营单位对重大危险源应当登记建档,进行定期检测、评估、监控,并制定应急预案,告知从业人员和相关人员在紧急情况下应当采取的应急措施。 生产经营单位应当按照国家有关规定将本单位重大危险源及有关安全措施、应急措施报有关地方人民政府负责监督管理的部门和有关部门备案。 按照焦炉煤气组分、煤气温度、煤气压力,通过仅有的几个数据计算焦炉煤气的密度可知为:—Nm3(标准煤气)。

焦炉煤气常识培训资料

煤气基础知识 一、煤气基本常识 1、煤气:是指煤或焦碳经热化学加工而产生的可做为燃料或 化工原料的气体。 2、煤气是可燃气体与不可燃气体的机械混合物。 可燃气体成分:一氧化碳CO、甲烷CH4、氢气H2、硫化氢 H2S、碳氢化合物CnHm。 不可燃气体成分:二氧化碳CO2、氮气N2、氧气O2 3、各种成分的性质: 氢气H2—无色无味,比空气轻1.45倍。热值为2612大卡/标立与空气混合遇明火易暴炸。爆炸范围4.1-74.2%,无毒,但浓度较大时易引起窒息。 甲烷CH4—无色但有葱味,比空气轻1.8倍,热值为8699大卡/标立,爆炸范围5.3-15%无毒,但浓度大时易引起窒息。 硫化氢H2S—无色,剧烈臭味,比空气轻1.2倍,燃烧热值为5600大卡/标立。空气中安全标准为0.01克/标立,克中毒含量0.04克/标立。 碳氢化合物CnHm—无色,有毒,在空气中含有0.08%时就会引起中毒。 氧气O2—无色无味,比空气轻1.1倍,可助燃,空气中含量21%。 氮气N2—无色无味的毒性气体,比空气轻,具有窒息作用,空气中含量79%。

二氧化碳CO2—无色无味,比空气重1.5倍,有窒息作用。 一氧化碳CO—无色无味,比空气轻,热值3056大卡/标立,空气中爆炸范围12.5—75%,着火温度610C°,空气中安全浓度30mg/m3(24ppm),可中毒致死浓度500ppm 4、煤气种类: 高炉煤气BFG、转炉煤气LDG、焦炉煤气COG CO CO2 H2 CH4 N2 O2 CnH m 着 火 点 密 度 爆 炸 极 限 发 热 值 高炉煤气25- 27 13- 15 1.2 -2. 0.2 -0. 4 57- 59 0.2 -0. 5 - 750 1.2 9-1 .30 35- 72 800 -90 转炉煤气55- 57 18- 19 1.5 - 2 2. 4-1 9 <2. 650 -70 1.3 96 12. 5-7 4 180 0-2 200 焦炉煤气 8-9 2.8 -3. 4 45- 58 23- 30 3-7 0.4 -0. 6 2-3 550 -65 0.4 5-0 .50 5.6 -30 .4 420 0-4 500 以上数据对比,得出焦炉煤气具有可燃组分比重大、着火点 低、发热值高、毒性稍低(CO)的优越性,工业上广泛使用,但

光刻原理

光 刻 工 艺 一、目的: 按照平面晶体管和集成电路的设计要求,在SiO 2或金属蒸发层上面刻蚀出与掩模板完全相对应的几何图形,以实现选择性扩散和金属膜布线的目的。 二、原理: 光刻是一种复印图象与化学腐蚀相结合的综合性技术,它先采用照像复印的方法,将光刻掩模板上的图形精确地复制在涂有光致抗蚀剂的SiO 2层或金属蒸发层上,在适当波长光的照射下,光致抗证剂发生变化,从而提高了强度,不溶于某些有机溶剂中,未受光照射的部分光致抗蚀剂不发生变化,很容易被某些有机溶剂溶解。然后利用光致抗蚀剂的保护作用,对SiO 2层或金属蒸发层进行选择性化学腐蚀,从而在SiO 2层或金属层上得到与光刻掩模板相对应的图形。 (一)光刻原理图 (一)光刻胶的特性: 1.性能,光致抗蚀剂是一种对光敏感的高分子化合物。当它受适当波长的光照射后就能吸收一定波长的光能量,使其发生交联、聚合或分解等光化学反应。由原来的线状结构变成三维的网状结构,从而提高了抗蚀能力,不再溶于有机溶剂,也不再受一般腐蚀剂的腐蚀. 2.组成:以KPR 光刻胶为例: 感光剂--聚乙烯醇肉桂酸酯。 溶 剂--环己酮。 增感剂--5·硝基苊, 3.配制过程: 将一定重量的感光剂溶解于环己酮里搅拌均匀,然后加入一定量的硝基苊,再继续揖拌均匀,静置于暗室中待用。 感光剂聚乙烯醇肉桂酸酯的感光波长为3800?以内,加入5·硝基苊后感光波长范围发生了变化从2600—4700 ?。 (二)光刻设备及工具: 在SiO 2层上涂复光刻胶膜 将掩模板覆盖 在光刻胶膜上 在紫外灯下曝光 显影后经过腐蚀得到光刻窗口

1.曝光机--光刻专用设备。 2.操作箱甩胶盘--涂复光刻胶。 3.烘箱――烤硅片。 4.超级恒温水浴锅--腐蚀SiO2片恒温用。 5.检查显为镜――检查SiO2片质量。 6.镊子――夹持SiO2片。 7.定时钟――定时。 8.培养皿及铝盒――装Si片用。 9.温度计――测量温度。 图(二)受光照时感光树脂分子结构的变化 三、光刻步骤及操作原理 1.涂胶:利用旋转法在SiO2片和金属蒸发层上,涂上一层粘附性好、厚度适当、均匀的光刻胶。 将清洁的SiO2片或金属蒸发片整齐的排列在甩胶盘的边缘上,然后用滴管滴上数滴光刻胶于片子上,利用转动时产生的离心力,将片子上多余的胶液甩掉,在光刻胶表面粘附能力和离心力的共同作用下形成厚度均匀的胶膜。 涂胶时间约为1分钟。 要求:厚度适当(观看胶膜条纹估计厚薄),胶膜层均匀,粘附良好,表面无颗粒无划痕。 图(三)光刻工艺流程示意图

炼焦工艺有关知识

煤隔绝空气进行加热,分别得到固体产品、液体产品和气体产品的过程,即为煤的干馏过程。根据煤被加热的最终温度,分为低温干馏(500~550℃),中温干馏(600~800℃)和高温干馏(900~1050℃)即炼焦过程。 早期的炼铁使用木炭作燃料和还原剂,1709年开始用焦炭代替木炭进行炼铁,从此推动了炼焦生产和技术的发展。 1、炼焦技术的发展阶段 四个发展阶段分别为:成堆炼焦与窑式、倒焰炉、废热式焦炉及现代的蓄热室焦炉。 现在炼焦技术的继续发展阶段: 1)焦炉容积大型化 2)装炉煤预处理技术:配型煤技术、捣固工艺、煤预热工艺等 3)环境保护 4)炼焦自动化技术 2、焦炭的作用与性能 高炉是竖形炉子,从上到下有炉喉、炉顶、炉身、炉腰、炉腹和炉缸五部分。原料包括铁矿石(或烧结矿)、焦炭和石灰石,交替地由炉顶通过装料装置装入炉内,焦炭和氧气不完全燃烧生成的一氧化碳是高炉内主要的还原剂。焦炭与氧燃烧反应所放出的热量是高炉冶炼过程热量的主要来源。加入石灰石的目的,在于同石灰石与矿石、焦炭中的高熔点酸性氧化物起反应,形成熔点较低、比重较小的炉渣与铁水分开,从炉缸中放出。 由于焦炭在高炉内起支撑料柱的骨架作用,保持炉料分布均匀、透气性好,要求焦炭有较高的抗碎强度和耐磨强度,还要有一定的块度,块度越均匀越好。随着高炉越来越大,高炉喷煤技术的使用,对焦炭强度和块度要求就更高。 焦炭的化学组成包括水分、灰分、挥发分、硫分、磷分等。 焦炭的水分与炼焦煤料的水分无关,也不取决于炼焦工艺条件,主要受熄焦方式的影响。另外焦炭水分要尽量稳定,有利于高炉配料稳定。 焦炭的灰分的主要成分是SiO2和Al2O3。焦炭灰分升高,不但使焦炭的强度降低,在高炉冶炼中需多用石灰石,铁产量下降。 焦炭的挥发分是焦炭成熟程度的标志。焦炭挥发分过高,说明焦炭没有完全成熟,出现“生焦”。焦炭挥发分过低时,说明焦炭过火,焦炭裂纹增多,易碎。

焦炉的结构和设备知识

《焦炉结构与设备》 一、教学内容: (一)、焦炉整体结构概述 (二)、护炉铁件 (三)、焦炉加热设备 (四)、荒煤气导出设备 (五)、焦炉机械 (六)、附属设备和修理装置 二、学习目的: 了解焦炉的整体结构,掌握护炉铁件、蓄热室、燃烧室、炭化室及荒煤气导出道的结构。 目录 第一章焦炉整体构造 一、焦炉炉型的分类 二、现代焦炉的结构 1.1 炭化室 1.2 燃烧室 1.3 斜道区 1.4 蓄热室 1.5 小烟道 1.6 炉顶区 1.7 焦炉基础平台、烟道、烟囱 第二章炼焦炉的机械与设备

2.1 护炉铁件 2.1.1 护炉铁件的作用 2.1.2 保护板和炉门框 2.1.3 炉柱、拉条和弹簧 2.1.4 炉门 2.2 焦炉加热设备 2.2.1 加热煤气设备 2.2.2 焦炉的煤气管系 2.2.3 交换设备 2.2.4 废气设备 2.3 荒煤气导出设备 2.3.1 高压氨水及水封上升管盖装置2.3.2 上升管与桥管 2.3.3 集气管与吸气管 2.4 焦炉机械 2.4.1 装煤车 2.4.2 拦焦车 2.4.3 推焦车 2.4.4 熄焦车和电机车 2.5 附属设备和修理装置 2.5.1 炉门修理站 2.5.2 余煤单斗机和埋刮板提升机2.5.3 悬臂式起重机和电动葫芦

2.5.4 推焦杆更换装置 第一章焦炉整体结构 一、焦炉炉型的分类: 现代焦炉因火道结构,加热煤气种类及其入炉方式,实现高向加热均匀性的方法不同等分成许多型式。 因火道结构形式的不同,焦炉可分为二分式焦炉,双联火道焦炉及少数的过顶式焦炉。 根据加热煤气种类的不同,焦炉可分为单热式焦炉和复热式焦炉。 根据煤气入炉的方式不同,焦炉可分为下喷式焦炉和侧入式焦炉。 二、现代焦炉的结构: (一)、现代焦炉虽有多种炉型,但都有共同的基本要求: 1)焦并长向和高向加热均匀,加热水平适当,以减轻化学产品的裂解损失。 2)劳动生产率和设备利用率高。 3)加热系统阻力小,热工效率高,能耗低。 4)炉体坚固、严密、衰老慢、炉龄长。 5)劳动条件好,调节控制方便,环境污染少。 (二)、JN型焦炉及其基础断面 图1.1 JN型焦炉及其基础断面 现代焦炉主要由炉顶区、炭化室、燃烧室、斜道区、蓄热室、烟道区(小烟道、分烟道、总烟道)、烟囱、基础平台和抵抗墙等部分组成,蓄热室以下为烟道与基础。炭化室与燃烧室相间布置,蓄热室位于其下方,内放格子砖以回收废热,斜道区位于蓄热室顶和燃烧室底之间,通过斜道使蓄热室与燃烧室相通,炭化室与燃烧室之上为炉顶,整座焦炉砌在坚固平整的钢筋混凝土基础上,烟道一端通过废气开闭器与蓄热室连接,另一端与烟囱连接口根据炉型不同,烟道设在基础内或基础两侧。以下分别加以介绍: 1.1 炭化室 炭化室是煤隔绝空气干馏的地方,是由两侧炉墙、炉顶、炉底和两侧炉门合围起来的。炭化室的有效容积是装煤炼焦的有效空间部分;它等于炭化室有效长度、平均宽度及有效高度的乘积。炭化室的容积、宽度与孔数对焦炉生产能力、单位产品的投资及机械设备的利用率等均有重大影响。炭化室顶部还设有1个或2个上升管口,通过上升管、桥管与集气管相连。 炭化室锥度:为了推焦顺利,焦侧宽度大于机侧宽度,两侧宽度之差叫做炭化室锥度。炭化室锥度随炭化室的长度不同而变化,炭化室越长,锥度越大。在长度不变的情况下,其锥度越大越有利于推焦。生产几十年的炉室,由于其墙面产生不同程度的变形,此时锥度大就比锥度小利于推焦,从而可以延长炉体寿命。 1.2 燃烧室 双联式燃烧室每相邻火道连成一对,一个是上升气流,另一个是下降气流。双联火道结构具有加热均匀、气流阻力小、砌体强度高等优点,但异向气流接触面较多,结构较复杂,砖形多,我国大型焦炉均采用这种结构。每个燃烧室有28个或32个立火道。相邻两个为一对,组成双联火道结构。每对火道隔墙上部有跨越孔,下部除炉头一对火道外都有废气循环孔。砖煤气道顶部灯头砖稍高于废气循环孔的位置,使焦炉煤气火焰拉长,以改善焦炉高向加热均匀性和减少废气氮氧化物含量,还可防止产生短路。 图1.2 JN型焦炉斜道区结构图 1.3 斜道区 燃烧室与蓄热室相连接的通道称为斜道。斜道区位于炭化室及燃烧室下面、蓄热室上面,是焦炉加热系统的一个重要部位,进人燃烧室的焦炉煤气、空气及排出的废气均通过斜道,斜道区是连接蓄热室和燃烧室的通道区。由于通道多、压力差大,因此斜道区是焦炉中结构

焦炉煤气安全技术说明书

化学品安全技术说明书 产品名称:焦炉煤气 按照 GB/T 16483、GB/T 17519 编制 修订日期:2014年 5 月 29 日 SDS 编号:8888-02 最初编制日期:2010 年 4 月 5 日 版本:2.1 第 1 部分 化学品及企业标识 化学品中文名: 焦炉煤气 化学品英文名:Coke oven gas 企业名称:唐山8888有限公司 企业地址:河北省88888 邮编:08888 传真:0315-68888 联系电话:0315-8888; 电子邮件地址:8888888 企业应急电话:88888888888888(24h ); 产品推荐及限制用途:主要用于燃料。 第 2 部分 危险性概述 紧急情况概述: GHS 危险性类别: 易燃气体类别 1; 生殖毒性类别1A ; 特异性靶器官系统毒性(反复接触)类别1 标签要素: 象形图:

警示词:危险 危险性说明:极易燃气体、可能损害生育能力或胎儿、长期或反复接触可致器官伤害。 防范说明: ●预防措施: 避免吸入气体,仅在室外或通风良好处操作;远离热源、火花、明火,热表面——禁止吸烟;得到专门指导后操作,在阅读并了解所有安全预防措施之前,切勿操作;按要求使用个体防护装备。 ●事故响应: 如吸入,将患者转移到空气新鲜处,休息,保持利于呼吸的体位,呼叫中毒控制中心或就医。泄漏气体着火:切勿灭火,除非能安全地切断泄漏源。如果没有危险,清除一切点火源。如果接触或有担心,就医。如感觉不适,就医。 ●安全储存: 在通风良好处储存;保持容器密闭。 ●废弃处置: 本品或其容器采用焚烧法处置。 物理和化学危险: 无色有特殊臭味的极易燃气体。与空气或氧气混合能形成爆炸性混合物,如果处置不当还有可能发生回火爆炸。气体比空气轻,在室内使用和储存时,漏气上升滞留屋顶不易排出,遇火星会引起爆炸。含压力下气体,如加热可爆炸。与氧、卤素及其他强氧化剂等接触发生强烈反应。 健康危害: 煤气中的一氧化碳在血中与血红蛋白结合而造成组织缺氧。CO中毒后,受损最严重的是对缺氧最敏感的中枢神经系统及心肌。接触煤气易引起急慢性中毒,急性中毒发病较急,症状严重,通常分轻、中、重三级: 轻度中毒:血液碳氧血红蛋白浓度小于30%。中毒者出现头痛、头昏、头沉重、恶心、呕吐、全身疲乏等;有的出现轻度至中度意识障碍,但不会昏迷。中毒者离开中毒场所,经过治疗或不经过任何治疗,数小时后或次日即可好转。 中度中毒:血液碳氧血红蛋白度为30%~50%。中毒者除上述症状加重外,面部呈樱桃红色,呼吸困难,心律加快,意识障碍表现为浅至中度昏迷,经抢救可恢复。 重度中毒:血液碳氧血红蛋白浓度高于50%。患者深度昏迷或有意识障碍,且具有下列症状之一:①脑水肿;②休克或严重的心肌损害;③肺水肿;④呼吸衰竭;⑤上消化道出

投影光刻机对准系统功能原理

投影光刻机对准系统功能原理 投影光刻机对准系统功能原理 1 对准系统简介 对准系统的主要功能就是将工件台上硅片的标记与掩膜版上的标记对准,其标记的对准精度能达到±0.4μm(正态分布曲线的3σ值)。因为一片硅片在一个工艺流程中的曝光次数可能达到30次,而对准精度直接影响硅片的套刻精度,所以硅片的对准精度非常的关键。 由于对准系统对硅片标记的搜索扫描有一定的范围,它在X方向和Y方向都只能扫描 ±44μm,所以硅片被传送到工件台上进行对准之前,需要在预对准工件台上先后完成两次对准,即机械预对准和光学预对准,以便满足精细对准的捕捉范围。注意:本文所提到的对准都是所谓的精细对准。 PAS2500/10投影光刻机对准系统主要由三个单位部分构成:照明(对准光源)部分,双折射单元和对准单元。这三个单元与掩膜版、硅片、以及投影透镜的相对位置如图1所示,在图中可以看出,对准系统中用了两个完全相同的光路,这是为了满足对准功能的需要。 1.1 对准系统的光学结构和功能 由于对准系统中的两条完全相同,所以在下面的介绍中只详细地阐述了其中的一条光路。在对准系统中,照明部分的主要部件就是激光发射器,它产生波长为633nm的线性极化光,避免在硅片对准的过程中使硅片被曝光(硅片曝光用的光为紫外光)。然后对准激光将通过一系列的棱镜和透镜进入双折射单元,该激光将从双折射单元底部射出,通过曝光的投影透镜照到硅片的标记上;而经过硅片表面的反射后由原路返回,第二次经过双折射单元,由双折射单元的顶部射出,再经过聚焦后对准到掩膜版的标记上。 在对准单元内,硅片的标记图象和掩膜版标记的图象同时通过一个调制器后,将被聚焦到一个Q-CELL光电检测器上。此调制器是用来交替传送两个极化方向的硅片标记图象,Q-CELL 光电检测器将对硅片的标记的每个极化方向图象分别产生一个电信号,由此产生的电信号的振幅取决于该极化方向硅片标记的图象与掩膜版标记图象在Q-CELL的显示比例。 硅片上的对准标记如图2所示,标记分为四个象限,每个象限有8μm或8.8μm的对准条,其中有两个象限的对准条用来对准X向,另外两个象限用来对准Y向。而Q-CELL光电检测器的每一个单元对应标记的一个象限,当在Q-CELL检测器的每一个单元中,两个极化方向的标记图象的能量都相等的时候,就表明硅片与掩膜版的标记完全对准了。从图1中可以看到对准光束在经过对准单元的时候被分成了两束,一束激光将通过调制器到达Q-CELL 光电检测器,而另一束激光则以视频的形式反馈到操作台。通过操作台上的视频监视器可以直观的看到标记的移动和对准不同标记时位置的相对变化。虽然是两个不同极化方向的硅片标记与掩膜版标记同时对准,但是由于它们是同步的,彼此之间几乎看不到有何不同,所以只有一个极化图象被显示。 1.2 对准系统的电路部分 对准系统的电路部分主要的功能是: 1、产生一个信号去驱动光学调制器。 2、处理Q-CELL光电检测器产生的信号。 光学调制器的驱动:该调制器信号要求频率为50Hz的正弦信号,其振幅要求能满足对最大的Q-CELL检测信号起调制作用。 Q-CELL检测信号的处理:在对准的时候,工件台将首先沿X轴向缓慢地带动E-CHUCK上的硅片移动,进行X轴向对准,当硅片标记上X向光栅与对应的掩膜版上X向光栅对准时,

焦炉煤气知识问答

焦炉煤气知识问答 This model paper was revised by the Standardization Office on December 10, 2020

焦炉煤气知识问答 1.荒煤气的组成有哪些占多大的比例 煤在炭化室内炼焦产生的没有经过净化处理的黄色粗煤气叫荒煤气。荒煤气的组成大致是(克/米3):水蒸气250-450、焦油气80-120、粗苯30-45、氨8-16、硫化氢6-30、氰化物-、轻吡啶盐基-、萘10、其它2- 2.为什么荒煤气必须净化 煤在炭化室内炼焦产生的煤气(荒煤气)含有大量各种化学产品,其中焦油、萘容易凝结挂霜堵塞管道,影响煤气的输送。另外,荒煤气中还含有硫化物、氰化物等有毒成份,并且对煤气设备有腐蚀性。所以这种煤气不经加工处理,或者说不经精制是不能作为气体燃料使用的,煤气净化的目的是除去荒煤气中的焦油雾、氨、苯类、轻油、硫化物、氰化物、萘、煤气中的液体(即冷凝氨水),最后获得以氢、甲烷等不凝性气体为主的精制焦炉煤气。 3.净焦炉煤气组成有哪些净煤气(经回收化学产品后的煤气,又称回炉煤气)的组成大 致是(体积%):氢气54-59、甲烷23-28、其它烃类2-3、一氧化碳-7、二氧化碳-、氧气-、氮气3-5 4.荒煤气净化后主要分离出哪几种产品产率都是多少 荒煤气经冷凝回收处理后,分离出煤气、焦油、粗苯和氨他们的煤产率如下(按炼焦干煤的重量%计): 5.煤气15-19、焦油3-4、粗苯、氨城市煤气有哪些要求

各国对城市煤气的质量均有严格要求,对杂质含量都作出明确规定。中国规定的指标与工业发达国家基本相似,具体要求为:(1)低发热值大于14654kJ/m3;(2)杂质允许含量(mg/ m3):焦油和灰尘小于10,硫化氢小于20,氨小于50(冬季)和100(夏季):(3)含氧量小于1%(体积)。 6.焦炉煤气有那些性质 焦炉煤气性质主要有如下几个方面:(1)焦炉煤气是一种无色(在没有回收化学产品时呈黄色)有毒气体(约含6%的CO);(2)发热值较高(16720-18810 kJ/m3),含惰性气体少(氮气约4%),含氢气较多(近60%),燃烧速度快,火焰短;(3)爆炸范围大(5-30%),遇空气易形成爆炸性气体;(4)易着火,燃点低(600℃);(5)煤气较脏时,管道易被焦油、萘堵塞,煤气中冷凝液还会腐蚀管道。 7.焦炉煤气中的硫化氢是怎样形成的 在炼焦过程中,配合煤中的一部分硫在高温作用下,主要形成无机物的硫化氢和少许部分有机硫化物(二氧化硫、噻吩等)。有机硫化物在较高温度作用下继续发生反应,几乎全部转化为硫化氢,煤气中硫化氢所含硫约占煤气中总含硫量的90%以上。 8.硫化氢有哪些主要物理性质 硫化氢在常温下是一种带刺激臭味的气体,其密度为1.539千克/米3,燃烧时能生成二氧化硫和水,有毒,在空气中含%时就能使人死亡。同时硫化氢对钢铁设备有严重的腐蚀性。 9.硫化氢在煤气中的含量是多少

焦炉煤气常识指导

精心整理 煤气基础知识 一、 煤气基本常识 1、 煤气:是指煤或焦碳经热化学加工而产生的可做为燃料或化工原料的气 2、 、碳 3、 标立,大卡/标立。空气中安全标准为0.01克/标立,克中毒含量0.04克/标立。 碳氢化合物CnHm —无色,有毒,在空气中含有0.08%时就会引起中毒。 氧气O2—无色无味,比空气轻1.1倍,可助燃,空气中含量21%。

氮气N2—无色无味的毒性气体,比空气轻,具有窒息作用,空气中含量79%。 二氧化碳CO2—无色无味,比空气重1.5倍,有窒息作用。 一氧化碳CO—无色无味,比空气轻,热值3056大卡/标立,空气中爆炸范围12.5—75%,着火温度610C°,空气中安全浓度30mg/m3(24ppm),

工作人员进行安全技术培训,经考试合格后才准上过工作,以后每两年进行一次复检。并且煤气作业人员应每隔1-2年进行一次健康体检,不符合要求者,不应从事煤气作业”;“凡有煤气设施的单位应设专职或兼职的技术人员负责本单位的煤气安全安全管理工作”。

1、煤气区域工作必须确保两人以上,相互监护。煤气区域空气中的CO安全浓度不应超过24ppm,在超过安全浓度的地区工作时必须采取必要的安全措施。带煤气作业要佩戴正压式空气呼吸器,使用前要检查确认,保证空气压力28-30mpa,当压力低至5mpa或听到报警声,应立即撤出事故现场 2、CO浓度和可工作时间规定: 3 4 5 爆型。特别是焦炉煤气大量泄漏的现场严禁使用手机。 6、进行煤气设备检修检查,必须与煤气设备设施所属单位联系。取得允许后方可进行,工作完毕后应告知设备单位负责人。 7、进行带煤气的危险性作业,必须与焦化厂联系,请求救护人员进行现

焦炉煤气安全技术说明书

化学品安全技术说明书 产品名称:焦炉煤气 按照GB/T16483、GB/T17519编制 修订日期:2014年2月19日 SDS 编号: 最初编制日期:2006年11月20日 版本:2.1 第1部分 化学品及企业标识 化学品中文名:焦炉煤气 化学品英文名:Coke oven gas 企业名称: 企业地址: 邮编: 传真: 联系电话: 电子邮件地址: 企业应急电话: 产品推荐及限制用途:用于化学合成,如合成甲醇、光气等。用作精炼金属的还原剂。 第2部分 危险性概述 紧急情况概述:极易燃气体,与空气混合能形成爆炸性混合物。气体使眼睛不适。吸入高浓 度可引起呼吸系统刺激。空气中浓度过高时,能使人窒息。对环境有危害。 GHS 危险性类别: 易燃气体 类别1 加压气体 类别压缩气体 生殖毒性 类别1A 特异性靶器官系统毒性-反复接触 类别1 标签要素: 象形图: 警示词:危险 危险性说明:极易燃气体; 含压力下气体,如受热可爆炸; 可能损害生育力或胎儿; 长期或反复接触可致器官损害。 防范说明: ·预防措施: ——在得到专门指导后操作。在未了解所有安全措施之前,且无操作。 ——远离火花、明火、热表面。使用不产生火花的工具作业。 ——禁止吸烟。 ——按要求使用个体防护装备。

——避免吸入粉尘、烟气、气体、烟雾、蒸汽、喷雾。 ——作业场所不得进食、饮水、吸烟。 ——操作后彻底清洗。污染的工作服不得带出工作场所。 ·事故响应: ——如果接触或有担心,就医。 ——如感觉不适,就医。 ——泄漏气体着火时,切勿灭火,除非能安全的切断泄漏源。如果没有危险,消除一切点火源。 ·安全储存: ——在通风良好处储存。 ——与氧化剂、卤素分开存放,切忌混存。 ——上锁保管。 ·废弃处置: ——建议用焚烧法处置。按照当地、区域、国家规章处置内装物、容器。 物理和化学危险: 极易燃气体,与空气混合能形成爆炸性混合物,遇明火高热能引起燃烧爆炸。气体比氢气轻,在室内使用和储存时。漏气上升直流屋顶不易排出,遇火星会引起爆炸,含压力下气体,如加热可爆炸。与氧、卤素及其它强氧化剂等接触发生剧烈反应。 健康危害: 气体使眼睛不适。吸入高浓度可引起呼吸系统刺激。空气中浓度过高时,能使人窒息。长期接触,可引起头痛、头晕、乏力、注意力不集中、呼吸和心跳加速,共济失调。若不及时脱离,可致窒息死亡。长期接触能引起头痛、疲倦、头晕等症状;可能影响心血管系统,中枢神经系统;可能损害生育能力或胎儿。 环境危害: 详见第12部分。 第3部分成分/组成信息 第4部分急救措施 急救: 吸入:将患者脱离现场移至空气新鲜处。如呼吸停止,进行人工呼吸。心脏骤停时,立即进行心脏按摩。如果呼吸困难,给吸氧,就医。 皮肤接触:不会通过该途径引起损害。 眼睛接触:立即翻开上下眼睑,用流动清水彻底冲洗。立即就医。

往复式压缩机基本知识

培训教案 培训课题: 往复式压缩机基本结构、工作原理、常见故障及注意事项培训日期: 2017年8月培训课时:2课时 课程重点: 讲述往复式压缩机基本结构、工作原理、常见故障及注意事项。 培训目标及要求: 通过培训使全体员工对往复机的结构、工作原理有一定的了解,掌握其常见故障,明确注意事项,真正做到“四懂三会” 授课内容: 一、往复式压缩机的型号、结构及工作原理 1、往复式压缩机型号 2、往复式活塞压缩机的工作过程 往复式活塞压缩机属于于容积型压缩机。靠气缸内作往复运动的活塞改变工作容积压缩气体。气缸内的活塞,通过活塞杆、十字头、连杆与曲轴联接,当曲轴旋转时,活塞在汽缸中作往复运动,活塞与气缸组成的空间容积交替的发生扩大与缩小。当容积扩大时残留在余隙内的气体将膨胀,然后再吸进气体;当容积缩小时则压缩排出气体,以单作用往复式活塞压机(见图)为例,将其工作过程叙述如下:

(1)吸气过程当活塞在气缸内向左运动时,活塞右侧的气缸容积增大,压力下降。当压力降到小于进气管中压力时,则进气管中的气体顶开吸气阀进入气缸,随着活塞向左运动,气体继续进入缸内,直至活塞运动到左死点为止,这个过程称吸气过程。 (2)压缩过程当活塞调转方向向右运动时,活塞右侧的气缸容积开始缩小,开始压缩气体。(由于吸气阀有逆止作用,故气体不能倒回进气管中;同时出口管中的气体压力高于气缸内的气体压力,缸内的气体也无法从排气阀排到出口管中;而出口管中气体又因排气阀有逆止作用,也不能流回缸内。)此时气缸内气体分子保持恒定,只因活塞继续向右运动,继续缩小了气体容积,使气体的压力升高,这个过程叫做压缩过程。 (3)排气过程随着活塞右移压缩气体、气体的压力逐渐升高,当缸内气体压力大于出口管中压力时,缸内气体便顶开排气阀而进人排气管中,直至活塞到右死点后缸内压力与排气管压力平衡为止。这叫做排气过程。 (4)膨胀过程排气过程终了,因为有余隙存在,有部分被压缩的气体残留在余隙之内,当活塞从右死点开始调向向左运动时,余隙内残存的气体压力大于进气管中气体压力,吸气阀不能打开,直到活塞离开死点一段距离,残留在余隙中的高压气体膨胀,压力下降到小于进气管中的气体压力时,吸气阀才打开,开始进气。所以吸气过程不是在死点开始,而是滞后一段时间。这个吸气过程开始之前,余隙残存气体占有气缸容积的过程称膨胀过程。 4、往复式压缩机的结构 往复式活塞压缩机由机座、中间接筒、曲轴、连杆、十字头、活塞杆、活塞、填料箱、气阀、飞轮、冷却和调节控制系统及附属管线等组成。如图

光刻机和光掩膜版

十三章 光刻II 光刻机和光掩膜版 前几章讲述了光刻胶材料的性质和工艺技术。在这一章里,我们介绍如何将图形转移到硅片表面上,包括以下内容:a)将图形投影到硅片表面的装置(即光刻对准仪或光刻翻版机),由此使得所需图形区域的光刻胶曝光。 b)将图形转移到涂有光刻胶的硅片上的工具(即光掩模版和中间掩模版)。在介绍光刻机或掩模版之前,把用以设计和描述操作光刻机的光学原理简要地说明一下。它们是讲明光掩模板和中间掩模版的基础。 在讨论光学原理之前,有必要介绍一下微光刻硬件的关键。那就是把图形投影到硅表面的机器和掩模版的最重要的特征:a)分辨率、b)图形套准精度、c)尺寸控制、d)产出率。 通常,分辨律是指一个光学系统精确区分目标的能力。特别的,我们所说的微图形加工的最小分辨率是指最小线宽尺寸或机器能充分打印出的区域。然而,和光刻机的分辨率一样,最小尺寸也依赖于光刻胶和刻蚀的技术。关于分辨率的问题将在微光刻光学一章中更彻底的讲解,但要重点强调的是高分辨率通常是光刻机最重要的特性。 图形套准精度是衡量被印刷的图形能“匹配”前面印刷图形的一种尺度。由于微光刻应用的特征尺寸非常小,且各层都需正确匹配,所以需要配合紧密。

微光刻尺寸控制的要求是以高准度和高精度在完整硅片表面产生器件特征尺寸。为此,首先要在图形转移工具〔光刻掩模版〕上正确地再造出特征图形,然后再准确地在硅片表面印刷出〔翻印或刻蚀〕。 加工产率是重要但 不是最重要加工特征。例 如,如果一个器件只能在 低生产率但高分辨率的 光刻机制版,这样也许仍 然是经济的。不过,在大 部分生产应用中,加工和 机器的产率是很重要的, 也许是选择机器的重要因素之一。 1.微光刻光学 在大规模集成电路的制造中。光刻系统的分辨率是相当重要的,因为它是微器件尺寸的主要限制。在现代化投影光刻机中光学配件的质量是相当高的,所以图形的特征尺寸因衍射的影响而受限制,而不会是因为镜头的原因(它们被叫做衍射限制系统)。因为分辨率是由衍射限度而决定的,那就必须弄明白围绕衍射限度光学的几个概念,包括一致性、衍射、数值孔径、调频和许多重要调节转换性能。下几节的目的就是要简要和基本地介绍这些内容。参考资料1·2讲得更详细。 衍射·一致性·数值孔径和分辨率 图(1):一束空间连续光线经过直的边缘时的光强 a)依据几何光学b)散射

焦炉煤气知识问答

精心整理 焦炉煤气知识问答 1. 荒煤气的组成有哪些?占多大的比例? 煤在炭化室内炼焦产生的没有经过净化处理的黄色粗煤气叫荒煤气。荒煤气的组成大致是(克/米3):水蒸气250-450、焦油气80-120、粗苯30-45、氨8-16、硫化氢6-30、氰化物1.0-2.5、轻吡啶盐基0.4-0.6、萘10、其它2-2.5 2. 3. 5.5-74. 炼焦干煤的重量%计): 煤气15-19、焦油3-4、粗苯0.9-1.2、氨0.2-0.3 5. 城市煤气有哪些要求? 各国对城市煤气的质量均有严格要求,对杂质含量都作出明确规定。中国规定的指标与工业发达国家基本相似,具体要求为:(1)低发热值大于14654kJ/m 3;(2)杂质

允许含量(mg/m3):焦油和灰尘小于10,硫化氢小于20,氨小于50(冬季)和100(夏季):(3)含氧量小于1%(体积)。 6.焦炉煤气有那些性质? 焦炉煤气性质主要有如下几个方面:(1)焦炉煤气是一种无色(在没有回收化学产品时呈黄色)有毒气体(约含6%的CO);(2)发热值较高(16720-18810kJ/m3), (3) ℃);(5 7. %以上。 8. 9. 焦炉煤气中硫化氢含量主要取决于配合煤的含硫量。煤在高温炼焦时,煤中的硫约有25-30%转入到煤气中。我国煤含硫量较低,焦炉煤气中硫化氢含量一般为:洗苯塔前为4.5-6.0克/米3,洗苯塔后为4-4.5克/米3。 10.焦炉煤气为什么要脱除硫化氢? 焦炉煤气中硫化氢是一种有害物质,它腐蚀化学产品回收设备及煤气储存输送设

备。含硫化氢高的焦炉煤气用于炼钢,会降低钢的质量;用于合成氨生成,会使催化剂中毒和腐蚀设备;用作城市煤气时,硫化氢燃烧产生的二氧化硫有毒,因而破坏了环境卫生,影响人的健康。因此,焦炉煤气净化过程脱除硫化氢是非常重要的。 11.为什么在焦炉煤气的净化过程中要除氨? 工业生产中所以要除去煤气中氨,主要有三点原因:(1)氨是一种较好的农业肥料。(23)氨 12.煤 600-650 13.什 (2 14.什 15.焦炉煤气煤气的爆炸极限是多少?为什么规程规定煤气中含氧量不大于2%? 焦炉煤气的爆炸极限是5.5-30%。是指空气中煤气的体积含量;简单的数学演算可知空气进入煤气中的量要达到70-94.5%时,才能引起爆炸,低于70%或高于94.5%都不会引起爆炸,即是煤气含氧量14.7%-19.85%时才能引起爆炸。为了保险起见,煤气规程规定含氧量不大于2%。

焦炉煤气常识指导

焦炉煤气常识指导文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

煤气基础知识 一、煤气基本常识 1、煤气:是指煤或焦碳经热化学加工而产生的可做为燃料或化工原料的气体。 2、煤气是可燃气体与不可燃气体的机械混合物。 可燃气体成分:一氧化碳CO、甲烷CH4、氢气H2、硫化氢H2S、碳氢化合物 CnHm。 不可燃气体成分:二氧化碳CO2、氮气N2、氧气O2 3、各种成分的性质: 氢气H2—无色无味,比空气轻1.45倍。热值为2612大卡/标立与空气混合遇明火易暴炸。爆炸范围4.1-74.2%,无毒,但浓度较大时易引起窒息。 甲烷CH4—无色但有葱味,比空气轻1.8倍,热值为8699大卡/标立,爆炸范围5.3-15%无毒,但浓度大时易引起窒息。 硫化氢H2S—无色,剧烈臭味,比空气轻1.2倍,燃烧热值为5600大卡/标立。空气中安全标准为0.01克/标立,克中毒含量0.04克/标立。 碳氢化合物CnHm—无色,有毒,在空气中含有0.08%时就会引起中毒。 氧气O2—无色无味,比空气轻1.1倍,可助燃,空气中含量21%。 氮气N2—无色无味的毒性气体,比空气轻,具有窒息作用,空气中含量79%。 二氧化碳CO2—无色无味,比空气重1.5倍,有窒息作用。 一氧化碳CO—无色无味,比空气轻,热值3056大卡/标立,空气中爆炸范围12.5—75%,着火温度610C°,空气中安全浓度30mg/m3(24ppm),可中毒致死浓度500ppm 4、煤气种类: 高炉煤气BFG、转炉煤气LDG、焦炉煤气COG

(CO)的优越性,工业上广泛使用,但因其着火点和爆炸下限偏低,因此控制泄漏、着火和爆炸尤为重要。 5、煤气的六大特性和三大危害 特性:燃烧爆炸性、毒害性、导电性、压缩膨胀性、扩散性、腐蚀性 危害:中毒、着火、爆炸 二、煤气使用 (一)煤气使用一般安全 1986年、2005年分别颁布和修订再版《工业企业煤气安全规程》(GB6222—2005),指导煤气生产、供应、使用的基本法规。其中明确规定:“应对煤气工作人员进行安全技术培训,经考试合格后才准上过工作,以后每两年进行一次复检。并且煤气作业人员应每隔1-2年进行一次健康体检,不符合要求者,不应从事煤气作业”;“凡有煤气设施的单位应设专职或兼职的技术人员负责本单位的煤气安全安全管理工作”。 1、煤气区域工作必须确保两人以上,相互监护。煤气区域空气中的CO安全浓度不应超过24ppm,在超过安全浓度的地区工作时必须采取必要的安全措施。带煤气作业要佩戴

Nikon光刻机对准系统功能原理

Nikon光刻机对准系统功能原理 投影光刻机对准系统功能原理 1 对准系统简介 对准系统的主要功能就是将工件台上硅片的标记与掩膜版上的标记对准,其标记的对准精度能达到±0.4μm (正态分布曲线的3σ值)。因为一片硅片在一个工艺流程中的曝光次数可能达到30次,而对准精度直接影响硅片的套刻精度,所以硅片的对准精度非常的关键。 由于对准系统对硅片标记的搜索扫描有一定的范围,它在X方向和Y方向都只能扫描±44μm,所以硅片被传送到工件台上进行对准之前,需要在预对准工件台上先后完成两次对准,即机械预对准和光学预对准,以便满足精细对准的捕捉范围。注意:本文所提到的对准都是所谓的精细对准。 PAS2500/10投影光刻机对准系统主要由三个单位部分构成:照明(对准光源)部分,双折射单元和对准单元。这三个单元与掩膜版、硅片、以及投影透镜的相对位置如图1所示,在图中可以看出,对准系统中用了两个完全相同的光路,这是为了满足对准功能的需要。 1.1 对准系统的光学结构和功能 由于对准系统中的两条完全相同,所以在下面的介绍中只详细地阐述了其中的一条光路。在对准系统中,照明部分的主要部件就是激光发射器,它产生波长为633nm的线性极化光,避免在硅片对准的过程中使硅片被曝光(硅片曝光用的光为紫外光)。然后对准激光将通过一系列的棱镜和透镜进入双折射单元,该激光将从双折射单元底部射出,通过曝光的投影透镜照到硅片的标记上;而经过硅片表面的反射后由原路返回,第二次经过双折射单元,由双折射单元的顶部射出,再经过聚焦后对准到掩膜版的标记上。 在对准单元内,硅片的标记图象和掩膜版标记的图象同时通过一个调制器后,将被聚焦到一个Q-CELL光电检测器上。此调制器是用来交替传送两个极化方向的硅片标记图象,Q-CELL光电检测器将对硅片的标记的每个极化方向图象分别产生一个电信号,由此产生的电信号的振幅取决于该极化方向硅片标记的图象与掩膜版标记图象在Q-CELL的显示比例。 硅片上的对准标记如图2所示,标记分为四个象限,每个象限有8μm或8.8μm的对准条,其中有两个象限的对准条用来对准X向,另外两个象限用来对准Y向。而Q-CELL光电检测器的每一个单元对应标记的一个象限,当在Q-CELL检测器的每一个单元中,两个极化方向的标记图象的能量都相等的时候,就表明硅片与掩膜版的标记完全对准了。从图1中可以看到对准光束在经过对准单元的时候被分成了两束,一束激光将通过调制器到达Q-CELL光电检测器,而另一束激光则以视频的形式反馈到操作台。通过操作台上的视频监视器可以直观的看到标记的移动和对准不同标记时位置的相对变化。虽然是两个不同极化方向的硅片标记与掩膜版标记同时对准,但是由于它们是同步的,彼此之间几乎看不到有何不同,所以只有一个极化图象被显示。 1.2 对准系统的电路部分 对准系统的电路部分主要的功能是: 1、产生一个信号去驱动光学调制器。 2、处理Q-CELL光电检测器产生的信号。 光学调制器的驱动:该调制器信号要求频率为50Hz的正弦信号,其振幅要求能满足对最大的Q-CELL检测信号起调制作用。 Q-CELL检测信号的处理:在对准的时候,工件台将首先沿X轴向缓慢地带动E-CHUCK上的硅片移动,进行X轴向对准,当硅片标记上X向光栅与对应的掩膜版上X向光栅对准时,将产生一个对准电信号,该信号以中断信号的形式输入计算机,X向对准的两个象限光栅都将产生其各自的中断信号。当产生中断信号的同时,计算机将记录下此时工件台的位置。在X向对准的时候,一个标记中两个象限的光栅同时参与,在每个象限中光栅条纹之间的间距是一个恒定的常数,但是这两个象限的光栅条纹间距并不相同,如图2所示。在对准扫描的过程中,每一个象限中的每一条光栅条纹都将会产生各自的一个中断信号,由于两个象限的光栅条纹间距不同,所以在扫描的时候只能有一个点将同时产生两个中断信号,而这个点就是在X

相关主题
文本预览
相关文档 最新文档