当前位置:文档之家› 3NF既具有无损连接性又保持函数依赖的分解算法

3NF既具有无损连接性又保持函数依赖的分解算法

3NF既具有无损连接性又保持函数依赖的分解算法
3NF既具有无损连接性又保持函数依赖的分解算法

(完整版)高中抽象函数的单调性习题总结,推荐文档

10月2日 抽象函数的单调性 1、对任意都有:,当,又知 ()f x ,x y R ∈()()()f x y f x f y +=+0,()0x f x ><时,求在上的值域. (1)2f =-()f x []3,3x ∈-2、f(x)对任意实数x 与y 都有,当x>0时,f(x)>2 ()()()2f x f y f x y -=--(1)求证:f(x)在R 上是增函数; (2)若f(1)=5/2,解不等式f(2a-3) < 3. 3、已知函数对任意有,当时,f x ()x y R ,∈f x f y f x y ()()()+=++2x >0,,求不等式的解集. f x ()>2f ()35=f a a ()2223--<4、f(x)是定义在x>0的函数,且f(xy) = f(x) + f(y);当x>1时有f(x)<0;f(3) = -1. (1)求f(1)和f(1/9)的值;(2)证明f(x)在x>0上是减函数; (3)解不等式f(x) + f(2-x) < 2。 5、定义在上函数对任意的正数均有:,且当(0,)+∞()y f x =,a b (()() a f f a f b b =-时,,(I )求的值;(II )判断的单调性, 1x <()0f x >(1)f ()f x 6、若非零函数对任意实数均有,且当时,)(x f b a ,()()()f a b f a f b +=?0x f (1)求证: ;(2)求证:为减函数 (3)当时,解不等()0f x >)(x f 161)4(=f 式4 1)5()3(2≤ -?-x f x f 7、已知是定义在[-1,1]上的奇函数,且,若任意的,总有 ()f x (1)1f =[1,1]a b ∈-、. ()(()())0a b f a f b ++>(1)判断函数在[-1,1]上的单调性,并证明你的结论;(2)解不等式:()f x ;(3)若对所有的恒成立,其中 (1)(12)f x f x -<-2()21f x m pm -+≤[1,1]x ∈-

复合函数单调性的判断

复合函数单调性的判断))((x g f y = 以上规律还可总结为:“同向得增,异向得减”或“同增异减”. 1求函数y=2 1log (4x-x 2)的单调区间. 2、 求函数()2 31x y =的单调性及最值 3.在区间(-∞,0)上为增函数的是 A. ) (log 21x y --= B.x x y -=1 C.y =-(x +1)2 D.y =1+x 2 3、求函数)12(log )(2 1+=x x f 的单调区间. 4、(1)函数3422)(-+-=x x x f 的递增区间为___________; (2)函数)34(log )(2 2 1-+-=x x x f 的递减区间为_________ 5、设函数)(x f 是减函数,且0)(>x f ,下列函数中为增函数的是 ( ) (A ))(1 x f y -= (B ))(2x f y = (C ))(log 2 1x f y = (D )2 )]([x f y =

7、下列函数中,在区间]0,(-∞上是增函数的是 ( ) (A )842+-=x x y (B ))(log 21x y -=(C )1 2+- =x y (D )x y -=1 20.函数 342-+-=x x y 的单调增区间是 A.[1,3] B.[2,3] C.[1,2] D.(-∞,2] 21.函数y= 在区间[4,5]上的最大值是_______,最小值是_______。 21.若函数f (x )在R 上是减函数,那么f (2x -x 2 )的单调增区间是 A.(-∞,1] B.[-1,+∞) C.(-∞,-1] D.[1,+∞) 31.函数y =log a 2(x 2 -2x -3)当x <-1时为增函数,则a 的取值范围是 A.a >1 B.-11或a <-1 例7.若f(x)=log a (3-ax)在[0,1]上是减函数,则a 的取值范围是_______。 例6.已知函数f(x)= (x 2-ax+3a)在区间[2,+∞)上是减函数,则实数a 的取值范围是_____ 例6.已知函数f(x)= (x 2-ax+3a)在区间[2,+∞)上是减函数,则实数a 的取值范围是_______。 分析如下: 令u=x 2-ax+3a ,y= u 。 因为y= u 在(0,+∞)上是减函数 ∴ f(x)= (x 2-ax+3a)在[2,+∞)上是减函数 u=x 2-ax+3a 在[2,+∞)上是增函数,且对任意x∈[2,+∞),都有u >0。

函数单调性的判定方法(高中数学)

函数单调性的判定方法 学生: 日期; 课时: 教师: 1.判断具体函数单调性的方法 定义法 一般地,设f 为定义在D 上的函数。若对任何1x 、D x ∈2,当21x x <时,总有 (1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数; (2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。 利用定义来证明函数)(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <; . (2)作差)()(21x f x f -; (3)变形(普遍是因式分解和配方); (4)断号(即判断)()(21x f x f -差与0的大小); (5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。 例1.用定义证明)()(3 R a a x x f ∈+-=在),(+∞-∞上是减函数。 证明:设1x ,),(2+∞-∞∈x ,且21x x <,则 ).)(()()()(212221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=- 由于04 3)2(2 2221212 221>++ =++x x x x x x x ,012>-x x 则0))(()()(212 22 11221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在()+∞∞-,上是减函数。 ~ 例2.用定义证明函数x k x x f + =)( )0(>k 在),0(+∞上的单调性。

最小函数依赖集的求法

一、等价和覆盖 定义:关系模式R上的两个依赖集F和G,如果F+=G+,则称F和G是等价的,记做F≡G。若F≡G,则称G是F的一个覆盖,反之亦然。两个等价的函数依赖集在表达能力上是完全相同的。 二、最小函数依赖集 定义:如果函数依赖集F满足下列条件,则称F为最小函数依赖集或最小覆盖。 ① F中的任何一个函数依赖的右部仅含有一个属性; ② F中不存在这样一个函数依赖X→A,使得F与F-{X→A}等价; ③ F中不存在这样一个函数依赖X→A,X有真子集Z使得F-{X→A}∪{Z→A}与F等价。 算法:计算最小函数依赖集。 输入一个函数依赖集 输出 F的一个等价的最小函数依赖集G 步骤:① 用分解的法则,使F中的任何一个函数依赖的右部仅含有一个属性; ② 去掉多余的函数依赖:从第一个函数依赖X→Y开始将其从F中去掉,然后在剩下的函数依赖中求X的闭包X+,看X+是否包含Y,若是,则去掉X→Y;否则不能去掉,依次做下去。直到找不到冗余的函数依赖; ③ 去掉各依赖左部多余的属性。一个一个地检查函数依赖左部非单个属性的依赖。例如XY→A,若要判Y为多余的,则以X→A代替XY→A是否等价?若A (X)+,则Y是多余属性,可以去掉。 举例:已知关系模式R,U={A,B,C,D,E,G}, F={AB→C,D→EG,C→A,BE→C,BC→D,CG→BD,ACD→B,CE→AG},求F的最小函数依赖集。 解1:利用算法求解,使得其满足三个条件 ① 利用分解规则,将所有的函数依赖变成右边都是单个属性的函数依赖,得F为: F={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→B,CG→D,ACD→B,CE→A,CE→G} ② 去掉F中多余的函数依赖 A.设AB→C为冗余的函数依赖,则去掉AB→C,得: F1={D→E,D→G,C→A,BE→C,BC→D,CG→B,CG→D,ACD→B,CE→A,CE→G}

自己整理抽象函数单调性及奇偶性练习及答案

1、已知f x ()的定义域为R ,且对任意实数x ,y 满足f xy f x f y ()()()=+,求 证:f x ()是偶函数。 2、已知f(x)是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x,y,f(x)都满足f(xy)=yf(x)+xf(y). (1)求f(1),f(-1)的值; (2)判断f(x)的奇偶性,并说明理由. 3、函数f(x)对任意x ?y ∈R,总有f(x)+f(y)=f(x+y),且当x>0时, f x ()<0, f(3)=-2. (1)判断并证明f(x)在区间(-∞,+∞)上的单调性; (2)求f(x)在[-3,3]上的最大值和最小值. 4、已知函数f (x )在(-1,1)上有定义,f (2 1)=-1,当且仅当0

6、定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1) 求证:f(0)=1; (2) 求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2)>1,求x 的取值范围。 7、已知函数()f x 的定义域为R,对任意实数,m n 都有1 ()()()2 f m n f m f n +=++, 且1()02f =,当1 2 x >时, ()f x >0. (1)求(1)f ; (2) 判断函数()f x 的单调性,并证明. 8、函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任 意,x y R ∈,有()[()]y f xy f x =;③1 ()13 f >. (1)求(0)f 的值; (2)求证: ()f x 在R 上是单调减函数;

数据库-部分函数依赖,传递函数依赖,完全函数依赖,三种范式的区别

数据库-部分函数依赖,传递函数依赖,完全函数依赖, 三种范式的区别 要讲清楚范式,就先讲讲几个名词的含义吧: 部分函数依赖:设X,Y是关系R的两个属性集合,存在X→Y,若X’是X的真子集,存在X’→Y,则称Y部分函数依赖于X。 举个例子:学生基本信息表R中(学号,身份证号,姓名)当然学号属性取值是唯一的,在R关系中,(学号,身份证号)->(姓名),(学号)->(姓名),(身份证号)->(姓名);所以姓名部分函数依赖与(学号,身份证号); 完全函数依赖:设X,Y是关系R的两个属性集合,X’是X的真子集,存在X→Y,但对每一个X’都有X’!→Y,则称Y完全函数依赖于X。例子:学生基本信息表R(学号,班级,姓名)假设不同的班级学号有相同的,班级内学号不能相同,在R关系中,(学号,班级)->(姓名),但是(学号)->(姓名)不成立,(班级)->(姓名)不成立,所以姓名完全函数依赖与(学号,班级); 传递函数依赖:设X,Y,Z是关系R中互不相同的属性集合,存在X→Y(Y !→X),Y→Z,则称Z传递函数依赖于X。 例子:在关系R(学号 ,宿舍, 费用)中,(学号)->(宿舍),宿舍!=学号,(宿舍)->(费用),费用!=宿舍,所以符合传递函数的要求;

在任何一个关系数据库中,第一范式(1NF)是对关系模式的基本要求,不满足第一范式(1NF)的数据库就不是关系数据库。 所谓第一范式(1NF)是指数据库表的每一列(即每个属性)都是不可分割的基本数据项,同一列中不能有多个值,即实体中的某个属性不能有多个值或者不能有重复的属性。简而言之,第一范式就是无重复的列。 2、第二范式(2NF) 第二范式(2NF)是在第一范式(1NF)的基础上建立起来的,即满足第二范式(2NF)必须先满足第一范式(1NF)。第二范式(2NF)要求数据库表中的每个实例或行必须可以被唯一地区分。为实现区分通常需要为表加上一个列,以存储各个实例的唯一标识。员工信息表中加上了员工编号(emp_id)列,因为每个员工的员工编号是唯一的,因此每个员工可以被唯一区分。这个唯一属性列被称为主关键字或主键、主码。 第二范式(2NF)要求实体的属性完全依赖于主关键字。所谓完全依赖是指不能存在仅依赖主关键字一部分的属性,如果存在,那么这个属性和主关键字的这一部分应该分离出来形成一个新的实体,新实体与原实体之间是一对多的关系。为实现区分通常需要为表加上一个列,以存储各个实例的唯一标识。简而言之,第二范式就是非主属性依赖于主关键字。

函数单调性的判定方法

函数单调性的判定方法 1.判断具体函数单调性的方法 对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种: 1.1 定义法 首先我们给出单调函数的定义。一般地,设f 为定义在D 上的函数。若对任何1x 、 D x ∈2,当21x x <时,总有 (1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数; (2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。 给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。用单调性的定义判断函数单调性的方法叫定义法。利用定义来证明函数 )(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -; (3)变形(普遍是因式分解和配方); (4)断号(即判断)()(21x f x f -差与0的大小); (5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。 例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。 证明:设1x ,),(2+∞-∞∈x ,且21x x <,则

).)(()()()(212 221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=- 由于04 3)2(2 2221212221>++ =++x x x x x x x ,012>-x x 则0))(()()(212 2211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在() +∞∞-,上是减函数。 例2.用定义证明函数x k x x f + =)()0(>k 在),0(+∞上的单调性。 证明:设1x 、),0(2+∞∈x ,且21x x <,则 )()()()(221121x k x x k x x f x f +-+ =-)()(2 121x k x k x x -+-= )( )(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((2 12121x x k x x x x --=, 又210x x <<所以021<-x x ,021>x x , 当1x 、],0(2k x ∈时021≤-k x x ?0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ?0)()(21<-x f x f ,此时函数)(x f 为增函数。 综上函数x k x x f + =)()0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。 此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当 21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。在解决问题时,定义法是最直 接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。 1.2 函数性质法 函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我

函数依赖习题

1.设有关系模式W(C,P,S,G,T,R),其中各属性的含义是:C课程,P教师,S学生,G成绩,T时间,R 教室,根据定义有如下数据依赖集 D={C→G,(S,C)→G,(T,R)→C,(T,P)→R,(T,S)→R}关系模式W的一个关键字是__,W的规范化程度最高达到__()。 A、(S,C),1NF B、(T,R),3NF C、(T,P),4NF D、(T,S),2NF 2.对于关系R,第三范式是R中的每个非主属性应满足() A、与主关键字存在单值依赖关系 B、与主关键字存在多值依赖关系 C、函数传递依赖主关键字 D、非函数传递依赖主关键字 3.在一个关系R中,若每个数据项都是不可分割的,那么关系R一定属于() A、BCNF B、1NF C、2NF D、3NF 4.根据关系数据库规范化理论,关系数据库中的关系要满足第一范式,下面“部门”关系中,因哪个属性而使它不满足第一范式() 部门(部门号,部门名,部门成员,部门总经理) A、部门总经理 B、部门成员 C、部门名 D、部门号 5.下列关于规范化理论各项中正确的是() A、对于一个关系模式来说,规范化越深越好 B、满足二级范式的关系模式一定满足一级范式 C、一级范式要求一非主码属性完全函数依赖关键字 D、规范化一般是通过分解各个关系模式实现的,但有时也有合并 6.规范化理论是关系数据库进行逻辑设计的理论依据。根据这个理论,关系数据库中的关系必须满足其每一属性都是() A、互不相关的 B、不可分解的 C、长度可变的 D、互相关联的 7.在关系模式R(U,F)中,如果F是最小函数依赖集,则() A、R∈2NF B、R∈3NF C、R∈BCNF D、R的规范化程度与F是否最小函数依赖集无关 8.在关系模式R(U,F)中,R中任何非主属性对键完全函数依赖是R∈3NF的() A、充分必要条件 B、必要条件 C、充分条件 D、既不充分也不必要条件 9在二元关系模式R(U,F)中,X,Y都是单一属性,如果X→Y,则R最高可以达到()A、2NF B、3NF C、BCNF D、4NF

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

高中数学函数单调性的判断方法

高中数学函数单调性的判断方法 单调性是函数的重要性质,它在数学中有许多应用,如我们常用求函数单调性的方法求函数的值域。那么,有哪些求函数单调性的方法呢? 方法一:定义法 对于函数f(x)的定义域I 内某个区间A 上的任意两个值12,x x (1)当12x x <时,都有12()()f x f x <,则说f(x)在这个区间上是增函数; (2)若当12x x <时,都有12()()f x f x >,则说f(x) 在这个区间上是减函数。 例如:根据函数单调性的定义,证明:函数 在 上是减函数。 要证明函数f (x )在定义域内是减函数,设任意1212,x x R x x ∈<且,则33221221212121()()()()f x f x x x x x x x x x -=-=-++,12x x <因为 210x x ->所以,且在1x 与2x 中至少有一个不为 0,不妨设20x ≠,那么222222121123()24 x x x x x x x ++=++0>,12()()f x f x >所以,故 ()f x 在 (,)-∞+∞上为减函数。 方法二:性质法 除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有: 1. f(x)与c?f(x)当c >0具有相同的单调性,当c <0具有相反的单调性; 2.当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; 3.当f(x)、g(x)都是增(减)函数,则f(x)?g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数; 例如,已知f (x )在R 上是减函数,那么-5f (x )为____函数。 这道题很简单,我们根据单调性的性质,很容易就能判断它是增函数。 方法三:同增异减法(处理复合函数的单调性问题) 对于复合函数y =f [g(x)]满足“同增异减”法(应注意内层函数的值域), 可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中, 若有两个函数单调性相同,则第三个函数为增函数;

专题:抽象函数的单调性与奇偶性的证明.

特殊模型 抽象函数 正比例函数f(x)=kx (k≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f (x)f(y) [或) y (f )x (f )y x (f = ] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y )=f(x )f(y) [) y (f )x (f )y x (f = -或 对数函数 f(x )=lo ga x (a 〉0且a≠1) f(xy)=f(x )+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x )=si nx f (x)=cosx f(x+T )=f(x ) 正切函数 f(x )=tanx )y (f )x (f 1)y (f )x (f )y x (f -+= + 余切函数 f(x)=co tx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 1。已知()()2()()f x y f x y f x f y ++-=,对一切实数x 、y 都成立,且(0)0f ≠,求证()f x 为偶函数。 证明:令x =0, 则已知等式变为()()2(0)()f y f y f f y +-=……① 在①中令y =0则2(0)f =2(0)f ∵(0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为偶函数。 2.奇函数()f x 在定义域(-1,1)内递减,求满足2 (1)(1)0f m f m -+-<的实数m 的取值范围。 解:由2 (1)(1)0f m f m -+-<得2 (1)(1)f m f m -<--,∵()f x 为函数,∴2 (1)(1)f m f m -<- 又∵()f x 在(—1,1)内递减,∴2 21111110111m m m m m -<--? 3。如果()f x =2 ax bx c ++(a 〉0)对任意的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小 解:对任意t 有(2)2)f t f t +=-∴x =2为抛物线y =2 ax bx c ++的对称轴 又∵其开口向上∴f (2)最小,f (1)=f (3)∵在[2,+∞)上,()f x 为增函数 ∴f (3)〈f (4),∴f (2)〈f (1)〈f (4) 4。 已知函数f (x )对任意实数x,y ,均有f(x +y )=f (x )+f (y ),且当x >0时,f (x)>0,f (-1)=-2,求f (x )在区间[-2,1]上的值域。 分析:由题设可知,函数f (x )是的抽象函数,因此求函数f (x )的值域,关键在于研究它的单调性。 解:设,∵当 ,∴ , ∵, ∴ ,即,∴f (x )为增函数. 在条件中,令y =-x ,则,再令x =y=0,则f (0)=2 f (0),∴f (0)=0,故f(-x)=f (x ),f(x )为奇函数, ∴f (1)=-f (-1)=2,又f (-2)=2 f (-1)=-4, ∴f(x )的值域为[-4,2]。

判断函数单调性的常见方法

判断函数单调性的常见方法 一、函数单调性的定义: 一般的,设函数y=f(X)的定义域为A,I?A,如对于区间内任意两个值X1、X2, 1)、当X1X2时,都有f(X1)>f(X2),那么就说y=f(x)在区间I上是单调减函数,I称为函数的单调减区间。 二、常见方法: Ⅰ、定义法:定义域判断函数单调性的步骤 ①取值: 在函数定义域的某一子区间I内任取两个不等变量X1、X2,可设X1

=(x1-x2)(x12+x22+x1x2+1) =(x1-x2)[﹙x1+1/2x2﹚2+1+3/4x22] ∵x1、x2?(-∞,+∞),x10 故f(x1)-f(x2)<0,即f(x1)

抽象函数的单调性

抽象函数的单调性 抽象函数的含义:没有解析式的函数,在考试中抽象函数始终作为一大难点出现在考生面前。思路:添项法。 类型:一次函数型,幂函数型,指数函数型,对数函数型。 或 例1、() f x对任意,x y R ∈都有:()()() f x y f x f y +=+,当0,()0 x f x >< 时,判断() f x在R上的单调性。 ()()() () ()()上是增函数 在 解: R x f x f x f x x f x x x x x x f x f x f x x f x f x x x f x f x f x x R x x ) ( ,0 ) ( ,0 ) ( ) ( ) ( ) ( , , 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 2 2 1 2 1 2 1 2 1 < - ∴ < - > - ∴ > - = - + - = - + - = - < ∈ ? 例2、f(x)对任意实数x与y都有()()()2 f x f y f x y -=--,当x>0时,f(x)>2 (1)求证:f(x)在R上是增函数;(2)若f(1)=5/2,解不等式f(2a-3) < 3 () () 2 5 2 3 2 ) ( )2( )3 2( 3 )2( 2 )1 2( )1( )2( ,1 ,2 2 ) ( ) ( ,0 2 ) ( 2 ) ( ,0 , 2 ) ( ) ( , 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 > > - ∴ < - ∴ = ∴ - - = - = = ∴ > - > - - ∴ > > > - > - - = - > ∈ < ? a a R x f f a f f f f f y x R x f x f x f x x f x f x x x x x x x f x f x f x x R x x 解得 上是增函数 在 又 原不等式可化为 则 )令 ( 上是增函数 在 则 时, 当 ) 解:( 【专练】:1、已知函数f x()对任意x y R ,∈有f x f y f x y ()()() +=++ 2,当x>0时,f x()>2,f()35 =,求不等式f a a () 2223 --<的解集。 2、定义在R上的函数f(x)满足:对任意x,y∈R都有()()() f x y f x f y -=-,且当0,()0 x f x << 时 (1)求证f(x)为奇函数; (2)若f(k·3x)+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围.

第六章 函数依赖

朱彦荣 20132184 软件工程2 第六章作业 一. 简答题 1.数据依赖的分类? 函数依赖,多值依赖,连接依赖 2.关系模式可能存在的4个问题? 插入异常、删除异常、冗余、更新异常 3.函数依赖的分类? 平凡函数依赖、非平凡函数依赖、完全函数依赖、部分函数依赖、传递函数依赖 4.函数依赖范畴内的4个范式? 第一范式(1NF)、第二范式(2NF)、第三范式(3NF)、BCNF范式 5.3NF关系模式存在异常的可能原因? 仍可能出现插入异常、删除异常、冗余和更新异常。原因是:还可能存在主属性部分函数依赖于键。 6.关系模式规范化的方法? 首先要保证属性的原子性,即至少为1NF,然后由1NF到2NF是消除非主属性对键的部分函数依赖,2NF到3NF是消除非主属性对键的传递函数依赖。3NF到BCNF是消除主属性对键的部分函数依赖和传递函数依赖,一般来说到这里就可以了。然后,有BCNF范式到4NF范式消除非平凡且非函数依赖的多值依赖,最后由4NF到5NF是消除不是候选键所蕴含的连接依赖。 7.如果X和Y之间是1:n的联系,则X和Y之间的函数关系是谁决定谁?如果是1:1和 m:n呢? 若X:Y=1:N,则N方决定1方,即Y->X 若X:Y=1:1,则X->Y且Y->X,即X<->Y,X和Y等价 若X:Y=M:N,则不能相互决定 二.设有关系模式:R(Sid,Sname,Cid,Cname,Score,Tid),其中:Sid、Sname、Cid、Cname、Score、Tid分别表示学号、学生姓名、课程编号、课程名、成绩、教师编号,并有如下语义要求: ●课程与教师间的联系为1:1; ●学生与课程间的联系为m:n; ●一名学生只能有一个学号,且学号唯一; ●一门课程只能有一个课程号,且课程号唯一。 请完成:

函数单调性方法和各种题型

(一)判断函数单调性的基本方法 Ⅰ、定义法: 定义域判断函数单调性的步骤:取值、作差(或商)变形、定号、判断。例1:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明 Ⅱ、直接法(一次函数、二次函数、反比例函数的单调可直接说出): 在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数 例2:判断函数y=-x+1+1/x在(0,+∞)内的单调性 Ⅲ、图像法: 说明:⑴单调区间是定义域的子集 ⑵定义x 1、x 2 的任意性 ⑶代数:自变量与函数值同大或同小→单调增函数 自变量与函数相对→单调减函数 例3:y=|x2+2x-3| 练习:

(二) 函数单调性的应用 Ⅰ、利用函数单调性求连续函数的值域(最值) 根据增函数减函数的定义我们可得到如下结论: (1)若 f(x)在某定义域[a,b]上是增函数,则当x=a 时, f(x) 有最小值f(a),当 x=b 时, f(x)有最大值 f(b)。 (2)若 f(x)在某定义域[a,b]上是减函数,则当x=a 时, f(x) 有最大值f(a),当 x=b 时, f(x)有最小值 f(b)。 例1:求下列函数的值域 (1)y=x 2-6x+3, x ∈[-1,2] (2)y=-x 2+2x+2, x ∈[-1,4] 练习题: 1.已知函数f(x)在区间[a,c]上单调减小,在区间[c,b]上单调增加,则f(x)在 [a,b]上的最小值是 ( ) 2.数f(x)=4x 2-mx+5在区间[-2,+∞)上是增函数,则f(1)的取值范围是 ( ) 3、( )有函数13+--=x x y 存在、最大值、最小值都不,最小值、最大值,最小值、最大值,最小值、最大值D C B A 4 -44 -00 4 4、](()()的值域为 时,函数当1435,02+-=∈x x x f x ()()][()()]()][5,5,323205,0f c D f f C f f B f f A 、、、、、????? ? ??????????? ?? 5、求函数y=-x-6+ 的值域 x -1

函数依赖

函数依赖 2.1、属性间的联系 实体间的联系有两类:一类是实体与实体之间的联系;另一类是实体内部各属性间的联系。 属性间的联系可分为以下三类: (1)一对一联系(1∶1) 以职工模式为例:职工(职工号,姓名,职称,部门)。如果该企业(或单位)中职工无重名,则属性职工号与姓名之间是1∶1联系。一个职工号唯一地决定一个姓名,一个姓名也可决定唯一的职工号。 设X、Y是关系R的两个属性(集)。如果对于X中的任一具体值,Y中至多有一个值与之对应,且反之亦然,则称X、Y两属性间是一对一联系。 (2)一对多联系(1∶ m) 在职工模式中,职工号和职称间是一对多联系。一个职工号只对应一种职称(如胡一民只能对应工程师),但一种职称却可对应多个职工号(如工程师可对应多名职工)。 设X、Y是关系R的两个属性(集)。如果对于X中的任一具体值,Y中至多有一个值与之对应,而Y中的一个值却可以和X中的n个值相对应,则称Y对X是一对多联系。 (3)多对多联系(m∶ m) 在职工模式中,职称和部门之间是多对多联系。一种职称可分布在多个部门中(如每一个部门中均可有工程师),而一个部门中也可有多个职称。 设X、Y是关系R的两个属性(集)。如果对于X中的任一具体值,Y中有m个值与之对应,而Y中的一个值也可以和X中的n个值相对应,则称Y对X是多对多联系。 上述属性间的三种联系实际上是属性值之间相互依赖又相互制约的反映,称为属性间的数据依赖。 数据依赖共有三种:函数依赖(FunctionalDependency,简称FD)、多值依赖 (Multiva-luedDependency,简称MVD)和连接依赖(JoinDependency,简称JD),其中最重要的是函数依赖和多值依赖。 2.2、函数依赖 函数依赖是属性之间的一种联系。假设给定一个属性的值,就可以唯一确定(查到)另一个属性的值。 定义:所谓函数依赖是指在关系R中,X、Y为R的两个属性或属性组,如果对于R的任一关系r都存在:对于X的每一个具体值,Y 都只有一个具体值与之对应,则称属性Y函数依赖于属性X。或者说,属性X函数决定属性Y,记作X->Y。其中X叫决定因素,Y叫被决定因素。当Y是X的子集时,称为平凡函数依赖。由于平凡函数依赖总是成立的,因此,若不作特殊声明,本书后面提到的函数依赖,都不包含平凡函数依赖。 此定义可简单表述为:如果属性X的值决定属性Y的值,那么属性Y函数依赖于属性X。 前面讨论的属性间的三种联系,并不是每一种联系中都存在函数依赖。

(完整版)复合函数单调性的判定方法

复合函数单调性的判定方法 定理设y=f(u),u∈(m,n),u=g(x),x∈(a,b).(1)若y=f(u)是(m,n)上的减函数,则y=f[g(x)]的增减性与g(x)的增减性相反;(2)若y=f(u)是(m,n)上的增函数,则y=f[g(x)]的增减性与g(x)的增减性相同. 证明:(1)若g(x)在(a,b)上是增函数,任取a<x 1<x 2 <b, 则有m<g(x 1)<g(x 2 )<n,由f(u)在(m,n)上是减函数得f[g(x 1 )] >f[g(x 2 )],故f[g(x)]在(a,b)上是减函数.若g(x)在(a,b)上是减函数,同理可证f[g(x)]在(a,b)上是增函数. (2)若g(x)在(a,b)上是增函数,任取a<x 1<x 2 <b,则有m <g(x 1)<g(x 2 )<n,由f(u)在(m,n)上是增函数,得f[g(x 1 )]< f[g(x 2 )],所以f[g(x)]在(a,b)上是增函数.若g(x)在(a,b)上是减函数,同理可证f[g(x)]在(a,b)上是减函数. 由此定理可知,复合函数单调性的判定是以简单函数的单调性为基础,而中学数学中的简单函数均是初等函数,因此熟悉各种初等函数的单调性是判定复合函数单调性的基础.若能对各种初等函数的图象了如指掌,则对复合函数的单调性的判定将大有裨益.我们就可借助初等函数的图象确定它的单调性,判定它的单调区间和函数值域,再利用上述定理就很容易判定复合函数的单调性. 例1讨论函数f(x)=log 0.5 (x2+4x+4)的单调性.解 f(x)的定义域为(-∞,-2)∪(-2,+∞).f(x)可视为 y=log 0.5 u与u=x2+4x+4复合而成.u的图象是以x=-2为对称轴,开口向上的抛物线,在(-∞,-2)上为减函数,在(-2,+ ∞)上为增函数.又y=log 0.5 u在其定义域上是减函数,故f(x)在(-∞,-2)上是增函数,在(-2,+∞)上是减函数.例2试求函数f(x)=2x2的单调区间. 解函数f(x)=2x2可视为f(u)=2u与u=x2复合而成.函数u =x2在(-∞,0]上为减函数,在[0,+∞)上为增函数,且u≥0.函数f(u)=2u在u≥0时为增函数.所以,f(x)在(-∞,0]上为减函数.在[0,+∞)上为增函数. 推论由有限个简单函数复合而成的多重复合函数,若在所讨论的区间内每个简单函数均有意义,且均为严格单调函数.当其中减函数的个数是偶数时,则复合函数是增函数;当减函数的个数是奇数时,则复合函数是减函数.

函数单调性地判断或证明方法

函数单调性的判断或证明方法. ( 1)定义法。用定义法证明函数的单调性的一般步骤是①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、 配方等)向有利于判断差值符号的方向变形;④定号,判断的正负符号,当符号不确定时,应分类讨论;⑤下结论,根据函数单调性的定义下结论。 例 1. 判断函数在(-1,+∞ )上的单调性,并证明. 解:设- 10, x2+ 1>0. ∴当 a>0 时, f(x 1) - f(x 2)<0 ,即 f(x 1)0 ,即 f(x 1)>f(x ∴函数 y= f(x) 在 ( - 1,+∞ ) 上单调递减. 2),2), 例 2.证明函数在区间和上是增函数;在上为减函数。(增两端,减中间) 证明:设,则 因为,所以, 所以,

所以 所以 设 则, 因为, 所以 所以 所以 , 同理,可得 (2)运算性质法 . ①在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数, 增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.(增 +增=增;减 +减 =减;增 -减=增,减 -增=减) ②若. ③当函数 ④ 函数 . 二者有相 反的单调性。 ⑤运用已知结论,直接判断函数的单调性,如一次函数、反比例函数等。( 3)图像法 . 根据函数图像的上升或下降判断函数的单调性。 例 3. 求函数的单调区间。 解:

数据库函数依赖

数据库函数依赖 一、函数依赖(Functional Dependency)的概念 数据依赖的一种,它反映属性或属性组之间相依存,互相制约的关系,即反映现实世界的约束关系。 二、定义 设R(U)是属性U上的一个关系模式,X和Y均为U={A1,A2,…,An}的子集,r为R的任一关系,如果对于r中的任意两个元组u,v,只要有u[X]=v[X],就有u[Y]=v[Y],则称X函数决定Y,或称Y函数依赖于X,记为X→Y。 例: (sno-学生ID,tno-教师ID,cno-课程ID,sname-学生姓名,tname-教师姓名,cname-课程名称,grade-成绩) 1、sno→sname, cno→cname,(sno,cno)→grade √ 2、sname→sno, tno→cno, sno→tname × 三、函数依赖是语义范畴 1、语义:数据所反映的现实世界事物本质联系 2、根据语义来确定函数依赖性的存在与否 3、函数依赖反映属性之间的一般规律,必须在关系模式下的任一个关系r中都满足约束条件。 四、属性间的联系决定函数依赖关系 设X、Y均是U的子集 1、X和Y间联系是1:1,则X→Y,Y→X。(相互依赖,可记作X←→Y) 2、X和Y间联系是M:1(M),则X→Y。 3、X和Y间联系是M:N(M,N),则X、Y间不存在函数依赖。 五、完全函数依赖和部分函数依赖 1、函数依赖分为完全函数依赖和部分函数依赖 2、定义: 在R(U)中,如果X→Y,并且对于X的任何真子集X'都有X'Y',则称Y完全依赖于X,记作X→Y;否则,如果X→Y,且X中存在一个真子集X',使得X'→Y成立,则称Y部分依赖于X。 例: 学生ID,学生姓名,所修课程ID,课程名称,成绩 (学生ID,所修课程ID)→成绩 成绩既不能单独依赖于学生ID,也不能单独依赖于所修课程ID,因此成绩完全函数依赖于关键字。 (学生ID,所修课程ID)→学生姓名 学生ID→学生姓名 学生姓名可以依赖于关键字的一个主属性——学生ID,因此学生姓名部分函数依赖于(学生ID,所修课程ID)。 六、平凡函数依赖和非平凡函数依赖 设X,Y均为某关系上的属性集,且X→Y 1)若Y包含于X,则称X→Y为:平凡函数依赖;(Sno, Cno) →Sno (Sno, Cno) →Cno 2)若Y不包含于X,则称X→Y为:非平凡函数依赖。(Sno, Cno) →Grade Y包含于X内,W于X相交,与Y无直接交集。 则:X→Y为平凡函数依赖

相关主题
文本预览
相关文档 最新文档