当前位置:文档之家› 金属基复合材料的研究进展

金属基复合材料的研究进展

金属基复合材料的研究进展
金属基复合材料的研究进展

金属基复合材料的研究进展

姓名:@@@

学号:@@@@

学院:@@@@

专业:@@@@

目录

1金属基复合材料发展史 (1)

2金属基复合材料的制造方法 (1)

2.1扩散法 (1)

2.1.1扩散粘结法 (1)

2.1.2无压力金属渗透法 (2)

2.1.3预制体压力浸渗法 (2)

2.2沉积法 (2)

2.2.1反应喷射沉积法(RAD) (2)

2.2.2溅射沉积法 (2)

2.2.3化学气象沉积法 (2)

2.3液相法 (2)

2.4熔体搅拌法 (3)

3金属基复合材料的应用概况 (3)

3.1金属基复合材料的范畴界定 (3)

3.2金属基复合材料全球市场概况 (3)

3.2.1MMCs在陆上运输领域的应用 (4)

3.2.2MMCs在电子/热控领域的应用 (4)

3.2.3MMCs在航空航天领域的应用 (5)

3.2.4MMCs在其它领域的应用 (5)

3.3中国的金属基复合材料研究现状 (7)

4金属基复合材料研究的前沿趋势 (7)

4.1金属基复合材料结构的优化 (7)

4.1.1多元/多尺度MMCs (8)

4.1.2微结构韧化MMCs (8)

4.1.3层状MMCs (8)

4.1.4泡沫MMCs (8)

4.1.5双连续/互穿网络MMCs (8)

4.2结构-功能一体化 (8)

4.2.1高效热管理MMCs (8)

4.2.2低膨胀MMCs (9)

4.2.3高阻尼MMCs (9)

4.3碳纳米管增强金属基纳米复合材料 (9)

5总结与展望 (9)

参考文献 (10)

金属基复合材料的研究进展

摘要:在过去的三十年里,金属基复合材料凭借其结构轻量化和优异的耐磨、热学和电学性能,逐渐在陆上运输(汽车和火车)、热管理、民航、工业和体育休闲产业等诸多领域实现商业化的应用,确立了作为新材料和新技术的地位。本文概述了金属基复合材料的发展历史和制造方法。并且在综述金属基复合材料的研究与应用现状的基础上,对其研究的前沿趋势进行了展望。

关键词:金属基复合材料;制造方法;性能;应用;前沿展望

金属基复合材料(MMCs),是在各金属材料基体内用多种不同复合工艺,加进增强体,以改进特定所需的机械物理性能。金属基复合材料在比强度、比钢度、导电性、耐磨性、减震性、热膨胀等多种机械物理性能方面比同性材料优异得多。因此,金属基复合材料在新兴高科技领域,宇航、航空、能源及民用机电工业、汽车、电机、电刷、仪器仪表中日益广泛应用。

1金属基复合材料发展史

近代金属基复合材料的研究始于1924年Schmit[1]关于铝/氧化铝粉末烧结的研究工作。在30年代,又出现了沉淀强化理论[2,3],并在以后的几十年中得到了很快地发展。到了60年代,金属基复合材料已经发展成为复合材料的一个新的分支。到了80年代,日本丰田公司首次将陶瓷纤维增强铝基复合材料用于制造柴油发动机活塞,从此金属基复合材料的研制与开发工作得到了飞快地发展。土耳其的S.Eroglu等用离子喷涂技术制得了NiCr-Al/MgO-ZrO2功能梯度涂层。目前,金属基复合材料已经引起有关部门的高度重视,特别是航空航天部门推进系统使用的材料,其性能已经接近了极限。因此,研制工作温度更高、比钢度、比强度大幅度增加的金属基复合材料,已经成为发展高性能材料的一个重要方向。1990年美国在航天推进系统中形成了3 250万美元的高级复合材料(主要为MMC)市场,年平均增长率为16%,远远高于高性能合金的年增长率[4]。到2000年,金属基复合材料的市场价值达到了1.5亿美元,国防/航空用金属基复合材料已占市场份额的80%[5]。预计到2005年市场对金属基复合材料的需求量将达161 t,平均年增长率为4.4%。

2金属基复合材料的制造方法

金属基复合材料的种类繁多,制造方法多样,但总体上可以归纳为4种生产方法。2.1扩散法

扩散法是将作为基本的金属粉末与裸露或有包覆层的纤维在一起压型和烧结,或在基体金属的薄箔之间置入增强剂进行冷压或热压制成金属基复合材料的方法[6]。

2.1.1扩散粘结法

这种方法常用于粉末冶金工业。对于颗粒、晶须等增强体可以采用成熟的粉末冶金法,即把增强体与金属粉末混合后冷压或热压烧结,也可以用热等压工艺。对于连续增强体比较复杂,需先将纤维进行表面涂层以改善它与金属的润湿性并起到阻碍与金属反应的作用,再浸入液态金属中制成复合丝,最后把复合丝排列并夹入金属薄片后热压烧结,对于难熔金属

则用等离子喷涂法把金属喷射在纤维已排好的框架上制成复合片,再把这些复合片热压或热等静压成型。这类方法成本高,工艺及设备复杂,但制品质量好[7]。

2.1.2无压力金属渗透法

此方法是将熔化的金属暴露在氧化环境中,并使其通过铝的氧化物粒子层,从而制成复合材料。最后复合材料的基体是由氧化反应的产物和未氧化反应的铝合金组成。这种方法可得到所需形状的零件,这种复合材料的性能可以进行调整,以适合特殊需要。

2.1.3预制体压力浸渗法

预制体压力浸渗法的第一步是先制出具有一定强度的预制体,然后在外加压力下将熔融金属液渗入预制体内的空隙中制成复合体的方法。

2.2沉积法

沉积法是一种采取电沉积、等离子喷涂或真空沉积等手段,将金属基体包覆在纤维周围,然后再用冷压或热压完成全过程的方法[6]。

2.2.1反应喷射沉积法(RAD)

此种工艺是在DIMOXTM法和喷射工艺的基础上发展起来的,利用一个特殊的液体喷射分散装置,在氧化性气氛中,将铝液分散成大量细小的液滴,使其表面氧化成Al2O3膜,这些带有Al2O3膜的液滴在沉积过程中,相互碰撞使Al2O3膜破碎分散,同时内部的铝液迅速冷却凝固,从而形成具有弥散分布的Al2O3粒子增强的铝基复合材料。如果将喷射室抽真空后,再通过等离子气体(如Ar、He、H2等)和反应气体(CH4、N2、O2等),并利用等离子弧发生器使室内气体加热和电离,这样,在这种高能等离子体的轰击碰撞下,反应气体和喷射金属液滴吸收能量而相互反应,生成相应的陶瓷颗粒,再与剩余的金属液滴一起沉积后即得到这种陶瓷颗粒增强的金属基复合材料。RAD工艺将金属的熔化、陶瓷增强颗粒的反应合成以及快速凝固等工艺结合在一起,既得到基体金属的晶粒细小和增强颗粒的均匀分布,也保证了增强颗粒与基体的牢固结合。因此,所制得的复合材料可望有较高的性能,有着很好的发展和应用前景[8]。

2.2.2溅射沉积法

使熔料雾化,将熔化的金属通过喷咀使其溅射成小液滴,并在基片上收集半固体液滴,通过引入增强剂到金属溅射物中,铸造成金属复合材料锭。必须严格控制进给条件,以保证粒子的均匀分布[9]。

2.2.3化学气象沉积法

化学气象沉积法是目前制备硼纤维的唯一工艺方法,其工艺原理是将炙热的细钨丝通过三氯化硼和氢气的混合气体,使其发生化学反应,生成的硼沉积在钨丝上。为避免硼纤维与金属基体之间在复合过程中产生有害的化学反应,在纤维表面一般涂有碳化硼或碳化硅保护层[10]。

2.3液相法

液相法主要是将纤维在液态基体中浸渗,然后将基体和纤维在基体熔点以上温度压型,并使共晶合金(液态)定向凝固的方法[6]。

2.4熔体搅拌法

搅拌法又称为漩涡法,是通过搅拌桨的高速旋转使金属熔体产生漩涡,增强体在高速切应力的作用下进入金属熔液,凝固后得到复合材料,是制备颗粒增强复合材料较为常见的方法[7]。该法工艺简单、对设备要求不高,但易于出现增强体分布不均和卷气等问题。

3金属基复合材料的应用概况

3.1金属基复合材料的范畴界定

这是一个长期以来存在争议的话题。从复合材料的定义出发,凡是包含金属相在内的双相和多相材料都可归于金属基复合材料,通常包括定向凝固共晶层片或纤维组织(如Al3Ni-A l,Al-CuA l,Ni-TaC,Ni-W)、双相金属间化合物层片组织(如γ-TiAl)、珠光体钢、高硅铝合金(Al-Si)等[11]。以上材料习惯上被看作是金属合金,而不是金属基复合材料。然而最近出现并颇受关注的非晶/初晶复合组织(如Zr基非晶合金) [12],有望帮助人们冲破传统观念的束缚——通过控制凝固和固态相变在非晶基体中原位(in-situ)形成的晶相可以发挥增韧/增塑的作用,从而为本征脆性的非晶合金开辟了实用化途径。总之,采用复合的思想发展金属材料具有巨大潜力,值得我们给以足够的重视,而合金与复合材料的争议本身却无关紧要。

本文涉及的仍然是比较狭义的金属基复合材料,其增强体要么是从外部引入到金属基体当中(Ex-situ),要么是在金属基体内部由一至多种始终独立存在的反应物原位生成(In-situ)。通常,金属基复合材料都是以包括颗粒、晶须、纤维等形态的陶瓷相作为增强体,但是作为特例,也有一些金属基复合材料是以金属相作为增强体,例如Cu-Mo和Cu-W材料。

3.2金属基复合材料全球市场概况

根据美国商业资讯公司(BCC)最新的商业调查结果,2008年全世界的MMCs(金属基复合材料)市场总量达到4400t[12]。这样的市场蛋糕虽然还小,却是由上百家各具特色的MMCs 公司分享的,它们或者拥有独家技术(如DW A公司的粉末冶金),或者以某种材料(如Alcan 公司的铝基MMCs)见长,或者专注于特定产品类型(如CPS公司的热封装基板)。

据预测,2013年以前全球MMCs市场将保持5.9%的年增长率[12]。根据应用领域不同,MMCs市场可细分为陆上运输、电子/热控、航空航天、工业、消费产品等5个部分,如图1所示[12]。其中,陆上运输(包括汽车和轨道车辆)和高附加值散热组件仍然是MMCs的主导市场,用量占比分别超过60%和30%。

图1 金属基复合材料全球市场及展望(2004~2013年)

3.2.1MMCs在陆上运输领域的应用

随着能源和环境问题日益严峻,世界各国实行越来越严格的燃油效率标准和尾气排放标准,这迫使各汽车生产商采用轻质的MMCs取代目前的铸铁和钢,实现汽车轻量化的目的。一般认为,汽车质量每降低10%,燃油经济性就提高5%。而对于成本极端计较的汽车市场,唯一能接受的只有铝基MMCs。

无论传统的燃油汽车,还是混合动力车,MMCs主要被用于那些需要耐热耐磨的发动机和刹车部件(如图2所示的刹车件),如活塞、缸套、刹车盘和刹车鼓等;或者被用于那些需要高强高模量运动部件,如驱动轴、连杆等[13]。目前,在陆上运输领域消耗的MMCs中,驱动轴的用量超过50%,汽车和列车刹车件的用量超过30%。

图2 汽车刹车鼓和刹车碟(a),火车转向架及刹车盘(b)MMCs驱动轴在大型客车和卡车上尽显优势。与传统的钢或铝合金驱动轴相比,MMCs 驱动轴可承受更高的转速,同时产生较小的振动噪声。典型的6061/Al2O3/20p的比模量明显高于钢或铝,因此大型客车和卡车可采用较长的单根MMCs驱动轴而无需增大轴径和重量。事实上,用单根MMCs驱动轴取代传统的二件式钢轴总成及所必需的支撑附件,减重效益高达9 kg。

刹车件是MMCs用量增长最快的部分,年增长率超过10%。相对于铸铁和钢,Al2O3或SiC颗粒增强铝基复合材料用作刹车材料的优势在于高达50% ~60%的减重效益及高耐磨、高导热等性能特点,可使惯性力、油耗和噪音都得到下降。目前,美国汽车三巨头克莱斯勒、福特、通用均在新车型中采用铝基MMCs刹车盘和刹车鼓,例如通用在2000年发布的混合动力车Precept,前后轮均装配采用Alcan公司铝基MMCs制造的通风式刹车盘,该刹车盘质量不到原来铸铁刹车盘的一半,而热传导率却达3倍多,并消除了刹车盘和刹车鼓之间的腐蚀问题。

世界范围内,建设了许多高速铁路和列车。其中德国ICE(InterCityExpress)列车尤其以第一次应用MMCs刹车盘而著称。ICE列车的刹车系统原来采用的是4个铸铁刹车盘,每个质量达126 kg。替换为AlSi7Mg/SiCp颗粒增强铝基MMCs刹车盘后,每个质量仅为76 kg,带来重大的减重效益。

3.2.2MMCs在电子/热控领域的应用

如果以产值排序,高产品附加值的电子/热控领域是第一大MMCs市场,产值比例超过60%。目前,Cu- W和Cu-Mo等第一代热管理材料仍然占据着市场主导地位。但是,微波电子、微电子、光电子和功率半导体器件的微型化及多功能化对热管理特性提出了更高要求,需要低密度、高导热、与半导体及芯片材料膨胀匹配,能够达到最优功率密度的新型基板和热沉材料。以铝碳化硅(AlSiC)MMCs为代表的第二代热管理材料,密度仅为Cu-W和Cu-Mo 的1/5,可提供高热导率(180~200W /mK)及可调的低热膨胀系数(CTE),为电子封装提供了

高度可靠且成本经济的热管理解决方案[14]。因此,AlSiC虽然进入市场不久,但用量比例已经突破10%,并仍将保持超过10%的年增长率。AlSiC主要用作微处理器盖板/热沉、倒装焊盖板、微波及光电器件外壳/基座、高功率衬底、IGBT基板、柱状散热鳍片等。其中,无线通讯与雷达系统中的射频与微波器件封装构成AlSiC目前最大的应用领域,其第二大应用领域则是高端微处理器的各种热管理组件,包括功率放大器热沉、集成电路热沉、印刷电路板芯板和冷却板、芯片载体、散热器、整流器封装等(如图3所示)。

图3 AlSiC微处理器盖板(a),AlSiC光电封装基座(b)AlSiC采用溶渗工艺制造,因为碳化硅颗粒预制块和溶渗铸模都可针对最终产品形状而设计,因此可以实现低成本的净成形(net-shape)或近净成形制造,所得产品不需要进一步加工,或只需要很少的加工。并且近净成形工艺可方便地增加功能选项,从而满足定制设计要求,例如微波封装组件可将好的气密性和热管理特性集于一身。

3.2.3MMCs在航空航天领域的应用

MMCs最初发展的原动力来自于航空工业领域。目前已用于军机和民机的MMCs主要是铝基和钛基复合材料。DWA公司最早发展了粉末冶金制备MMCs的技术路线并保持领先地位至今。DW A量产的第一个产品是洛克希德公司的机载电气设备支架,该挤压态复合材料由6061/SiC/25p,替代原有的7075 T6态铝合金挤压件,减重达17%。总计有超过3 000 m 的该种复合材料型材在各种洛克希德飞机上服役。DWA公司铝基MMCs的后续应用案例包括F-16战隼轻型战斗机的腹鳍和加油口盖板,Boeing777客机Pratt&Whitney 4084、4090和4098发动机的风扇导向叶片,AC-130武装直升机的武器挂架,V-22鱼鹰式倾斜旋翼直升机和F/A-18 E/F超级大黄蜂战斗机的液压系统分路阀箱。此外,SiC铝基MMCs在航天领域也已经过实用验证,例如波导天线、支撑框架及配件、热沉等。以上应用不但克服了原有材料的重大缺陷,同时也带来明显的减重效益。

1998年,钛基复合材料进入航空市场,当时大西洋研究公司(Atlantic Research Corporation)的钛基MMCs接力器活塞出现在Pratt&WhitneyF119燃气涡轮发动机的材料采购单上。F119发动机为洛克希德/波音联合研制的F-22猛禽战斗机提供动力。

3.2.4MMCs在其它领域的应用

MMCs的其它应用涵盖制造业、体育休闲及基础建设领域,既包括硬质合金、电镀及烧结金刚石工具、Cu基及Ag基电触头材料等成熟市场,也包括TiC增强铁基耐磨材料、Saffil纤维增强铝基输电线缆、B4C增强铝基中子吸收材料等新兴市场。这些新兴市场的表现在很大程度上决定着MMCs的未来增长点。

铁基复合材料的制备和应用是提高钢铁材料性能的重要研究方向。低密度、高刚度和高强度的增强体颗粒加入到钢铁基体中,在降低材料密度的同时,提高了它的弹性模量、硬度、耐磨性和高温性能,可应用于切削、轧制、喷丸、冲压、穿孔、拉拔、模压成型等工业领域。

目前应用最多的是TiC颗粒增强铁基复合材料,例如注册商标为Ferro-TiC,Alloy-TiC和Ferro-Titanit(的钢基硬质合金,用作抗磨材料和高温结构材料,性能明显优于现有的工具钢(如图4所示的材料)。

图4 超硬耐磨的TiC增强铁基复合材料

为支撑传统的高架输电用钢芯铝绞线的质量,需要造昂贵的输电塔,这促使人们开发高强、低密度导线。据报道,3M公司开发的氧化铝纤维增强铝基MMCs(Al/Saffil)导线,用于取代现有铝绞线的钢芯,经测试比强度提高2~3倍,电导提高4倍,热膨胀降低一半,腐蚀性也降低。虽然新型MMCs导线的价格较贵,但是可以降低建造支撑塔成本的15%~20%,并且可以提高输电能力并降低电耗(如图5)。

图5 Saffil纤维增强铝基输电线缆(a),输电塔(b)

核能是世界各国应对能源和环境压力的必然选择。为确保安全,贮存及运输高放射性废核燃料的容器在核防护的同时还必须具有耐久可靠的机械性能。B4Cp/Al是一种新型MMCs,具有优异的中子吸收性能,是唯一可用于废核燃料贮存和运输的金属基复合材料(如图6)[15]。

目前,已有BorTec TM,METAMIC TM和Talbor(等多种B4Cp/Al材料获得美国核能管理委员会(NRC)核准,可以用于制造核废料贮存桶的中子吸收内胆、废燃料棒贮存水池的隔板等。

图6 B4Cp/Al用于废核燃料贮存(a),贮存水池(b)贮存桶

3.3中国的金属基复合材料研究现状

实际上,MMCs应用广度、生产发展的速度和规模,已成为衡量一个国家材料科技水平的重要标志之一。以用量计算,美国、欧洲、日本是位列前三的MMCs消费大国,超过总质量2/3的MMCs为其所用,这与它们作为发达国家的地位相符。

我国尚未形成金属基复合材料产业及行业标准与军用标准。目前仅少数研制单位具有小批量的配套能力,虽然品种、规格单一,但仍然为国防和军工建设提供有力的支撑。轻质高强多功能金属基复合材料在航天、航空、国防先进武器等军事领域的应用具有不可替代性,是典型的军民两用新材料。也正是由于金属基复合材料特殊的国防应用背景,国外对核心技术和产品严格保密。随着我国在空间技术、航天航空、高速交通、通讯电子等领域的综合实力的提升,对高性能金属基复合材料的需求日益增加,例如汽车发动机零部件、高速列车制动系统、电子封装及核废燃料辐射防护等。近年来,觑觎中国的MMCs巨大的市场空间,西方一些MMCs公司在中国建立了若干合资或独资企业,但是并没有、也不可能转移相关技术。为了避免受制于人,必须尽快提升我国自主的MMCs生产和应用水平。

4金属基复合材料研究的前沿趋势

当代MMCs的结构和功能都相对简单,而高科技发展日益要求MMCs能够满足高性能化和多功能化的挑战,因此新一代MMCs必然朝着“结构复杂化”的方向发展。下面对已经初露端倪的一些研究前沿和趋势进行简要的介绍,希望能够对国内从事MMCs研究和开发的同行们有所启发。

4.1金属基复合材料结构的优化

金属基复合材料的性能不仅取决于基体和增强体的种类和配比,更取决于增强体在基体中的空间配置模式(形状、尺寸、连接形式和对称性)。传统上增强体均匀分布的复合结构只是最简单的空间配置模式,而近年来理论分析和实验结果都表明,在中间或介观尺度上人为调控的有序非均匀分布更有利于发挥设计自由度,从而进一步发掘MMCs的性能潜力、实

现性能指标的最优化配置,是MMCs研究发展的重要方向。

4.1.1多元/多尺度MMCs

多元复合强化(混杂增强)的研究理念逐渐引起研究者的更大兴趣[16]。通过引入不同种类(例如TiB和TiC混杂增强钛基MMCs)、不同形态(例如晶须和颗粒混杂增强镁基基MMCs)、不同尺度(双峰SiC颗粒增强铝基MMCs)的增强相,利用多元增强体本身物性参数不同,通过相与相、以及相界面与界面之间的耦合作用呈现出比单一增强相复合条件下更好的优越性能。

4.1.2微结构韧化MMCs

随增强体含量些微增大,MMCs的强度和韧性/塑性存在着相互倒置关系,即强度的提高伴随韧性/塑性的降低。通过将非连续增强MMCs分化区隔为增强体颗粒富集区(脆性)和一定数量、一定尺寸、不含增强体基体区(韧性),这些纯基体区域作为韧化相将会具有阻止裂纹扩展、吸收能量的作用,从而使MMCs的损伤容限得到提高。与传统的均匀分散的MMCs 相比,这种新型的复合材料具有更好的塑性和韧性[17]。

4.1.3层状MMCs

层状金属基复合材料在现代航空工业中的应用十分广泛,如用作飞机蒙皮的GLARE层板是由玻纤增强树脂层与铝箔构成的层状铝基复合材料,在A380上的用量达机体结构质量的3%以上。在微米尺度上,受自然界生物叠层结构达到强、韧最佳配合的启发,韧脆交替的微叠层MMCs研究越来越引起关注,主要包括金属/金属、金属/陶瓷、金属/MMCs微叠层材料,主要目的是通过微叠层来补偿单层材料内在性能的不足,以满足各种各样的特殊应用需求,如耐高温材料、硬度材料、热障涂层材料等[18]。

4.1.4泡沫MMCs

多孔金属泡沫是近几十年发展起来的一种结构功能材料,作为结构材料,它具有轻质和高比强度的特点;作为功能材料,它具有多孔、减振、阻尼、吸音、散热、吸收冲击能、电磁屏蔽等多种物理性能,由于其满足了结构材料轻质多功能化及众多高技术的需求,已经成为交通、建筑及航空航天等领域的研究热点。目前研究较多的是泡沫铝基复合材料,大致可分为两个范畴:一是泡沫本身是含有增强体的铝基复合材料,二是泡沫虽然由纯铝基体构成,但在其孔洞中引入粘弹性体、吸波涂料等功能组分[19]。

4.1.5双连续/互穿网络MMCs

为了更有效地发挥陶瓷增强体的高刚度、低膨胀等的特性,除了提高金属基复合材料中的陶瓷增强体含量外,另一种有效的作法是使陶瓷增强体在基体合金中成为连续的三维骨架结构,从而以双连续的微结构设计来达到这一目的。

4.2结构-功能一体化

随着科学技术的发展,对金属材料的使用要求不再局限于机械性能,而是要求在多场合服役条件下具有结构功能一体化和多功能响应的特性。在金属基体中引入的颗粒、晶须、纤维等异质材料,既可以作为增强体提高金属材料的机械性能,也可以作为功能体赋予金属材料本身不具备的物理和功能特性。

4.2.1高效热管理MMCs

随着微电子技术的高速发展,微处理器及半导体器件的最高功率密度已经逼近1000W

/cm2,在应用中常常因为过热而无法正常工作。散热问题已成为电子信息产业发展的技术瓶颈之一。新一代电子封装材料的研发主要以高热导率的碳纳米管、金刚石、高定向热解石墨作增强相。其中,金刚石可以人工合成且不存在各向异性,将金刚石与Cu,Al等高导热金属复合可以克服各自的不足,可望获得高导热、低膨胀、低密度的理想电子封装材料[20]。

4.2.2低膨胀MMCs

低热膨胀MMCs具有优异的抗热冲击性能,在变温场合使用时能够保持尺寸稳定性,因此在航天结构件、测量仪表、光学器件、卫星天线等工程领域具有重要的应用价值。据研究报道,在金属基体中添加具有较低热膨胀系数、甚至负热膨胀系数的增强体作为调节MMCs热膨胀系数的功能组元,例如β-锂霞石(Li2O·Al2O3·2SiO2)、钨酸锆(ZrW2O8)、准晶(Al65Cu20Cr15)等,可以有效地降低复合材料的热膨胀系数。相信随着研究的逐渐深入和完善,这种近零膨胀的金属基复合材料很快将成功应用于实践[21]。

4.2.3高阻尼MMCs

在实际应用中,不但要求高阻尼材料具有优异的减振与降噪性能,而且要求轻质、高强的结构性能。然而,二者在金属及其合金中通常是不兼容的。因此MMCs成为发展高阻尼材料的重要途径,即通过引入具有高阻尼性能的增强体,使增强体和金属基体分别承担提供阻尼与强度的任务。目前关注较多的高阻尼增强体包括粉煤灰空心微球( fly ash)、形状记忆合金(TiNi,Cu-Al-Ni)、铁磁性合金、压电陶瓷(PbTiO)、高阻尼多元氧化物(Li5La3Ta2O12)、碳纳米管等[22]。

4.3碳纳米管增强金属基纳米复合材料

在金属基体中引入均匀弥散纳米级增强体粒子,所得MMCs往往可以呈现出更为理想的力学性能[23]以及导电、导热、耐磨、耐蚀、耐高温、抗氧化等性能。目前,金属基纳米复合材料的研究重点主要集中在纳米结构材料和纳米涂层。碳纳米管具有优异的力学、电学、热学等性能,是制备MMCs的最为理想的增强体之一,特别是随着碳纳米管的宏量制备及其价格的一路降低,碳纳米管增强MMCs日渐成为研究的焦点[24],Al,Cu,Mg,Ti,Fe 等基体虽都有涉及,但是关于Al基和Cu基的研究相对集中。然而,一则由于碳纳米管很难均匀分散,二则由于碳纳米管很难与金属基体形成有效的界面结合,所以所制备的MMCs 的性能提高并不是很大,远没有达到理想值,特别是在力学性能方面。

5总结与展望

综上所述,国内外在MMCs研制和开发方面取得了非凡的进展,在开发高性能材料方面获得重大突破,极大丰富了材料市场。但由于金属基复合材料在研究和生产过程中,涉及到许多相关技术,包括复合材料制造技术和使用技术等,要把这些技术综合在一起,是一个相当复杂的研究过程。但是,经过三十年的发展,MMCs已经成功地从实验室走向市场,并在诸多应用领域站稳了脚跟,这受益于广泛而深入的基础研究工作,为低成本、高效率生产MMCs提供有力的技术支撑。

今后的研发工作主要应着眼于两个方面,即在进一步完善已有MMCs材料和技术的同时,寻求新一代MMCs设计与制备的突破口,从而为MMCs的可持续发展奠定基础。目前MMCs研发工作呈现3个趋势:①复合构型设计将受到更多重视,重点是通过调控增强体的空间分布实现强韧化;②结构功能一体化、多功能化将成为未来MMCs高性能化的必然途径;③尽管备受争议,以碳纳米管为代表的金属基纳米复合材料终将登上历史的舞台。

参考文献

[1] Schmit DE[P]∶425 451.

[2]Taylor E I.The Mechanism of Plastic Deformation of Cry-tall,I-Theoretical[J].Proc.Roy.Soc,1934,Al(45)∶362-404.

[3]Oro E.Eur KristallplastizitatⅢ,über den Mechanismusdes Gleitvorganges[J].Z Phys,1934,(89)∶634-659.

[4]王军,严彪,徐政.金属基复合材料的发展和未来[J].上海有色金属,1999,(12) ∶188-192.

[5]王镐.金属基复合材料应用前景广阔[J].稀有金属快报,2001,(4) ∶13-14.

[6]杨遇春.金属基复合材料的发展现状和趋势[J].稀有金属,1991,(4) ∶289-295.

[7]吴人洁.金属基复合材料的现状与展望[J].金属学报,1997,33(1)∶78-82.

[8]严有为,魏伯廉,林汉同,等.金属基原位复合材料的研究现状及发展趋势(上)[J].特种铸造及有色冶金,1998,(2) ∶48-50.

[9]杜军,刘耀辉,于思荣.铸造混杂增强金属基复合材料的研究进展[J].特种铸造及有色冶金,2002,(6) ∶19-22.

[10]陈况.金属基复合材料国家重点实验室建立[J].科技导报,1992,(5) ∶10-12.

[11]MiracleD B. MetalMatrixComposites from Technology to Science [J].CompositeScience

andTechnology,2005,65∶2 526-2 540.

[12]Hofmann D C,Suh J Y,W iest A,et al. Designing Metallic Glass Matrix Composites with High Toughness and Tensile Ductility [J].Nature,2008,451∶1 085-U3.

[13] Prasad S V,Asthana R. Aluminum Metal-Matrix Composites for Automotive Applications:

Tribological Considerations[J].Tribol-ogyLetters,2004,17∶445-453.

[14] XiongDegan(熊德赣),ChengHui(程辉),Liu Xicong(刘希从),etal. AlSiC电子封装材

料及构件研究进展[ J].Ma-terialsReview(材料导报),2006,20∶111-115.

[15] WangDongshan(王东山),Xue Xiangxin(薛向欣),Liu Ran(刘然),etal. B4C /Al复合

材料的研究进展及展望[ J].MaterialsReview(材料导报),2007,21∶388-390.

[16] Du Jun(杜军),LiuYuehui(刘耀辉),Yu Sirong(于思荣).铸造混杂增强金属基复合材料

研究进展[J].Special Casting andNonferronsAlloys(特种铸造及有色合金),2002(6) ∶19-22.

[17] PengH X,Fan Z,Evans J R G. NovelMMC Microstructure with Tailored Distribution of the

Reinforcing Phase[ J].Journal of Microscopy,2001,201∶333-338.

[18] Yi Jian(易剑),He Xiaodong(赫晓东),Li Zhuang(李垚).微叠层材料及其制备工艺研究

进展[ J].Aerospace Materials& Technology(宇航材料工艺),2005(5) ∶16-21.

[19] Wang Zhiyuan(王志远),Yang Liushuan(杨留栓).泡沫金属基高阻尼复合材料的研究进展

[J].DevelopmentandAppli-cation ofMaterials(材料开发与应用),2004,19∶38-40. [20] Fang Zhenzheng(方针正),Lin Chenguang(林晨光),ZhangXiaoyong(张小勇),et al.新型

电子封装用金刚石/金属复合材料的组织性能与应用[J].MaterialsReview(材料导报),2008,22∶36-39.

[21] Tong Linsong(佟林松),Fan Jianzhong(樊建中),Xiao Bolu(肖伯律).低热膨胀铝基复合材

料的研究进展[J].ChineseJournal ofRareMetals(稀有金属),2008,32∶375-380.

[22] LuHui ,WangXianping,ZhangTao,et al. Design,Fabrica-Tion,and Properties of High

Damping Metal Matrix Composites—A Review[J].Materials,2009(2) ∶958-977.

[23] Zhang Z,Chen D L. Consideration of Orowan Strengthening Effect in Particulate-Reinforced

Metal Matrix Nano composites:A Model for Predicting Their Yield Strength[ J].Scripta

Materia-Lia,2006,54∶1 321-1 326.

[24] YangYi(杨益),Yang Shengliang(杨盛良).碳纳米管增强金属基复合材料的研究现状及

展望[ J].Materials Review(材料导报),2007,21∶182-184.

金属基复合材料的现状与展望

金属基复合材料的现状与 展望 学院:萍乡学院 专业:无机非金属材料 学号:13461001 姓名:蒋家桐

摘要综述了金属基复合材料的进展情况,重点阐述了颗粒增强金属基复合材料和金属基复合 涂层的进展,包括其性能、现有品种、制备工艺、应用情况. 同时报道了目前本领域研究存在的问 题,如:力学问题、界面问题、热疲劳问题,并在此基础上展望发展前景. 关键词颗粒增强金属基复合材料,复合涂层材料,界面,热疲劳,功能梯度材料 随着近代高新技术的发展,对材料不断提出多方面的性能要求,推动着材料向高比强度、高比刚度、高比韧性、耐高温、耐腐蚀、抗疲劳等多方面发展[1 ] . 复合材料的出现在很大程度上解决了材料当前面临的问题,推进了材料的进展.金属基复合材料(MMC) 是以金属、合金或金属间化合物为基体,含有增强成分的复合材料. 这种材料的主要目标是解决航空、航天等高技术领域提高用材强度、弹性模量和减轻重量的需要,它在60 年代末才有了较快的发展,是复合材料一个新的分支. 目前尚远不如高聚物复合材料那样成熟,但由于金属基复合材料比高聚物基复合材料耐温性有所提高,同时具有弹性模量高、韧性与耐冲击性好、对温度改变的敏感性很小、较高的导电性和导热性,以及无高分子复合材料常见的老化现象等特点,成为用于宇航、航空等尖端科技的理想结构材料. 1 进展情况 目前,金属基复合材料基本上可分为纤维增强和颗粒增强两大类,所用的基体包括Al , Mg ,Ti 等轻金属及其合金以及金属间化合物等,也有少量以钢、铜、镍、钴、铅等为基体. 增强 纤维主要有碳及石墨纤维、碳化硅纤维、硼纤维、氧化铝纤维等,增强颗粒有碳化硅、氧化铝、硼 化物和碳化物等. 用以上的各种基体和增强体虽可组成大量金属基复合材料的品种,但实际上 只有极少几种有应用前景,多数仍处在研究开发阶段,甚至也有不少品种目前尚看不到其应用 前景[2 ] . 1. 1 纤维增强金属基复合材料 纤维增强金属基复合材料,由于具有高温性能好、比强度、比模量高、导电、导热性好等优 点,而成为复合材料的主要类型. 1. 2 颗粒增强金属基复合材料 由于纤维增强金属基复合材料存在上述缺点,从而未能得以大规模工业应用,只有美国、 日本等少数发达国家用于军事工业. 为此,近年来国际上又将注意力逐渐转移到颗粒增强金属 基复合材料的研究上. 这一类金属基复合材料与纤维增强金属基复合材料相比制备工艺简单, 成本低,可采用常规金属加工设备来制造,这样有利于其开发和应用. 可见,颗粒增强金属基复 合材料是非常有发展前途的. 金属基颗粒复合材料通常是作为耐磨、耐热、耐蚀、高强度材料开发的,目前用于颗粒增强

金属基复合材料的研究进展

金属基复合材料的研究进展 姓名:@@@ 学号:@@@@ 学院:@@@@ 专业:@@@@

目录 1金属基复合材料发展史 (1) 2金属基复合材料的制造方法 (1) 2.1扩散法 (1) 2.1.1扩散粘结法 (1) 2.1.2无压力金属渗透法 (2) 2.1.3预制体压力浸渗法 (2) 2.2沉积法 (2) 2.2.1反应喷射沉积法(RAD) (2) 2.2.2溅射沉积法 (2) 2.2.3化学气象沉积法 (2) 2.3液相法 (2) 2.4熔体搅拌法 (3) 3金属基复合材料的应用概况 (3) 3.1金属基复合材料的范畴界定 (3) 3.2金属基复合材料全球市场概况 (3) 3.2.1MMCs在陆上运输领域的应用 (4) 3.2.2MMCs在电子/热控领域的应用 (4) 3.2.3MMCs在航空航天领域的应用 (5) 3.2.4MMCs在其它领域的应用 (5) 3.3中国的金属基复合材料研究现状 (7) 4金属基复合材料研究的前沿趋势 (7) 4.1金属基复合材料结构的优化 (7) 4.1.1多元/多尺度MMCs (8) 4.1.2微结构韧化MMCs (8) 4.1.3层状MMCs (8) 4.1.4泡沫MMCs (8) 4.1.5双连续/互穿网络MMCs (8) 4.2结构-功能一体化 (8) 4.2.1高效热管理MMCs (8) 4.2.2低膨胀MMCs (9) 4.2.3高阻尼MMCs (9) 4.3碳纳米管增强金属基纳米复合材料 (9) 5总结与展望 (9) 参考文献 (10)

金属基复合材料的研究进展 摘要:在过去的三十年里,金属基复合材料凭借其结构轻量化和优异的耐磨、热学和电学性能,逐渐在陆上运输(汽车和火车)、热管理、民航、工业和体育休闲产业等诸多领域实现商业化的应用,确立了作为新材料和新技术的地位。本文概述了金属基复合材料的发展历史和制造方法。并且在综述金属基复合材料的研究与应用现状的基础上,对其研究的前沿趋势进行了展望。 关键词:金属基复合材料;制造方法;性能;应用;前沿展望 金属基复合材料(MMCs),是在各金属材料基体内用多种不同复合工艺,加进增强体,以改进特定所需的机械物理性能。金属基复合材料在比强度、比钢度、导电性、耐磨性、减震性、热膨胀等多种机械物理性能方面比同性材料优异得多。因此,金属基复合材料在新兴高科技领域,宇航、航空、能源及民用机电工业、汽车、电机、电刷、仪器仪表中日益广泛应用。 1金属基复合材料发展史 近代金属基复合材料的研究始于1924年Schmit[1]关于铝/氧化铝粉末烧结的研究工作。在30年代,又出现了沉淀强化理论[2,3],并在以后的几十年中得到了很快地发展。到了60年代,金属基复合材料已经发展成为复合材料的一个新的分支。到了80年代,日本丰田公司首次将陶瓷纤维增强铝基复合材料用于制造柴油发动机活塞,从此金属基复合材料的研制与开发工作得到了飞快地发展。土耳其的S.Eroglu等用离子喷涂技术制得了NiCr-Al/MgO-ZrO2功能梯度涂层。目前,金属基复合材料已经引起有关部门的高度重视,特别是航空航天部门推进系统使用的材料,其性能已经接近了极限。因此,研制工作温度更高、比钢度、比强度大幅度增加的金属基复合材料,已经成为发展高性能材料的一个重要方向。1990年美国在航天推进系统中形成了3 250万美元的高级复合材料(主要为MMC)市场,年平均增长率为16%,远远高于高性能合金的年增长率[4]。到2000年,金属基复合材料的市场价值达到了1.5亿美元,国防/航空用金属基复合材料已占市场份额的80%[5]。预计到2005年市场对金属基复合材料的需求量将达161 t,平均年增长率为4.4%。 2金属基复合材料的制造方法 金属基复合材料的种类繁多,制造方法多样,但总体上可以归纳为4种生产方法。2.1扩散法 扩散法是将作为基本的金属粉末与裸露或有包覆层的纤维在一起压型和烧结,或在基体金属的薄箔之间置入增强剂进行冷压或热压制成金属基复合材料的方法[6]。 2.1.1扩散粘结法 这种方法常用于粉末冶金工业。对于颗粒、晶须等增强体可以采用成熟的粉末冶金法,即把增强体与金属粉末混合后冷压或热压烧结,也可以用热等压工艺。对于连续增强体比较复杂,需先将纤维进行表面涂层以改善它与金属的润湿性并起到阻碍与金属反应的作用,再浸入液态金属中制成复合丝,最后把复合丝排列并夹入金属薄片后热压烧结,对于难熔金属

金属基复合材料的种类与性能

金属基复合材料的种类与性能 摘要:金属基复合材料科学是一门相对较新的材料科学,仅有40余年的发展历史。金属基复合材料的发展与现代科学技术和高技术产业的发展密切相关,特备是航天、航空、电子、汽车以及先进武器系统的迅速发展对材料提出了日益增高的性能要求,除了要求材料具有一些特殊的性能外,还要具有优良的综合性能,有力地促进了先进复合材料的迅速发展。单一的金属、陶瓷、高分子等工程材料均难以满足这些迅速增长的性能要求。金属基复合材料正是为了满足上述要求而诞生的。 关键词:金属;金属基复合材料;种类;性能特征;用途 1. 金属基复合材料的分类 1.1按增强体类型分 1.1.1颗粒增强复合材料 颗粒增强复合材料是指弥散的增强相以颗粒的形式存在,其颗粒直径和颗粒间距较大,一般大于1μm。 1.1.2层状复合材料 这种复合材料是指在韧性和成型性较好的金属基材料中含有重复排列的高强度、高模量片层状增强物的复合材料。片曾的间距是微观的,所以在正常比例下,材料按其结构组元看,可以认为是各向异性的和均匀的。 层状复合材料的强度和大尺寸增强物的性能比较接近,而与晶须或纤维类小尺寸增强物的性能差别较大。因为增强物薄片在二维方向上的尺寸相当于结构件的大小,因此增强物中的缺陷可以成为长度和构件相同的裂纹的核心。 由于薄片增强的强度不如纤维增强相高,因此层状结构复合材料的强度受到了限制。然而,在增强平面的各个方向上,薄片增强物对强度和模量都有增强,这与纤维单向增强的复合材料相比具有明显的优越性。 1.1.3纤维增强复合材料 金属基复合材料中的一维增强体根据其长度的不同可分为长纤维、短纤维和晶须。长纤维又叫连续纤维,它对金属基体的增强方式可以以单项纤维、二维织物和三维织物存在,前者增强的复合材料表现出明显的各向异性特征,第二种材料在织物平面方向的力学性能与垂直该平面的方向不同,而后者的性能基本是个向同性的。连续纤维增强金属基复合材料是指以高性能的纤维为增强体,金属或他们的合金为基体制成的复合材料。纤维是承受载荷的,纤维的加入不但大大改变了材料的力学性能,而且也提高了耐温性能。 短纤维和晶须是比较随机均匀地分散在金属基体中,因而其性能在宏观上是各向同性的;在特殊条件下,短纤维也可以定向排列,如对材料进行二次加工(挤压)就可达到。 当韧性金属基体用高强度脆性纤维增强时,基体的屈服和塑性流动是复合材料性能的主要特征,但纤维对复合材料弹性模量的增强具有相当大的作用。 1.2按基体类型分 主要有铝基、镁基、锌基、铜基、钛基、镍基、耐热金属基、金属间化合物基等复合材料。目前以铝基、镁基、钛基、镍基复合材料发展较为成熟,已在航天、航空、电子、汽车等工业中应用。在这里主要介绍这几种材料 1.2.1铝基复合材料 这是在金属基复合材料中应用最广的一种。由于铝合金基体为面心立方结构,因此具有良好的塑性和韧性,再加之它所具有的易加工性、工程可靠性及价格低廉等优点,为其在工程上应用创造了有利条件。再制造铝基复合材料时通常并不是使用纯铝而是铝合金。这主要是由于铝合金具有更好的综合性能。

金属基复合材料综述

金属基复合材料综述 专业: 学号: 姓名: 时间:

金属基复合材料综述 摘要:新材料的研究、发展与应用一直是当代高新技术的重要内容之一。其中复合材料,特别是金属基复合材料在新材料技术领域中占有重要的地位。金属基复合材料对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用,因此倍受人们重视。本文概述了金属基复合材料的发展历史及研究现状,对金属基复合材料的分类、性能、应用、制备方法、等进行了综述,提出了金属基复合材料研究中存在的问题,探讨了金属基复合材料的发展趋势。 关键词:金属基复合材料;分类;性能;应用;制备;发展趋势 Abstract: The research development and application of new composites are one of the important matters in modern high science and technology. This paper summarizes the met al matrix composites and the development history of the present situation and the classific ation of the metal matrix composites, performance, application and preparation methods, w as reviewed, and put forward the metal matrix composites the problems existing in the res earch, discusses the metal matrix composites trend of development. Keywords: Metal matrix composites; Classification; Performance; Application; Preparation; Development trend. 1.引言 复合材料是继天然材料,加工材料和合成材料之后发展起来的新一代材料。按通常的说法,复合材料是指两种或两种以上不同性质的单一材料,通过不同的复合方法所得到的宏观多相材料。随着现代科学技术的迅猛发展,对材料性能的要求日益提高。常希望复合材料即具有良好的综合性能,又具有某些特殊性能。金属基复合材料是近年来迅速发展起来的高性能材料之一,对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用。相信随着科学技术的不断发展,新的制造方法的出现,高性能增强物价格的不断降低,金属基复合材料在各方面将有越来越广阔的应用前景。

金属基复合材料蠕变性能的研究现状和展望

金属基复合材料蠕变性能的研究现状和展望3 田 君1,2,李文芳1,韩立发2,彭继华1 (1华南理工大学材料科学与工程学院,广州510640;2东莞理工学院机械工程学院,东莞523808) 摘要 综述了国内外金属基复合材料的抗高温蠕变性能的研究进展。重点分析了蠕变理论研究中的3种理论模型的特点,指出理论研究的核心问题是位错越过第二相的机制以及门槛应力的来源。详述了目前蠕变实验研究的各种实验方法与特点。讨论了利用计算机有限元分析来进行蠕变研究的优点。针对目前我国金属基复合材料的抗高温蠕变性能的研究方法提出了一些看法和展望。 关键词 金属基复合材料 位错 门槛应力 蠕变 R esearch and Development Creep of Metal Matrix Composites TIAN J un 1,2,L I Wenfang 1,HAN Lifa 2,PEN G Jihua 1 (1 College of Materials Science and Engineering ,South China University of Technology ,Guangzhou 510640;2 College of Mechanical Engineering ,Dongguan University of Technology ,Dongguan 523808) Abstract Research development on high temperature creep of metal matrix composites at home and abroad are summarized.The three theoretical models of the creep theory studies are focused on analyzing ,and the core issue of theoretical studies is a mechanism of the dislocation over the second phase and the threshold stress sources.Characte 2ristics of various experimental methods of the current creep experimental studies are recounted.Advantages of the computer finite element analysis in creep studies are discussed.The research trends and development on high tempera 2ture creep of metal matrix composites in China are presented. K ey w ords metal matrix composites ,dislocation ,threshold stress ,creep  3东莞市高等院校科技计划项目(2008108101028);广东省金属新材料成型制备重点实验室开放基金资助项目(2008001)  田君:1968年生,副教授,博士研究生 E 2mail :841608534@https://www.doczj.com/doc/1b16326304.html, 李文芳:通讯作者,1964年生,教授,博导 E 2mail :mewfli @ https://www.doczj.com/doc/1b16326304.html, 在能源、石油化工和航空航天等工业装置中,很多构件需在高温下工作。如火力发电的蒸汽温度可达到570℃,飞机涡轮叶片的工作温度高达1000℃以上,制氢转化和乙烯裂解温度分别达到950℃和1050℃。对这类装置材料最重要的性能要求是高温强度[1],然而常规材料无法满足高温强度性能,只有新型的高温结构材料才能胜任,如金属间化合物、陶瓷、聚合物、复合材料等。在这些高温结构材料中,只有金属基复合材料(MMC )才具有比强度和比刚度高、导热导电性好、阻尼减振、电磁屏蔽、易于加工成形和容易回收等优点,在汽车、电子通信、航空航天和国防军事等领域具有极其重要的应用价值和广阔的应用前景,被誉为“21世纪绿色工 程材料”[2]。 MMC 的高温强度性能是指材料对高温变形与断裂的抗力。它们长期在高温并受一定载荷的环境下工作,会发生缓慢的塑性变形,也就是我们常说的蠕变。研究其蠕变性能是设计MMC 材料高温环境工作的关键。MMC 的蠕变性能与下列因素相关:基体的蠕变性能,增强体的弹性和断裂特性, 增强体的尺寸参数、分布以及增强体与基体界面性能等[3-6]。也就是需要了解MMC 材料的宏观性能与其细观结构和组成之间的关系,因此需要建立这两者关系模型。从这一实际 出发,近年来,国内外学者对MMC 的宏观性能与细观结构性能进行了大量研究,并取得了相当丰富的研究成果。从蠕变研究方法上讲,按其发展过程大体可分为3类:第一类是理论研究,建立理论模型;第二类是蠕变试验研究;第三类是结合试验数据建立有限元计算模型,进行计算机模拟。 1 理论研究 MMC 蠕变一般有以下共同特征: (1)蠕变速度比相同条件下没有强化的基体合金小得 多,第二相强化显著地提高蠕变抗力,且第二相体积分数、尺寸、在基体中的分布以及结合界面等都会影响强化作用。 (2)蠕变速率与应力关系仍可用 ε∝σn 表示,而应力指数 n 一般为7~8,甚至达到10~40。 (3)蠕变激活能远大于基体的自扩散激活能。 (4)存在门槛应力,外加应力低于门槛应力时MMC 不 发生蠕变。门槛应力值一般是Orowan 应力的1/2左右。至今还没有一种蠕变理论对上述所有的蠕变特征给出满意的解释。迄今研究的核心问题是位错越过第二相的机制以及门槛应力的来源。由于MMC 强化有粒子强化、晶须强化及纤维强化,为便于说明,不妨以粒子强化为例,围绕核

金属基复合材料

14.3.2金属-非金属复合材料 14.3.2.1金属基复合材料的性能特征 金属基复合材料与一般金属相比,具有耐高温、高比强度、高的比弹性模量、小的热膨胀系数和良好的抗磨损性能。与聚合物基复合材料相比,不仅剪切强度高、对缺口不敏感,而且物理和化学性能更稳定,如不吸湿、不放气、不老化、抗原子氧侵蚀、抗核、抗电磁脉冲、抗阻尼,膨胀系数低、导电和导热性好。由于上述特点,使金属基复合材料更适合空间环境使用,是理想的航天器材料,在航空器上也有潜在的应用前景。 14.3.2.2金属基复合材料的研究与应用 表14.101 和表14.102简要概述了各类金属基复合材料在航空航天领域的应用概况。金属基复合材料(MMC)的研究始于20世纪60年代,美国和俄罗斯在航空航天用金属基复合材料的研究应用方面处于领先的地位。20世纪70年代,美国把B/Al复合材料应用到航天飞机轨道上,该轨道器的主骨架是采用89种243根重150g的B/Al管材制成,比原设计的铝合金主骨架减重145g。美国还用B/Al复合材料制造了J-79和F-100发动机的风扇和压气机叶片,制造了F-106、F-111飞机和卫星构件,并通过了实验,其减重效果达20%~66%。苏联的B/AL复合材料与80年代达到实用阶段,研制了多种带有接头的管材和其他型材,并成功地制造出能安装三颗卫星的支架。由于B纤维的成本高,因此自70年代中期美国和苏联又先后开展C/AL复合材料的研究,在解决了碳纤维与铝之间不湿润的问题以后,C/AL复合材料得到应用。美国用C/AL制造的卫星用波导管具有良好的刚性和极低的热膨胀系数,比C/环氧复合材料轻30%.。随着SiC纤维和Al2O3纤维的出现,连续纤维增强的金属基复合材料得到进一步发展,其中研究和应用较多的是SiC/AL 复合材料。连续纤维增强金属基复合材料的制造工艺复杂、成本高,因此美国又率先研究发展晶须增强的金属基复合材料,主要用于对刚度和精度要求较高的航天构件上。美国海军武器中心研制的SiC p/Al复合材料导弹翼面已经进行了发射试验,卫星的抛物面天线、太空望远镜的光学系统支架也采用了SiC p/Al复合材料,其刚度比铝大70%,显著提高了构件的精度。 MMC对航天器的轻质化、小型化和高性能化正在发挥越来越重要的作用。 MMC在航空器上的应用也有很大潜力,英国研制了SCS-6/Ti的发动机叶片,大幅度提高了其承载能力和刚度,优化了气动载荷下的翼型。用SCS-6/Ti代替耐热钢制造的RB211发动机的压气机静子,可使该构件减重40%;采用SCS-6/Ti代替镍基高温合金制作压气机叶环结构转子,可是该部件减重80%;SiC f/Ti 也可望代替不锈钢在F-22试验型飞机制作活塞杆。 表14.101 B/Al复合材料的应用 表14.102 其他MMC的应用背景

先进金属基复合材料制备科学基础

项目名称:先进金属基复合材料制备科学基础首席科学家:张荻上海交通大学 起止年限:2012.1-2016.8 依托部门:上海市科委

一、关键科学问题及研究内容 针对国家空天技术、电子通讯和交通运输领域等对先进金属基复合材料的共性重大需求和先进金属基复合材料的国内外发展趋势,本项目以克服制约国内先进金属复合材料制备科学的瓶颈问题为出发点,针对下列三个关键科学问题开展先进金属基复合材料制备科学基础研究: (1). 先进金属基复合材料复合界面形成及作用机制 界面是是增强相和基体相连接的“纽带”,也是力学及其他功能,如导热、导电、阻尼等特性传递的桥梁,其构造及其形成规律将直接影响复合材料的最终的组织结构和综合性能。因此,界面结构、界面结合及界面微区的调控是调控金属复合材料性能的最为关键的一环。揭示基体成分、添加元素、增强体特性复合工艺对复合过程中的界面的形成、加工变形、服役过程中的界面结构、特征的演变规律和效应,以及在多场下的组织演变规律和对复合材料的性能变化极为关键。复合效应的物理基础正是源于金属基体与增强体的性质差异,而在金属基复合材料复合制备过程中,二者的差异无疑会直接或间接地影响最终的复合组织和界面结构。因此,要想建立行之有效的金属基复合材料组分设计准则和有效调控先进金属基复合材料的结构与性能,就必须从理论上认识先进金属基复合材料的复合界面形成及作用机制。 (2). 先进金属基复合材料复合制备、加工成型中组织形成机制及演化规律 金属基复合材料的性能取决于其材料组分和复合结构,二者的形成不仅依赖于复合制备过程,还依赖于包括塑性变形、连接、热处理等后续加工和处理过程。只有在掌握金属基复合材料的组织结构演变规律的基础上,才有可能通过优化工艺参数精确调控微观组织,进而调控复合材料的性能。 (3). 使役条件下复合材料界面、组织与性能耦合响应机制 先进金属基复合材料中,由于增强体与金属基体的物理和力学性能之间存在巨大差异,造成在界面点阵分布不均匀,同时近界面基体中由于热错配,残余应力等导致晶体学缺陷含量较高。因此,在使役过程中,先进金属基复合材料的力学性能不仅取决于其材料组分,更加取决于增强体在基体中的空间分布模式、界面结合状态和组织与性能之间的耦合响应机制。只有揭示使役条件下复合材料界面、组织与性能耦合响应机制,才能真正体现先进金属基复合材料中增强体与基体的优势互补,充分利用其巨大潜力,也才可能优化复合和界面结构设计。

金属基复合材料界面

华东理工大学2012-2013学年第二学期 《金属基复合材料》课程论文2013.6班级复材101 学号10103638 温乐斐开课学院材料学院任课教师麒成绩

浅谈金属基复合材料界面特点、形成原理及控制方法 摘要 金属基复合材料都要在基体合金熔点附近的高温下制备,在制备过程中纤维、晶须、颗粒等增强体与基体将发生程度不同的相互作用和界面反应,形成各种结构的界面。界面结构和性能对金属基复合材料的性能起着决定性作用。深入研究和掌握界面反应和界面影响性能的规律,有效地控制界面的结构和性能,是获得高性能金属基复合材料的关键。本文简单讨论一下金属基复合材料的界面反应、界面对性能的影响以及控制界面反应和优化界面结构的有效途径等问题。 前言 由高性能纤维、晶须、颗粒与金属组成的金属基复合材料具有高比强度、高比模量、低热膨胀、耐热耐磨、导电导热等优异的综合性能有广阔的应用前景,是一类正在发展的重要高技术新材料。 随着金属基复合材料要求的使用性能和制备技术的发展,界面问题仍然是金属基复合材料研究发展中的重要研究方向。特别是界面精细结构及性质、界面优化设计、界面反应的控制以及界面对性能的影响规律等,尚需结合材料类型、使用性能要求深入研究。金属基复合材料的基体一般是金属、合金和金属间化合物,其既含有不同化学性质的组成元素和不同的相,同时又具有较高的熔化温度。因此,此种复合材料的制备需在接近或超过金属基体熔点的高温下进行。金属基体与增强体在高温复合时易发生不同程度的界面反应;金属基体在冷凝、凝固、热处理过程中还会发生元素偏聚、扩散、固溶、相变等。这些均使金属基复合材料界面区的结构十分复杂,界面区的结构及组成明显不同于基体和增强体,其受到金属基体成分、增强体类型、复合上艺参数等多种因素的影

铝基复合材料综述

铝基复合材料综述 XXXXXXXXXXX 摘要铝基复合材料凭借密度小、耐磨、热性能好等优点在航天航空等领域占有优势地位。文中综述了铝基复合材料的种类、铝基复合材料性能、各种铝基复合材料的制备和应用以及发展前景。 关键词铝基复合材料种类性能制备应用 Abstract Al-based alloys have advantages in the field of the aerospace by the advantages of small density , anti-function ,good thermal performance and so on. This article discussed the kinds ,performance ,approach , use and development prospect of Al-based alloys. Key words Al-based alloys kind performance approach use

1.引言 自20世纪80年代金属基复合材料大规模研究与开发以来,铝基复合材料在航空,航天,电子,汽车以及先进武器系统等领域得到迅速发展。铝基复合材料的制备工艺设计高温、增强材料的表面处理、复合成型等复杂工艺,而复合材料的性能、应用、成本等在很大程度上取决于其制造技术。因此,研究和开发心的制造技术,在提高铝基复合材料性能的同时降低成本,使其得到更广泛的应用,是铝基复合材料能否得到长远发展的关键所在。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨,阻尼性能好,热膨胀系数低。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。2.铝基复合材料分类 按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高,尺寸稳定性好等一系列优异性能,但价格昂贵,目前主要用于航天领域,作为航天飞机、人造卫星、空间站等的结构材料。颗粒增强铝基复合材料可用来制造卫星及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件;此外还可以用来制造微波电路插件、惯性导航系统的精密零件、涡轮增压推进器、电子封装器件等。 3.铝基复合材料的基本成分 铝及其合金都适于作金属基复合材料的基体,铝基复合材料的增强物可以是连续的纤维,也可以是短纤维,也可以是从球形到不规则形状的颗粒。目前铝基复合材料增强颗粒材料有SiC、AL2O3、BN等,金属间化合物如Ni-Al,Fe-Al和Ti-Al也被用工作增强颗粒。 4.铝基复合材料特点 在众多金属基复合材料中,铝基复合材料发展最快且成为当前该类材料发展和研究的主流,这是因为铝基复合材料具有密度低、基体合金选择范围广、热处理性好、制备工艺灵活等许多优点。另外,铝和铝合金与许多增强相都有良好的接触性能,如连续状硼、AL2O3\ 、

复合材料综述

金属基陶瓷复合材料制备技术研究进展与应用* 付鹏,郝旭暖,高亚红,谷玉丹,陈焕铭 (宁夏大学物理电气信息工程学院,银川750021) 摘要综述了国内外在金属基陶瓷复合材料制备技术方面的最新研究进展与应用现状,展望了 国内金属基陶瓷复合材料的未来发展。 关键词金属基陶瓷复合材料制备技术应用 Development and Future Applications of Metal Matrix Composites Fabrication Technique FU Peng, HAO Xunuan, GAO Yahong, GU Yudan, CHEN Huanming (School of Physics & Electrical Information Engineering, Ningxia University, Yinchuan 750021) Abstract Recent development and future applications of metal matrix compositesfabrication technique are reviewed and some prospects of the development in metal matrix composites at home are put forward. Key words metal-based ceramic composites, fabrication technique, applications 前言:现代高技术的发展对材料的性能日益提高,单料已很难满足对性能的综合要求,材料的复合化是材料发展的必然趋势之一。陶瓷的高强度、高硬度、高弹性模量以及热化学性稳定等优异性能是其主要特点,但陶瓷所固有的脆性限制着其应用范围及使用可靠性[1—3]。因此,改善陶瓷的室温韧性与断裂韧性,提高其在实际应用中的可靠性一直是现代陶瓷研究的热点。与陶瓷基复合材料相比,通常金属基复合材料兼有陶瓷的高强度、耐高温、抗氧化特性,又具有金属的塑性和抗冲击性能,应用范围更广,诸如摩擦磨损类材料、航空航天结构件、耐高温结构件、汽车构件、抗弹防护材料等。 1 金属基陶瓷复合材料的制备 金属基陶瓷复合材料是20世纪60年代末发展起来的,目前金属基陶瓷复合材料按增强体的形式可分为非连续体增强(如颗粒增强、短纤维与晶须增强)、连续纤维增强(如石墨纤维、碳化硅纤维、氧化铝纤维等)[4—6]。实际制备过程中除了要考虑基体金属与增强体陶瓷之间的物性参数匹配之外,液态金属与陶瓷间的浸润性能则往往限制了金属基陶瓷复合材料的品种。目前,金属基陶瓷复合材料的制备方法主要有以下几种。 1.1 粉末冶金法 粉末冶金法制备金属基陶瓷复合材料即把陶瓷增强体粉末与金属粉末充分混合均匀后进行冷压烧结、热压烧结或者热等静压,对于一些易于氧化的金属,烧结时通入惰性保护气体进行气氛烧结。颗粒增强、短纤维及晶须增强的金属基陶瓷复合材料通常采用此种方法,其主要优点是可以通过控制粉末颗粒的尺寸来实现相应的力学性能,而且,粉末冶金法制造机械零件是一种终成型工艺,可以大量减少机加工量,节约原材料,但粉末冶金法的生产成本并不比熔炼法低[7]。 1.2 熔体搅拌法 熔体搅拌法是将制备好的陶瓷增强体颗粒或晶须逐步混合入机械或电磁搅拌的液态或半

金属基复合材料的应用及前景

附录: 题目:金属基复合材料的应用级展望 院(系)轻纺工程系 专业高分子材料加工技术 届别2012届 学号0919080102 姓名汪振峰 指导老师袁淑芳老师 黎明职业大学 2011年12月

金属基复合材料的应用及展望 汪振峰 (黎明大学,福建泉州,362000) 摘要:金属基复合材料是近几年来复合材料研究中的热点。本文综述了金属基复合材料的分类、性能特点、制备方法,总结了其主要进展及应用。 关键词:金属基复合材料;特点;应用 1、前言 随着近代高新技术的发展,对材料不断提出多方面的性能要求,推动着材料向高比强度、高比刚度、高比韧性、耐高温、耐腐蚀、抗疲劳等多方面发展。复合材料的出现在很大程度上解决了材料当前面临的问题,推进了材料的进展。 复合材料(Composite Materials)是为达到预期的使用特性将不同性质的两种或两种以上材料结合为一体而设计制造的新材料。金属基复合材料(MMCs即Metal matrix composites)是以金属、合金或金属间化合物为基体,含有增强成分的复合材料。其目标是解决航空、航天、电子、汽车、先进武器系统等高技术领域提高用材强度、弹性模量和减轻重量的需要,它在60年代末才有了较快的发展,是复合材料一个新的分支.目前尚远不如高聚物复合材料那样成熟,但由于金属基复合材料比高聚物基复合材料耐温性有所提高,同时具有弹性模量高、韧性与耐冲击性好、对温度改变的敏感性很小、较高的导电性和导热性以及无高分子复合材料常见的老化现象等特点,成为用于宇航、航空等尖端科技的理想结构材料。 金属基复合材料集高比模量、高比强度、良好的导热导电性、可控的热膨胀系数以及良好的高温性能于一体,成为当代发展迅速的重要先进材料之一。 2、金属基复合材料的分类 金属基复合材料是以金属为基体,以高强度的第二相为增强体而制得的复合材料。因此,对这种材料的分类既可按基体来进行、也可按增强体来进行。 2.1按基体分类: 2.1.1铝基复合材料 这是在金属基复合材料中应用得最广的一种。由于铝的基体为面心立方结构,因此具有良好的塑性和韧性,再加之它所具有的易加工性、工程可靠性及价格低廉等优点,为其在工程上应用创造了有利的条件。 在制造铝基复合材料时,通常并不是使用纯铝而是用各种铝合金。这主要是由于与纯铝相比,铝合金具有更好的综合性能。至于选择何种铝合金做基体,则根据实际中对复合材料的性能需要来决定。

关于金属基复合材料的一些概述

关于金属基复合材料(MMC)的一些概述 一、MMC的种类及其微观组织的一般特征 金属基复合材料(MMC),这一术语包括了很广的成分与结构范围。他们的共同点是有连续的金属基体。按照增强体的形状是连续性纤维,短纤维或者是颗粒状,复合材料的显微组织可分为下图所示的几类。更进一步的分类可基于纤维的直径和取向分布。在仔细考察特定的体系之前,认识与最终产品的微观组织结构有关的问题是有益的。下表简要的总结了复合材料的主要显微组织特征及其对性能的潜在影响。虽然有些组织参数可事先设定,但另外一些参数却难以控制。尽管如此,在设计与制造某特定的工作之前,一个重要的步骤是,事先认定一些简单的纤维组织结构目标及获得这些目标的方法。 按增强材料形态分类,可分为纤维增强金属基复合材料、颗粒和晶须增强金属基复合材料。若按金属基体分类,可分为铝基复合材料,钛基复合材料、镁基复合材料、高温合金复合材料和金属间化合物复合材料。倘若按增强体类型进行分类,则可分为单片、晶须(或者纤维)和颗粒,如下图。

二、金属基体的概述及其制备工艺 金属基体应用最多的为铝及铝合金,钛以及镁。铝的基本特点:熔点660℃,密度2.7g/cm3,其具有面心立方结构.所以其塑性优异,适合各种形式的冷、热加工。导电、导热性能好,约为铜的60%左右,同时化学活性高,在大气中铝表面与氧形成一层薄而又致密的氧化膜以防止铝继续氧化,但是强度低。钛的特点:熔点1678℃,密度4.51g/cm3。其重量轻、比强度高。纯钛的强度可通过冷作硬化和合金化而得到显著的提高.如50%的冷变形可使强度提高60%,适当合金化和热处理,则抗拉强度可达1200—1400MPa,含有氢、碳、氧、铁和镁等杂质元素的工业纯钛抗拉强度可提高到700MPa,并仍能保持良好的塑性和韧性。高温性能优良。合金化后的耐热性显著提高,可以作为高温结构材料使用,如航空发动机的压气机转子叶片等,长期使用最高温度已达540℃。在大气和海水中有优异的耐蚀性.在硫酸、盐酸、硝酸相氢氧化纳等介质中都很稳定。但是导电与导热性差.导热系数只有铜的1/l 7和铝的l/10,比电阻为铜的25倍。镁的特点:密度1.74g/cm3。由于其密度低,比强度、比刚度较高,镁具有密排六方结构,室温和低温塑性较低,但高温塑性好可进行各类形式的热变形加工。减震性能好,能承受较大的冲击振动负荷。 根据各种制备方法的基本特点,金属基复合材料的制备工艺分为四大类,即固态法;液态法;喷涂与喷射沉积法;原位复合法。 1、固态法。在一定温度的压力下,把新鲜清洁表面的相同或不相同的金届,通过表面原子的互相扩散而连接在一起。关键步骤为纤维的排布,复合材料的叠台和真空封装以及热压。其采用有机粘接剂。将增强纤维的单丝或多丝的条带分别浸溃加热后易挥发的有机粘接剂,按复合材料的设计要求的间距排列在全属基体的薄板或箔上,形成预制件。采用带槽的薄板或箔片,将纤维排布在其中。采用等离子喷涂。即先在金属基体箔片上用排布好一层纤维,然后再喷涂一层与基体金属相同的金属。纤维表面经化学或物理处理,在基体金属熔池中充分地浸渍形成金属基复合丝。为了防止复合材料在热压中的氧化,叠合好的复合材料坯科应真空封装于金属模套中。为了便于复合材料在热压后与金属模套的分离,在金属模套的内壁徐上云母粉类的涂料以利分离,注意不能涂与金属基体发生反应的涂料。在真空或保护气氛下直接放入热压模或平板进行热压合热压工艺参数主要为:热压温度、压力和时间。扩散结合的优缺点:工艺相对复杂,纤维排布、叠合以及封装手工操作多,成本高。能按照复合材料的铺层要求排布。在热压时可通过控制工艺参数的办法来控制界面反应。粉末冶金。适用于连续、长纤维增强.也可用于短纤维、颗粒或晶须增强的金属基复合材料。长纤维增强:将纤维和金属粉末按比例混合,密封在容器中,然后进行热等静压。粉末冶金的优点:工艺过程温度低,可以控制界面反应。增强材料(纤维、颗粒或晶须)与基体金属粉末可以任何比例混合,纤维含量最高可达75%,颗粒含量可达50%以上。对浸润性和密度差的要求较小采用热等静压工艺时,其组织细化、细密、均匀,一般不会产生偏析、偏聚等缺陷,可使空隙和其它内部缺陷得到明显改善,从而提高复合材料的性能。可以用传统的加工方法进行二次加工。粉末冶金的缺点:工艺过程比较复杂,金属基体必须制成金属粉末,增加了工艺的复杂性和成本。在制备铝基复合材料时,还要防止铝金属粉末引起的爆炸。

金属基纳米复合材料

金属基纳米复合材料 摘要:本论文主要介绍了纳米复合材料的设计(包括结构设计和功能设计),讨论了金属基复合材料的制备方法以及对所制备的金属基纳米复合材料的性能进行了分析,最后对金属基纳米复合材料的发展进行了展望 。 关键词:纳米复合材料简介金属基复合材料特性金属基复合材料制备方法碳纳米管金属基纳米复合材料展望 引言:金属基纳米复合材料是以金属及合金为基体,与一种或几种金属或非金属纳米级增强相相结合的复合材料。金属基纳米复合材料具有力学性能好、剪切强度高、工作温度较高、耐磨损、导电导热好、耐湿性好、不吸气、尺寸稳定、不老化等优点,故以其优异的性能应用于自动化、航天、航空等高技术领域。各种复合新工艺,如压铸、半固态复合铸造,喷射沉积和直接氧化法、反应生成法等的应用,促进了纳米颗粒、纳米晶片、纳米晶须增强金属基复合材料的快速发展,使成本不断降低,从而使金属基纳米复合材料的应用由自动化、航空、航天工业扩展到汽车工业,而使其应用越来越广泛,进入到生产生活的各个方面。 纳米复合材料简介 纳米材料是由纳米量级(1—100nm)的纳米粒子组成的固体材料。纳米微粒有4个基本效应:小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应。因此,纳米材料表现出一些特殊性能,如高热膨胀系数、高比热容、低熔点、奇特的磁性、极强的吸波性能等。纳米微粒尺寸很小,纳米粒子的表面原子数与其总原子数的比值随着粒径尺寸的减小而急剧增大,所以纳米材料有高密度缺陷、高的过剩能、大的比表面积和界面过剩体积。纳米材料也因此具有许多特殊的性能,如高的弹性模量、较强的韧性、高强度、超强的耐磨性、自润滑性和超塑性等。由于纳米材料的特异性能,纳米材料有着广泛的应用。 根据纳米复合材料的功能特性和使用时的侧重点,可将其粗略地分为结构纳米复合材料和功能纳米复合材料两大类。前者主要用在产品或工程的结构部件上,着重在材料的结构强度、刚性、韧性、耐热性能等机械、物理、力学性质和耐化学腐蚀与耐恶劣环境能力上的赋予;后者侧重在利用材料的特殊光、电、声、热、磁敏感应、信息贮存与传输、能量贮存与释放等性能及效应来实现某种功能。根据纳米复合材料的复合途径可分为:纳米相—纳米相复合材料,纳米相—常规块体复合材料及复合纳米薄膜。根据复合材料组分的性质可分为无机—无机纳米、有机—有机纳米以及无机—有机纳米复合材料。 金属基纳米复合材料的特性 金属基纳米复合材料的力学性能主要具有如下的特点:高强度和高韧性,高比强度和高比模量,抗蠕变和抗疲劳性好,高温性能好,断裂安全性高等。 1.微观结构 研究人员用超声波气态原子化法和热挤压锻造制备纳米复合材料,研究其微观结构演化、热稳定性和ɑ-Al纳米相生长动力学,发现:原子化粉末的微观结构受基体中溶质过饱和度、隐含微应力、溶质大小、分布状态和沉积纳米相的体 (Ni,Fe)纳米相积分数等因素影响;在热的结晶过程中,ɑ-Al相的沉积和Al 3

金属基复合材料性能的影响因素

金属基复合材料性能的影响因素 摘要:金属基复合材料具有高比强度、高比模量、低热膨胀系数等优点,近年来发展非常迅速。但其性能一致性差的问题制约了其应用,因此复合材料的性能设计受到了普遍的关注。本文综述了基体、增强体、基体与增强体相容性、工艺、界面等因素对金属基复合材料性能的影响。 关键词:金属基复合材料性能影响因素设计 1 引言 金属基复合材料被誉为21世纪的材料, 它兼有金属的塑性和韧性,以及其它材料如陶瓷的高强度和高刚度,而且比重小,因此具有较高的比强度、比刚度和更好的热稳定性、耐磨性以及尺寸稳定性等优点,从而在机械、汽车、航空航天、兵器、电子等许多领域得到了应用[1~3]。 尽管金属基复合材料在过去的30年里在世界范围内得到了广泛的研究和发展,但是还没有在工业上得到广泛的应用,其原因主要在于它的成本高、性能低于期望值、相对较低的稳定性和大的性能波动、不可回收利用、环境污染等几个障碍[4~5]。目前在国内发展复合材料,关键是要实现低成本、高性能、一致性好、稳定的制备技术和根据力学原理以及使用者的期望设计出令用户满意的性价比的材料。这就涉及到复合材料的设计问题,而性能决定了复合材料在工程上的应用,所以性能的影响因素一直是研究的热点。但是由于金属基复合材料的强化机理不明确,至今在金属基复合材料的设计理论上还存在着较大的盲目性。因此对复合材料性能的影响因素的研究是一个使金属基复合材料走出低谷获得突破的重要课题。 2 影响金属基复合材料的因素 2.1 基体的影响 不同的基体对复合材料的抗拉强度、屈服强度、结合强度有较大的影响。但并不是基体强度越高,复合材料的强度越高,而是存在一个最佳匹配[6]。姜龙涛等[7]对AlN颗粒在不同铝合金中的增强行为的研究表明,在低强度的L3纯铝上可以得到最大的增强率,而在高强度的LY12合金上没有得到高的增强率,相比之下具有良好塑性和较高强度的LD2合金作为基体时,具有较高的强度。而康国政等[8]认为基体本身的强度较低时,复合材料中基体的强度将有较大幅度的提高,因此对基体本身强度较低的复合材料通过基体原位性能的大幅度提高使复合材料抗拉强度的提高十分明显。这些研究都说明基体同增强体之间存在着优化选择、合理匹配的问题。

相关主题
文本预览
相关文档 最新文档