当前位置:文档之家› 低秩矩阵恢复代码

低秩矩阵恢复代码

低秩矩阵恢复代码
低秩矩阵恢复代码

function x_out= MSB(Aop,y_vec,s_x,lambda1,rnk,iter)

% function [x_out obj_func]= MSB(Aop,y_vec,[m n],lambda1,rnk)

% This code solves the problem of recovering a low rank matrix from its

% lower dimensional projections

% Minimize ||X||* (nuclear norm of Z)

% Subject to A(X) = Y

%formulated as an unconstarined nuclear norm minmization problem using Split bregman algorithm

% Minmimize (lambda1)||W||* + 1/2 || A(X) - y ||_2^2 + eta/2 || W-X-B1 ||_2^2

%W is auxillary variable and B1 is the bregman variable

%INPUTS

%Aop : Linear operator

%y_vec : Vector of observed values

%s_x : size of the data matrix to be recovered (in form of [m n]) %lambda1:regularization parameter

%rnk : rank estimation for X

%iter : maximum number of iterations to be carried out

%OUTPUTS

%x_out : recovered matrix

if nargin < 6

error('Insufficient Number of arguments');

end

%Variable and parameter initialization

eta1=.001; % Regularization parameter

s_new=s_x(1)*s_x(2);

W=zeros(s_new,1); % proxy variable

B1=ones(s_new,1); % bregman variable

% create operator for least square mimimization

I=opDiag(s_new,1);

Aop_concat = opStack([1 eta1],Aop,I);

%run iterative algorithm

for iteration=1:iter

%measurement vector for L2 minimization

b_vec=[y_vec;eta1*(W-B1)];

%L2 minimization step (subproblem 1)

X=lsqr(@lsqrAop,b_vec);

%Nuclear norm minization Step (subproblem 2)

W=X+B1;

[W, s_thld]=nuc_norm(W,s_x,s_new,lambda1,eta1,rnk);

%bregman variable update

B1 = B1+X-W;

%Objective function value

obj_func(iteration)=0.5*norm(y_vec-Aop(X,1))+ lambda1*sum(s_thld) ;

if iteration>10 &&

abs(obj_func(iteration)-obj_func(iteration-10))<1e-7 break

end

end

%reshaping recovered vector to matrix form

x_out = reshape(X,s_x(1),s_x(2));

%Plot objective function

plot(obj_func);

title('Convergence of Objective Function')

xlabel('Number of iterations');

ylabel('Objective function value');

function y = lsqrAop(x,transpose)

switch transpose

case'transp'

y = Aop_concat(x,2);

case'notransp'

y = Aop_concat(x,1);

end

end

end

基于总变分加权低秩矩阵恢复的椒盐噪声去噪

2016年6月 第37卷一第6期计算机工程与设计COMPUTER ENGINEERING AND DESIGN June 2016Vol .37一No .6 ??????????????????????????????????????????????????基于总变分加权低秩矩阵恢复的椒盐噪声去噪 张一敏1,2,谈文蓉3(1.西南民族大学外国语学院,四川成都610041;2.西南交通大学信号与信息处理四川重点实验室,四川成都610031;3.西南民族大学计算机科学与技术学院,四川成都610041) 摘一要:传统的基于低秩矩阵恢复的椒盐噪声去噪算法易产生条纹失真,中值滤波去除椒盐噪声后边缘易产生移位和块状效应,纹理细节不太清晰,为此提出一种椒盐噪声去噪模型三在原有的低秩矩阵核范数约束基础上引入总变分约束项,为提高低秩矩阵的低秩性和稀疏矩阵的稀疏性,引入加权的方法三实验结果表明,该算法能增加低秩矩阵的低秩性和稀疏矩阵的稀疏性,保证了去噪效果,保留了图像的细节信息,具有更佳的视觉效果,提高了客观评价指标三 关键词:总变分;低秩矩阵恢复;加权;椒盐噪声;图像去噪 中图法分类号:TP391.41一文献标识号:A一文章编号:1000-7024(2016)06-1579-05doi :10.16208/j .issn1000-7024.2016.06.029收稿日期:2015-06-28;修订日期:2015-09-02 基金项目:西南民族大学中央高校基本科研业务费基金项目(2014NZYQN47);四川省科技支撑计划基金项目(2014GZ0006) ;四川省教育厅基金项目(15ZB0489)作者简介:张敏(1983),男,四川南充人,博士研究生,实验师,研究方向为信息安全与网络安全二图像处理;谈文蓉(1968),女,四川广安人,硕士,教授,研究方向为物联网技术三E -mail :cdcszhan g min@https://www.doczj.com/doc/1b3201839.html, Salt -and -p e pp er denoisin g based on total variation and rewei g hted low -rank matrix recover y ZHANG Min 1,2,TAN Wen -ron g 3(1.School of Forei g n Lan g ua g es ,Southwest Universit y for Nationalities ,Chen g du 610041,China ;2.Sichuan Province Ke y Lab of Si g nal and Information Processin g ,Southwest Jiaoton g Universit y ,Chen g du 610031,China ;3.School of Com p uter Science and Technolo gy ,Southwest Universit y for Nationalities ,Chen g du 610041,China )Abstract :The traditional salt -and -p e pp er denoisin g based on low -rank matrix recover y al g orithm is eas y to p roduce stri p es dis -tortion ,median filter ma y lead to ed g e shift and block y ,and serious detail loss.To solve the p roblem ,a salt -and -p e pp er denoi -sin g al g orithm was p ro p osed ,in which total variation was added to the low rank restraint model.Ins p ired b y rewei g hted L1mini -mization for s p arsit y enhancement ,rewei g htin g sin g ular values were used to enhance low rank of matrix ,an efficient iterative re -wei g htin g scheme was p ro p osed for enhancin g low rank and s p arsit y simultaneousl y .Ex p erimental results show that the p ro -p osed al g orithm can enhance low rank and s p arsit y of a matrix simultaneousl y ,g uarantee visual effect and kee p the details.At the same time ,the ob j ective evaluation indexes are im p roved.Ke y words :total variation ;low -rank matrix recover y ;rewei g hted ;salt -and -p e pp er ;ima g e denoisin g 0一引一言 图像去噪[1-3]必须遵循的规则是在去除噪声的同时也能够尽量保护图像的一些边缘细节信息,因为这些边缘信息 非常重要,其能使图像看上去更真实三然而传统的去噪方 法仅仅假定在含噪图像中,其有用信息的频率也较低,噪 声频率却较高三然而,实际上述假设条件并不总是成立三 因为,一方面图像的一些细节和边缘等有用信息含有较高 频分量;另一方面,椒盐噪声以高频成分为主,但同时也有低频成分三因此,传统的去噪手段往往在抑制图像噪声的同时,也损失了图像的重要细节信息,结果会使去噪后 的图像变得模糊[4,5]三出现诸如边缘容易出现块状效应和移位,导致纹理细节不清晰三与此同时,椒盐噪声太大时图像中会残留大量的椒盐噪声三目前常用的方法是通过扩大窗口可彻底去除椒盐噪声,然而导致的问题是随着窗口扩大,图像也会变得更加不清晰三

低秩矩阵恢复代码

function x_out= MSB(Aop,y_vec,s_x,lambda1,rnk,iter) % function [x_out obj_func]= MSB(Aop,y_vec,[m n],lambda1,rnk) % This code solves the problem of recovering a low rank matrix from its % lower dimensional projections % Minimize ||X||* (nuclear norm of Z) % Subject to A(X) = Y %formulated as an unconstarined nuclear norm minmization problem using Split bregman algorithm % Minmimize (lambda1)||W||* + 1/2 || A(X) - y ||_2^2 + eta/2 || W-X-B1 ||_2^2 %W is auxillary variable and B1 is the bregman variable %INPUTS %Aop : Linear operator %y_vec : Vector of observed values %s_x : size of the data matrix to be recovered (in form of [m n]) %lambda1:regularization parameter %rnk : rank estimation for X %iter : maximum number of iterations to be carried out %OUTPUTS %x_out : recovered matrix if nargin < 6 error('Insufficient Number of arguments'); end %Variable and parameter initialization eta1=.001; % Regularization parameter s_new=s_x(1)*s_x(2); W=zeros(s_new,1); % proxy variable B1=ones(s_new,1); % bregman variable % create operator for least square mimimization I=opDiag(s_new,1); Aop_concat = opStack([1 eta1],Aop,I);

关于某矩阵秩地证明

关于矩阵秩的证明 -----09数应鄢丽萍 中文摘要 在高等代数中,矩阵的秩是一个重要的概念。它是矩阵的一个数量特征,而且在初等变换下保持不变。关于矩阵秩的问题,通常转化为矩阵是否可逆,线性方程组的解的情况等来解决。 所谓矩阵的行秩就是指矩阵的行向量组的秩,矩阵的列秩就是矩阵的列向量组的秩,由于矩阵的行秩与列秩相等,故统称为矩阵的秩。向量组的秩就是向量组中极大线性无关组所含向量的个数。 关键词:初等变换向量组的秩极大线性无关组

约定用E 表示单位向量,A T 表示矩阵A 的转置,r(A)表示矩阵A 的秩。在涉及矩阵的秩时,以下几个简单的性质: (1) r(A)=r(A T ); (2) r(kA)=? ??=≠0 00 )(k k A r (3) 设A,B 分别为n ×m 与m ×s 矩阵,则 r(AB)≤min{r(A),r(B),n,m,s} (4) r(A)=n,当且仅当A ≠0 (5) r ???? ??B O O A =r(A)+r(B)≤r ??? ? ??B O C A (6) r(A-B)≤r(A)+r(B) 矩阵可以进行加法,数乘,乘法等运算,运算后的新矩阵的秩与原矩阵的秩有一定关系。

定理1:设A,B 为n ×n 阶矩阵,则r(A+B)≤r(A)+r(B) 证: 由初等变换可得 ???? ??B O O A →???? ??B A O A →???? ??+B B A O A 即???? ??E E O E ???? ??B O O A ???? ??E E O E =??? ? ??+B B A O A 由性质5可得 r ???? ??B O O A =r ??? ? ??+B B A O A 则有r(A)+r(B)≥r(A+B) 定理2(sylverster 公式)设A 为s ×n 阶矩阵,B 为n × m 阶矩阵,则有r(A)+r(B)-n ≤r(AB) 证:由初等变换可得 ???? ??O A B E n →???? ??-AB O B E n →???? ??-AB O O E n 即? ??? ??-s n E A O E ??? ? ??O A B E n ? ??? ? ?-m n E O B E =???? ??-AB O O E n 则r ???? ??O A B E n =r ??? ? ??-AB O O E n 即r(A)+r(B)-n ≤r(AB)

《矩阵的秩的等式及不等式的证明》

摘要 矩阵的秩是矩阵的一个重要特征,它具有许多的重要性质.本文总结归纳出了有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,即从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.本文主要解决以下几个问题:用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;用线性空间的方法证明矩阵秩的等式和不等式问题;用向量组秩的理论证明矩阵秩的等式和不等式问题;用矩阵分块法证明秩的等式和不等式问题.

目录 第一章绪论 (1) 第二章预备知识 (2) 第三章用矩阵的秩的理论证明秩的等式和不等式 (3) 第四章用线性空间的理论证明秩的等式和不等式 (6) 第五章用向量组秩的理论证明秩的等式和不等式 (10) 第六章用矩阵分块法证明秩的等式和不等式 (15) 第七章小结 (23) 参考文献 (24) 致谢 (25)

第一章绪论 矩阵的秩是矩阵的一个重要特征,是矩阵理论中研究的一个重要内容,它具有许多的重要性质.研究矩阵的秩对于解决矩阵的很多问题具有重要意义.矩阵的秩的等式及不等式的证明对于学习矩阵也是重点和难点,初学者在做这方面的题目往往不知如何下手.笔者归纳了矩阵的秩的常见等式和不等式以及与之相关的一些结论,并从向量组、线性方程组、矩阵分块、矩阵初等变换等角度探索了多种证明方法,它有助于学习者加深对秩的理解和知识的运用,也方便教师教学. 目前对矩阵秩的研究已经比较成熟了,但是由于秩是矩阵论里的一个基本而重要的概念,它仍然有着重要的研究价值,有关它的论文时见报端.很多国内外的有关数学书籍杂志对矩阵的秩都有讲述,如苏育才、姜翠波、张跃辉在《矩阵论》(科学出版社、2006年5月出版)中较完整地给出了矩阵秩的理论.北京大学数学系前代数小组编写的《高等代数》(高等教育出版社,2003年7月出版)也介绍了秩的一些性质.但是对秩的等式及不等式的介绍都比较分散,不全面也没有系统化,不方便初学者全面掌握秩的性质.因此有必要对矩阵的秩的等式和不等式进行一个归总,便于学习和掌握. 本文通过查阅文献资料,总结归纳出有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.主要内容有:(1)用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;(2)用线性空间的方法证明矩阵秩的等式和不等式问题;(3)用向量组秩的理论证明矩阵秩的等式和不等式问题;(4)用矩阵分块法证明秩的等式和不等式问题.

求矩阵的秩的步骤

求矩阵的秩的步骤 方阵(行数、列数相等的矩阵)的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或。 m×n矩阵的秩最大为m和n中的较小者,表示为min(m,n)。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。 设A是一组向量,定义A的极大无关组中向量的个数为A的秩。 定义1. 在m*n矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。 例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式就是矩阵A的一个2阶子式。 定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。 特别规定零矩阵的秩为零。

显然rA≤min(m,n) 易得: 若A中至少有一个r阶子式不等于零,且在r

当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。 当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。

矩阵秩的一些著名结论

引言 矩阵的秩是高等代数中一个应用及其广泛的理论,有关矩阵的秩的等式或不 等式的证明,常常和向量组的秩,线性方程组的解等密切相关,推证有难度也有技巧。熟练掌握关于矩阵秩的一些结论及其证明技巧,对有关理论的学习会有很大的裨益。矩阵A 中的最大阶不为零的子式的阶数就称为矩阵A 的秩,记为r(A).一些平凡的理论及概念读者可参阅一些权威教材,这里只对一些经典的理论做一讨论. 1. 证明: 设B A ,为两个同阶矩阵,则有r(A ﹢B)≤r(A)﹢r(B) 证 设A =(α1,α 2 ,…, αn ), B =() ββ βn ,...,,2 1 则 A +B =( α1 +β1 ,α2 +β 2 ,…, αn +βn ) 不妨设A 列向量的极大线性无关组为 α1 ,α 2 ,…, α r . (1≤r ≤n); B 列向量的极大线性无关组为β1,β2,…βs . (1≤s ≤n). 则k i i 1 =αα1 +α 2 2 k i +…+ α r ir k ; βi =β1 1 l i +β 2 2 l i +…+ β s is l ; 则 αi +β i = k i 1 α1 +α 2 2 k i +…+αr ir k +β1 1 l i +β 2 2 l i +…+ β s is l ; 即A +B 的列向量可由 α1 ,α 2 ,…, α r , β 1 , β 2 ,… β s 线性表出, 故)()()(B +A =+≤B +A r r s r r . 2. 若AB =O ,则)()(B r A r +n ≤. 证 记 ),...,,(2 1 ββ βn B =,由AB =O ,知B 的每一列都是O =AX 解, 即O =A β i ,i =1,2,…,n 又因O =AX 的基础解系所含向量个数为)(A r n -, 换言之, O =AX 的所有解所构成的向量组的秩为)(A r n -.故≤)(B r )(A r n -, 即)()(B r A r +n ≤.

矩阵的秩及其求法

第五节:矩阵的秩及其求法 一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的 阶行列式,称为A 的一个k 阶子式。 例如 共有 个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。显然, 矩阵 A 共有 个 k 阶子式。 2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全 为0 , 称r 为矩阵A 的秩,记作R (A )或秩(A )。 规定: 零矩阵的秩为 0 . 注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 . (2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } . (4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n . 二、矩阵秩的求法 1、子式判别法(定义)。 例1 设 为阶梯形矩阵,求R (B )。 解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R (B ) = 2. 结论:阶梯形矩阵的秩=台阶数。 例如 一般地,行阶梯形矩阵的秩等于其“台阶数”—— 非零行的行数。 () n m ij a A ?={}),min 1(n m k k ≤≤? ? ??? ??----=1 10145641321A 182423=C C 43334=C C 101 22--= D 1 0156 43213-=D n m ?k n k m c c () n m ij a A ?=0, r D ≠()(). T R A R A =0,A ≠0.A ≠??? ? ? ??=000007204321B 0 2 021≠????? ??=010*********A ????? ??=001021B ???? ? ??=100010011C 125034000D ?? ? = ? ? ??2 123508153000720 000 0E ?? ? ?= ? ??? ()3=A R ()2=B R ()3=C R ()2R D =()3 R E =

求矩阵的秩的步骤

矩阵的秩就是指这个矩阵经过行列变换过后,化为最简式,以后非零行或者是非零列的最小的数目,这里简单介绍一下,怎样求矩阵的秩。工具/原料 ?矩阵 ?matlab 方法/步骤 1.1 启动matlab程序。 2.2 在命令窗口任意输入一个矩阵a。 >>a=rand(9,9) 3.3 调用rank函数,按一下回车键即可求得矩阵的秩=9。 4.4 再任意输入一个矩阵b。 >>b=rand(5,8) 5.5 再次调用rank函数,即可求到矩阵的秩=5。 END 注意事项 ?当一个矩阵的秩等于五的时候,就表示矩阵当中有五个飞线性 相关的向量组。

?出现的字肯定是小于行数,或者是小于列数。 r3-2r1,r4-r1~ 1 1 2 2 1 0 2 1 5 -1 0 -2 -1 -5 1 0 0 -2 2 -2 r3+r2,交换r3 r4 ~ 1 1 2 2 1 0 2 1 5 -1 0 0 -2 2 -2 0 0 0 0 0 只是求秩就不用再计算,显然矩阵的秩为3 矩阵的秩一般有2种方式定义 1.用向量组的秩定义 矩阵的秩= 行向量组的秩= 列向量组的秩 2.用非零子式定义 矩阵的秩等于矩阵的最高阶非零子式的阶 单纯计算矩阵的秩时,可用初等行变换把矩阵化成梯形 梯矩阵中非零行数就是矩阵的秩 这个定义涉及到向量的极大线性无关组.设a1,a2……as为一个n维向量组,如果向量组中有r个向量线性无关,而任何r+1个向量都线性相关,那么这r个线性无关的向量称为向量组的一个极大线性无关组.

向量组的极大线性无关组中所含向量的个数,称为向量的秩. 矩阵的行向量的秩称为行秩.列向量的秩成为列秩.

最新考研数学矩阵8大秩及其证明

考研数学矩阵的8大秩及其证明2009 ()1 证明:根据矩阵秩的定义直接得出。 ()2 证明:对矩阵A 任意添加列后变成矩阵(), A B ,则秩显然不小于()R A ,即: ()(), R A B R A ≥ 同理: ()(), R A B R B ≥ 因而:()(){}(), , Max R A R B R A B ≤成立。 又设 ()(), R A r R B t ==,把, A B 分别做列变换化成列阶梯形~ ~ , A B 1110 3 810 1100 1000?? ? ? ? ? ??? 如:就是列阶梯形 用~ ~~ ~ 1 1 , r r a a b b 分别表示非全零列,则有: ()~ ~~ ()1~~ ~ ~~ ()1 , 00, , , 0 0表示列变换表示列变换c r c c r A A a a A B A B B B b b ????????→= ????? ?? ???→? ????? ??????→= ???? ? 由于初等变换后互为等价矩阵,故()~~, , R A B R A B ?? = ??? 而矩阵~~, A B ?? ???只含有r t +个非全零列,所以:()()~~~~, , R A B r t R A B R A R B ???? ≤+?≤+ ? ????? 。 综合上述得:()(){}()()(), , Max R A R B R A B R A R B ≤≤+

●特别地:如B b =为列向量,则()1R b ≡()()() , 1R A R A B R A ?≤≤+。 ●如B E =,设()(), , m n m R A B R A E ?=, 则 ()()() , , m n m m m n m m R A E R E m R A E m ??≥≥=?= ()3 证明: ()()()()()()()()()()()() 2 , , , , , , A B B A B R A B B R A B R A R B R A B R A B B R A B R A B R A R B +→?+=????→+≥=+≥+?+≤+由公式知 ()4 证明:()1 设()()() ,AB C B AX C R A R A C R C =?=?=≥是的解 ()()()() () ()()()()()(){},min , T R B R B T T T T T T T B A C R B R B C R C R B R C R C R AB R A R B n ==?=≥???? ?→≥?=≤≤又, ()2 设()(), m n n s R A r R B t ??== 则A 的标准型为000r m n E ??? ???,B 的标准型为000t n s E ??? ??? 存在可逆矩阵, , , m s n n P Q P Q 使:

基于低秩与学习的图像复原算法研究

目录 摘要......................................................................................................................................................................I ABSTRACT........................................................................................................................................................II 目录...................................................................................................................................................................III 第一章绪论. (1) §1.1研究背景及意义 (1) §1.2国内外研究现状 (2) §1.3本文的主要工作和安排 (4) 第二章图像复原的基础理论以及数学方法 (5) §2.1基于低秩表示的高维图像复原方法 (5) §2.1.1低秩矩阵恢复基本理论 (5) §2.1.2基于低秩的图像复原类型 (6) §2.2基于张量的高维图像复原方法 (8) §2.2.1张量的定义 (8) §2.2.2张量的基本运算 (8) §2.2.3张量的分解 (9) §2.3常用的求解算法及模型 (10) §2.3.1迭代软阈值算法 (10) §2.3.2交替乘子法 (11) §2.3.3牛顿迭代法 (12) §2.4图像复原效果的评价标准 (12) §2.4.1主观评价标准 (12) §2.4.2客观图像质量评价法 (13) §2.5本章小结 (14) 第三章基于非凸低秩模型的动态MRI重建 (15) §3.1引言 (15) §3.2基于非凸低秩模型的动态MRI重建模型 (16) §3.2.1提出的模型 (16) §3.2.2模型的求解 (17) §3.3数值实验结果和分析 (19) §3.3.1实验结果的评价指标 (19) §3.3.2实验数据以及参数的选取 (19) §3.3.3实验结果分析 (20) §3.4本章小结 (24) 第四章基于张量字典与全变分的高维图像混合噪声去除模型 (26) §4.1引言 (26) §4.2基于张量字典与全变分的高维图像混合噪声去除模型 (27) §4.2.1模型的提出 (27) §4.2.2模型的求解 (28) §4.3数值实验结果和分析 (29)

矩阵秩的相关结论证明及举例

华北水利水电大学 矩阵秩的相关结论证明及举例 课程名称:线性代数 专业班级:能源与动力工程(热动)101班 成员组成:王威威 联系方式: 2014年12月30日

一:摘要 矩阵的秩是数学中一个极其重要并广泛应用的概念,是线性代数的一个重要研究对象,因此,矩阵的秩的结论作为线性代数的一个重要结论已经渗透到各章节之中,他把线性代数的内容紧紧联系在一起,矩阵的秩作为矩阵的一个重要本质属性则贯穿矩阵理论的始终,所以对矩阵秩的研究不仅能帮助我们更好地学习矩阵,而且也是我们学习好线性代数各章节的有力保证。 关键词:矩阵秩结论证明 英文题目 Abstract: Matrix rank is an extremely important and widely us ed in the mathematical concept, is an important res earch object of linear algebra, as a result, the c onclusion of the rank of matrix as an important co nclusion of linear algebra has penetrated into chapt er, associate the content of the positive linear al gebra and matrix of rank as an important essential attribute of the matrix, however, throughout the c ourse of the theory of matrix so that the study o f matrix rank can not only help us better learning matrix and chapter we learn good linear algebra Key words:matrix rank conclusion proof

矩阵的秩及其多样性的解法

矩阵的秩及其多样性的解法 数学学院 数学与应用数学(师范)专业 摘 要:矩阵论是代数学中一个重要组成部分和主要研究对象,而矩阵的秩又是矩阵的一个重要指标,本文研究了与矩阵的秩的相关性质及其多样性的解法, 用定理和实例说明了行列式、线性空间、线性方程组、分块矩阵和矩阵秩的关系及其在求矩阵的秩中的应用。 关键词: 矩阵的秩; 行列式; 线性方程组; Abstract :Matrix theory is an important part of the main object of study in algebra and rank of the matrix is an important indicator of the matrix, we study the rank of the matrix solution of the nature and diversity of theorems and examples illustratedeterminant, linear space, linear equations, the block matrix and the matrix rank and matrix rank. Keywords: Rank of matrix; V ector; Linear equations; 引言、引理 矩阵理论是高等代数的主要内容之一, 在数学及其它科学领域中有着广泛的应用.在矩阵理论中, 矩阵的秩是一个重要的概念. 它是矩阵的一个数量特征, 而且是初等变换下的不变量. 本文归纳了矩阵的秩相关性质及等价条件,并从行列式、线性方程组、线性空间以及分块矩阵的角度来阐述矩阵秩的不同解法。 矩阵的秩的等价刻划 设A F m n ?∈ ,则rank(A)=r ?A 中不为零的子式的最大阶数是r ; ?A 中有一个r 阶子式D 不等于零,所有包含D 作为子式的 r+1阶子式全为零; ? 存在可逆矩阵m n P F ?∈,m n Q F ?∈,使得000r E P A Q ?? = ??? ; ? A 的行(列)向量的极大无关组所含向量的个数为r;

矩阵的秩的性质

矩阵的秩的性质和 矩阵秩与矩阵运算之间的关系 要谈矩阵的秩,就得从向量组的秩说起,向量组的秩,简而言之就是其极大无关组里向量的个数。进而扩展到线性方程组,在线性方程组的概念中(课本P90)定理1说:“线性方程组有解的充要条件是,它的系数矩阵和增广矩阵有相同的秩。” 那么不妨把矩阵用向量组的方式来看,则有行秩和列秩,一个矩阵的行秩和列秩相同,而其初等变换又不会改变秩。自然而然,我们就得到了一个判断矩阵秩的方法,就是将它转化为阶梯形矩阵,非零行数目即其秩。矩阵进一步发展就是运算了,包括数乘、加减、乘积等,又涉及到单位矩阵、三角矩阵、可逆矩阵以及矩阵的分块等概念,综合所学,我们得到如下性质: 1、矩阵的初等变换不改变秩,任一矩阵的行秩等于列秩。 2、秩为r 的n 级矩阵(n r ≥),任意r+1阶行列式为0,并且至少有一个r 阶子式不为0. 3、)}(),(min{)(B rank A rank AB rank ≤ )'()(A r a n k A r a n k =,)()()(B rank A rank B A rank ±=± )()(A rank kA rank = 4、设A 是n s ?矩阵,B 为s n ?矩阵,则+)(A rank )}(),(min{)()(B rank A rank AB rank n B rank ≤≤- 5、设A 是n s ?矩阵,P,Q 分别是s,n 阶可逆矩阵,则 )()()(A rank AQ rank PA rank ==

6、设A 是n s ?矩阵,B 为s n ?矩阵,且AB=0,则 n B rank A rank ≤+)()( 7、设A 是n s ?矩阵,则)()'()'(A rank A A rank AA rank == 其中,也涉及到线性方程组解得问题: 8、对于齐次线性方程组,设其系数矩阵为A ,n A rank =)( 则方程组有惟一非零解,n A rank <)(则有无穷多解,换言之,即为克莱姆法则, 非齐次线性方程组有解时,n A rank =)(惟一解,n A rank <)( 有无穷多解。 还有满秩矩阵: 9、可逆?满秩 10、行(列)向量组线性无关,即n 级矩阵化为阶梯形矩阵后非零行数目为n 。 扩展到矩阵的分块后: 11、110(A )(A )0n n A rank rank rank A ?? ?=++ ? ??? 12、()()0A C rank rank A rank B B ??≥+ ???

矩阵,行列式, 秩, 相关计算

矩阵,行列式, 秩, 相关计算: 例 : 已知矩阵211121112A ?? ?= ? ??? ,且A 与矩阵X 满足112AXA XA I --=+,求X 。 例:已知3阶方阵 123023003A ?? ?= ? ??? ,计算行列式 6A I *+。 例:已知32212232,26223A B ?? -?? ? == ? ?-?? ? ?? ,求行列式 10 2A B - 例: 证明:若n 阶方阵A ,B ,C 满足:AB =AC ,B ≠C ,则A 不满秩。 例: 举例说明:由AB =AC ,A ≠0不能导出B =C 。 例 对于n 阶方阵A, 求证: r(A n )=r(A n+1) 例 A 和伴随阵的秩的关系。 方程组及其求解: 例: 对下列线性方程组 ??? ??=++=++=++2 321 3213211a ax x x a x ax x x x ax

试讨论:当a 取何值时,它有唯一解?无解?有无穷多解?并在有无穷多解时求其通解。(用导出组的基础解系表示通解) 例:已知线性方程组 123123123123121(1)2(1)3 ax x x x x ax x x x a x x a x -++=-?? ++=-?? ++=-??-+++=-? 问参数a 取何值时,上述方程组无解?有唯一解?有无穷多解 例: 已知A 是n m ?矩阵,m n >,m A =)(r ,B 是)(m n n -?矩阵, m n B -=)(r ,且 0=AB 。证明:B 的列向量组为线性方程组0=AX 的一 个基础解系。 例:设有齐次线性方程组 (I ) 12312300 ax x x x ax x ++=?? ++=? (II ) 1230x x ax ++= (III ) 1231231 23000 ax x x x ax x x x ax ++=?? ++=??++=? 已知方程组(I )的解都是方程组(II )的解, (1)证明:方程组(I )与方程组(III )的同解; (2)证明:方程组(III )有非零解; (3)求参数a 的值。 例:已知4阶方阵43214321,,,),,,,(αααααααα=A 均为4元列向量,其中432,,ααα线性无关,3212ααα-=。

利用分块矩阵证明有关矩阵的秩

第五章 利用分块矩阵证明有关矩阵的秩 定理1:设A 是数域P 上的n ×m 矩阵,B 是数域P 上的m ×s 矩阵,求证秩(AB )≤min {秩A ,秩B }。 证明:令B 1,B 2,…,B m 为B 的行向量,则有 由上可知,AB 的行向量是B 的行向量的线性组合,因此秩AB ≤秩B ; 同理,令A 1,A 2,…,A m 为A 的列向量,同样可得AB 的列向量是A 的列向量的线性组合,因此秩AB ≤秩A 。 综上所述,秩(AB )≤min {秩A ,秩B }。 命题1:证明秩(A+B )≤秩(A )+秩(B )。 证明:令A 1,A 2,…,A n 为A 的列向量,令B 1,B 2,…,B n 为B 的列向量,从而A+B=(A 1+B 1,A 2+B 2,…,A n +B n ),即其每个列向量均可由{A 1,A 2,…,A n ,B 1,B 2,…,B n }线性表出,不妨设{A 1,A 2,…,A r}{B 1,B 2,…B t}分别为{A 1,A 2,…,A n }{B 1,B 2,…,B n }的极大线性无关组。则A+B 的列向量均可由向量组{A 1,A 2,…,A r,B 1,B 2,…B t}线性表出。因此 秩(A +B )=秩{A 1+B 1,A 2+B 2,…,A n +B n }≤秩{A 1,A 2,…,A r,B 1,B 2,…B t}≤r+t ,即秩(A+B )≤秩(A )+秩(B )。 命题2:设A 为数域P 上的n 阶方阵,若A 2=E ,证明秩(A+E )+秩(A -E )=n 。 证明: 矩阵进行初等变换后秩不变,最后的矩阵秩为n 。由此可得 秩(A+E )+秩(A -E )=n 。 11111221m m 22112222m m m n11n22nm m B a B a B a B B a B a B a B B AB B a B a B a B +++???? ? ?+++ ? ?== ? ? ? ?+++???? L L M M L ,21 A+E A E 2 A E 0A E A E A E 2E 0A E 0A E 0A E 0-2E 02E 10A E (A E)(A E)A E 2=++-+-??????→→ ? ? ? ---?????? ??-?? ???????→???→ ? ?-+--???? 将二列的()倍加到一列 。

求矩阵的秩的步骤

求矩阵的秩的步骤 在学习矩阵的秩之前,首先我们要先了解矩阵A的k阶子式:即在m×n矩阵A中,任取k行k列( k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式。先在矩阵中的m行中任选k行,得到组合;再在矩阵中的n列任选k列,得到组合。将二者相乘,便是矩阵A的k阶子式计算公式。 现在我们就可以定义矩阵的秩:设在m×n矩阵A中有不为零的r阶子式D,且所有r+1阶子式(如果存在的话)均为零,那么D称为矩阵A的最高阶非零子式,阶数r称为矩阵A的秩,记作R(A)。特别地规定了零矩阵的秩等于0。举个例子,我们先假定一个3阶矩阵。由定义可得S不可能再有大于三阶的子阵,那么我们知道S的三阶子阵只有一个|S|,若计算出|S|≠0,那么S的秩就为3,记做R(S)=3;若是|S|=0,那就同理再看S的9个二阶子阵……当然,越高阶的矩阵的秩会越难计算,下面的视频来讲解行阶梯形矩阵在求解高阶矩阵的秩中的妙用。 学习矩阵的秩并归纳出矩阵秩的一些最基本的四个性质,具体证明过程详见课本,其中最主要的是第三条性质,它证明了两个等价矩阵的秩是相等的,因此将矩阵通过初等变换化为行阶梯形矩阵能大大简化矩阵秩的运算。 矩阵的子式定义:

在m×n矩阵A中,任取k行k列(k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式,称为矩阵A的k阶子式。 矩阵的秩定义: 设矩阵A中有一个不等于零的r阶子式D,且所有r +1阶子式(如果存在的话)全等于零,那么D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A)。 规定零矩阵的秩为零。 矩阵的秩基本性质: ①若A为m×n矩阵,则 0≤R(A)≤min(m, n) ②R(AT)=R(A)

求矩阵的秩的步骤

求矩阵的秩的步骤 今天要讲的是关于矩阵秩的重要结论。关于矩阵的秩,讲三点,前两点是比较重要的,专门提出来强调一下,第三点是书上没有的一个重要的结论: 1、,也就是一个矩阵与另一个矩阵相乘后,新矩阵的秩一定不大于原矩阵。怎么证明呢,结合线性结合线性方程组的有解性来进行证明的,AB=C,已经说明了AX=C是有解的,而线性方程组的有解性与矩阵的秩的关系说明了R(A)=R(A,C),所以A的秩大于等于C的秩,再将此矩阵两边转置,再根据线性方程组的解与矩阵的秩间关系同理可得A的秩大于等于C的秩.当我们学习了与线性表示有关的系统性理论后对这个定理会有更直观的理解。 2、矩阵左乘列满秩矩阵后新矩阵的秩与原矩阵的秩一样,此结论希望引起大家重视,此结论就是同济大学第五版70页的例9,大家可以参照此过程。 3、给出一个关于矩阵的秩的一般性的结论, 上述是脱离了方程组单独讲的矩阵的秩的结论,而当秩与方程组结合时也有重要结论,对于方程组Ax=b 1、如果A是行满秩的矩阵,那么方程组要么有唯一解,要么有无穷

多解。 如果A是行满秩的矩阵,因为矩阵的列秩等于矩阵的行秩,所以矩阵的列秩等于矩阵的行数,所以矩阵的列向量的线性组合一定能得到所有该维数的列向量。怎么理解呢?比如A是2x4的矩阵,A的秩为2,那么组成A的四个列向量的秩为2,这四个列向量都是2维的,那这四个列向量是不是能线性组合成任意的二维列向量,所以一定有解。 A的形式要么是矮且胖要么是方阵(矩阵的列不可能小于矩阵的行数),如果矩阵A矮且胖的话,那么对线性方程组的约束的个数(矩阵的行数)小于未知数的个数,那就是无穷多解。矩阵A是方阵,根据克拉默法则我们也能得出是唯一解。 上面是我们根据我们对线性代数的直观理解做出的推导,那么这个结论怎么证明呢?

相关主题
文本预览
相关文档 最新文档