当前位置:文档之家› ansys接触定义

ansys接触定义

ansys接触定义
ansys接触定义

1概述

接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。

接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。

一般的接触分类

接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触。

(1)刚-柔接触

在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触。

(2)柔-柔接触

柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。

2ANSYS接触能力

ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSYS使用的接触单元和使用它们的过程,下面分类详述。

2.1点─点接触单元

点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下)

如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─面的接触问题的典型例子。

点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。

如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。

使用这类接触单元,不需要预先知道确切的接触位置,接触面之间也不需要保持一致的网格,并且允许有大的变形和大的相对滑动。

Contact48和Contact49都是点─面的接触单元,Contact26用来模拟柔性点─刚性面的接触,对有不连续的刚性面的问题,不推荐采用Contact26因为可能导致接触的丢失,在这种情况下,Contact48通过使用伪单元算法能提供较好的建模能力。

2.3面─面的接触单元

ANSYS支持刚体─柔体的面─面的接触单元,刚性面被当作“目标”面,分别用Targe169和Targe170来模拟2─D和3—D的“目标”面,柔性体的表面被当作“接触”面,用Conta171,Conta172,Conta173,Conta174来模拟。一个目标单元和一个接单元叫作一个“接触对”程序通过一个共享的实常号来识别“接触对”,为了建立一个“接触对”给目标单元和接触单元指定相同的实常的号。

与点─面接触单元相比,面─面接触单元有好几项优点

(1)支持低阶和高阶单元;

(2)支持有大滑动和摩擦的大变形,协调刚度阵计算,单元提法不对称刚度阵的选项;

(3)提供工程目的采用的更好的接触结果,例如法向压力和摩擦应力;

(4)没有刚体表面形状的限制,刚体表面的光滑性不是必须允许有自然的或网格离散引起的表面不连续;

(5)与点─面接触单元比,需要较多的接触单元,因而造成需要较小的磁盘空间和CPU 时间;

(6)允许多种建模控制,例如:绑定接触、渐变初始渗透、目标面自动移动到补始接触、平移接触面(老虎梁和单元的厚度)、支持死活单元。

使用这些单元,能模拟直线(面)和曲线(面),通常用简单的几何形状例如圆、抛物线、球、圆锥、圆柱采模拟曲面,更复杂的刚体形状能使用特殊的前处理技巧来建模。

3执行接触分析

不同的接触分析类型有不同的过程,下面分别讨论。

在涉及到两个边界的接触问题中,很自然把一个边界作为“目标”面而把另一个作为“接触”面,对刚体─柔体的接触,“目标”面总是刚性的,“接触”面总是柔性面,这两个面合起来叫作“接触对”使用Targe169和Conta171或Conta172来定义2-D接触对,使用Targe170和Conta173或Conta174来定义3-D接触对,程序通过相同的实常收号来识别“接触对”。

接触分析的步骤:

执行一个典型的面─面接触分析的基本步骤列示如下:

(1)建立模型,并划分网格

(2)识别接触对

(3)定义刚性目标面

(4)定义柔性接触面

(5)设置单元关键字和实常的

(6)定义/控制刚性目标面的运动

(7)给定必须的边界条件

(8)定义求解选项和载荷步

(9)求解接触问题

(10)查看结果

步骤一:建立模型,并划分网格

在这一步中,你需要建立代表接触体几何形状的实体模型。与其它分析过程一样,设置单元类型,实常,材料特性。用恰当的单元类型给接触体划分网格。

命令:AMESH、VMESH

GUI:Main Menu>Preprocessor>mesh>Mapped>3 or4 Sided Main

Menu>Pneprocessor>mesh>mapped>4 or 6 sided

步骤二:识别接触对

你必须认识到,模型在变形期间哪些地方可能发生接触,一是你已经识别出潜在的接触面,你应该通过目标单元和接触单元来定义它们,目标和接触单元跟踪变形阶段的运动,构成一个接触对的目标单元和接触单元通过共享的实常号联系起来。

接触环(区域)可以任意定义,然而为了更有效的进行计算(主要指CPU时间)你可能想定义更小的局部化的接触环,但能保证它足以描述所需要的接触行为,不同的接触对必须通过不同的实常数号来定义(即使实常数号没有变化)。

由于几何模型和潜在变形的多样形,有时候一个接触面的同一区域可能和多个目标面产生接触关系。在这种情况下,应该定义多个接触对(使用多组覆盖层接触单元)。每个接触对有不同的实常数号

步骤三:定义刚性目标面

刚性目标面可能是2—D的或3─D的。在2—D情况下,刚性目标面的形状可以通过一系列直线、圆弧和抛物线来描述,所有这些都可以用TAPGE169来表示。另外,可以使用它们的任意组合来描述复杂的目标面

在3—D情况下,目标面的形状可以通过三角面、圆柱面、圆锥面和球面来推述,所有这些都可以用TAPGE170来表示,对于一个复杂的,任意形状的目标面,应该使用三角面来给它建模

控制结点(Pilot)

刚性目标面可能会和“pilot结点”联系起来,它实际上是一个只有一个结点的单元,通过这个结点的运动可以控制整个目标面的运动,因此可以把pilot结点作为刚性目标的控制器。整个目标面的受力和转动情况可以通过pilot结点表示出来,“pilot结点”可能是目标单元中的一个结点,也可能是一个任意位置的结点,

只有当需要转动或力矩载荷时,“pilot结点”的位置才是重要的,如果你定义了“pilot 结点”ANSYS程序只在“pilot结点”上检查边界条件,而忽略其它结点上的任何约束。

对于圆、圆柱、圆锥、和球的基本图段,ANSYS总是使用一个结点作为“pilot结点”。

基本原型

你能够使用基本几形状来模拟目标面,例如:“圆、圆柱、圆锥、球。直线、抛物线、弧线、和三角形不被允许、虽然你不能把这些基本原型彼此合在一起,或者是把它们和其它的目标形状合在一起以便形成一个同一实常数号的复杂目标面。但你可以给每个基本原型指定它自己的实常的号。

单元类型和实常数

在生成目标单元之前,首先必须定义单元类型(TARG169或TARG170)。

命令:ET

GUI:main menu>preprocessor>Element Type> Add/Edit/Delete

随后必须设置目标单元的实常数。

命令:Real

GUI:main menn>preprocessor>real constants

对TARGE169和TARGE170仅需设置实常数R1和R2,而只有在使用直接生成法建立目标单元时,才需要从为指定实常数R1、R2,另外除了直接生成法,你也可以使用ANSYS网格划分工具生成目标单元,下面解释这两种方法。

使用直接生成法建立刚性目标单元

为了直接生成目标单元,使用下面的命令和菜单路径。

命令:TSHAP

GUI:main menu>preprocessor>modeling-create>Elements>Elem Attributes

随后指定单元形状,可能的形状有:· straight line (2D) · parabola

(2-D) · clockwise arc(2-D) · counterclokwise arc (2-D) · circle(2-D) Triangle (3-D) · Cylinder (3-D) · Cone (3-D) · Sphere (3-D) · Pilot node (2-D和3-D)

一旦你指定目标单元形状,所有以后生成的单元都将保持这个形状,除非你指定另外一种形状。然后你就可以使用标准的ANSYS直接生成技术生成结点和单元。

命令:N、E

GUI:main menu>pnoprocessor> modeling- create> nodes

main menu>pnoprocessor> modeling- create>Elements

在建立单元之后,你可以通过列示单元来验证单元形状

命令:ELIST

GUI:utility menu>list>Elements>Nodes+Attributes

使用ANSYS网格划分工具生成刚性目标单元

你也可以使用标准的ANSYS网格划分功能让程序自动地生成目标单元,ANSYS程序将会以实体模型为基础生成合适的目标单元形状而忽略TSHAP命令的选项。

为了生成一个“PILOT结点”使用下面的命令或GUI路径:

命令:Kmesh

GUI:main menu>proprocessor>meshing-mesh>keypoints

注意:KMESH总是生成“PILOT结点”

为了生成一个2─D目标单元,使用下面的命令和GUI路径:

ANSYS在每条直线上生成一条单一的线,在样条曲线上生成抛物线部分,在每条圆弧和倒角上生成圆弧部分,如果所有的圆弧形成一个封闭的圆,ANSYS生成一个单一的圆段。

命令:LMESH

GUI:main menu>pneprocessor>mesling-mesh>lines

为了生成3─D的目标单元,使用下面的命令或GUI路径。

如果实体模型的表面部分形成了一个完整的球,圆柱或圆锥,那么ANSYS程序自动生成一个基本的3─D目标单元,因为生成较少的单元,从而使你分析计算更有效率,对任意形状的表面,应该使用Amesh命令来生成目标单元,在这种情况下,网格形状的质量不是重要的,而目标单元的形状是否能完成好的模拟刚性面的表面几何形状显得更重要。

命令:AMESH

GUI:main menu>preprocessor>-meshing-mesh>Area

ANSYS在所有可能的面上推荐使用三角形的映射网格划分,如果在表面的边界上没有曲率,则在网格划分时,指定那条边界分为一分,下面的命令或GUI路径将尽可能的生成一个映射网格(如果不能进行映射,它将生成自由网格)

命令:MSHKFY,2

GUI:main menu>preprocessor>-meshling-mesh>-Ares-Target Surf

建模和网格划分的注意点:

一个目标面可能由两个或多个面的区域组成,你应该尽可能地通过定义多个目标面来使接触区域局部比(每个目标面有一个不同的实常数号)刚性目标面上由的离散能足够指述出目标面的形状,过粗的网格离散可能导致收敛问题。如果刚性面有一个实的凸角,求解大的滑动问题时很难获得收敛结果,为了避免这些建模问题,在实体模型上,使用线或面的倒角来使尖角光滑比,或者在曲率突然变化的区域使用更细的网格。

注意:不能使用镜面对称技术(ARSYSM,LSYMM)来映射圆、圆柱、圆锥或球面到对称平面的另一边,因为每个实常数的设置不能同时赋给多个基本原型段。

检验目标面的接触方向。

目标面的结点号顺序是重要的,因为它定义了接触主向,对2─D接触问题,当沿着目标线从第一个结点移向第二个结点时,变形体的接触单元必须位于目标面的右边。

对3─D接触问题,目标三角形单元号应该使刚性面的外法线方向指向接触面,外法线通过右手原则来定义

为了检查法线方向,显示单元坐标系

命令:/PSYMS,ESYS,1

GUI:Utility menu>plotctrls>symbols

如果单元法向不指向接触面,选择单元反转表面的法向的方向。

命令:ESURF,,REVE

GUI:main menu>preprocossor>create>Element>on free surf

步骤四:定义柔性体的接触面

为了定义柔性体的接触面,必须使用接触单元CONFA171或CONFA172(对2─D)或CONTA173或CONTA174(对3─D)来定义表面

程序通过组成变形体表面的接触单元来定义接触表面,接触单元与下面覆盖的变形体单元有同样的几何特性,接触单元与下面覆盖的变形体单元必须处于同一阶次(低阶或高阶)下面的变形体单元可能是实体单元、壳单元、梁单元或超单元,接触面可能壳或梁单元任何一边。

与目标面单元一样,你必须定义接触面的单元类型,然后选择正确的实常数号(实常数号必须与它对应目标的实常数号相同)最后生成接触单元。

单元类型:

下面简单描述四种类型的接触单元

CONTA171:这是一种2─D,2个结点的低附线单元,可能位于2─D实体,壳或梁单元的表面。

CONTA172:这是一个2─D的,3结点的高阶抛物线形单元,可能位于有中结点的2─D 实体或梁单元的表面。

CONTA173:这是一个3─D的,4结点的低阶四边形单元可能位于3─D实体或壳单元的表面,它可能褪化成一个结点的三角形单元。

CONTA174:这是一个3─D,8结点的高阶四边形单元,可能位于有中结点的3─D实体或壳单元的表面,它可能褪化成6结点的三角形单元。

不能在高阶柔性体单元的表面上分成低阶接触单元,反之也不行,不能在高阶接触单元上消去中结点。

命令:ET

GUI:main menu>preprocessor>Element type>Add/Edit/Delete

实常数和材料特性

在定义了单元类型之后,需要选择正确的实常数的设置,每个接触对的接触面和目标面必须有相同的实常数号,而每个接触对必须有它自己不同的实常数号。

ANSYS使用下面柔性体单元的材料特性来计算一个合适的接触(或罚)刚度,如果下面的单元是一个超单元。接触单元的材料的设置必须与超单元形成时的原始结构单元相同,生

成接触单元。

我们既可以通过直接生成法生成接触单元,也可以在柔性体单元的外表面上自动生成接触单元,我们推荐采用自动生成法,这种方法更为简单和可靠。

自动生成接触单元

可以通过下面三个步骤来自动生成接触单元

1、选择结点

选择已划分网格的柔性体表面的结果,如果你确定某一部分结点永远不会接触到目标面,你可以忽略它以便减少计算时间,然而,你必须保证设有漏掉可能会接触到目标面的结点。

命令:NSEL

GUI:main menu>preprocessor>create>Element>on>free surf

2、生成接触单元

命令:ESURF

GUI:main menu>preprocessor>create>Element>on free surf

如果接触单元是附在已用实体单元划分网格的面或体上,程序会自动决定接触计算所需的外法向,如果下面的单元是梁或壳单元,则必须指明哪个表面(上表面或下表面)是接触面。

命令:ESURF,TOP OR BOTIOM

GUI:main menu>preprocessor>create>Element>on free surf

使用上表面生成接触单元,则它们的外法向与梁或壳单元的法向相同,使用下表面生成接触单元,则它们的外法向与梁或壳单元的法向相反,如果下面的单元是实体单元,则TOP 或BOTTOM选项不起作用

3、检查接触单元外法线的方向,当程序进行是否接触的检查时,接触面的外法线方向是重要的,对3─D单元,按结点程序号以右手定则来决定单元的外法向,接面的外法向应该指向目标面,否则,在开始分析计算时,程序可能会认为有面的过度渗透而很难找到初始解。在此情况下,程序一般会立即停止执行,你可以检查单元外法线方向是否正确。

命令:/PSYMB

GUI:Utility menu>plotctrls>symbols

当发现单元的外法线方向不正确时,必须通过倒不正确单元的结点号来改变它们。

命令:ESURF,REVE

GUI:main menu>preprocossor>Create>Elements on free surf ◆前提:

◇有限元模型。

◇已识别接触面及目标面。(*可应用自由度耦合来替代接触。)◆定义接触单元及实常数

◇(刚性)目标单元—— TARGE169 TARGE170 ;

◇(柔性)接触单元—— CONTA171~CONTA172。

***Commands***

ET,K,169 !K指定的单元编号

ET,K+1,172

*** ****

◇实常数——一个接触对对应同一个实常数号。

TARGE单元的实常数包括:R1、R2 —定义目标单元几何形状CONTA单元的实常数包括:

附注:

+值作为比例因子,-值作为绝对值;

带*号的实常数比较重要,关乎接触分析的收敛

一般实常数可为缺省值。

***Commands***

REAL,K !K - 指定169和172的共同的实常数编号

ET,K,169 !K - 指定的单元编号

ET,K+1,172

R,K,,,FKN0,FTOLN0 !指定实常数1~6的值

RMORE,,,,,,FKT0, !指定实常数7~12的值

*** ****

◇材料参数——仅需定义摩擦系数

***Commands***

MP,MU,J, !J为材料编号,切勿与此前定义的重复;为接触摩擦系数。

*** ****

附注:当接触对数目较多,且各接触对的性质相似时,可利用*Do循环语句定义单元、实常数。

***Commands***

MP,MU,J,

*DO,K,8,14,2 !Do循环语句定义单元、实常数REAL,K

ET,K,169

ET,K+1,172

! KEYOPT,K+1,5,3

! KEYOPT,K+1,9,3

!KEYOPT,K+1,8,0

!KEYOPT,K+1,10,1

R,K,,,FKN0,FTOLN0 ! ,CNOF0, RMORE,,,,,,FKT0

NROPT,UNSYM

*ENDDO

*** ****

◆生成单元

应用直接生成法(ESURF)建立单元

***Commands***

REAL,K !指定实常数编号

type,K !指定TARGE单元编号

mat,J !指定材料编号

lsel,,,,1 !选择编号为1的接触边界线nsll,,1 !选择依附于线1的节点

esurf !生成刚性目标单元

type,K+1!指定CONTA单元编号

lsel,,,,2

nsll,,2

esurf !生成柔性接触单元

allsel

*** ****

◆关乎收敛的若干参数(实常数及单元关键字)设置

◇接触刚度设置—— FKN FKT KEYOPT(10)

◇初始穿透设置—— CNOF KEYOPT(5) KEYOPT(9) ***Commands***

KEYOPT,K+1,9,3

*** ****

◇最大允许穿透—— FTOLN

◇可应用自由度耦合来替代接触—— NUMMRG (命令)

ANSYS 中如何使用接触向导定义接触对

ANSYS 中如何使用接触向导定义接触对 2013-10-03 09:49:09| 分类:ANSYS 实例- GUI | 标签:ansys 接触管理器接触向导使用示例|举 报|字号订阅 在 ANSYS 中定义接触通常有两种方法: 1. 用户自己手工创建接触单元和目标单元。这种方法,在定义接触和目标 单元时还比较简单,但是在设置或修改单元属性和定义实常数时却比较复杂。需要用户对接触有较深刻的理解和通过实践积累丰富的经验。 2. 使用接触管理器中的接触向导定义接触对:使用接触管理器 (接触向导) 定义接触对 (即接触单元和目标单元) 时,可以定义除了点-点接触以外的各种接触类型;它可以自动生成接触单元和目标单元,并提供了一组默认的单元属性和实常数值。使用这些默认的设置,加上适当的求解设置,对于多数接触问题都能够获得收敛的结果。而且,如果使用默认设置时,计算不收敛或对结果不太满意,也可以通过接触管理器 (接触向导) 对单元属性和实常数方便的进行修改和调整。 因此,我们推荐,在可能的情况下,尽量使用接触管理器 (接触向导) 来定 义接触。本文将通过一个实例介绍接触管理器的基本使用方法。 所使用的例子如下: 两块平板,中间夹一个圆球。上面平板的上表面承受压力,分析模型的变形和应力随压力的变化。 两块平板,尺寸都是 (100*100*20),相距 100。中间夹一个半径 50 的圆球。两个平板分别与圆球的上下边缘接触。尺寸单位为 mm。几何模型如图 1。

图 1 中,为了能够划分映射网格,分别对体积进行了切割材料属性为: 两块平板: E = 201000 Mpa;μ= 0.3 圆球: E = 70100 Mpa;μ= 0.33 接下来对各个 Volumes 划分网格,单元类型采用 solid186 (20 节点六面体),单元边长统一取 6 mm。网格划分结果如图 2 所示:

ANSYS中的接触

ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。 点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。 使用这类接触单元,不需要预先知道确切的接触位置,接触面之间也不需要保持一致的网格,并且允许有大的变形和大的相对滑动。 Contact48和Contact49都是点─面的接触单元,Contact26用来模拟柔性点─刚性面的接触,对有不连续的刚性面的问题,不推荐采用Contact26因为可能导致接触的丢失,在这种情况下,Contact48通过使用伪单元算法能提供较好的建模能力。 面─面的接触单元 ANSYS支持刚体─柔体的面─面的接触单元,刚性面被当作“目标”面,分别用Targe169和Targe170来模拟2─D和3—D的“目标”面,柔性体的表面被当作“接触”面,用Conta171,Conta172,Conta173,Conta174来模拟。一个目标单元

ansys_接触定义

接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。 一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。 点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。 使用这类接触单元,不需要预先知道确切的接触位置,接触面之间也不需要保持一致的网格,并且允许有大的变形和大的相对滑动。 Contact48和Contact49都是点─面的接触单元,Contact26用来模拟柔性点─刚性面的接触,对有不连续的刚性面的问题,不推荐采用Contact26因为可能导致接触的丢失,在这种情况下,Contact48通过使用伪单元算法能提供较好的建模能力。 面─面的接触单元 ANSYS支持刚体─柔体的面─面的接触单元,刚性面被当作“目标”面,分别用Targe169和Targe170 来模拟2─D和3—D的“目标”面,柔性体的表面被当作“接触”面,用 Conta171,Conta172,Conta173,Conta174来模拟。一个目标单元和一个接单元叫作一个“接触对”程序通过一个共享的实常号来识别“接触对”,为了建立一个“接触对”给目标单元和接触单元指定相同的实常的号。

ansys模态分析及详细过程

压电变换器的自振频率分析及详细过程 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

Ansys非线性接触分析和设置

Ansys非线性接触分析和设置 5.4.9 设置实常数和单元关键选项 程序使用20个实常数和数个单元关键选项,来控制面─面接触单元的接触。参见《ANSYS Elements Reference》中对接触单元的描述。 5.4.9.1 实常数 在20个实常数中,两个(R1和R2)用来定义目标面单元的几何形状。剩下的用来控制接触面单元。 R1和R2 定义目标单元几何形状。 FKN 定义法向接触刚度因子。 FTOLN 是基于单元厚度的一个系数,用于计算允许的穿透。 ICONT 定义初始闭合因子。 PINB 定义“Pinball"区域。 PMIN和PMAX 定义初始穿透的容许范围。 TAUMAR 指定最大的接触摩擦。 CNOF 指定施加于接触面的正或负的偏移值。 FKOP 指定在接触分开时施加的刚度系数。 FKT 指定切向接触刚度。 COHE 制定滑动抗力粘聚力。 TCC 指定热接触传导系数。 FHTG 指定摩擦耗散能量的热转换率。 SBCT 指定 Stefan-Boltzman 常数。 RDVF 指定辐射观察系数。 FWGT 指定在接触面和目标面之间热分布的权重系数。

FACT 静摩擦系数和动摩擦系数的比率。 DC 静、动摩擦衰减系数。 命令: R GUI:main menu> preprocessor>real constant 对实常数 FKN, FTOLN, ICONT, PINB, PMAX, PMIN, FKOP 和 FKT,用户既可以定义一个正值,也可以定义一个负值。程序将正值作为比例因子,将负值作为绝对值。程序将下伏单元的厚度作为ICON,FTOLN,PINB,PMAX 和 PMIN 的参考值。例如 ICON = 0.1 表明初始闭合因子是“0.1*下层单元的厚度”。然而,ICON = -0.1 则表示真实调整带是 0.1 单位。如果下伏单元是超单元,则将接触单元的最小长度作为厚度。参见图5-8。 图5-8 下层单元的厚度 在模型中,如果单元尺寸变化很大,而且在实常数如 ICONT, FTOLN, PINB, PMAX, PMIN 中应用比例系数,则可能会出现问题。因为从比例系数得到的实际结果,取决于下层单元的厚度,这就可能引起大、小单元之间的重大变化。如果出现这一问题,请用绝对值代替比例系数。 TCC, FHTG, SBCT, RDVF 和 FWGT 仅用于热接触分析[KEYOPT(1)=1]。 5.4.9.2 单元关键选项 每种接触单元都包括数个关键选项。对大多的接触问题,缺省的关键选项是合适的。而在某些情况下,可能需要改变缺省值。下面是可以控制接触行为的一些关键选项: 自由 度 KEYOPT(1) 接触算法(罚函数+拉格朗日乘子或罚函数) KEYOPT(2) 存在超单元时的应力状态(仅2D) KEYOPT(3)

ansys接触定义

1概述 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。 一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触。 (1)刚-柔接触 在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触。 (2)柔-柔接触 柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 2ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSYS使用的接触单元和使用它们的过程,下面分类详述。 2.1点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─面的接触问题的典型例子。

ANSYS—接触单元说明

参考ANSYS的中文帮助文件 接触问题(参考ANSYS的中文帮助文件) 当两个分离的表面互相碰触并共切时,就称它们牌接触状态。在一般的物理意义中,牌接触状态的表面有下列特点: 1、不互相渗透; 2、能够互相传递法向压力和切向摩擦力; 3、通常不传递法向拉力。 接触分类:刚性体-柔性体、柔性体-柔性体 实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。 ――罚函数法。接触刚度 ――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。 三种接触单元:节点对节点、节点对面、面对面。 接触单元的实常数和单元选项设臵: FKN:法向接触刚度。这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。 FTOLN:最大穿透容差。穿透超过此值将尝试新的迭代。这是一个与接触单元下面的实体单元深度(h)相乘的比例系数,缺省为0.1。此值太小,会引起收敛困难。 ICONT:初始接触调整带。它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03= PINB:指定近区域接触范围(球形区)。当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的)PMIN和PMAX:初始容许穿透容差。这两个参数指定初始穿透范围,ANSYS把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。 TAUMAX:接触面的最大等效剪应力。给出这个参数在于,不管接触压力值多大,只要等效剪应力达到最大值TAUMAX,就会发生滑动。该剪应力极限值通常用于接触压力会变得非常大的情况。 CNOF:指定接触面偏移。+CNOF增加过盈、-CNOF减少过盈或产生间隙、CNOF能与几何穿透组合应用。 FKOP:接触张开弹簧刚度。针对不分离或绑定接触模型,需要设臵实常数FKOP,该常数为张开接触提供了一个刚度值。FKOP阻止接触面的分离;FKOP默认为1.0,用于建立粘结模型,用一个较小值(1e-5)去建立软弹簧模型。 FKT:切向接触刚度。作为初值,可以采用-FKT=0.01*FKN,这是大多数ANSYS 接触单元的缺省值。 COHE:粘滞力。即没有法向压力时开始滑动的摩擦应力值。 FACT,DC:定义摩擦系数变化规律

ANSYS中文翻译官方手册_接触分析

一般的接触分类 (2) ANSYS接触能力 (2) 点─点接触单元 (2) 点─面接触单元 (2) 面─面的接触单元 (3) 执行接触分析 (4) 面─面的接触分析 (4) 接触分析的步骤: (4) 步骤1:建立模型,并划分网格 (4) 步骤二:识别接触对 (4) 步骤三:定义刚性目标面 (5) 步骤4:定义柔性体的接触面 (8) 步骤5:设置实常数和单元关键字 (10) 步骤六: (21) 步骤7:给变形体单元加必要的边界条件 (21) 步骤8:定义求解和载步选项 (22) 第十步:检查结果 (23) 点─面接触分析 (25) 点─面接触分析的步骤 (26) 点-点的接触 (35) 接触分析实例(GUI方法) (38) 非线性静态实例分析(命令流方式) (42) 接触分析 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。

一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。 点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。

ansys面与面接触分析实例

面与面接触实例:插销拨拉问题分析 定义单元类型 Element/add/edit/delete 定义材料属性 Material Props/Material Models Structural/Linear/Elastic/Isotropic 定义材料的摩擦系数 … 建立几何模型 Modeling/Create/Volumes/Block/By Dimensions X1=Y1=0,X2=Y2=2,Z1=,Z2=

Modeling/Create/Volumes/Cylinder/By Dimensions Modeling/Operate/Booleans/Subtract/Volumes 先拾取长方体,再拾取圆柱体。 Modeling/Create/Volumes/Cylinder/By Dimensions 、 划分掠扫网格 Meshing/Size Cntrls/ManualSize/Lines/Picked Lines 拾取插销前端的水平和垂直直线,输入NDIV=3再拾取插座前端的曲线,输入NDIV=4

PlotCtrls/Style/Size and Shape,在Facets/element edge列表中选择2 facets/edge 建立接触单元 : Modeling/Create/Contact pair,弹出Contact Manager对话框,如图所示。 单击最左边的按钮,启动Contact Wizard(接触向导),如图所示。

单击Pick Target,选择目标面。 选择接触面 定义位移约束 施加对称约束,Define Loads/Apply/Structural/Displacement/Symmetric On Areas,选择对称面。 再固定插座的左侧面。 ) 设置求解选项 Analysis Type/Sol’s Control

ansys接触问题!牛人的经验之谈!

接触问题的关键在于接触体间的相互关系(废话,),此关系又可分为在接触前后的法向关系与切向关系。 法向关系: 在法向,必须实现两点:1)接触力的传递。2)两接触面间没有穿透。 ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。 1.罚函数法 是通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系:    接触刚度*接触位移=法向接触力 对面面接触单元17*,接触刚度由实常数FKN来定义。穿透值在程序中通过分离的接触体上节点间的距离来计算。接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。 以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。并不改变总刚K的大小。这种罚函数法有以下几个问题必须解决: 1)接触刚度FKN应该取多大? 2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。 3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适? 因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。 对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。它们会需要更多的迭代次数,并有可能不收敛。可以使用直接法求解器,例如稀疏求解器等。这些求解器可以有效求解病态问题。 穿透的大小影响结果的精度。用户可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值大小。如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN值进行计算,可以先用一个较小的FKN值开始计算,例如0.1。因为较小的FKN有助于收敛,然后再逐步增加FKN值进行一系列计算,最后得到一个满意的穿透值。 FKN的收敛性要求和穿透太大产生的计算误差总会是一对矛盾。解决此矛盾的办法是在接触算法中采用扩展拉格朗日乘子法。此方法在接触问题的求解控制中可以有更多更灵活的控制。可以更快的实现一个需要的穿透极限。 2.拉格朗日乘子法与扩展拉格朗日乘子法 拉格朗日乘子法与罚函数法不同,不是采用力与位移的关系来求接触力,而是把接触力作为一个独立自由度。因此这里不需要进行迭代,而是在方程里直接求出接触力(接触压力)来。Kx=F+Fcontact 从而,拉格朗日乘子法不需要定义人为的接触刚度去满足接触面间不可穿透的条件,可以直接实现穿透为零的真实接触条件,这是罚函数法所不可能实现的。使用拉格朗日乘子法有下列注意事项: 1)刚度矩阵中将有零对角元,使有些求解器不克使用。只能使用直接法求解器,例如波前法或系数求解器。而PCG之类迭代求解器是不能用于有零主元问题的。 2)由于增加了额外的自由度,刚度阵变大了。 3)一个可能发生的严重问题,就是在接触状态发生变化时,例如从接触到分离,从分离到接触,此时接触力有个突变,产生chattering(接触状态的振动式交替改变)。如何控制这种chattering,是纯粹拉格朗日法所难以解决的。

Ansys接触问题处理方法与参数设置

Ansys接触问题处理方法 接触问题的关键在于接触体间的相互关系,此关系又可分为在接触前后的法向关系与切向关系。 法向关系: 在法向,必须实现两点:1)接触力的传递。2)两接触面间没有穿透。 ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。 1.罚函数法 是通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系: 对面面接触单元17*,接触刚度由实常数FKN来定义。穿透值在程序中通过分离的接触体上节点间的距离来计算。接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。 以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。并不改变总刚K的大小。这种罚函数法有以下几个问题必须解决: 1)接触刚度FKN应该取多大? 2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。 3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适? 因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。 对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。它们会需要更多的迭代次数,并有可能不收敛。可以使用直接法求解器,例如稀疏求解器等。这些求解器可以有效求解病态问题。 穿透的大小影响结果的精度。用户可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值大小。如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN值进行计算,可以先用一个较小的FKN值开始计算,例如0.1。因为较小的FKN有助于收敛,然后再逐步增加FKN值进行一系列计算,最后得到一个满意的穿透值。 FKN的收敛性要求和穿透太大产生的计算误差总会是一对矛盾。解决此矛盾的办法是在接触算法中采用扩展拉格朗日乘子法。此方法在接触问题的求解控制中可以有更多更灵活的控制。可以更快的实现一个需要的穿透极限。 2.拉格朗日乘子法与扩展拉格朗日乘子法 拉格朗日乘子法与罚函数法不同,不是采用力与位移的关系来求接触力,而是把接触力作为一个独立自由度。因此这里不需要进行迭代,而是在方程里直接求出接触力(接触压力)来。Kx=F+Fcontact 从而,拉格朗日乘子法不需要定义人为的接触刚度去满足接触面间不可穿透的条件,可以直接实现穿透为零的真实接触条件,这是罚函数法所不可能实现的。使用拉格朗日乘子法有下列注意事项: 1)刚度矩阵中将有零对角元,使有些求解器不克使用。只能使用直接法求解器,例如波前法或系数求解器。而PCG之类迭代求解器是不能用于有零主元问题的。 2)由于增加了额外的自由度,刚度阵变大了。 3)一个可能发生的严重问题,就是在接触状态发生变化时,例如从接触到分离,从分离到

ANSYS接触分析_学习手记

◆前提: ◇有限元模型。 ◇已识别接触面及目标面。(*可应用自由度耦合来替代接触。) 选择目标面和接触面的准则: 1.凸面和凹面或平面接触是,选平面或凹面为目标面。2、接触的两个面网格划分有粗细的话,选粗网格所在面为目标面。3两个面刚度不同时,选择刚度大的面为目标面4如果两个面为一个高阶单元,一个为低阶单元,选低阶单元为目标面 5.如果一个面比另一个面大选大的面为目标面。 2. ◆定义接触单元及实常数

◇(刚性)目标单元—— TARGE169 TARGE170 ; ◇(柔性)接触单元—— CONTA171~CONTA172。 ***Commands*** ET,K,169 !K - 指定的单元编号 ET,K+1,172 *** **** ◇实常数——一个接触对对应同一个实常数号。 TARGE单元的实常数包括:R1、R2 —定义目标单元几何形状 CONTA单元的实常数包括: No. Name Description 1 R1 Target circle radius(刚性环半径) 2 R2 Superelement thickness(单元厚度) *3 FKN Normal penalty stiffness factor(法向接触刚度因子) *4 FTOLN Penetration tolerance factor(最大允许的穿透) *5 ICONT Initial contact closure(初始闭合因子) 6 PINB Pinball region(“Pinball”区域) *7 PMAX Upper limit of initial allowable penetration(初始穿透的最大值)*8 PMIN Lower limit of initial allowable penetration(初始穿透的最小值)*9 TAUMAX Maximum friction stress(最大的接触摩擦) *10 CNOF Contact surface offset(施加于接触面的正或负的偏移值) 11 FKOP Contact opening stiffness or contact damping *12 FKT Tangent penalty stiffness factor(切向接触刚度) 13 COHE Contact cohesion(滑动抗力粘聚力) 14 TCC Thermal contact conductance(热接触传导系数) 15 FHTG Frictional heating factor(摩擦耗散能量的热转换率) 16 SBCT Stefan-Boltzmann constant 17 RDVF Radiation view factor 18 FWGT Heat distribution weighing factor 19 ECC Electric contact conductance 20 FHEG Joule dissipation weight factor 21 FACT Static/dynamic ratio(静摩擦系数和动摩擦系数的比率) 22 DC Exponential decay coefficient(摩擦衰减系数) 23 SLTO Allowable elastic slip 24 TNOP Maximum allowable tensile contact pressure 25 TOLS Target edge extension factor 附注: +值作为比例因子,-值作为绝对值; 带*号的实常数比较重要,关乎接触分析的收敛; 一般实常数可为缺省值。

ANSYS关于接触刚度

【原创】为什么在接触分析中要自己定义接触刚度呢? 决定接触刚度 所有的接触问题都需要定义接触刚度,两个表面之间渗量的大小取决了接触刚度,过大的接触刚度可能会引起总刚矩阵的病态,而造成收敛困难,一般来谘,应该选取足够大的接触刚度以保证接触渗透小到可以接受,但同时又应该让接触刚度足够小以使不会引起总刚矩阵的病态问题而保证收敛性。 程序会根据变形体单元的材料特性来估计一个缺省的接触刚度值,你能够用实常数FKN来为接触刚度指定一个比例因子或指定一个真正的值,比例因子一般在0.01和10之间,当避免过多的迭代次数时,应该尽量使渗透到达极小值。 为了取得一个较好的接触刚度值,又可需要一些经验,你可以按下面的步骤过行。 1、开始时取一个较低的值,低估些值要比高估些值好因为由一个较低的接触刚度导致的渗透问题要比过高的接触刚度导致的收敛性困难,要容易解决。 2、对前几个子步进行计算 3、检查渗透量和每一子步中的平衡迭代次数,如果总体收敛困难是由过大的渗透引起的(而不是由不平衡力和位移增量引起的),那么可能低估了FKN的值或者是将FTOLN的值取得大小,如果总体的收敛困难是由于不平衡力和位移增量达到收敛值需要过多的迭代次数,而不是由于过大的渗透量,那么FKN的值可能被高估。 4、按需要调查FKN或FTOLN的值,重新分析。(ANSYS公司的资料) 我的理解:接触刚度与接触面等材料属性无关,理论上接触刚度越大越好,尽量小的接触渗透。但难收敛。 通过共享实常数来判别接触对。要注意使用一个contact element 和一个target element共享实常数。 如: type,1 ! defined 1 as a contact element real,1 mat,1 !mesh type,2 !defined 2 as a target element real,1 mat,1 !mesh 在有限元分析中,接触单元通常用来描述两物体相互接触或滑动的界面。近年来,ANSYS开发了一系列的接触单元。刚开始有节点对节点单元CONTAC12和CONTAC52,接着有节点对地单元CONTAC26,然后有节点对面单元CONTAC48和CONTAC49。最近几年,我们引入一类面对

ANSYS接触问题的计算方法

ANSYS接触问题的计算方法 接触问题的关键在于接触体间的相互关系(废话,),此关系又可分为在接触前后的法向关系与切向关系。 法向关系: 在法向,必须实现两点:1)接触力的传递。2)两接触面间没有穿透。 ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。 1.罚函数法 是通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系:接触刚度*接触位移=法向接触力 对面面接触单元17*,接触刚度由实常数FKN来定义。穿透值在程序中通过分离的接触体上节点间的距离来计算。接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。 以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。并不改变总刚K的大小。这种罚函数法有以下几个问题必须解决: 1)接触刚度FKN应该取多大? 2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。 3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适? 因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。 对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。它们会需要更多的迭代次数,并有可能不收敛。可以使用直接法求解器,例如稀疏求解器等。这些求解器可以有效求解病态问题。 穿透的大小影响结果的精度。用户可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值大小。如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN值进行计算,可以先用一个较小的FKN值开始计算,例如0.1。因为较小的FKN有助于收敛,然后再逐步增加FKN值进行一系列计算,最后得到一个满意的穿透值。 FKN的收敛性要求和穿透太大产生的计算误差总会是一对矛盾。解决此矛盾的办法是在接触算法中采用扩展拉格朗日乘子法。此方法在接触问题的求解控制中可以有更多更灵活的控制。可以更快的实现一个需要的穿透极限。 2.拉格朗日乘子法与扩展拉格朗日乘子法 拉格朗日乘子法与罚函数法不同,不是采用力与位移的关系来求接触力,而是把接触力作为一个独立自由度。因此这里不需要进行迭代,而是在方程里直接求出接触力(接触压力)来。Kx=F+Fcontact 从而,拉格朗日乘子法不需要定义人为的接触刚度去满足接触面间不可穿透的条件,可以直接实现穿透为零的真实接触条件,这是罚函数法所不可能实现的。使用拉格朗日乘子法有下列注意事项: 1)刚度矩阵中将有零对角元,使有些求解器不克使用。只能使用直接法求解器,例如波前法或系数求解器。而PCG之类迭代求解器是不能用于有零主元问题的。

ansys workbench接触分析

Workbench -Mechanical Introduction Introduction 作业3.1 31 接触控制

作业3.1 –目标 Workshop Supplement ?作业3.1调查了一个简单组件的接触行为。目的是为了说明由于不适当接触导致的刚体运动是怎么产生的。 ?问题描述: 问题描述 –模型从一个简单Parasolid组件文件获得 –我们的目标是在组件的各部件中建立接触,查看非对称加载对结果有何影响 我们的目标是在组件的各部件中建接触,查看非对称加载对结果有何影响

作业3.1 –假设 Workshop Supplement ?假设arm shaft 和side plate上的孔间的摩擦忽略不计,同样arm shaft 和stop shaft 之间的接触也忽略不计。最后假设stop shaft固定在两个side plate之间。 之间 Arm Shaft Side Plate Side Plate p Stop Shaft

作业3.1 –Project Schematic Workshop Supplement ?打开Project page(项目页) ?通过“Units” 菜单确定: –Project单位设置为“US Customary (lbm, in, s, F, A, lbf, V). –选择“Display Values in Project Units”

. . .作业3.1 –Project Schematic Workshop Supplement 1.在Toolbox(工具箱)中双击 Static Structural建立新的分析系 统 1. 2.Geometry上点击鼠标右键选择 2在 Import Geometry导入 2. Contact_Arm.x_t文件

ANSYS接触属性

接触属性 以下为ANSYS 中用于创建接触对的接触属性对话框中的标签: ?Basic –基本属性 ?Friction –摩擦 ?Initial Adjustment –初始调整 ?Misc –杂项 ?Rigid target –刚性目标 ?Thermal –热 ?Electric –电 ?Magnetic –磁 ?Constraint –约束 ?ID –标识符 注解: 上述标签不是任何时候都是可用的。在GUI 方式中出现的标签和每个标签显示的选项取决于所定义的接触对的种类,以及访问接触属性对话框的位置(从Contact Wizard 或Contact Manager)。 接触属性:基本属性 基本属性标签包含有关接触行为和收敛的一般属性。 首先应该尝试使用默认设置执行接触分析,然后根据分析中遇到的具体困难和特殊情况修改设置。 使用如下问题和解答帮助确定是否需要根据特殊情况修改任何默认的设置。 这些问题只是作为一种提示,引导用户确定如何调整接触属性的设置,但并不包含这些参数的所有可能的应用。建议用户阅读有关的章节(后面列出),即使该问题并未直接用于你的情况。有关的章节给出了如何使用相关参数的更完整的说明。 在这一对话框中, 选项表示选择一个默认值;the factor radio 按钮表示设置一个比例因子;the constant radio 按钮表示设置一

个常数比例因子。

有关单元: CONTA171, CONTA172, CONTA173, CONTA174, CONTA175 接触属性:摩擦 摩擦(Friction) 标签包含有关接触界面上的静摩擦和动摩擦的参数。 首先应该尝试使用默认设置执行接触分析,然后根据分析中遇到的具体困难和特殊情况修改设置。 使用如下问题和解答帮助确定是否需要根据特殊情况修改任何默认的设置。 这些问题只是作为一种提示,引导用户确定如何调整接触属性的设置,但并不包含这些参数的所有可能的应用。建议用户阅读有关的章节(后面列出),即使该问题并未直接用于你的情况。有关的章节给出了如何使用相关参数的更完整的说明。 在这一对话框中, 选项表示选择一个默认值;the factor radio 按钮表示设置一个比例因子;the constant radio 按钮表示设置一个常数比例因子。 材料编号(Material ID) 和摩擦系数(Friction Coefficient) 参数来自Contact Properties: Set Parameters and Create 对话框。 使用Friction 标签上的ID 参数可以创建一个新的材料ID,或输入新的摩擦系数以覆盖已有的值。 (注意:使用这一对话框,只能定义各向同性的摩擦系数。关于如何定义正交异性摩擦的问题,参见Choosing a Friction Model,它只能用于三维接触分析)。

相关主题
文本预览
相关文档 最新文档