当前位置:文档之家› 自然对流换热试验

自然对流换热试验

自然对流换热试验
自然对流换热试验

自然对流换热实验报告

一、实验目的

(1)了解空气沿水平圆柱体表面自然流动是的换热过程,掌握实验测试技术。

(2)测定单管(水平放置)的自然对流换热系数h 。

(3)根据实验测得的有关数据,计算各实验管的Nu 数、Gr 数和Pr 数,然后用作图法或最小二乘法确定经验方程式n Gr c Nr Pr)(=中的c 值和n 值,并给出

Pr Gr 的范围。

二、实验原理

对铜管进行加热,热量是以对流和辐射两种方式来散发,所以对流换热量为总流量与辐射热量之差。即

r h c Φ-Φ=Φ (W )

式中:)(f w c t t hA -=Φ;UI h =Φ;???

???????? ??-??? ??=Φ4f 4w 0100T 100T A c r ε,所以

?

?????????? ??-???

??---=4

f 4w 0100T 100T )()(f w f w t t c t t A UI

h ε[])(K /W ?m 式中:c Φ为对流换热量,W ;h Φ为加热器产生的热量,W ;r Φ为辐射换热量,W;U 加热器电压,V ;I 为加热器电流,A ;ε为圆柱体表面黑度,ε=0.064;0c 为黑体辐射系数,)

(420K m /W 67.5?=c ;w t 为管壁平均温度,℃;f t 为玻璃室内空气温度,℃;A 为圆柱体的表面积,m 2;h 为自然对流换热系数,)(K /W 2?m 。

当实验管表面温度稳定时,测定每根管的加热电压U 、电流I 、管壁温度w t 、玻璃室内温度f t ,从表中查出圆管的直径和长度,计算出圆管表面积A ,计算出其对流换热系数h 。

根据相似理论,自然对流换热的准则为

Pr),(Gr f Nr =

在工业中广泛使用的是比式更为简单的经验方程式,即

n Gr c Nr Pr)(=

式中:c 、n 是通过实验所确定的常数(在一定的Pr Gr 数值范围内)。为

了确定上述关系式的具体形式,根据测量数据计算结果求得努塞尔准则Nu 、格拉晓夫准则Gr 和普朗特准则Pr ,即

λ

hD

Nu =

; 2

3υβt

D g Gr ?=

; a υ=Pr

式中:Pr 、β(空气的体胀系数,1/K )、υ(空气的运动黏度,m 2/s )等、λ(空

气的导热系数,℃)(?m /W )等物性参数由定性温度

)(2

f

w t t +从气体的热物理

性质表查取;2/8.9s m g =;D 为圆管壁面定型尺寸,m ;f w t t t -=?,℃。

通过不同的实验管,可以得到多组数据,利用双对数坐标纸作图或最小二乘法求出c 、n 。具体方法如下:

Pr)lg(lg lg Gr n c Nu +=直线的斜率为n ,截距为c lg 。

用最小二乘法计算n 及c ,公式如下

)

()()

)(())((lg )

()()

())((2

2

2

2

2∑∑∑∑∑∑∑∑∑∑∑--=

--=

i

i i

i i

i i

i i

i i i i

i i

i i

i i i

i i

i x m x x y x y x c x m x y x m y x n

式中:i i i i Nu y Gr x )lg(;Pr)lg(==。下标和表示试验管号,m 为计算时所选用试验管个数。

三、实验装置及其规范

本实验共有8根尺寸不同圆管,规格尺寸见表1,实验段有紫铜管组成,其表面镀铬以减少表面的辐射换热量,并使表面的黑度值较为稳定,铜管内装有电加热器。用调压器调节加热器两端的电压控制加热量。管壁表面上等距离地布置了4~7对热电偶,用来测量壁面平均温度。实验管的两端都装有绝缘材料,以减少实验段与固定支撑间的导热损失。为了防止外界对气流的扰动,整个实验设备均放置于隔离的玻璃室内,各测头引出玻璃室外,整个系统通过交流稳压器和220V/50Hz 电源连接。配套测量仪器有调压器、电流表、电压表(通常用万用表代替)、电位差计,水银温度计悬挂在玻璃隔墙上,以便测读大空间温度。

表1 各实验圆管尺寸

尺寸 管号 1 2 3 4 5 6 7 8 D (m ) 0.075 0.063 0.051 0.042 0.033 0.025 0.020 0.016 L (m ) 1.447

1.373

1.250

1.147

0.950

0.797

0.654

0.500

规范:(1)实验过程中不允许随意调节调压器,不许转换电流表的量程档,更不许随意关断电源。

(2)如果用万用表替代电压表测量电压,选用万用表的交流电压档。 (3)电位差计接入测量回来时,切记正负极不能接反。

(4)实验过程中,不许任意挪动仪器,更不能擅自进入玻璃室内。 (5)实验用热电偶材料为铜-康铜。 四、实验步骤

(1)连接好除电位差计以外的其他测量仪表,检查调压器输出电压在零位。

(2)接通电源,调整调压器,使实验管的加热电流各不相同,最大圆管的加热电流不超过2A ,其他管电流依次递减,预热约4h 以上,管壁温度稳定。

(3)把电位差计接入测量回路,注意其正负极,并对电位差计进行调零。 (4)通过切换开关,从电位差计测定管壁个测电热电动势,并读出电流、电压。

(5)最后读出玻璃室内的空气温度。

(6)测试完毕,把万用表关闭并放回原位,电位差计的倍率开关关断。 (7)全部实验结束后,经指导老师同意,把调压器调节零位,并断实验台上电源开关。

五、数据记录与处理 1.常规数据记录

室温0t =23℃ 2.实验数据记录及处理

管号 测量值 U (V ) I

(A )

管壁各点热电势(mV )

L )(m D

)(m

(℃)f

t 1E

2E

3E

4E

5E

6E

平均

E

3号

35.1

0.7

0.757

0.803

0.872

0.918

0.833

0.741

0.8207

1.250

0.051

23

查热电偶分度表得,℃077.23=-f w t t ,则℃077

.43=w t 。

(K /W 93976.1100296100316)231.43(67.5064.0)231.43(502.1051.07.01.35100T 100T )()(24

44

f 4w 0?=???

?

??????? ??-??? ??-?--????=???

???????? ??-???

??---=m t t c t t A UI

h f w f w πε

668.310697.2051

.093976.12

-=??=

=

λ

hD

Nu

52

6-3

2

31020265.310288.1620051.0306/18.9?=????=?=

)(υβt

D g Gr

7004.0Pr ==a υ

实验四气汽对流传热综合实验报告

化学实验教学中心 实验报告 化学测量与计算实验Ⅱ 实验名称:气-汽对流传热综合实验报告 学生姓名:学号: 院(系):年级:级班 指导教师:研究生助教: 实验日期: 2017.05.26 交报告日期: 2017.06.02

(二)强化管换热器传热系数、准数关联式及强化比的测定 强化传热又被学术界称为第二代传热技术,它能减小初设计的传热面积,以减小换热器的体积和重量;提高现有换热器的换热能力;使换热器能在较低温差下工作;并且能够减少换热器的阻力以减少换热器的动力消耗,更有效地利用能源和资金。强化传热的方法有多种,本实验装置是采用在换热器内管插入螺旋线圈的方法来强化传热的。 螺旋线圈的结构图如图1所示,螺旋线圈由直径 3mm以下的铜丝和钢丝按一定节距绕成。将金属螺旋 线圈插入并固定在管内,即可构成一种强化传热管。 在近壁区域,流体一面由于螺旋线圈的作用而发生旋 转,一面还周期性地受到线圈的螺旋金属丝的扰动,因而可以使传热强化。由于绕制线圈的金属丝直径很细,流体旋流强度也较弱,所以阻力较小,有利于节省能源。螺旋线圈是以线圈节距H与管内径d的比值技术参数,且长径比是影响传热效果和阻力系数的重要因素。科学家通过实验研究总结了形式为αα=Bααα的经验公式,其中B和m的值因螺旋丝尺寸不同而不同。 采用和光滑套管同样的实验方法确定不同流量下得Rei和αα,用线性回归方法可确定B和m的值。 单纯研究强化手段的强化效果(不考虑阻力的影响),可以用强化比的概念作为评 ?,其中αα是强化管的努塞尔准数,αα0是普通管判准则,它的形式是:αααα0 ?>1,而且它的值越大,强化效果越好。 的努塞尔准数,显然,强化比αααα0

4-5_对流传热系数关联式

知识点4-5 对流传热系数关联式 【学习指导】 1.学习目的 通过本知识点的学习,了解影响对流传热系数的因素,掌握因次分析法,并能根据情况选择相应的对流传热系数关联式。理解流体有无相变化的对流传热系数相差较大的原因。 2.本知识点的重点 对流传热系数的影响因素及因次分析法。 3.本知识点的难点 因次分析法。 4.应完成的习题 4-11 在一逆流套管换热器中,冷、热流体进行热交换。两流体进、出口温度分别为t1=20℃、t2=85℃;T1=100℃、T2=70℃。当冷流体流量增加一倍时,试求两流体的出口温度和传热量的变化情况。假设两种情况下总传热系数不变,换热器热损失可忽略。 4-12 试用因次分析法推导壁面和流体间自然对流传热系数α的准数方程式。已知α为下 列变量的函数: 4-13 一定流量的空气在蒸汽加热器中从20℃加热到80℃。空气在换热器的管内湍流流动。压强为180kPa的饱和蒸汽在管外冷凝。现因生产要求空气流量增加20%,而空气的进出口温度不变,试问应采取什么措施才能完成任务,并作出定量计算。假设管壁和污垢热阻可忽略。 4-14 常压下温度为120℃的甲烷以10m/s的平均速度在列管换热器的管间沿轴向流动,离开换热器时甲烷温度为30℃,换热器外壳内径为190mm,管束由37根ф19×2的钢管组成,试求甲烷对管壁的对流传热系数。

4-15 温度为90℃的甲苯以1500kg/h的流量流过直径为ф57×3.5mm、弯曲半径为0.6m的蛇管换热器而被冷却至30℃,试求甲苯对蛇管的对流传热系数。 4-16 流量为720kg/h的常压饱和蒸汽在直立的列管换热器的列管外冷凝。换热器的列管直径为ф25×2.5mm,长为2m。列管外壁面温度为94℃。试按冷凝要求估算列管的根数(假设列管内侧可满足要求)。换热器的热损失可以忽略。 4-17 实验测定列管换热器的总传热系数时,水在换热器的列管内作湍流流动,管外为饱和蒸汽冷凝。列管由直径为ф25×2.5mm的钢管组成。当水的流速为1m/s时,测得基于管外表面积的总传热系数为2115W/(m2.℃);若其它条件不变,而水的速度变为1.5m/s时,测得系数为2660 W/(m2.℃)。试求蒸汽冷凝的传热系数。假设污垢热阻可忽略。 对流传热速率方程虽然形式简单,实际是将对流传热的复杂性和计算上的困难转移到对流传热系数之中,因此对流传热系数的计算成为解决对流传热的关键。 求算对流传热系数的方法有两种:即理论方法和实验方法。前者是通过对各类对流传热现象进行理论分析,建立描述对流传热现象的方程组,然后用数学分析的方法求解。由于过程的复杂性,目前对一些较为简单的对流传热现象可以用数学方法求解。后者是结合实验建立关联式,对于工程上遇到的对流传热问题仍依赖于实验方法。 一、影响对流传热系数的因素 由对流传热的机理分析可知,对流传热系数决定于热边界层内的温度梯度。而温度梯度或热边界层的厚度与流体的物性、温度、流动状况以及壁面几何状况等诸多因素有关。 1.流体的种类和相变化的情况 液体、气体和蒸汽的对流传热系数都不相同,牛顿型流体和非牛顿型流体也有区别。本书只限于讨论牛顿型流体的对流传热系数。 流体有无相变化,对传热有不同的影响,后面将分别予以讨论。 2.流体的特性

自然对流换热试验

自然对流换热实验报告 一、实验目的 (1)了解空气沿水平圆柱体表面自然流动是的换热过程,掌握实验测试技术。 (2)测定单管(水平放置)的自然对流换热系数h 。 (3)根据实验测得的有关数据,计算各实验管的Nu 数、Gr 数和Pr 数,然后用作图法或最小二乘法确定经验方程式n Gr c Nr Pr)(=中的c 值和n 值,并给出 Pr Gr 的范围。 二、实验原理 对铜管进行加热,热量是以对流和辐射两种方式来散发,所以对流换热量为总流量与辐射热量之差。即 r h c Φ-Φ=Φ (W ) 式中:)(f w c t t hA -=Φ;UI h =Φ;??? ???????? ??-??? ??=Φ4f 4w 0100T 100T A c r ε,所以 ? ?????????? ??-??? ??---=4 f 4w 0100T 100T )()(f w f w t t c t t A UI h ε[])(K /W ?m 式中:c Φ为对流换热量,W ;h Φ为加热器产生的热量,W ;r Φ为辐射换热量,W;U 加热器电压,V ;I 为加热器电流,A ;ε为圆柱体表面黑度,ε=0.064;0c 为黑体辐射系数,) (420K m /W 67.5?=c ;w t 为管壁平均温度,℃;f t 为玻璃室内空气温度,℃;A 为圆柱体的表面积,m 2;h 为自然对流换热系数,)(K /W 2?m 。 当实验管表面温度稳定时,测定每根管的加热电压U 、电流I 、管壁温度w t 、玻璃室内温度f t ,从表中查出圆管的直径和长度,计算出圆管表面积A ,计算出其对流换热系数h 。 根据相似理论,自然对流换热的准则为 Pr),(Gr f Nr = 在工业中广泛使用的是比式更为简单的经验方程式,即 n Gr c Nr Pr)(= 式中:c 、n 是通过实验所确定的常数(在一定的Pr Gr 数值范围内)。为

对流传热系数的测定实验报告

. . .. . . 浙江大学 化学实验报告 课程名称:过程工程原理实验甲 实验名称:对流传热系数的测定指导教师: 专业班级: 姓名: 学号: 同组学生: 实验日期: 实验地点:

目录 一、实验目的和要求 (2) 二、实验流程与装置 (2) 三、实验容和原理 (2) 1.间壁式传热基本原理 (2) 2.空气流量的测定 (2) 3.空气在传热管对流传热系数的测定 (2) 3.1牛顿冷却定律法 (2) 3.2近似法 (2) 3.3简易Wilson图解法 (2) 4.拟合实验准数方程式 (2) 5.传热准数经验式 (2) 四、操作方法与实验步骤 (2) 五、实验数据处理 (2) 1.原始数据: (2) 2.数据处理 (2) 六、实验结果 (2) 七、实验思考 (2)

一、实验目的和要求 1)掌握空气在传热管对流传热系数的测定方法,了解影响传热系数的因素和强化传热的途径; 2)把测得的数据整理成形式的准数方程,并与教材中公认 经验式进行比较; 3)了解温度、加热功率、空气流量的自动控制原理和使用方法。 二、实验流程与装置 本实验流程图(横管)如下图1所示,实验装置由蒸汽发生器、孔板流量计、变频器、套管换热器(强化管和普通管)及温度传感器、只能显 示仪表等构成。 空气-水蒸气换热流程:来自蒸汽发生器的水蒸气进入套管换热器,与被风机抽进的空气进行换热交换,不凝气或未冷凝蒸汽通过阀门(F3 和F4)排出,冷凝水经排出阀(F5和F6)排入盛水杯。空气由风机提供,流量通过变频器改变风机转速达到自动控制,空气经孔板流量计进入套管换热器管,热交换后从风机出口排出。 注意:普通管和强化管的选取:在实验装置上是通过阀门(F1和F2)进行切换,仪表柜上通过旋钮进行切换,电脑界面上通过鼠标选择,三者 必学统一。

自然对流强化换热

自然对流强化换热 班级:14040203 姓名:吴端 学号:2011040402121

1.概述 当前,对于自然对流换热问题的研究没有强迫对流研究那样开展得广泛。一方面是由于自然对流强化效果没有强迫对流换热强化效果好;另一方面是由于自然对流强化的途径少难度大,所以自然对流的研究进展缓慢。但自然对流应用有自己的领域,强迫对流又有其制约因素,尤其是随着电子集成电路的发展,自然对流强化换热的问题越来越受到学者的关注。 利用振动强化单相流体对流换热的方法可分为两种:一种是使换热面振动以强化换热;另一种是使流体脉动或振动以强化换热。研究表明,不管是换热面振动还是流体振动,对单相流体的自然对流和强制对流换热都是有强化作用的。振动可以增大流体间的扰动,干扰附面层的形成和发展,从而减小换热热阻,达到强化换热的目的。 2.原理 利用振动可以强化传热早已为人们所认识,在1923年就有关于在静止流体中振动换热面以增强传热效果的相关研究。早期研究的主要手段为传热实验,随着数值计算方法及计算机技术的发展,自80年代人们开始对振动对流换热问题进行数值分析。研究结果表明,换热面在流体中振动时,根据振动系统的不同,自然对流换热系数可提高30%~2000%。。传热实验中,采用的振动源形式主要有以下几种: 1)机械振动或电动机驱动偏心装置产生,早期的实验均采用该方法; 2)流体绕流诱导传热元件产生,如在换热器中的管束: 3)超声波激励换热元件产生。下面分别就这三个方面分别展开综述,其中,A表示振幅,厂表示振动频率,D表示管直径,U表示来流速度,尺P表示雷诺数,h表示表面传热系数。 机械振动为传热实验中最为常用的振动源,一般情况下,机械振动装置结构简单,并且能够比较方便调节振幅、频率等参数,这对于深入研究振动参数对传热的影响具有不可替代的作用。 表1.2、1.3分别为自然对流、强制对流条件下振动传热研究概况,表中

对流传热实验实验报告

实验三 对流传热实验 一、实验目的 1.掌握套管对流传热系数i α的测定方法,加深对其概念和影响因素的理解,应用线性回归法,确定关联式4.0Pr Re m A Nu =中常数A 、m 的值; 2.掌握对流传热系数i α随雷诺准数的变化规律; 3.掌握列管传热系数Ko 的测定方法。 二、实验原理 ㈠ 套管换热器传热系数及其准数关联式的测定 ⒈ 对流传热系数i α的测定 在该传热实验中,冷水走内管,热水走外管。 对流传热系数i α可以根据牛顿冷却定律,用实验来测定 i i i S t Q ??= α (1) 式中:i α—管内流体对流传热系数,W/(m 2?℃); Q i —管内传热速率,W ; S i —管内换热面积,m 2; t ?—内壁面与流体间的温差,℃。 t ?由下式确定: 2 2 1t t T t w +- =? (2) 式中:t 1,t 2 —冷流体的入口、出口温度,℃; T w —壁面平均温度,℃; 因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示。 管内换热面积: i i i L d S π= (3) 式中:d i —内管管内径,m ; L i —传热管测量段的实际长度,m 。

由热量衡算式: )(12t t Cp W Q m m i -= (4) 其中质量流量由下式求得: 3600 m m m V W ρ= (5) 式中:m V —冷流体在套管内的平均体积流量,m 3 / h ; m Cp —冷流体的定压比热,kJ / (kg ·℃); m ρ—冷流体的密度,kg /m 3。 m Cp 和m ρ可根据定性温度t m 查得,2 2 1t t t m +=为冷流体进出口平均温度。t 1,t 2, T w , m V 可采取一定的测量手段得到。 ⒉ 对流传热系数准数关联式的实验确定 流体在管内作强制湍流,被加热状态,准数关联式的形式为 n m A Nu Pr Re =. (6) 其中: i i i d Nu λα= , m m i m d u μρ=Re , m m m Cp λμ=Pr 物性数据m λ、m Cp 、m ρ、m μ可根据定性温度t m 查得。经过计算可知,对于管内被加热的空气,普兰特准数Pr 变化不大,可以认为是常数,则关联式的形式简化为: 4.0Pr Re m A Nu = (7) 这样通过实验确定不同流量下的Re 与Nu ,然后用线性回归方法确定A 和m 的值。 ㈡ 列管换热器传热系数的测定 管壳式换热器又称列管式换热器。是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。壳体多为圆筒形,

对流传热实验实验报告

实验三对流传热实验 一、实验目的 1.掌握套管对流传热系数%的测定方法,加深对其概念和影响因素的理解, 应用线性回归法,确定关联式M/ = ARe m Pr04中常数M、刃的值; 2.掌握对流传热系数如随雷诺准数的变化规律; 3.掌握列管传热系数Ko的测定方法。 二、实验原理 ㈠套管换热器传热系数及其准数关联式的测定 1.对流传热系数%的测定 在该传热实验中,冷水走内管,热水走外管。 对流传热系数匕可以根据牛顿冷却定律,用实验来测定 O a, = —(1) \t x S] B 式中:4?—管內流体对流传热系数,¥7(*?°C); Q—管内传热速率,W; S:—管内换热面积,m‘; AT —内壁面与流体间的温差,J AT由下式确定:△『=几一口1 (2) M 2 式中:鱼一冷流体的入口、出口温度,°C; 人一壁面平均温度,°C; 因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、 外壁温度和壁面平均温度近似相等,用匚来表示。

管内换热面积:Sj二加,厶式中:d?一内管管内径,m;

厶一传热管测量段的实际长度,叽 由热量衡算式: Q 二WQ” - G 其中质量流量由下式求得: w = (5) 3600 式中:匕一冷流体在套管內的平均体积流量,m3 / h; Cp,”一冷流体的定压比热,kJ / (kg?°C); 九一冷流体的密度,kg /m'o C/h和几,可根据定性温度&查得,口=上仝为冷流体进出口平均温度。 2 乩±2,兀,匕可采取一定的测量手段得到。 2.对流传热系数准数关联式的实验确定 流体在管内作强制湍流,被加热状态,准数关联式的形式为 Nu= A Re"' Pr" . (6) 其中:Nu =空Z , Re = "M*加, Pi = A “"儿" 物性数据九、c%、门”、可根据定性温度乙查得。经过计算可知,对于管内被加热的空气,普兰特准数Pr变化不大,可以认为是常数,则关联式的形式简化为: Nu = A Re'" Pr04(7)这样通过实验确定不同流量下的Re与然后用线性回归方法确定力和刃的值。㈡列管换热器传热系数的测定 管壳式换热器又称列管式换热器。是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。 这种换热器结构较简单,操作可靠,可用各种结构材料(主要

圆管自然对流计算和模拟

水平管和竖直管自然对流计算汇总 1.计算工况表 温度工况 计算结果 100℃150℃200℃250℃300℃ 传热系数h () 2 W m K ?水平管7.958 9.115 10.045 10.803 11.527 竖直管 4.715 5.369 5.899 6.335 6.754 换热量φ W 水平管75.962 141.388 215.734 296.472 385.128 竖直管45.008 83.390 126.703 173.860 225.649 最大速度 max u m/s 水平管0.476 0.537 0.585 0.697 0.736 竖直管0.840 1.050 1.180 1.290 1.390 2.变化曲线图

圆管自然对流的计算和数值模拟 已知条件如图1所示:将一圆管分别水平放置和垂直放置在大空间中进行自 然对流换热,圆管外径38 D mm =,长度1000 L mm =,空气温度20 T C ∞ =,恒壁 温条件100,150,200,250,300 w T C =,求解自然对流换热系数和换热量以及对流换 热时的空气最大速度。 图1 一、数值计算 1.自然对流换热系数和换热量的计算 1)圆管水平放置计算 以壁温100 w T=℃为例,计算过程如下: 特征长度:0.038 D m =; 定性温度()() 21002060 m w t t t C ∞ =+=+=; 查空气物性:() 0.029W m K λ=?;-62 =20.110m ν?;Pr0.696 = 空气的体积膨胀系数:()()1 12731602731 v m t K α- =+=+= 格拉晓夫数Gr: 大空间自然对流的实验关联式为: ()Pr n Nu C Gr =(1-1)根据计算的格拉晓夫数Gr选择合适的常数C和n(表1): 表1 式(1-1)中的常数C和n 加热表面形流动情况示流态系数C和指数n Gr数适用范围 ()() 33 5 262 9.81/333100200.038 = 3.210 20.110 v w g t t D Gr α ν ∞ - -??-? ==? ? ()

实验8 空气横掠单管强迫对流换热系数测定实验

实验8 空气横掠单管强迫对流换热系数测定实验 一、实验目的 1. 测算空气横掠单管时的平均换热系数h 。 2. 测算空气横掠单管时的实验准则方程式13 Re Pr n Nu C =??。 3. 学习对流换热实验的测量方法。 二、实验原理 1对流换热的定义 对流换热是指在温差存在时,流动的流体与固体壁面之间的热量传递过程。 2、牛顿冷却公式 根据牛顿冷却公式可以测算出平均换热系数h 。 即:h= )(f W t t A Q -Q A t =?? w/m 2·K (8-1) 式中: Q — 空气横掠单管时总的换热量, W ; A — 空气横掠单管时单管的表面积,m 2 ; w t — 空气横掠单管时单管壁温 ℃; f t — 空气横掠单管时来流空气温度 ℃; t ?— 壁面温度与来流空气温度平均温差,℃; 3、影响h 的因素 1).对流的方式: 对流的方式有两种; (1)自然对流 (2)强迫对流 2).流动的情况: 流动方式有两种;一种为雷诺数Re<2200的层流,另一种为Re>10000的紊流。

Re — 雷诺数, Re v ud = , 雷诺数Re 的物理定义是在流体运动中惯性力对黏滞力比值的无量纲数。 上述公式中,d —外管径(m ),u —流体在实验测试段中的流速(m/s ),v —流体的运动粘度(㎡/s )。 3).物体的物理性质: Pr — 普朗特数,Pr= α ν = cpμ/k 其中α为热扩散率, v 为运动粘度, μ为动力粘度;cp 为等压比热容;k 为热导率; 普朗特数的定义是:运动粘度与导温系数之比 4).换面的形状和位置 5).流体集体的改变 相变换热 :凝结与沸腾 4、对流换热方程的一般表达方式 强制对流:由外力(如:泵、风机、水压头)作用所产生的流动 强迫对流公式为(Re,Pr)Nu f = 自然对流:流体因各部分温度不同而引起的密度差异所产生的流动。 自然对流公式为Nu=f (Gr ,Pr ) 1).Re=v ul = 雷诺数Re 的定义是在流体运动中惯性力对黏滞力比值的无量纲数Re=UL/ν 。其中U 为速度特征尺度,L 为长度特征尺度,ν为运动学黏性系数。 2).Pr= α ν 定义:流体运动学黏性系数γ与导温系数κ比值的无量纲数 3).Nu=λ hd (努谢尔数) 4).Gr= 2 3 ν t gad ? 式中a 为流体膨胀系数,v 为流体可运动系数。 格拉晓夫数 ,自然对流浮力和粘性力之比 ,控制长度和自然对流边界层厚度之比 。 5、对流换热的机理 热边界层 热边界层的定义是:黏性流体流动在壁面附近形成的以热焓(或温度)剧变为 特征的流体薄层 热边界层内存在较大的温度梯度,主流区温度梯度为零。

空气 水蒸气对流给热系数测定实验报告

一.实验课程名称 化工原理 二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求 1、了解间壁式传热元件,掌握给热系数测定的实验方法。 2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。 3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。 四.实验内容和原理 实验内容:测定不同空气流量下进出口端的相关温度,计算?,关联出相关系数。 实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。 达到传热稳定时,有 ()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ?=-=-=-=-=221112222111αα (4-1) 热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()() 2 211 2211ln W W W W m W T T T T T T T T T T -----= - (4-2) 式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。 固体壁面与冷流体的对数平均温差可由式(4—3)计算,

()()() 2 21 12211ln t t t t t t t t t t W W W W m W -----= - (4-3) 式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。 热、冷流体间的对数平均温差可由式(4—4)计算, ()() 1 221 1221m t T t T ln t T t T t -----= ? (4-4) 当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数, ()()M W p t t A t t c m --= 212222α (4-5) 实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算?2。 然而,直接测量固体壁面的温度,尤其管内壁的温度,实验技术难度大,而且所测得的数据准确性差,带来较大的实验误差。因此,通过测量相对较易测定的冷热流体温度来间接推算流体与固体壁面间的对流给热系数就成为人们广泛采用的一种实验研究手段。 由式(4-1)得, ()m p t A t t c m K ?-= 1222 (4-6) 实验测定2m 、2121T T t t 、、、、并查取()212 1 t t t += 平均下冷流体对应的2p c 、换热面积

对流换热系数的确定.doc

对流换热系数的确定 核心提示:1.自然对流时的对流换热系数炉墙、炉顶和架空炉底与车间空气间的对流换热均属自然对流换热。2.强制对流时的对流换热系数(1)气流沿 1.自然对流时的对流换热系数 炉墙、炉顶和架空炉底与车间空气间的对流换热均属自然对流换热。 2.强制对流时的对流换热系数 (1)气流沿平面强制流动时气流沿平面流动时,烧结炉其对流换热系数可按表1-1的近似公式计算。 表1-1对流换热系数计算 vo=C4.65(m/s) x;o>4.65(m/s) 光滑表面a=5.58+4.25z'o a^V.Slvg78 轧制表面a-=5.81+4.25vo a=7.53vin. 粗糙表面o=6.16+4.49vo a=T.94vi78 气流沿长形工件强制流动时当加热长形工件时,循环空气对工件表面的对流换热系数可用下述近似公式计算 气流在通道内层流流动时气流呈层流流动时,对流换热系数主要决定于炉气的热导率,而与炉气的流速无关。 绝对黑体的概念 当物体受热后一部分热能转变为辐射能并以电磁波的形式向外放射,其波长从lfmi到若干m。各种不同波长的射线具有不同性质,可见光和红外线能被物体吸收转化为热能,称它们为热射线。各种物体由于原子结构和表面状态的不同,其辐射和吸收热射线的能力有明显差别。 当能量为Q的一束热射线投射到物体表面时,也和可见光一样,一部分能量Qa将被吸收,一部分能量Qr被反射,还有一部分能量Qu透射过物体(如图1-5)。按能量守恒定律则有

图1-5辐射能的吸收、反射和透过 如果A=l,则R=D=0,即辐射能全部被吸收,这种物体称绝对黑体,简称黑体。 如果R=l,则A=D=0,即辐射能全部被反射,这种物体称绝对白体,简称白体。如果D= 1,则A=K=0,即辐射能全部被透过,这种物体称绝对透过体,简称透过体。 自然界中,黑体、白体和透过体是不存在的,它们都是假定的理想物体。对于一种实 际物体来说数值,不仅取决于物体的特性,还与表面状态、温度以及投射射线的波长等有关。为研究方便,人们用人工方法制成黑体模型。在温度均匀、不透过热射线的空心壁上开一小孔,此小孔即具有绝对黑体性质:所有进入小孔的辐射能,在多次反射过程中几乎全部被内壁吸收。小孔面积与空腔内壁面积之比越小,小孔越接近黑体。当它们的面积比小于0.6%,空腔内壁的吸收率为0.8时,则小孔的吸收率A大于0.998,非常接近黑体。

传热实验实验报告,DOC

传热实验 一、实验目的 1、了解换热器的结结构及用途。 2、学习换热器的操作方法。 3、了解传热系数的测定方法。

四、实验步骤及操作要领 1、熟悉设备流程,掌握各阀门、转子流量计和温度计的作用。 2、实验开始时,先开水路,再开气路,最后再开加热器。 3、控制所需的气体和水的流量。 4、待系统稳定后,记录水的流量、进出口温度,记录空气的流量和进出口温度,记录设备的有关参数。重复一次。

K =?=??ψ=?∴?2479.362479.360.1逆m t m t t ) /(1717.192 1101 .192333.19) /(2333.192479 .364.0867 .27822K m W K K K m W t S Q K m ?=+= ?=?=??= 的平均值:传热系数

2、对比不同操作条件下的传热系数,分析数值,你可得出什么结论? 答:比较一、二、三组可知当空气流量不变,水的流量改变时,传热系数变化不大,比较四、五组可知空气流量改变而水的流量不改变时,传热系数有很大变化,且空气流量越大,传热系数越大,传热效果越好;综上可知,K值总是接近热阻大的流体侧的α值,实验中,提高空气侧的α值以提高K值。。 3、转子流量计在使用时应注意什么问题?应如何校正读数? 答:转子流量计不能用于流量过大的流体测量,使用时流量计必须安装在垂直走向的管段上,流体介质自下而上地通过转子流量计。 读数时应读转子的最大截面与玻璃管刻线相交处的数值,可以读初始值和最终值,取两者之差来校正读数。 4、针对该系统,如何强化传热过程才能更有效,为什么? 答:该系统传热效果主要取决于热流体,所以可以通过增加空气流量,提高其所占比例来强化传热效果;减小水的流量;内管加入填充物或采用螺纹管,加热面在上,制冷面在下。因为由实验可知提高热阻大的流体的传热系数可以更有效的强化传热过程。 5、逆流换热和并流换热有什么区别?你能用实验装置加以验证吗? 答:①逆流换热时热流体是冷热流体流动方向相反;而并流传热时,其冷热流体流动方向相同;②在相同操作条件下,逆流换热器比并流换热器所需传热面积小。可以改变冷热流体进出口方向,测得在相同传热效果下,逆并流所需传热面积大小,从而加以验证。 6、传热过程中,哪些工程因素可以调动? t ;④换热过程答:①增大传热面积S;②提高传热系数α;③提高平均温差 m 的流型(并流,逆流,错流)。 7、该实验的稳定性受哪些因素的影响? 答:①冷凝水流通不畅,不能及时排走;②空气成分不稳定,导致被冷凝效果不稳定;③冷热流体流量不稳定;④传热器管表面的相对粗糙度。 8、你能否对此实验装置作些改进,使之能够用于空气一侧对流传热系数的测定? 答:让空气走壳程,水走管程,根据流体在管外的强制对流公式,可提出空气一侧的对流传热系数α值。

空气沿横管外表面自然对流换热实验

实验三、空气沿横管外表面自然对流换热实验 一、实验目的 1、测定无限空间内水平横管和空气间自由流动时的放热系数。 2、根据自由流动放热过程的相似分析,将实验数据整理成准则方程式。 3、通过实验加深对相似理论的理解,并初步掌握在相似理论指导下进行实验研究的方法。 二、实验原理 根据相似原理,空气自由流动放热过程准则方程由下式描述: )(γγP G f N u ?= 通常用幂函数形式来表示:n u P G c N )(γγ?= 通过实验确定准则方程式的函数形式,即确定准则 方程式中的系数C 和指数n 。 λ αd N u = 2 32 2υβνβγt d g t g G ?= ?= α ν γ=P ( P γ准则数也可以根据定性温度由书后附录查得) d —定型尺寸即横管外径; g —重力加速度: t m —定性温度。 t m = 2 w f t t + △t — △t=t w -t f v —空气运动粘度; λ—空气导热系数; β—空气容积膨胀系数,β= 1 m T 为了具体确定(1)式,根据相似定理,通过实验测得或者从书后附录中查得上述所有物理量。而放热系数α是通过计算求得的。 由热量平衡,水平横管内电加热器发出的热量等于横管上空气自由流动放热量加横管辐射换热热量。 电加热器发热量 Q=IV (W ) 横管上空气自由流动放热量 Q=αF (t w -t f ) (W ) 其中;F=dI π2 (m ) I 为计算管长(m )。 横管辐射换热量 Q=4 4[100100 f o T T C F ωε-( )() ] (W ) 其中: ε—横管表面黑度,查附录7,磨光的铬ε=0.058; Co —黑体辐射系数,Co=5.67(W/㎡?K 4 ) 由于: Q=Q 1+Q 2 即: IV=4[100f o T F t t C F ωωαω-+-4 f T ()()()]100 44 [] 100W O f T IV C F F t t ωεα--=-f T ()()100() W/㎡?℃ (2) 三、实验装置 实验装置有试验管(为降低辐射散热量的影响,试管表面镀铬抛光),放试验管的支撑架,转换开关盒等。测量仪表有电位差计,直流电源。试验管上有热电偶(4对)嵌入管壁,可反映出管壁的热电势;电位差计上的“未知”接线柱按极性和转换开关盒上的接线柱(红正黑负)相连,用于测量室内空气和管壁的热电势;直流电源可输入稳定的电压和电流,使加热功率保持恒定 四、实验步骤: 1、连接加热器线路,经验查无误后即可接同电源,调节变压器到所需电压,进行加热。 2、正确连接热电偶测温线路, 3、每隔十分钟测热电偶电势一次,当电势不再随时间而变时,加热达到了稳定工况,以连续二次测定的平均值为测定结果,记录下来。 4、测定远离水平管处的空气温度t f 。 5、调节变压器,以达到在另一个温度下的稳定工况,以取得另外一组实验数据。

传热实验实验报告

. . . 一、 实验名称: 传热实验 二、实验目的: 1.熟悉套管换热器的结构; 2.测定出K 、α,整理出e R N -u 的关系式,求出m A 、. 三、实验原理: 本实验有套管换热器4套,列管式换热器4套,首先介绍套管换热器。 套管换热器管间进饱和蒸汽,冷凝放热以加热管的空气,实验设备如图2-2-5-1(1)所示。 传热方式为:冷凝—传导—对流 1、传热系数可用下式计算: ]/[2m k m W t A q K m ???= (1) 图2-2-5-1(1) 套管换热器示意图 式中:q ——传热速率[W] A ——传热面积[m 2 ] △t m —传热平均温差[K] ○ 1传热速率q 用下式计算: ])[(12W t t C V q p S -=ρ (2) 传热实验

式中:3600/h S V V =——空气流量[m 3 /s] V h ——空气流量[m 3 /h] ρ——空气密度[kg/m 3],以下式计算: ]/)[273( 4645.031 m kg t R p P a ++=ρ (3) Pa ——大气压[mmHg] Rp ——空气流量计前表压[mmHg] t 1——空气进换热器前的温度[℃] Cp ——空气比热[K kg J ?/],查表或用下式计算: ]/[04.01009K kg J t C m p ?+= (4) t m =(t 1+t 2)/2——空气进出换热器温度的平均值(℃) t 2——空气出口温度[℃] ②传热平均面积A m : ][2 m L d A m m π= (5) 式中:d m =传热管平均直径[m] L —传热管有效长度[m ] ③传热平均温度差△t m 用逆流对数平均温差计算: T ←——T t 1——→t 2 )(),(2211t T t t T t -=?-=? 2 12 1ln t t t t t m ???-?= ? (6) 式中:T ——蒸汽温度[℃] 2、传热膜系数(给热系数)及其关联式 空气在圆形直管作强制湍流时的传热膜系数可用下面准数关联式表示: n r m e P AR Nu = (7)

对流换热与准则数

单相流体对流换热及准则关联式部分 返回一、基本概念 主要包括对流换热影响因素;边界层理论及分析;理论分析法(对流换热微分方程组、边界层微分方程组);动量与热量的类比;相似理论;外掠平板强制对流换热基本特点。 1、由对流换热微分方程知,该式中没有出现流速,有人因此得出结论:表面传热系数h与流体速度场无关。试判断这种说法的正确性? 答:这种说法不正确,因为在描述流动的能量微分方程中,对流项含有流体速度,即要获得流体的温度场,必须先获得其速度场,“流动与换热密不可分”。因此表面传热系数必与流体速度场有关。 2、在流体温度边界层中,何处温度梯度的绝对值最大?为什么?有人说对一定表面传热温差的同种流体,可以用贴壁处温度梯度绝对值的大小来判断表面传热系数h的大小,你认为对吗? 答:在温度边界层中,贴壁处流体温度梯度的绝对值最大,因为壁面与流体间的热量交换都要通过贴壁处不动的薄流体层,因而这里换热最剧烈。由对流换热微分方程,对一定表面传热温差的同种流体λ与△t均保持为常数,因而可用绝对值的大小来判断表面传热系数h的大小。3、简述边界层理论的基本论点。 答:边界层厚度δ、δt与壁的尺寸l相比是极小值; 边界层内壁面速度梯度及温度梯度最大; 边界层流动状态分为层流与紊流,而紊流边界层内,紧贴壁面处仍将是层流,称为层流底层; 流场可以划分为两个区:边界层区(粘滞力起作用)和主流区,温度同样场可以划分为两个区:边界层区(存在温差)和主流区(等温区域); 对流换热热阻主要集中在热边界层区域的导热热阻。层流边界层的热阻为整个边界层的导热热阻。紊流边界层的热阻为层流底层的导热热阻。 4、试引用边界层概念来分析并说明流体的导热系数、粘度对对流换热过程的影响。

对流传热实验实验报告

实验三 对流传热实验 一、实验目的 1.掌握套管对流传热系数i α的测定方法,加深对其概念和影响因素的理解,应用线性回归法,确定关联式4.0Pr Re m A Nu =中常数A 、m 的值; 2.掌握对流传热系数i α随雷诺准数的变化规律; 3.掌握列管传热系数Ko 的测定方法。 二、实验原理 ㈠ 套管换热器传热系数及其准数关联式的测定 ⒈ 对流传热系数i α的测定 在该传热实验中,冷水走内管,热水走外管。 对流传热系数i α可以根据牛顿冷却定律,用实验来测定 i i i S t Q ??= α (1) * 式中:i α—管内流体对流传热系数,W/(m 2?℃); Q i —管内传热速率,W ; S i —管内换热面积,m 2; t ?—内壁面与流体间的温差,℃。 t ?由下式确定: 2 2 1t t T t w +- =? (2) 式中:t 1,t 2 —冷流体的入口、出口温度,℃; T w —壁面平均温度,℃; 因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示。 管内换热面积: i i i L d S π= (3) 式中:d i —内管管内径,m ;

L i —传热管测量段的实际长度,m 。 、 由热量衡算式: )(12t t Cp W Q m m i -= (4) 其中质量流量由下式求得: 3600 m m m V W ρ= (5) 式中:m V —冷流体在套管内的平均体积流量,m 3 / h ; m Cp —冷流体的定压比热,kJ / (kg ·℃); m ρ—冷流体的密度,kg /m 3。 m Cp 和m ρ可根据定性温度t m 查得,2 2 1t t t m += 为冷流体进出口平均温度。t 1,t 2, T w , m V 可采取一定的测量手段得到。 ⒉ 对流传热系数准数关联式的实验确定 流体在管内作强制湍流,被加热状态,准数关联式的形式为 n m A Nu Pr Re =. (6) ~ 其中: i i i d Nu λα= , m m i m d u μρ=Re , m m m Cp λμ=Pr 物性数据m λ、m Cp 、m ρ、m μ可根据定性温度t m 查得。经过计算可知,对于管内被加热的空气,普兰特准数Pr 变化不大,可以认为是常数,则关联式的形式简化为: 4.0Pr Re m A Nu = (7) 这样通过实验确定不同流量下的Re 与Nu ,然后用线性回归方法确定A 和m 的值。 ㈡ 列管换热器传热系数的测定 管壳式换热器又称列管式换热器。是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料(主要

自然对流与强制对流及计算实例

自然对流与强制对流及计算实例 热设计是电子设备开发中必不可少的环节。本连载从热设计的基础——传热着手,介绍基本的热设计方法。前面介绍的热传导具有消除个体内温差的效果。上篇绍的热对流,则具有降低平均温度的效果。 下面就通过具体的计算来分别说明自然对流与强制对流的情况。 首先,自然对流的传热系数可以表述为公式(2)。 热流量=自然对流传热系数×物体表面积×(表面温度-流体温度) (2) 很多文献中都记载了计算传热系数的公式,可以把流体的特性值带入公式中进行计算,可以适用于所有流体。但每次计算的时候,都必须代入五个特性值。因此,公式(3)事先代入了空气的特性值,简化了公式。 自然对流传热系数 h=2 .51C(⊿T/L)0.25(W/m2K) (3) 2.51是代入空气的特性值后求得的系数。如果是向水中散热,2.51需要换成水的特性值。 公式(3)出现了C、L、⊿T三个参数。C和L从表1中选择。例如,发热板竖立和横躺时,周围空气的流动各不相同。对流传热系数也会随之改变,系数C 就负责吸收这一差异。 代表长度L与C是成对定义的。计算代表长度的公式因物体形状而异,因此,在计算的时候,需要从表1中选择相似的形状。

需要注意的是,表示大小的L位于分母。这就表示物体越小,对流传热系数越大。 ⊿T是指公式(2)中的(表面温度-流体温度)。温差变大后,传热系数也会变大。物体与空气之间的温差越大,紧邻物体那部分空气的升温越大。因此,风速加快后,传热系数也会变大。 公式(3)叫做“半理论半实验公式”。第二篇中介绍的热传导公式能够通过求解微分方程的方式求出,但自然对流与气流有关,没有完全适用的理论公式。能建立理论公式的,只有产生的气流较简单的平板垂直放置的情况。因为在这种情况下,理论上的温度边界线的厚度可以计算出来。 但是,如果发热板水平放置,气流就会变得复杂,计算的难度也会增加。这种情况下,就要根据原始的理论公式,通过实验求出系数。也就是说,在公式(3)中,理论计算得出的数值0.25可以直接套用,C的值则要通过实验求出。 自然对流传热系数无法大幅改变

金属泡沫–水的自然对流换热实验研究

Advances in Porous Flow 渗流力学进展, 2016, 6(1), 1-8 Published Online March 2016 in Hans. https://www.doczj.com/doc/1e11890034.html,/journal/apf https://www.doczj.com/doc/1e11890034.html,/10.12677/apf.2016.61001 Experimental Investigation of Natural Convection in Metal Foam-Water Zhao Peng, Yang Pan, Weiyang Qian School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang Jiangxi Received: Mar. 6th, 2016; accepted: Mar. 28th, 2016; published: Mar. 31st, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/1e11890034.html,/licenses/by/4.0/ Abstract In this paper, an experiment apparatus filled with metal foam-water is set up to investigate the problem of natural convection about porous medium. A mechanism of natural convection of metal foam-water is investigated by experiments. Influences of heating power and angle of inclination on natural convection in the cavity filled with metal foam-water are discussed. It is found that the Nusselt number increases with heating power and decreases with the angle of inclination and pore density PPI of metal foam. A correlation of Nusselt number and Raleigh number is obtained when the cavity is horizontal with 5 PPI and 10 PPI. Keywords Metal Foam-Water, Natural Convection, Difference of Temperature, Pore Density 金属泡沫–水的自然对流换热实验研究 彭招,潘阳,钱维扬 华东交通大学土木建筑学院,江西南昌 收稿日期:2016年3月6日;录用日期:2016年3月28日;发布日期:2016年3月31日 摘要 本文针对多孔介质材料中的自然对流换热问题,通过搭建充满金属泡沫–水的实验装置,探究了金属泡

相关主题
文本预览
相关文档 最新文档