当前位置:文档之家› 函数与极限习题与答案

函数与极限习题与答案

函数与极限习题与答案
函数与极限习题与答案

第一章 函数与极限

(A )

一、填空题

1、设x x x f lg lg 2)(+-= ,其定义域为 。

2、设)1ln()(+=x x f ,其定义域为 。

3、设)3arcsin()(-=x x f ,其定义域为 。

4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为 。

5、设)(x f y =的定义域是[0,2] ,则)(2x f y =的定义域为 。

6、43

2lim

23=-+-→x k

x x x ,则k= 。 7、函数x

x

y sin =

有间断点 ,其中 为其可去间断点。 8、若当0≠x 时 ,x

x

x f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。

9、=++++++∞→)21(lim 222

n

n n

n n n n n 。 10、函数)(x f 在0x 处连续是)(x f 在0x 连续的 条件。

11、=++++∞→352352)

23)(1(lim x

x x x x x 。 12、3)

2

1(lim -∞

→=+e n

kn

n ,则k= 。

13、函数2

31

22+--=x x x y 的间断点是 。

14、当+∞→x 时,

x

1

是比3-+x 15、当0→x 时,无穷小x --11与x 相比较是 无穷小。 16、函数x

e y 1=在x=0处是第 类间断点。

17、设1

1

3

--=

x x y ,则x=1为y 的 间断点。 18、已知33=??

?

??πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。

19、设??

???>+<=0)1(02sin )(1x ax x x

x

x f x 若)(lim 0

x f x →存在 ,则a= 。

20、曲线2sin 2

-+=x

x

x y 水平渐近线方程是 。 21、1

14)(2

2-+

-=

x x x f 的连续区间为 。

22、设??

?>≤+=0

,cos 0

,)(x x x a x x f 在0=x 连续 ,则常数

a= 。 二、计算题

1、求下列函数定义域 (1)2

11

x

y -= ; (2)x y sin = ;

(3)x

e y 1= ;

2、函数)(x f 和)(x g 是否相同?为什么? (1)x x g x x f ln 2)(,ln )(2

== ;

(2)2)(,)(x x g x x f =

= ;

(3)x x x g x f 22tan sec )(,

1)(-== ;

3、判定函数的奇偶性

(1))1(2

2

x x y -= ; (2)3

2

3x x y -= ;

(3))1)(1(+-=x x x y ;

4、求由所给函数构成的复合函数 (1)22,sin ,x v v u u y === ;

(2)21,x u u

y +== ;

5、计算下列极限 (1))2141211(lim n n ++++

→ ; (2)2)1(321lim n

n n -++++∞→ ;

(3)35lim 22-+→x x x ; (4)11

2lim 221-+-→x x x x ; (5))12)(11(lim 2x x x -+∞→ ; (6)2232)

2(2lim -+→x x x x ; (7)x x x 1sin lim 2

0→ ; (8)x

x x x +---→131lim 21 ;

(9))1(lim 2

x x x x -++∞

→ ;

6、计算下列极限 (1)x

wx x sin lim 0→ ; (2)x x

x 5sin 2sin lim 0→ ;

(3)x x x cot lim 0

→ ; (4)x

x x

x )1(

lim +∞

→ ; (5)1

)11(

lim -∞→-+x x x x ; (6)x x x 1

)1(lim -→ ;

7、比较无穷小的阶

(1)3

2

2

20x x x x x --→与,时 ;

(2))1(2

1112

x x x --→与,时 ;

8、利用等价无穷小性质求极限

(1)3

0sin sin tan lim x x x x -→ ; (2)),()(sin )

sin(lim

0是正整数m n x x m n x → ;

9、讨论函数的连续性

在???=>-≤-=11

,31

,1)(x x x x x x f

10、利用函数的连续性求极限

(1))2cos 2ln(lim 6

x x π

; (2))(lim 22

x x x x x --

++∞

→ ;

(3)x x x sin ln

lim 0

→ ; (4)x

x x

2)11(lim +∞→ ;

(5))1

1

(lim ,)

1(lim )(1

--=+

→∞

→t f n

x x f t n

n 求设 ;

(6))1

1

ln(

lim +-∞

→x x x x ;

11、设函数???≥+<=0

,0

,)(x x a x e x f x

应当怎样选择a ,使得)()(∞+-∞,成为在x f 内的连续函数。

12、证明方程135

=-x x 至少有一个根介于1和2之间。

(B )

1、设)(x f 的定义域是[0 ,1] ,求下列函数定义域

(1))(x

e f y = (2))(ln x f y =

2、设???>-≤=???>≤=0

,0

,0)(0,,0)(2

x x x x g x x o x x f 求)]([,)]([,

)]([,)]([x f g x g f x g g x f f

3、利用极限准则证明: (1)11

1lim =+

→n

n (2)1]1[lim 0=+→x x x ;

(3)数列 ,222,22,2+++的极限存在 ;

4、试比较当0→x 时 ,无穷小232-+x

x 与x 的阶。

5、求极限

(1))1(lim 2

x x x x -++∞

→ ; (2)1

)1

232(

lim +∞

→++x x x x ; (3)3

sin tan lim

x

x

x x -→ ;

(4))0,0,0()3

(

lim 1

0>>>++→c b a c b a x

x x x x ;

6、设?????

≤+>=0

,0,1sin

)(2

x x a x x

x x f 要使),()(∞+-∞在x f 内连续, 应当怎样选择数a ?

7、设?????≤<-+>=-0

1,)1ln(0,)(11x x x e x f x 求)(x f 的间断点,并说明间断点类型。

(C )

1、已知x x f e x f x -==1)]([,)(2

? ,且0)(≥x ? ,求)(x ?并写出它的定义域。

2、求下列极限:

(1)、]ln cos )1ln([cos lim x x x -++∞

→ ;(2)、x

x

x x x c o s s i n 1l

i m 0

-+→ ;

(3)、求x

x x x 2

sin 3553lim 2?++∞→ ;(4)、已知9)(

lim =-+∞→x x a x a x ,求常数a 。 (5)、设)(x f 在闭区间],[b a 上连续 ,且b b f a

a f <>)(,)( ,

证明:在开区间),(b a 内至少存在一点ξ ,使ξξ=)(f 。

第一章 函数与极限 习 题 答 案

(A )

一、填空题 (1)]2,

1( (2)),1(∞+- (3)[2 ,4]

(4){}z k k x k x ∈+≤≤,)12(2ππ (5)]2,

2[-

(6)-3 (7)0;,=∈=x z k k x π (8)2 (9)1

(10)充分 (11)

21 (12)2

3

- (13)x=1 , x=2 (14)高阶 (15)同阶 (16)二 (17)可去 (18)2 (19)-ln2 (20)y=-2 (21)]2,1(]1,2[ - (22)1 二、计算题

1、(1) ),1()1,1()1,(∞+---∞

(2) ),0[∞+ (3)),0()0,(∞+-∞

2、(1)不同,定义域不同 (2)不同,定义域、函数关系不同

(3)不同,定义域、函数关系不同 3、(1)偶函数 (2)非奇非偶函数 (3)奇函数

4、(1)[]

22)(sin x y = (2)]1[2x y += (3)][sin 2x e y =

5、(1)[ 2 ] (2)]2

1

[ (3)-9 (4)0 (5)2 (6)∞ (7)0 (8)22- (9)2

1 6、(1)w (2)

5

2 (3)1 (4)1-e (5)2e (6)1-e 7、(1)的低阶无穷小是3

2

2

2x x x x -- (2)是同阶无穷小

8、(1)21 (2)??

?

??>∞=

m n m n

m ,,1,0

9、不连续

10、(1)0 (2)1 (3)0 (4)2

e (5)0 (6)-2 11、a=1

(B )

1、(1)提示:由10≤≤x

e 解得:]0,(∞-∈x (2)提示:由1ln 0≤≤x 解得:],1[e x ∈

2、提示:分成o x ≤和0>x 两段求。)()]([x f x f f = ,0)]([=x g g ,

0)]([=x g f , )()]([x g x f g =

4、(1)提示:n

n 1

1111+<+

< (2)提示:x x x x x x 1]1[)11(?<<-

(3)提示:用数学归纳法证明:222=+<

n a

5、提示:x x x x x x x 1312232-+-=-+ 令t x

=-12(同阶)

6、(1)提示:乘以x x ++12 ;

21

(2)提示:除以x 2 ;e (3)提示:用等阶无穷小代换 ;2

1

(4)提示: x

x x x c b a 1

)3

(++

x

c b a c b a x x x x x x x x x c b a 31

111113

13111-+-+--+-+-?

?

?

????????????????? ??+-+-+-=(3abc )

7、提示:)0()(lim )(lim 00f x f x f x x ==+

-

→→ (0=a )

8、1=x 是第二类间断点 ,0=x 是第一类间断点

(C )

1、解:因为()[]x e

x f x -==1)

(2

?

? ,故)1ln()(x x -=? ,再由0)1ln(≥-x ,

得:11≥-x ,即0≤x 。所以:)

1ln()(x x -=?,0≤x 。

2、解:原式=)cos sin 1(cos sin 1lim 20x x x x x x x x ++-+→=x x x x x 20sin sin 21lim +?→

=)sin (sin lim

2

10x x x

x

x +?→=0

3、解:因为当∞→x 时 ,x

x 2

~2sin ,

则x x x x 2sin 3553lim 2?++∞→=x x x x 23553lim 2?++∞→=x x x x 35106lim 22++∞→=56

4、解:因为:9=x x a x a x )(

lim -+∞→=x

x x a x a ?

?????

?

?

-+∞→11lim =a a e e -=a e 2

所以92=a

e

,3ln =a

5、证明:令x x f x F -=)()( ,)(x F 在[]b a ,上连续 ,且

0)()(>-=a a f a F ,0)()(<-=b b f b F 。由闭区间上连续函数的零点定理 ,在开

区间),(b a 内至少存在一点),(b a ∈ξ ,使0)(=ξF ,即ξξ=)(f 。

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

函数极限习题与解析

函数与极限习题与解析 (同济大学第六版高等数学) 一、填空题 1、设x x x f lg lg 2)(+-= ,其定义域为 。 2、设)1ln()(+=x x f ,其定义域为 。 3、设)3arcsin()(-=x x f ,其定义域为 。 4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为 。 5、设)(x f y =的定义域是[0,2] ,则)(2 x f y =的定义域为 。 6、43 2lim 23=-+-→x k x x x ,则k= 。 7、函数x x y sin = 有间断点 ,其中 为其可去间断点。 8、若当0≠x 时 ,x x x f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。 9、=++++++∞→)21(lim 222n n n n n n n n 。 10、函数)(x f 在0x 处连续是)(x f 在0x 连续的 条件。 11、=++++∞→3 52352) 23)(1(lim x x x x x x 。 12、3)2 1(lim -∞ →=+e n kn n ,则k= 。 13、函数2 31 22+--=x x x y 的间断点是 。 14、当+∞→x 时, x 1 是比3-+x 15、当0→x 时,无穷小x --11与x 相比较是 无穷小。 16、函数x e y 1=在x=0处是第 类间断点。 17、设1 1 3 --= x x y ,则x=1为y 的 间断点。

18、已知33=?? ? ??πf , 则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。 19、设?? ???>+<=0)1(02sin )(1x ax x x x x f x 若)(lim 0 x f x →存在 ,则a= 。 20、曲线2sin 2 -+=x x x y 水平渐近线方程是 。 21、1 14)(2 2-+ -= x x x f 的连续区间为 。 22、设? ??>≤+=0,cos 0 ,)(x x x a x x f 在0=x 连续 ,则常数 a= 。 二、计算题 1、求下列函数定义域 (1)2 11 x y -= ; (2)x y sin = ; (3)x e y 1= ; 2、函数)(x f 和)(x g 是否相同?为什么? (1)x x g x x f ln 2)(,ln )(2 == ; (2)2)(,)(x x g x x f == ; (3)x x x g x f 22tan sec )(,1)(-== ;

函数与极限习题与答案计算题(供参考)

高等数学 二、计算题(共 200 小题,) 1、设x x x f +=12)(,求)(x f 的定义域及值域。 2、设x x x f -+= 11)(,确定)(x f 的定义域及值域。 3、设)ln(2)(22x x x x x f -+-= ,求)(x f 的定义域。 4、的定义域,求设)(sin 51 2arcsin )(x f x x x f π+-=。 5、的定义域,求设??? ??++-=x f x f x x x f 1)(22ln )(。 6、的定义域求函数22112arccos )(x x x x x f --++=。 7、设)(x f 的定义域为[) )()()(m x f m x f x F b a ++-=,.,)0(++=。 19、及其定义域,求, 设)(02)(ln 2x f x x x x f +∞<<+-=。

第十三章 多元函数的极限与连续性习题(学生用)

班级:_______________ 学号:______________ 姓名:________________ 第十三章 多元函数的极限与连续性 §1. 平面点集 1.判别下列平面点集哪些是开集、闭集、有界集和区域,并分别指出它们的聚点: (1)(){}2 ,|E x y y x =<; (2)(){}2 2,|1E x y x y =+≠;(3)(){},|0E x y xy =≠; (4)(){},|0E x y xy ==;(5)(){},|02,222E x y y y x y =≤≤≤≤+;(6)()1,|sin ,0E x y y x x ?? ==>???? ; (7)(){}2 2,|10,01E x y x y y x =+==≤≤或; (8)(){},|,E x y x y =均为整数. 2.证明:平面点列{}n P 收敛的充要条件是:任给正数ε,存在正整数 N ,使得当n N >时,对一切正整数p ,都有(,)n n p P P ρε+<. (其中(,)n n p P P ρ+表,n n p P P +之间的距离)

§2. 多元函数的极限和连续性 1.求下列极限(包括非正常极限): (1) 2200lim x y x y x y →→++; (2) ()332200 sin lim x y x y x y →→++; (3) 2200 x y →→; (4) ()22 00 1 lim sin x y x y x y →→++; (5) ()2 2 2 2 lim ln x y x y x y →→+; (6) 00lim cos sin x y x y e e x y →→+-; (7) 3 2 2 4200 lim x y x y x y →→+; (8) ()02 sin lim x y xy x →→; (9) 10 ln y x y x e →→+ (10) 12 1 lim 2x y x y →→-; (11) 4400 1 lim x y xy x y →→++; (12) 2222001lim x y x y x y →→+++;

函数与极限习题与答案

第一章 函数与极限 (A ) 一、填空题 1、设x x x f lg lg 2)(+-= ,其定义域为 。 2、设)1ln()(+=x x f ,其定义域为 。 3、设)3arcsin()(-=x x f ,其定义域为 。 4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为 。 5、设)(x f y =的定义域是[0,2] ,则)(2x f y =的定义域为 。 6、43 2lim 23=-+-→x k x x x ,则k= 。 7、函数x x y sin = 有间断点 ,其中 为其可去间断点。 8、若当0≠x 时 ,x x x f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。 9、=++++++∞→)21(lim 222 n n n n n n n n 。 10、函数)(x f 在0x 处连续是)(x f 在0x 连续的 条件。 11、=++++∞→352352) 23)(1(lim x x x x x x 。 12、3) 2 1(lim -∞ →=+e n kn n ,则k= 。 13、函数2 31 22+--=x x x y 的间断点是 。 14、当+∞→x 时, x 1 是比3-+x 15、当0→x 时,无穷小x --11与x 相比较是 无穷小。 16、函数x e y 1=在x=0处是第 类间断点。 17、设1 1 3 --= x x y ,则x=1为y 的 间断点。 18、已知33=?? ? ??πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。

19、设?? ???>+<=0)1(02sin )(1x ax x x x x f x 若)(lim 0 x f x →存在 ,则a= 。 20、曲线2sin 2 -+=x x x y 水平渐近线方程是 。 21、1 14)(2 2-+ -= x x x f 的连续区间为 。 22、设?? ?>≤+=0 ,cos 0 ,)(x x x a x x f 在0=x 连续 ,则常数 a= 。 二、计算题 1、求下列函数定义域 (1)2 11 x y -= ; (2)x y sin = ; (3)x e y 1= ; 2、函数)(x f 和)(x g 是否相同?为什么? (1)x x g x x f ln 2)(,ln )(2 == ; (2)2)(,)(x x g x x f = = ; (3)x x x g x f 22tan sec )(, 1)(-== ; 3、判定函数的奇偶性 (1))1(2 2 x x y -= ; (2)3 2 3x x y -= ;

数学—极限练习题及详细答案

一、选择题 1.若0 () lim 1sin x x x φ→=,则当x 0→时,函数(x)φ与( )是等价无穷小。 A.sin ||x B.ln(1)x - C. 1 1.【答案】D 。 2.设f(x)在x=0处存在3阶导数,且0() lim 1tan sin x f x x x →=-则'''f (0)=( ) A.5 B.3 C.1 D.0 2. 【 答 案 】 B. 解 析 由 洛 必达 法 则 可 得 300 02() '() ''() lim lim lim 1 tan sin 2cos sin sin cos cos x x x f x f x f x x x x x x x x -→→→==-+-42200''()''() lim lim 16cos sin 2cos cos 21 x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶无穷小的是( ) A.3x B.3 4 x C.3 2 x D.x 3.【答案】A.解析 .1 2 2 33 31233 2000311(1)1133lim lim (1)3313 x x x x x x x ---→→→-+?==+=选A 。 4.函数2sin f ()lim 1(2)n n x x x π→∞=+的间断点有( )个 A.4 B.3 C.2 D.1 4.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故 20.5sin 12lim 1(2(0.5))2n x π →-- =- +?-, 20.5sin 12lim 1(20.5)2n x π →= +?,故,有两个跳跃间断点,选C 。 5.已知()bx x f x a e =-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满足的充要条件是( )

函数与极限测试题及答案(一)

函数与极限测试题(一) 一、 填空题 1、若1ln 1 1ln x f x x +??= ?-??,则()f x =_____。 2、函数()f x 的定义域为[],a b ,则()21f x -的定义域为_____。 3、若0x →时,无穷小2 21ln 1x x -+与2sin a 等价,则常数a =_____。 4、设()()2 1lim 1 n n x f x nx →∞ -=+,则()f x 的间断点为x =_____。 二、 单选题 1、当0x →时,变量 2 11 sin x x 是( ) A 、无穷小 B 、无穷大 C 、有界的,但不是无穷小 D 、无界的,也不是无穷大 2、设函数()bx x f x a e =+在(),-∞+∞上连续,且()lim 0x f x →-∞=,则常数,a b 满足( ) A 、0,0a b << B 、0,0a b >> C 、0,0a b ≥< D 、0,0a b ≤> 3、设()232x x f x =+-,则当0x →时( ) A 、()f x 与x 是等价无穷小 B 、()f x 与x 是同阶但非等价无穷小 C 、()f x 是x 的高阶无穷小 D 、()f x 是x 的低阶无穷小 4、设对任意的x ,总有()()()x f x g x ?≤≤,且()()lim 0x g x x ?→∞ -=????, 则()lim x f x →∞ 为( ) A 、存在且等于零 B 、存在但不一定等于零 C 、一定不存在 D 、不一定存在

例:()()()11 ,,22 1 x x f x x g x x x x ?==+ =+ ++ 三、 求下列极限 1 、 lim x 2、()2 21212lim 1x x x x x -→?? ?+?? 四、 确定,a b 的值,使() 32 2ln 10 011ln 0 1ax x f x b x x x x x x x ?+<==??-+?>++?? 在(),-∞+∞内连续。 五、 指出函数()1 11x x x e e f x e e --= -的间断点及其类型。 六、 设1234,,,a a a a 为正常数,证明方程 31240123 a a a a x x x x +++=---有且仅有三个实根。 七、 设函数()(),f x g x 在[],a b 上连续,且满足()()()(),f a g a f b g b ≤≥,证明: 在[],a b 内至少存在一点ξ,使得()()f g ξξ=。 函数与极限测试题答案(一) 一、1、 11x x e -+; 2、 11, 2 2a b ++?? ???? ; 3、 4-; 4、0 ; 二、1—4、DCBD 三、1 、解:原式lim 3x ==;

函数的极限及函数的连续性典型例题

函数的极限及函数的连续性典型例题 一、重点难点分析: ① 此定理非常重要,利用它证明函数是否存在极限。 ② 要掌握常见的几种函数式变形求极限。 ③ 函数 f(x)在 x=x 0 处连续的充要条件是在 x=x 0 处左右连续。 ④ 计算函数极限的方法,若在 x=x 0 处连续,则 ⑤ 若函数在 [a,b] 上连续,则它在 [a,b] 上有最大值,最小值。 二、典型例题 例 1 .求下列极限 解:由 可知 x 2+mx+2 含有 x+2 这个因式, ∴ x=-2 是方程 x 2+mx+2=0 的根, ∴ m=3 代入求得 n=-1。 求 m,n 。 ① ④ ④ ③ ③ ② 解析:① 例 2.已知

的连续性。 解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处 函数是连续的, 从而 f(x)在点 x=-1 处不连续。 ∴ f(x) 在 (- ∞,-1),(- 1,+∞) 上连续, x=-1 为函数的不连续点。 , (a,b 为常数 ) 。 试讨论a,b 为何值时,f(x)在 x=0 处连续。 例 3 .讨论函数 例 4 .已知函数 , ∴ f(x)在 x=1 处连续。 解析: ∴ a=1, b=0 。 例 5 .求下列函数极限 ① ② 解析:① ②

要使 存在,只需 ∴ 2k=1 ,故 时, 存在。 例7.求函数 在 x=-1 处左右极限,并说明在 x=-1 处是否有极限? ,∴ f(x)在 x=-1处极限不存在。 三、训练题: 2. 的值是 3. 已知 ,则 = ,2a+b=0,求 a 与 b 的值。 ,求 a 的值。 5.已知 参考答案:1. 3 2. 3. 4. a=2, b=-4 5. a=0 例 6 .设 ,问常数k 为何值时,有 存在? 解析:∵ 4.已知 解析:由 1.已知

高等数学函数的极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴ ()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与() x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1) 1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2 x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

(完整版)函数极限与连续习题含答案,推荐文档

基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次四则运算及有限次复合后所构成的函数类。 函数的极限与连续训练题 1、已知四个命题:(1)若在点连续,则在点必有极限 )(x f 0x )(x f 0x x →(2)若在点有极限,则在点必连续 )(x f 0x x →)(x f 0x (3)若在点无极限,则在点一定不连续 )(x f 0x x →)(x f 0x x =(4)若在点不连续,则在点一定无极限。 )(x f 0x x =)(x f 0x x →其中正确的命题个数是( B ) A 、1 B 、2 C 、3 D 、42、若,则下列说法正确的是( C ) a x f x x =→)(lim 0A 、在处有意义 B 、)(x f 0x x =a x f =)(0 C 、在处可以无意义 D 、可以只从一侧无限趋近于)(x f 0x x =x 0 x 3、下列命题错误的是( D ) A 、函数在点处连续的充要条件是在点左、右连续 0x 0x B 、函数在点处连续,则)(x f 0x )lim ()(lim 00x f x f x x x x →→=C 、初等函数在其定义区间上是连续的 D 、对于函数有)(x f )()(lim 00 x f x f x x =→4、已知,则的值是( C )x x f 1)(= x x f x x f x ?-?+→?)()(lim 0A 、 B 、 C 、 D 、21x x 21x -x -5、下列式子中,正确的是( B )A 、 B 、 C 、 D 、1lim 0=→x x x 1)1(21lim 21=--→x x x 111lim 1=---→x x x 0lim 0=→x x x 6、,则的值分别为( A )51lim 21=-++→x b ax x x b a 、A 、 B 、 C 、 D 、67和-67-和67--和6 7和7、已知则的值是( C ),2)3(,2)3(-='=f f 3)(32lim 3--→x x f x x A 、 B 、0 C 、8 D 、不存在4-8、( D ) =--→33lim a x a x a x

数学分析下——二元函数的极限课后习题

第二节 二元函数的极限 1、试求下列极限(包括非正常极限): (1)(,)(0,0)lim x y x 2y 2x 2+y 2 ; (2)(,)(0,0)lim x y 1+x 2+y 2x 2+y 2 ; (3) (,)(0,0) lim x y x 2+y 21+x 2+y 2 -1 ; (4)(,)(0,0)lim x y xy+1 x 4+y 4 ; (5)(,) (1,2)lim x y 12x-y ; (6)(,)(0,0)lim x y (x+y)sin 1 x 2+y 2 ; (7)(,)(0,0)lim x y sin(x 2+y 2)x 2+y 2 x 2+y 2 . 2、讨论下列函数在点(0,0)的重极限与累次极限: (1)f(x,y)=y 2x 2+y 2 ; (2)f(x,y)=(x+y)sin 1x sin 1y ; (3)f(x,y)=x 2y 2x 2y 2+(x-y)2 ; (4)f(x,y)=x 3+y 3 x 2+y ; (5)f(x,y)=ysin 1x ; (6)f(x,y)=x 2y 2 x 3+y 3 ; (7)f(x,y)=e x -e y sinxy . 3、证明:若1 。 (a,b) lim (x,y )f(x,y)存在且等于A ;2。 y 在b 的某邻域内,有 lim x a f(x,y)= (y)则 y b lim a lim x f(x,y)=A. 4、试应用ε—δ定义证明 (x,y)(0,0)lim x 2y x 2+y 2 =0. 5、叙述并证明:二元函数极限的唯一性定理、局部有界性定理与局部保号性定理. 6、试写出下列类型极限的精确定义: (1) (x,y) ( ,) lim f(x,y)=A ; (2) (x,y) (0, ) lim f(x,y)=A. 7、试求下列极限: (1) (x,y) ( , )lim x 2+y 2 x 4+y 4 ; (2)(x,y)(, ) lim (x 2+y 2)e -(x+y);

1第一章 函数与极限答案

第一章 函数与极限 第一节 映射与函数 1.填空题: (1)函数)(x f y =与其反函数)(x y ?=的图形关于 x y = 对称. (2 )函数 2 1 ()1f x x = +-的定义域为__________________________; (3)若)(x f 的定义域是[0,1],则)1(2+x f 的定义域是 {0} . (4)设b ax x f +=)(,则=-+= h x f h x f x ) ()()(? a . (5)若,11)(x x f -=则=)]([x f f x x 1- ,=)]}([{x f f f x . (6)函数2 x x e e y --=的反函数为 。 (7 )函数y =: x ≥0,值域: 0≤y <1 ,反函数: x =-ln(1-y 2), 0≤y <1 2. 选择题: (1)下列正确的是:(B ,C ) A.2 lg )(x x f =与x x g lg 2)(=是同一函数. B.设)(x f 为定义在],[a a -上的任意函数,则)()(x f x f -+必为偶函数,)()(x f x f --必为奇函数. C.?? ? ??<-=>==0,10,00,1sgn x x x x y 是x 的奇函数. D.由任意的)(u f y =及)(x g u =必定可以复合成y 为x 的函数. . (2))sin()(2 x x x f -=是( A ). A.有界函数; B. 周期函数; C. 奇函数; D. 偶函数. (3)设54)(2 ++=bx x x f ,若38)()1(+=-+x x f x f ,则b 为( B ). A.1; B.–1; C.2; D.–2. (4)函数 2 1 arccos 1++-=x x y 的定义域是( )

函数、极限与连续复习题参考答案

函数、极限与连续 复习题 一.填空题: 1. 函数1 1ln +-=x x y 的奇偶性是奇函数. 2. 设1 2)11(-=-x x x f ,则=)(x f 1 1x -. 3. 函数x e y -=1的复合过程是,1u y e u x ==-. 4. 函数y =sin ,12y u u v x ===+. 5. 设)(x f 的定义域是[0,1] , 则函数y=)(ln x f 的定义域[1,]e 6. =∞→x x x sin lim 0 . 7. =-∞→n n n )1 1(lim 1e - 8. 5 432lim 42-+-∞→n n n n =0 9. 设43 2lim 23=-+-→x k x x x ,则k =___-3_. 10. 设b ax x x x f ++-+= 1 3 4)(2,0)(lim =∞→x f x ,则=a __-4_,=b __-4. 11. 设0→x 时,b ax 与x x sin tan -为等价无穷小,则=a __1 2 __,=b __3__. 12. 函数3 21 2 --=x x y 的间断点有x=-1,x=3 连续区间是(,1),(1,3),(3,)-∞--+∞. 二、选择题 1、ln(1) y x =+ A ) A 、(—1,+∞) B 、]1,1(- C 、(—1,1) D 、(1,+∞) 2、当0→x 时,下列变量为无穷小量的是( D ) A 、x 1sin B 、x 1 cos C 、x e 1 D 、) 1ln(2x +

3、A x f x x =→)(lim 0 (A 为常数),则)(x f 在0x 处( D ) A 、一定有定义 B 、一定无定义 C 、有定义且A x f =)(0 D 、不一定有定义 4、设???≥+<=0,20,)(2x a x x e x f x 当时;当在点0=x 连续,则a 的值等于(D ) A 、0 B 、1 C 、—1 D 、2 1 5、函数)(x f = 3 2 -x ,则x=3是函数)(x f 的(D ) A 、连续点 B 、可去间断点 C 、跳跃间断点 D 、无穷间断点 6、)(x f 在0x 处左、右极限存在是)(x f 在0x 处连续的( B ) A 、充分条件 B 、必要条件 C 、充要条件 D 、以上都不是 三.求下列极限: 1. )1(lim 2x x x x -++∞ → 解:)1(lim 2 x x x x -++∞ → =lim x lim x = lim x =1 2 2. 3 tan sin lim x x x x →- 解:30tan sin lim x x x x →-=32 00 sin (1cos )sin 11cos lim lim()cos cos x x x x x x x x x x x →→--= =20 1cos lim x x x →-=2 202lim x x x →=12 3. x x x x ?? ? ??+-∞→11lim 解:x x x x ??? ??+-∞→11lim =11lim 11x x x x →∞??- ? ? ? +? ?=1e e -=2e - 4. x x x x x 3sin 2sin lim 0-+→

函数与极限测试题及答案一

函数与极限测试题(一) 一、 填空题 二、 1、若1ln 1 1ln x f x x +??= ?-??,则()f x =_____。 三、 2、函数()f x 的定义域为[],a b ,则()21f x -的定义域为_____。 四、 3、若0x →时,无穷小221ln 1x x -+与2sin 2a 等价,则常数a =_____。 五、 4、设()()2 1lim 1 n n x f x nx →∞ -=+,则 ()f x 的间断点为x =_____。 六、 单选题 七、 1、当0x →时,变量 211 sin x x 是( ) 八、 A 、无穷小 B 、无穷大 九、 C 、有界的,但不是无穷小 D 、无界的,也不是无穷大 十、 2、设函数()bx x f x a e = +在(),-∞+∞上连续,且()lim 0x f x →-∞=,则常数,a b 满足( ) 十一、 A 、0,0a b << B 、0,0a b >> 十二、 C 、0,0a b ≥< D 、0,0a b ≤> 十三、 3、设()232x x f x =+-,则当0x →时( ) 十四、 A 、()f x 与x 是等价无穷小 B 、()f x 与x 是同阶但非等价无穷小 十五、 C 、()f x 是x 的高阶无穷小 D 、()f x 是x 的低阶无穷小 十六、 4、设对任意的x ,总有()()()x f x g x ?≤≤,且()()lim 0x g x x ?→∞ -=????,则 ()lim x f x →∞ 为( ) 十七、 A 、存在且等于零 B 、存在但不一定等于零 十八、 C 、一定不存在 D 、不一定存在 十九、 例:()()()11 ,,22 1 x x f x x g x x x x ?==+=+ ++ 二十、 求下列极限 二十一、 1、 2 241lim sin x x x x x +-+、()2 21212lim 1x x x x x -→?? ?+??

函数的极限及函数的连续性典型例题

一、重点难点分析: ① 此定理非常重要,利用它证明函数是否存在极限。 ②要掌握常见的几种函数式变形求极限。 ③函数f(x)在x=x0处连续的充要条件是在x=x0处左右连续。 ④计算函数极限的方法,若在x=x0处连续,则。 ⑤若函数在[a,b]上连续,则它在[a,b]上有最大值,最小值。 二、典型例题 例1.求下列极限 ①② ③④ 解析:①。 ②。 ③。 ④。例2.已知,求m,n。 解:由可知x2+mx+2含有x+2这个因式, ∴ x=-2是方程x2+mx+2=0的根, ∴ m=3代入求得n=-1。 例3.讨论函数的连续性。 解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处函数是连续的, 又,

∴,∴ f(x)在x=1处连续。 由, 从而f(x)在点x=-1处不连续。 ∴ f(x)在(-∞,-1),(-1,+∞)上连续,x=-1为函数的不连续点。 例4.已知函数, (a,b为常数)。 试讨论a,b为何值时,f(x)在x=0处连续。 解析:∵且, ∴,∴ a=1, b=0。 例5.求下列函数极限 ①② 解析:①。 ②。 例6.设,问常数k为何值时,有存在? 解析:∵,。 要使存在,只需, ∴ 2k=1,故时,存在。 例7.求函数在x=-1处左右极限,并说明在x=-1处是否有极限? 解析:由,, ∵,∴ f(x)在x=-1处极限不存在。

三、训练题: 1.已知,则 2.的值是_______。 3. 已知,则=______。 4.已知,2a+b=0,求a与b的值。 5.已知,求a的值。 参考答案:1. 3 2. 3. 4. a=2, b=-4 5. a=0

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii )A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 ) (lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通

函数极限与连续习题加答案(供参考)

第一章 函数、极限与连续 第一讲:函数 一、是非题 1.2x y = 与x y =相同; ( ) 2.)1ln()22(2x x y x x +++=-是奇函数; ( ) 3.凡是分段表示的函数都不是初等函数; ( ) 4. )0(2 >=x x y 是偶函数; ( ) 5.两个单调增函数之和仍为单调增函数; ( ) 6.实数域上的周期函数的周期有无穷多个; ( ) 7.复合函数)]([x g f 的定义域即)(x g 的定义域; ( ) 8.)(x f y =在),(b a 内处处有定义,则)(x f 在),(b a 内一定有界。 ( ) 二、填空题 1.函数)(x f y =与其反函数)(x y ?=的图形关于 对称; 2.若)(x f 的定义域是]1,0[,则)1(2 +x f 的定义域是 ; 3.1 22+=x x y 的反函数是 ; 4.1)(+=x x f ,2 11 )(x x += ?,则]1)([+x f ?= , ]1)([+x f ?= ; 5.)2(sin log 2+=x y 是由简单函数 和 复合而成; 6.1)(2 +=x x f ,x x 2sin )(=?,则)0(f = ,___________)1(=a f , ___________)]([=x f ?。 三、选择题 1.下列函数中既是奇函数又是单调增加的函数是( )

A 、x 3sin B 、13+x C 、x x +3 D 、x x -3 2.设54)(2 ++=bx x x f ,若38)()1(+=-+x x f x f ,则b 应为( ) A 、1 B 、-1 C 、2 D 、-2 3.)sin()(2x x x f -=是( ) A 、有界函数 B 、周期函数 C 、奇函数 D 、偶函数 四、计算下列各题 1.求定义域5 23arcsin 3x x y -+-= 2.求下列函数的定义域 (1)342+-=x x y (2)1 142++ -=x x y (3)1)2lg(++=x y (4)x y sin lg = 3.设2 )(x x f =,x e x g =)(,求)]([)],([)],([)],([x g g x f f x f g x g f ;

函数与极限测试题及答案一

函数与极限测试题(一) 一、 填空题 1、若1ln 11ln x f x x +??= ?-??,则()f x =_____。 2、函数()f x 的定义域为[],a b ,则()21f x -的定义域为_____。 3、若0x →时,无穷小2 21ln 1x x -+ 与2sin a 等价,则常数a =_____。 4、设()()21lim 1n n x f x nx →∞-=+,则()f x 的间断点为x =_____。 二、 单选题 1、当0x →时,变量211sin x x 是( ) A 、无穷小 B 、无穷大 C 、有界的,但不是无穷小 D 、无界的,也不是无穷大 2、设函数()bx x f x a e = +在(),-∞+∞上连续,且()lim 0x f x →-∞=,则常数,a b 满足( ) A 、0,0a b << B 、0,0a b >> C 、0,0a b ≥< D 、0,0a b ≤> 3、设()232x x f x =+-,则当0x →时( ) A 、()f x 与x 是等价无穷小 B 、()f x 与x 是同阶但非等价无穷小 C 、()f x 是x 的高阶无穷小 D 、()f x 是x 的低阶无穷小 4、设对任意的x ,总有()()()x f x g x ?≤≤,且()()lim 0x g x x ?→∞-=????,则()lim x f x →∞为( ) A 、存在且等于零 B 、存在但不一定等于零 C 、一定不存在 D 、不一定存在 例:()()()11,,221x x f x x g x x x x ?==+ =+++ 三、 求下列极限 1 、lim x 2、()221212lim 1x x x x x -→?? ?+??

函数极限习题与解析

函数与极限习题与解析 (同济大学第六版高等数学) 一、填空题 1、设x x x f lg lg 2)(+-= ,其定义域为 。 2、设)1ln()(+=x x f ,其定义域为 。 3、设)3arcsin()(-=x x f ,其定义域为 。 4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为 。 5、设)(x f y =的定义域是[0,2] ,则)(2 x f y =的定义域为 。 6、43 2lim 23=-+-→x k x x x ,则k= 。 7、函数x x y sin =有间断点 ,其中 为其可去间断点。 8、若当0≠x 时 ,x x x f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。 9、=++++++∞ →)21( lim 222n n n n n n n n 。 10、函数)(x f 在0x 处连续是)(x f 在0x 连续的 条件。 11、=++++∞→3 52352) 23)(1(lim x x x x x x 。 12、3) 2 1(lim -∞ →=+e n kn n ,则k= 。

13、函数2 31 22+--=x x x y 的间断点是 。 14、当+∞→x 时, x 1 是比 3-+x 15、当0→x 时,无穷小x --11与x 相比较是 无穷小。 16、函数x e y 1=在x=0处是第 类间断点。 17、设1 1 3 --= x x y ,则x=1为y 的 间断点。 18、已知33=?? ? ??πf ,则当a 为 时, 函数x x a x f 3sin 31sin )(+=在3π=x 处连续。 19、设?? ???>+<=0)1(02sin )(1x ax x x x x f x 若)(lim 0 x f x →存在 ,则a= 。 20、曲线2sin 2 -+= x x x y 水平渐近线方程是 。 21、1 14)(2 2-+ -= x x x f 的连续区间为 。 22、设? ??>≤+=0,cos 0 ,)(x x x a x x f 在0=x 连续 ,则常数 a= 。 二、计算题 1、求下列函数定义域 (1)2 11 x y -= ; (2)x y sin = ;

最新数学分析上册练习题及答案第三章函数极限

第三章函数极限 1. 函数极限概念 1. 按定义证明下列极限: (1)65lim 6x x x →+∞+=;(2)2 2lim(610)2x x x →-+=;(3)225lim 11x x x →∞-=-;(4)2lim 0x -→=; (5)0 0lim cos cos x x x x →=. 证明(1)任意给定0ε>,取5 M ε = ,则当x M >时有 6555 6x x x M ε+-=<=.按函数极限定义有65 lim 6x x x →+∞+=. (2)当2x ≠时有,2(610)2(2)(4)24x x x x x x -+-=--=--. 若限制021x <-<,则43x -<.于是,对任给的0ε>,只要取min{1,}3 ε δ=,则当 02x δ<-<时,有2(610)2x x ε-+-<.故有定义得22 lim(610)2x x x →-+=. (3)由于22254111 x x x --=--. 若限制1x >,则2211x x -=-,对任给的0ε>,取max M ??=???,则当x M >时有22 22544 111 1x x M x ε--=<=---,所以225lim 11x x x →∞-=-. (4) 0==若此时限制021x <-<, ==<=0ε>, 取2 min{1, }4 εδ=,当02x δ<-<022 ε ε<≤?=, 故由定义得2 lim 0x - →=. (5)因为sin ,x x x R ≤∈,则 00000 00cos cos 2sin sin 2sin sin 222222 x x x x x x x x x x x x x x -+-+--=-=≤?=-.

相关主题
文本预览
相关文档 最新文档