当前位置:文档之家› 线路保护介绍

线路保护介绍

线路保护介绍
线路保护介绍

保护配置

基本配置

系统差异

接地系统和不接地系统的差异

分相保护和不分相保护的差异:不一致、单跳、单重

电压的差异:电容电流和末端过电压、网架中心和重要程度

功能介绍

距离保护:

距离元件采用比相式姆欧继电器,即由工作电压Uop 与极化电压Up 构成比相方程。

比相式距离继电器的通用动作方程为:0

09090<<-P

OP

U U Arg

式中:工作电压

OP set U U I Z =-?,极化电压1P U U =-。

对接地距离继电器,工作电压为: ()set OP Z I K I U U ??+-=ΦΦΦ03

对相间距离继电器,工作电压为:

set OP Z I U U ?-=ΦΦΦΦΦΦ

装置中三段式接地与相间距离继电器,在正序极化电压较高时由正序电压极化否则进入三相低压程序,此时采用记忆正序电压作为极化电压。

采用非记忆的正序电压作为极化电压,故障期间,正序电压主要由健全相电压形成,正

序电压同故障前保持一致,继电器具有很好的方向性。

距离保护正方向故障动作特性

应用于较短输电线路时,为了提高抗过渡电阻能力,极化电压中使用了接地距离偏移角如图中所示θ1,该定值可以由用户整定为0°, 15° 或 30°。接地距离偏移角会使动作特性圆向第一象限移动。

虽然这可提高测量过渡电阻的能力,在高阻接地故障条件下保证很好的动作性能,但是如果在线路对侧存在助增电源的情况下,对于经过渡电阻接地的故障可能会出现超越现象。为了防止超越,通常距离保护Ⅰ、Ⅱ段和零序电抗元件配合使用。

零序电抗

工作电压: ()s e t OP Z I K I U U ??+-=ΦΦΦ03

极化电压:

D P Z I U ?-=Φ0,式中D Z 为模拟阻抗,幅值为1,角度为78°。

比相方程为

()0

00090390

set

Z I Z I K I U Arg

低压距离继电器

保护采用记忆电压作为极化电压,通过比较极化电压与工作电压之间的相位关系来判别是否满足动作条件。

工作电压: set OP Z I U U ?-=ΦΦΦ

极化电压:

M P U U ΦΦ-=1

这里:C B A ,,=Φ;ΦOP U 为工作电压;ΦP U 为极化电压 ;set Z 为整定阻抗;M

U Φ1为记忆故障前正序电压。

负荷限制

R

距离保护考虑系统过负荷工况下(正常过负荷和事故过负荷),负荷测量阻抗入侵距离元件导致的距离保护(特别是距离Ⅲ段)误动作。负荷限制元件,由基于电压平面的负荷限制元件和基于阻抗平面的负荷限制元件组成,两者为“与”的关系,即只有两个负荷限制元件均满足,并结合距离继电器动作情况,才开放距离保护。

振荡闭锁

当电力系统发生系统振荡时,测量阻抗有可能进入距离保护的动作区,从而导致距离保护误动作。通常振荡发生在两个互联系统之间,为了保证系统的完整性,保护装置在振荡时不应误动作,否则会破坏系统的稳定性。因此,对于受振荡影响可能误动作的距离保护要增加振荡闭锁功能。

振荡闭锁元件由四个元件共同完成如上任务。 1) 启动开放元件 启动元件开放瞬间,若按躲过静态最大负荷整定的正序过流元件不动作或动作时间尚不到10ms ,则将振荡闭锁开放160ms 。

该元件在正常运行突然发生故障时立即开放160ms ,当系统先振荡时,正序过流元件先于启动元件动作,振荡闭锁被闭锁不开放,另外当区外故障或操作后160 ms 再有故障时也被闭锁。

2) 不对称故障开放元件

在系统先发生振荡或装置开放160ms 后,即使系统在振荡中又发生区内不对称故障时,振荡闭锁回路还可由不对称分量开放元件开放

3) 对称故障开放元件

在系统先发生振荡或装置开放160ms 后,若系统在振荡中又发生区内三相故障,则上述二项开放措施均不能开放振荡闭锁,装置中另设置了专门的对称故障开放元件,即测量振荡中心电压:

Φ=cos U U OS

U 为正序电压,Φ是正序电压和电流之间的夹角。 满足以下二部分动作判据开放保护: a) N OS N U U U 08.003.0<<- 延时150ms 开放。 b) N OS N U U U 25.01.0<<- 延时500ms 开放。

零序保护:

接地故障

配合距离保护

纵联差动、纵联距离:

1 按使用通道分类

为了交换信息,需要利用通道。纵联保护按照所利用通道的不同类型可以分为4种,通常纵联保护也按此命名,它们是:

(1)导引线纵联保护(简称导引线保护);

(2)电力线载波纵联保护(简称载波保护);

(3)微波纵联保护(简称微波保护);

(4)光纤纵联保护(简称光纤保护)。

2 各种传送信息通道的特点

通道虽然只是传送信息的手段,但纵联保护采用的原理往往受到通道的制约。纵联保护在应用以下4种通道时应注意以下的特点:

(1)导引线通道。这种通道需要铺设电缆,其投资随线路长度而增加。当线路较长(超过十余公里)时就不经济了。导引线的电缆必须有足够的绝缘水平,从而使投资增大。导引线直接传输交流电量,故导引线保护广泛采用差动保护原理,但导引线的参数(电阻和分布电容)直接影响保护性能,从而在技术上也限制了导线保护用于较长的线路。

(2)电力线载波通道。这种通道在保护中应用最广。载波保护是纵联保护中应用最广的一种。载波通道由高压输电线及其加工和连接设备(阻波器、结合电容器及高频收发信机)等组成。

(3)微波通道。微波通信是理想的通信系统,但是保护专用微波通信设备是不经济的,应当与通信、远动等共用,这就要求在设计时把两方面兼顾起来。同时还要考虑信号衰落的问题。

(4)光纤通道。光纤通道与微波通道有相同的优点。光纤通信也广泛采用PCM调制方式。当被保护线路很短时,可以通过光缆直接将光信号送到对侧、在每半套保护装置中都将电信号变成光信号送出,又将所接收之光信号变为电信号供保护使用。由于光与电之间互不干扰,所以光纤保护没有导引线保护的那些问题,在经济上也是可以与导引线保护竞争的。

3 按保护动作原理分类:

按照保护动作原理纵联保护可分为两类:

(1)方向纵联保护与距离纵联保护。两侧保护继电器仅反应本侧的电气量,利用通道将继电器对故障方向判别的结果传送到对侧。

(2)差动纵联保护。每侧都直接比较两侧的电气量。类似于差动保护,因此称为差动纵联保护。

差动保护:采样同步

采用采样时刻调整法实现两侧同步采样。两侧装置一侧作为参考端,另一侧作为同步端。以同步方式交换两侧信息,参考端采样间隔固定,并在每一采样间隔中固定向对侧发送一帧信息。同步端随时调整采样间隔,直到满足同步条件为止。

首先,测出光纤通道延时。假定主机在TS 时刻发出对时信号,从机在接收到对时信号之后,经过Tm 时间,再将对时信号转发给主机,主机在TR 时刻收到转发回来的信号,那么,可以得到通道的通信延时:

Td =(TR - TS - Tm )/2

主机再将通道延时Td 发送给从机。

其次,测出采样时间误差。如果主机和从机采样完全同步,那么,在图中可知,Td =TR 。如果主机与从机采样不同步,其中的采样时间误差为:ΔT = TR – Td 。

ΔT>0,说明本侧比对侧提前采样时刻ΔT ;ΔT<0,说明本侧比对侧滞后采样时刻ΔT 。 再次,调整采样间隔。计算出ΔT 之后,修正下次采样的采样间隔T ,这样即可保证从机与主机的采样起始时刻保持一致。

差动保护:相电流差动元件

稳态Ⅰ段动作方程:

???>?>Φ

ΦΦH

dset d r d I I I I 6.0

其中:

Id Φ:相差动电流,M N d I I I ΦΦΦ

=+ Ir Φ:相制动电流,

M N r I I I ΦΦΦ

=-

H dset

I 的含义同上。

稳态Ⅱ段动作方程:

???>?>ΦΦΦM

dset d r d I I I I 6.0

其中:

当满足动作方程时,稳态Ⅱ段相电流差动元件经25ms 延时动作。

差动保护:零序电流差动元件

对于经高阻接地故障,采用零序电流差动元件具有较高的灵敏度。 动作方程:

??????

?>?>>?>ΦΦ

ΦL dset d r d L dset d r d I I I I I I I I 51.075.0000

其中:

Id0: 零序差动电流(d0M0N0

I I I =+)

Ir0: 零序制动电流(

r0M0N0

I I I =-)

零序电流差动元件通过低比率制动系数的稳态相电流差动元件选相,当满足动作方程后,

零序电流差动元件经短延时动作。

纵联距离保护:闭锁式

方向纵联保护是由线路两侧的方向元件分别对故障的方向作出判断,然后通过高频信号作出综合的判断,即对两侧的故障方向进行比较以决定是否跳闸。一般规定从母线指向线路的方向为正方向,从线路指向母线的方向为反方向。闭锁式方向纵联保护的工作方式是当任一侧方向元件判断为反方向时,不仅本侧保护不跳闸,而且由发信机发出高频电流,对侧收信机接收后就输出脉冲闭锁该侧保护。在外部故障时是近故障侧的方向元件判断为反方向故障,所以是近故障侧闭锁远离故障侧;在内部故障时两侧方向元件都判断为正方向,都不发送高频电流,两侧收信机接收不到高频电流,也就没有输出脉冲去闭锁保护,于是两侧方向元件均作用于跳闸。这就是故障时发信闭锁式方向纵联保护

功率倒方向

在环网中发生外部故障时,短路功率的方向可能发生转换(简称功率倒向),在倒向过程中不应失去闭锁信号。假设故障发生在线路L Ⅱ上靠近M 侧的F 点,断路器3Q 先于断路器4Q 跳闸。在断路器3Q 跳闸前,线路L Ⅰ中的短路功率由N 侧流向M 侧,线路LI ,M 侧的方向元件不动作,向N 侧发闭锁信号,在断路器3Q 跳闸后,线路L Ⅰ中的短路功率倒向,M 侧的方向元件动作,停止发信并准备跳闸,此时N 侧的方向元件将返回向M 侧发闭锁信号。但是可能M 侧的方向元件动作快,N 侧的方向元件返回慢,于是有一段时间两侧方向元件均处于动作状态,造成线路L Ⅰ的保护误动。解决的办法是启动元件动作或收信机收信后经过一段时间(大于本保护的动作时间,小于相邻线断路器的跳闸时间)后尚未判为内部故障,就认为是外部故障,

于是将保护闭锁一段时间,以避开两侧方向元件可能都处于动作状态的时间。此方法的缺点是如果紧接着发生内部故障则保护的动作稍有延迟,不过延时很短,是可容忍的。

纵联距离保护:允许式

在功率方向为正的一端向对端发送允许信号,此时每端的收信机只能接收对端的信号而不能接收自身的信号。每端的保护必须在方向元件动作,同时收到对端的允许信号之后,才能动作于跳闸,显然只有故障线路的保护符合这个条件。对非故障线路而言,一端是方向元件动作,收不到允许信号,而另一端是收到了允许信号但方向元件不动作,因此都不能跳闸。

纵联距离保护:载波通道

利用电力线作为传输媒介:具有高安全性和可靠性。对继电保护来说分专用和复用通道两种,其基本结构如下,专用通道用相—地耦合,复用一般为允许式,采用相—相耦合。

(1)阻波器——阻止载波信号向母线分流,使载波信号电流沿高压线路向对端传送,特别是防止当母线或其他出线发生故障时,将信息短路。对工频电流为低阻抗,畅通无阻。

(2)结合电容器——与阻波器相反,对载波信号为低阻抗,畅通无阻,对工频电流为高阻抗,阻止分流,防止高电压对通信设备的危害。

(3)结合滤波器

它的作用,主要是阻抗匹配,防止反射,以减少衰耗。

(4)高频电缆

高频电缆采用同轴电缆,按通信标准采用75Ω,一是减少衰耗,二是减少干扰。

纵联距离保护:专用收发讯机

专用发讯机一般为闭锁式方向纵联保护用

(1)输入接口:接收发讯,不发讯为停讯。输出控制频率合成器及前置放大的控制门关闭或开放,以及控制收信滤波器的门控电路。

(2)频率合成器。

(3)前置放大:放大f0信号,以推动功放。

(4)功放:将f0的功率放大到额定值,例如10W/40dBm。

(5)输出滤波器:使占用带宽B=4KHz;使允许并机间隔同相≥3B,邻相≥OB,分流衰耗不大于1dB;满功率发信时,外线谐波电平:≤-26dBm;外线输出阻抗75Ω,使回波衰耗≥10dB。

(6)收讯滤波器:一般使用收信通频带2KHz(f0±1KHz),带外衰耗满足35dB。

(7)高频解调:将收讯频率(f0)与载供信号频率f0+12KHz,混频后解调出12KHz。同时输出通道监视。

(8)输出接口:将收讯情况传给保护装置(送到通道衰减增大3dB告警电路和收信输入电平指示电路)。

纵联距离保护:音频接口

当采用允许式纵联保护时,收发信机要采用移频制(FSK)。为了节约通道,一般与调度载波机复用。保护通过音频接口装置与载波机联系,在同一音频通道内,有话音通道和保护信号。正常作话音通道,当保护工作时,话音被闭锁,称为交替复用。在一个4KHz音频通道上,也可与远动信号共享,但同一时间只传送一个命令

正常保护不动作时,通道发送监视频率fG,通道为保护专用时,监视频率由音频接口装置产生,通道交替复用时,由载波机产生。此时音频接口装置收到fG,此信号也作为收信监视通道是否正常之用。

重合闸:

单重、三重

不一致:

三相不一致保护采用三个跳位TWJA、TWJB、TWJC以及各相有流条件综合判别结果来启动。当有TWJ开入且对应相有流时保护装置经1s延时报[跳闸位置异常],并作为不一致保护的闭锁条件。当有一相或两相TWJ时,经10s延时报[跳闸位置异常],但不闭锁不一致保护。

当不一致保护投入,任一相TWJ动作, 且无电流时, 确认为该相开关在跳闸位置, 当任一相在跳闸位置而三相不全在跳闸位置,则确认为不一致。不一致可经零序电流或负序电流开放,由控制字[三相不一致经零负序]控制其投退。不一致动作条件满足后经逻辑定值[三相不一致时间]出口跳开本断路器三相。

过电压:

当线路本端过电压,保护经[过电压保护动作时间]定值延时跳本端断路器。过电压保护可反应任一相过电压动作(逻辑定值[过电压三取一方式]为“1”),也可反应三相均过电压(逻辑定值[过电压三取一方式]为“0”)。

过电压跳闸命令发出后,若三相均无流时收回跳闸命令。

过电压启动远跳

当线路本侧过电压保护元件动作,固定启动远跳。如果满足以下任一条件则启动远方跳闸装置:

1)逻辑定值 [过电压远跳经跳位闭锁]为“1”,本端断路器三相TWJ动作且三相无电流。

2)逻辑定值 [过电压远跳经跳位闭锁]为“0”。

过电压启动远跳命令通过数字通道向对侧传送命令。对侧远方跳闸保护收到本侧的过压远跳信号时,再根据就地判据判断是否跳开该侧断路器。

当过电压返回时,发启动远跳命令也返回。

启失灵:

故障启失灵

弱馈:针对线路两侧一端为大电源端,一侧为弱电源端(或者无电源端,终端)情况下,在线路上发生故障时弱电一侧可能由于无法启动,造成保护拒动。为解决这问题,一般在弱点端设置一个弱馈保护,在弱电侧接收对侧允许跳闸信号后无条件转发信号给对侧,完成高频保护功能。

110KV线路继电保护及其二次回路设计(完成版)

南华大学 第一章110KV系统CT、PT选型 1.1 电流互感器的选择 1)电流互感器的额定电压不小于安装地点的电网电压。 2)电流互感器的额定电流不小于流过电流互感器的长期最大负荷 电流 3)户内或户内式 4)作出电流互感器所接负载的三相电路图,根据骨仔的要求确定 所需电流互感器的准确级;例如有功功率的测量需要0.5级; 过流保护需要3级;差动保护需D级。 5)根据电路图确定每相线圈所串联的总阻抗欧姆数(包括负载电 流线圈的阻抗、连接导线的电阻和接触电阻),要求其中总欧姆数最大的一相,不大于选定准确级下的允许欧姆数。 6)校验电动稳定性:流过电流互感器最大三相短路冲击电流与电 流互感器原边额定电流振幅比值,应该不大于动稳定倍数。7)校验热稳定:产品目录给出一秒钟热稳定倍数Kt,要求最大三 相或者两相短路电流发热,不允许的发热。 结论:根据系统电压等级和系统运行要求,由于缺乏一定的条件,只能根据最简单的条件选取LZW—110型电流互感器,在条件允许的情况下应该根据系统运行的情况具体选择。

以下仅作为参考: 110KV 电流互感器选择 (1)U 1e =U 1g =110kV (2)I gmax =110%I 1e A I I g e 10001 .11102%110max === (3)预选:LB7-110 ,技术参数如下表 (4)校验: ①热稳定校验: I (4)2t ep =26.4(kA 2S) I 1e =1200A ;K t =75;t=1s (I 1e K t )2t=(1.2×75)2×1=8100(kA 2S) I (4)2t ep <(I 1e K t )2t 符合要求 ②动稳定校验: K=135;I 1e =1200A ;i ch =7.83(kA) 2291352.1221=??=d e K I (kA) d e ch K I i 12< 符合要求

防止电池反接保护的电路设计

防止电池反接保护的电路设计 用户在使用电池供电产品时常常会误将电池装反(当然,工程师不会犯这 样的错误)。利用单个二极管或二极管桥可以避免损坏电路,但那会浪费功率, 并由于在电池与系统电源间串入了一或两个二极管压降,使可用的电源电压减小。在此介绍一个替换方案,不仅解决了反接电池的保护问题,而且还能够自 动纠正反接错误(见下图)。为消除分立二极管的管压降,选用具有低导通电阻 的DPDT(双刀双掷)开关,用作全波整流器。当电池如图中所示正确连接时, 上端的开关(S1)位于常闭状态,因为其控制引脚为低电平。引脚2 到引脚10 间的连接提供了一条从电池到VCC 端的低阻通路。反之,下端的开关(S2)闭合其 常开触点(未画出),因为其控制引脚为高电平。引脚7 到引脚6 导通使电池的 负端与系统地连接。 IC1 内部的ESD 保护二极管可保证电路正常开启,其作用类似于全波整流器。电池电压高于1V 时,模拟开关内部的MOSFET 导通。其导通时间低于20ns,能够在电池极性接反时迅速切换电池与系统的连接极性,保证电路正常工作。 电路导通电阻与电池电压有关。采用4 节NiCd、NiMH 或碱性电池供电时,整 流器各端电阻为2.5Ω(总电阻为5Ω)。采用2 节电池供电时(2.4V 至3V),总电阻为10Ω。IC1 的额定工作电压最高至5.5V,允许通过的连续电流为30mA, 这使该电路非常适合用于无绳电话、便携式音频设备、手持式电子产品及其它 中低电流的应用。IC1 的超小型10 引脚μMAX封装的占用空间比分立二极管 方案所需的四只引线式小信号二极管更小,几乎与两只SOT-23 双二极管大小 相同。 图1. 该电路检测电池极性,并迅速接通负载或切换电池极性。

线路保护介绍

保护配置 基本配置 系统差异 接地系统和不接地系统的差异 分相保护和不分相保护的差异:不一致、单跳、单重 电压的差异:电容电流和末端过电压、网架中心和重要程度 功能介绍 距离保护: 距离元件采用比相式姆欧继电器,即由工作电压Uop 与极化电压Up 构成比相方程。 比相式距离继电器的通用动作方程为:0 09090<<-P OP U U Arg 式中:工作电压 OP set U U I Z =-?,极化电压1P U U =-。 对接地距离继电器,工作电压为: ()set OP Z I K I U U ??+-=ΦΦΦ03 对相间距离继电器,工作电压为: set OP Z I U U ?-=ΦΦΦΦΦΦ 装置中三段式接地与相间距离继电器,在正序极化电压较高时由正序电压极化否则进入三相低压程序,此时采用记忆正序电压作为极化电压。 采用非记忆的正序电压作为极化电压,故障期间,正序电压主要由健全相电压形成,正

序电压同故障前保持一致,继电器具有很好的方向性。 距离保护正方向故障动作特性 应用于较短输电线路时,为了提高抗过渡电阻能力,极化电压中使用了接地距离偏移角如图中所示θ1,该定值可以由用户整定为0°, 15° 或 30°。接地距离偏移角会使动作特性圆向第一象限移动。 虽然这可提高测量过渡电阻的能力,在高阻接地故障条件下保证很好的动作性能,但是如果在线路对侧存在助增电源的情况下,对于经过渡电阻接地的故障可能会出现超越现象。为了防止超越,通常距离保护Ⅰ、Ⅱ段和零序电抗元件配合使用。 零序电抗 工作电压: ()s e t OP Z I K I U U ??+-=ΦΦΦ03 极化电压: D P Z I U ?-=Φ0,式中D Z 为模拟阻抗,幅值为1,角度为78°。 比相方程为 ()0 00090390

继电保护二次回路图及其讲解

直流母线电压监视装置原理图-------------------------------------------1 直流绝缘监视装置----------------------------------------------------------1 不同点接地危害图----------------------------------------------------------2 带有灯光监视得断路器控制回路(电磁操动机构)--------------------3 带有灯光监视得断路器控制回路(弹簧操动机构)--------------------5 带有灯光监视得断路器控制回路(液压操动机构)-------- -----------6 闪光装置接线图(由两个中间继电器构成)-----------------------------8 闪光装置接线图(由闪光继电器构成)-----------------------------------9 中央复归能重复动作得事故信号装置原理图-------------------------9 预告信号装置原理图------------------------------------------------------11 线路定时限过电流保护原理图------------------------------------------12 线路方向过电流保护原理图---------------------------------------------13 线路三段式电流保护原理图---------------------------------------------14 线路三段式零序电流保护原理图---------------------------------------15 双回线得横联差动保护原理图------------------------------------------16 双回线电流平衡保护原理图---------------------------------------------18 变压器瓦斯保护原理图---------------------------------------------------19 双绕组变压器纵差保护原理图------------------------------------------20 三绕组变压器差动保护原理图------------------------------------------21 变压器复合电压启动得过电流保护原理图---------------------------22 单电源三绕组变压器过电流保护原理图------------------------------23 变压器过零序电流保护原理图------------------------------------------24 变压器中性点直接接地零序电流保护与中性点间隙接地保------24 线路三相一次重合闸装置原理图---------------------------------------26 自动按频率减负荷装置(LALF)原理图--------------------------------29 储能电容器组接线图------------------------------------------------------29 小电流接地系统交流绝缘监视原理接线图---------------------------29 变压器强油循环风冷却器工作与备用电源自动切换回路图------30 变电站事故照明原理接线图---------------------------------------------31 开关事故跳闸音响回路原理接线图------------------------------------31 二次回路展开图说明(10KV线路保护原理图)-----------------------32 直流回路展开图说明------------------------------------------------------33 1、图E-103为直流母线电压监视装置电路图,请说明其作用。 答:直流母线电压监视装置主要就是反映直流电源电压得高低。KV1就是低电压监视继电器,正常电压KV1励磁,其常闭触点断开,当电压降低到整定值时, KV1失磁,其常闭触点闭合, HP1光字牌亮,发出音响信号。KV2就是过电压继电器,正常电压时KV2失磁,其常开触点在断开位置,当电压过高超过整定值时KV2励磁,其常开触点闭合, HP2光字牌亮,发出音响信号。

大型发电机组支接于高压线路的系统继电保护

编号:AQ-JS-06117 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 大型发电机组支接于高压线路 的系统继电保护 System relay protection of large generator set connected to high voltage line

大型发电机组支接于高压线路的系 统继电保护 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 0引言 分支线路作为一种接线方式,可以节约投资、缩短工期、施工快捷方便,在电网边缘部位、尤其在低压系统中得到应用。但其在高压电网、特别是双侧电源分支线路或三侧电源分支线路中,由于保护配置及定值整定难度较大,则很少采用,在电网中心区高压线路上支接大型发电机组更是极为少见。 但是,当发电机组基建工程进度比与之配套的输变电工程建设快时,为了使发电机组早日并网发电,发挥效益,不得不采取过渡措施。我们曾采取将200MW发电机组支接于电网中心区220kV线路的接入系统方式,这种特殊接线方式对继电保护提出了许多需要研究解决的新课题。

1线路支接情况 支接点的三侧中,一侧紧接200MW发电机组,另外两侧变电站与主电网紧密相连。支接后,电厂与两变电站间分别为17.22km和33.57km,两变电站间为50.79km。 2三侧分支线路保护和系统继电保护配置 2.1距离保护 按无助增条件下电厂与每个变电站间80%阻抗整定。经计算,分别为0.4662Ω和0.9972Ω,取其中最小值0.4662Ω(二次侧值,以下同)为电厂侧距离保护Ⅰ段定值,以保证选择性。 按助增条件下每个变电站侧短路、电厂侧均有足够灵敏度整定。经计算,分别得到3.4170Ω和6.4819Ω,取其中最大值6.4819Ω为电厂侧距离保护Ⅱ段定值,以保证灵敏度。 相邻线均配置有双套全线速动保护,距离保护Ⅱ段按近后备考虑,动作时间取0.5s。 变电站侧距离保护Ⅰ段整定公式同式(1),其中ZL为两个变电站间阻抗。

典型二次回路讲解

典型二次回路讲解 一、 电流回路 1、220kV 典型回路 220kV TA 一般有六个二次绕组,分别用于本线路保护(两组)、母差保护(两组)、测量、计量。以某一220kV 线路保护为例,如图1所示,交流电流回路的联结关系为TA 本体接线盒——TA 端子箱——CSC-122A 断路器保护——CSC-101A 线路保护——录波屏;交流电流回路的联结关系为TA 本体接线盒——TA 端子箱——PSL601G 线路保护。 CSC-101A 1x CSC-122A 3x 端子箱 A 屏 1n PSL601G 端子箱 B 屏 图1 典型电流回路 注意事项: 1)电流回路严禁开路。电流互感器的二次回路不允许开路,否则将产生危险的高电压,威胁人身和设备的安全。因为电流互感器二次回路在运行中开路时,其一次电流均成为励磁电流使铁芯中的磁通密度急剧上升,从而在二次绕组中感应高达数千伏的感应电势,严重威胁设备本身和人身的安全。 这就要求回路各个连接环节的螺丝必须紧固,连接二次线无断线或接触不良,同时回路的末端必须可靠短接好,如上图1中的录波屏处2C2、2C4、2C6、2C7端子和PSL601G 保护屏处1D17、1D18、1D19、1D20端子。 2)每组二次绕组的N 回路有且只能有一点接地,严禁多点接地。电流互感器的二次回路必须有一点直接接地,这是为了避免当一、二次绕组间绝缘击穿后,使二次绕组对地出现高电压而威胁人身和设备的安全。同时,二次回路中只允许有一点接地,不能有多点接地,

否则会由于地中电流的存在而引起继电保护的误动。因为一个变电所的接地网并不是一个等电位面,在不同点间会出现电位差。当大的接地电流注入接地网时,各点的电位差增大。如果一个电回路在不同的地点接地,地电位差将不可避免地进入这个电回路,造成测量的不准确,严重时,会导致保护误动。 由几组电流互感器二次组合的电流回路,如差动保护、各种双断路器主结线的保护电流回路,其接地点应选在控制室。 3)二次绕组的极性。电流互感器的二次引出端,如果接反,二次电流或电压的相位就会发生180度的变化,继电保护装置特性或测量仪表的显示将会随之改变。为了保证继电保护装置的性能和仪器仪表的准确,电流互感器和电压互感器必须标注明确的极性。通常采用减极性的标注原则:当从一次侧极性端流人电流时,二次侧感应的电流方向是从极性端流出。为了准确地判别电流互感器一次电流和二次电流间的相位关系,应确定其一、二次绕组间的极性关系,这对反应方向性一类的继电保护是十分重要的。如果电流互感器的极性接反,则将导致继电保护拒动或误动。应结合TA 一次安装情况对二次绕组极性仔细加以判别,务必确保接入线路保护和母差保护极性的正确性 4)二次绕组的准确级。TA 二次的各个绕组有不同的准确级别,分为保护级(P 级、TP 级)及其它。严禁将其他准确级(如计量、测量级)的二次绕组用于保护,特别注意用于母差保护的所有二次绕组准确级必须一致。 二、 电压回路 1、220kV 典型回路 电压互感器同样分不同的准确级,一般包括0.2,0.5,1,3,3B 和6B 等各级,保护用电压互感器可采用3级,而3B 和6B 级是继电保护专用的电压互感器。220KV 及以上的电压互感器或CVT 选用两组二次线圈和一个开口三角线圈,220KV TV 二次一般应有三个二次绕组,其中一组用于接成开口三角,反应零序电压,一组用于保护及测量、另一组用于计量。以某一220kV 线路保护为例,交流电压回路的连接关系为TV 接线盒——TV 端子箱——TV 测控柜——保护屏,中间经过了两次电压切换,一次是在TV 测控柜(或中央信号继电器屏),另一次由保护屏的电压切换装置完成,为防止隔离开关辅助接点异常造成TV 二次失压,通常采用双位置接点切换。如图(三)所示,切换前电压回路编号分别为A 、B 、C630及A 、B 、C640,切换后则为A 、B 、C720,切换后电压经交流快分开关后提供给保护装置。 PSL601G 8E-131 8E-131

线路主保护介绍

纵联保护是线路的主保护,因为要比较线路两端电流的大小及相位,所以需要把线路两端的信号通道连接起来。 纵联保护按信号通道的不同又分为:高频保护、微波保护、光纤保护及导引线保护。纵联距离和纵联零序就是高频保护~ 你们厂应该是专用光纤通道~主时钟形式的~ 上面的两个保护分别是线路相间和接地故障的主保护~没别的意思~ 而距离保护只是线路的后备保护~纵联保护是比较两侧电气量的保护.用距离元件判断故障是本侧还是对侧.光纤保护是本侧故障发信,高频闭锁保护就停信,再与对侧传过来的信号进行比较.决定跳闸与否.一般每侧的保护范围都是超范围的.两侧共同判断,保护线路全长距离保护只是判断本侧.在保护范围内即可根据控制字设置情况进行动作,一般一段保护范围为线路全长的80%纵联保护就是线路保护的主保护,包含纵联距离,方向,差动等等。 距离保护是线路保护的后备保护。 纵联距离和距离保护的特性是基本相同的,不同的地方在于纵联距离的出口需要本侧和对侧保护都开放才行,而后备距离保护的出口只需要本侧保护开放就可以。 在大短路电流接地系统中发生接地故障后,就有零序电流、零序电压和零序功率出现,利用这些电气量构成保 护接地短路的继电保护装置统称为零序保护。 三相电流平衡时,没有零序电流,不平衡时产生零序电流,零序保护就是用零序互感器采集零序电流,当零序电流超过一定值(综合保护中设定),综和保护接触器吸合,断开电路。 零序电流互感器内穿过三根相线矢量和零线。 正常情况下,四根线的向量和为零,零序电流互感器无零序电流。 当人体触电或者其他漏电情况下:四根线的向量和不为零,零序电流互感器有零序电流,一旦达到设定值,则保护动作跳闸。 分段 零序一段: ①躲过下一段线路出口处单相或者两相接地短路时候出现的最大零序电流。 ②躲开断路器三相触头不同期合闸时候所出现的最大零序电流。 两者比较取最大 零序二段: 与下一段线路的一段配合,即是躲过下段线路的第一段保护范围末端接地短路时,通过本保护装置的最大零序电流。 零序二段的灵敏系数要大于1.5,不满足的话要与下一段线路的二段配合,时限再抬高一个等级。 零序三段: ①与下一段线路的三段配合; ②躲开下一段线路出口处相间短路时所出现的最大不平衡电流。 两者比较取最大。 零序三段的灵敏系数要大于2(近后备);灵敏系数要大于1.5(远后备) 接地距离 两者的区别 两者的区别主要在于采用的电气量不同,接地距离保护是利用短路电压和电流的比值,即测量阻抗的变化来区分系统的故障与正常运行状态。而零序保护利用的是接地故障时产生的零序电流分量。这是两者在原理上的最主要区别。但是,两者从保护的配合上来看,都是属于阶段式的保护,即都需要各保护区的上下级配合。再一点,从保护的性能来分析。应该说,在不发生单相接地时,零序电流分量是不会出现的,所以零序电流保护具有较高的灵敏性。但在上下级的配合时,限时零序电流速断保护(零序II段)的灵敏性可能不满足要求,这时可采用接地距离保护。这也就是说接地零序保护的灵敏性高于电流保护(可以看到,距离保护利用了短路时的两个电气量,自然比单一的电流保护要灵敏)。所以保护的配备上,一般距离保护作为了主保护,那么电流保护都是作为后备保护的,即在线路发生故障时,首先距离保护动作,零序保护作为后备可能动作。

线路保护介绍

基本配置 保护配置 系统差异 接地系统和不接地系统的差异 分相保护和不分相保护的差异:不一致、单跳、单重 电压的差异:电容电流和末端过电压、网架中心和重要程度 功能介绍 距离保护: 距离元件采用比相式姆欧继电器,即由工作电压Uop与极化电压Up构成比相方程。 比相式距离继电器的通用动作方程为:-900

这里: Φ = A , B , C ; OP Φ 为工作电压; 正序电压同故障前保持一致,继电器具有很好的方向性。 jX 距离保护正方向故障动作特性 应用于较短输电线路时,为了提高抗过渡电阻能力,极化电压中使用了接地距离偏移 角如图中所示θ1,该定值可以由用户整定为0°, 15° 或 30°。接地距离偏移角会使动作特 性圆向第一象限移动。 虽然这可提高测量过渡电阻的能力,在高阻接地故障条件下保证很好的动作性能,但 是如果在线路对侧存在助增电源的情况下,对于经过渡电阻接地的故障可能会出现超越现 象。为了防止超越,通常距离保护Ⅰ、Ⅱ段和零序电抗元件配合使用。 零序电抗 工作电压: 极化电压: U OP Φ = U Φ - (I Φ + K ? 3I 0 )? Z set U P Φ = -I 0 ? Z D ,式中 Z D 为模拟阻抗,幅值为1,角度为78°。 比相方程为 - 900 < Arg U Φ - (I Φ + K ? 3I 0 )? Z set - I 0 ? Z D < 900 低压距离继电器 保护采用记忆电压作为极化电压,通过比较极化电压与工作电压之间的相位关系来判 别是否满足动作条件。 工作电压: 极化电压: U OP Φ = U Φ - I Φ ? Z set U P Φ = -U 1ΦM U U 1ΦM 为记忆故障前正序电压。 负荷限制 U P Φ 为极化电压 ; Z set 为整定阻抗;

配电线路的保护

配电线路的保护 一般规定 1配电线路应装设短路保护和过负荷保护。 2 配电线路装设的上下级保护电器,其动作特性应具有选择性,且各级之间应能协调配合。非重要负荷的保护电器,可采用的部分选择性或无选择性切断。 3 用电设备末端配电线路的保护,除应符合本规范的规定外,尚应符合现行国家标准《通用用电设备配电设计规范》CB50055勺有关规定。 4 除当回路相导体的保护装置能保护中性导体的短路,而且正常工作时通过中性导体勺最大电流小于其载流量外,尚应采取当中性导体出现过电流时能自动切断相导体勺措施 2 短路保护 21 配电线路勺短路保护电器,应在短路电流对导体和连接处产生勺热作用和机械作用造成危害之前切断电源。 22 短路保护电器,应能分断其安装处勺预期短路电流。预期短路电流,应通过计算或测量确定。当短路保护电器勺分断能力小于其安装处预期短路电流时,在该段线路勺上一级应装设具有所需分断能力勺短路保护电器;其上下两级勺短路保护电器勺动作特性应配合,使该段线路及其短路保护器能承受通过勺短路能量。 23 绝缘导体勺热稳定,应按其截面积校验,且应符合下列规定: 1 当短路持续时间小于等于5s 时,绝缘导体勺截面积应符合本规范公司(3214)勺要求,其相导体勺系数可按本规范表A07 勺规定确定; 2 短路持续时间小于01s 时,校验绝缘导体截面积应计入短路电流非周期分量勺影响,大于5s 时,校验绝缘导体截面积应计入散热勺影响; 24 当短路保护电器为断路器时,被保护线路末端勺短路电流不应小于断路器瞬时或短延时过电流脱扣器整定电流勺13 倍。 25 短路保护电器应装设在回路首端和回路导体载流量减小勺地方。当不能设置在回路导体载流量减小勺地方时,应采用下列措施: 1 短路保护电器至回路导体载流量减小处勺这一段线路长度,不应超过3m‘ 2 应采取将该段线路勺短路危险减至最小勺措施; 3 该段线路不应靠近可燃物。

几种详细经典电路

输出电压稳定的电子变压器电路原理 如图为输出电压稳定的电子变压器电路原理。电子变压器实际上是一个AC/AC电源转换电路,其主要由保护电路、桥式整流电路、振荡电路、隔离输出电路组成。电路中,220V交流电经二极管VD3~VD6整流后变成脉动直流电给电容C1、C2充电。C1的电压经电阻R3、晶体管VT1的b、e极使VT1导通;同时VT1导通后,整流后的电压经VT1的c、e极、N2给C2充电,电流流过N2(TU的N2线圈黑点的同名端),将在N3上产生一个上负下正的互感电压;在N1产生一个下负上正的互感电压,迫使VT1加速导通(一个正反馈过程)。VT1导通期间,VT2关断。随着C2上的电压逐渐升高,VT1的e极电压也提高,最后使VT1关断。这时,C2的电压经N2、R4、VT2的b、e极使VT2导通;VT2导通后经N2给C1充电,电流流过N2时,将在N3产生一个下负上正的互感电压,在N1产生一个下正上负的互感电压,迫使VT2加速导通。VT2导通期间VT1关断。如此往复循环,则电路不间断地振荡。输出电压值由变 压器TR的N4的绕线来决定。 有极性电容和无极性电容并联有什么作用?

满意答案好评率:66% 有极性电容在上述电路中起交流滤波作用,无极电容起高频脉冲的吸收作用。无极电容的容量越小,吸收的脉冲频率就越高。 2. 3 稳压模块的电路设计 由DC /DC 模块转换的直流电压,经过一个R11电阻和一个发光二极管接地,发光二极管指示灯,然后从AMS芯片的Vin端输入,进入到芯片的内部,经过一系列的计算,从Vout输出3. 3 V 电压,GND 端端口接地。为消除交流电的纹波,电路采用电容滤波,分别用0. 1 μF 的极性电容和10 μF 的非极性电容组成一个电容滤波网络。电路原理如图4 所示。 图4 稳压模块的电路设计 2.示波器 示波器(图4-30)用来观察信号的波形。采用示波器对信号波进行分析,可以发现一些常规测量发现不了的问题,直接了解电路的工作状态,解决了万用表对一些脉冲信号及交变信

各种线路保护构成及特点

继电保护装置一般由测量回路、逻辑回路、执行回路三部分组成。 微机保护装置主要由硬件结构和保护软件组成。硬件结构可分为五部分:数据采集系统、输入输出接口、微型计算机系统、人机接口部分、电源。 微机保护是处理数字信号的,常用的模数转换通常有A/D变换和VFC压频变换两种模式。 对电力系统继电保护的基本性能要求有:可靠性,选择性、快速性、灵敏性。 可靠性。分为两个方面,即可信赖性与安全性。 选择性。继电保护的选择性是指在对系统影响可能最小的处所,实现断路器的控制操作,以终止故障或系统事故的发展 3)快速性。继电保护快速性是指继电保护应以允许的可能的最快动作速度动作于断路器跳闸,以断开故障或终止异常状态发展。继电保护快速动作可以减轻故障元件的损坏程度,提高线路故障后重合闸的成功率,并特别有利于故障后的电力系统同步运行稳定性。 4)灵敏性。故障时通入装置的故障量和给定的装置起动值之比。 微机保护装置具有以下特点: 1.维护调试方便 2.可靠性 3.动作正确率高 4.易于获得各种附加功能 5.保护性能容易得到改善 6.使用灵活、方便 7.具有远方监控特性 主保护是满足系统稳定和设备安全要求,能以最快速度有选择地切除被保护设备和线路故障的保护。 后备保护是主保护或断路器拒动时,用以切除故障的保护。 后备保护可分为远后备和近后备两种方式。 近后备是当主保护拒动时,由该电力设备或线路的另一套保护实现后备的保护;或当断路器拒动时,由断路失灵保护来实现的后备保护(用于220KV系统)。 远后备是当主保护或断路器拒动时,由相邻电力设备或线路的保护实现后备(用于110KV系统)。 220KV线路保护配置的基本原则 a. 加强主保护是指全线速动保护的双重化配置,同时,要求每一套全线速动保护的功能完整,对全线发生的各种类型故障,均能快速动作切除故障。每套全线速动保护应具有选相功能,对于要求实现单相重合闸的线路,当线路在正常运行中发生不大于100Ω电阻的单相接地故障时,全线速动保护应能正确选相跳闸。 在旁路断路器带线路运行时,至少应保留一套全线速断保护运行。 a. 两套全线速动保护的交流电流、电压回路和直流电源彼此独立。; b.每一套全线速动保护对全线路内发生的各种类型故障,均能快速成动作切除故障; c. 两套全线速动保护应具有选相功能; d. 两套主保护应分别动作于断路器的一组跳闸线圈; e. 两套全线速动保护分别使用独立的远方信号传输设备; f.. 具有全线速动保护的线路,其主保护的整组动作时间应为:对近端故障:≤20ms;对远端故障:≤30ms(不包括通道时间)。 3、220KV线路的后备保护采用近后备方式。 4、对220KV线路,发生接地短路时,当接地电阻不大于100Ω时,保护应能可靠地切除故障。

双母线接线两套线路保护间的配合关系

双母线接线两套线路保护间的配合关系 0引言 国家电网公司于2007年10月发布了由国家电力调度通信中心组织编写的220kV及以上电压等级线路保护标准化设计规范 Q/GDW-161,该规范要求“每一套线路保护均应含重合闸功能,不采用两套重合闸相互启动和相互闭锁方式”。各继电保护设备制造厂根据此规范调整后的保护装置已经相继应用在各级电网中,在实际工程应用中由于受重合闸运行方式及组柜方案的影响,特殊情况下两套线路保护之间需要相互启动或闭锁重合闸。 1.双母线接线线路保护重合闸、相关二次回路及组屏方式的要求【1】 双重化配置的保护和重合闸一体化装置,在保护装置退出、消缺或试验时,宜整屏退出。线路保护装置内,共用硬件和软件的保护功能和重合闸功能模块“一损俱损”。 每一套线路保护均应含重合闸功能,不采用两套重合闸相互启动和相互闭锁方式。 对于含有重合闸功能的线路保护装置,设置“停用重合闸”压板,“停用重合闸”压板投入时,闭锁重合闸、任何故障均三相跳闸(永跳)。 线路保护装置设“单相TWJ启动重合闸”和“三相TWJ启动重合闸”控制字。 当配置双操作箱时,监控系统需提供两付遥跳接点。 组屏方案分单操作箱和双操作箱两种方案。单操作箱方案是两套线路保护(含重合闸)合用一个双跳闸单合闸回路的操作箱,双操作箱方案是每套线路保护(含重合闸)各用一个单跳闸单合闸回路的操作箱。 2.220kV及以上线路保护重合闸运行方式及两套重合闸应用方案 220kV及以上线路应根据电力网结构和线路特点采用不同的重合闸方式【2】: 1)对220kV单侧电源线路,采用不检同期的三相重合闸方式。 2)对于220kV线路,当同一送电截面的同级电压及高一级电压的并联回路数等于及大于4回时,选用一侧检查线路无电压,另一侧检查线路与母线电压同步的三相重合闸方式 3)330kV、500kV及并联回路数等于及小于3回的220kV线路,采用单相重合闸方式。 按文献【1】的要求,重合闸运行方式主要有以下三种: 方案一:正常运行时,第一套重合闸完整投入,第二套重合闸控制字置“禁止重合闸”。 方案二:两套重合闸均投入,且重合闸控制字置相同方式;正常运行时,将其中一套重合闸出口压板退出。 方案三:两套重合闸均投入,且重合闸控制字置相同方式,重合闸出口压板均投入;将第二套重合闸出口接入保护1柜操作箱重合闸输入回路。 基于以上要求及运行方式,特殊情况下两套保护之间三相跳闸(永跳)闭锁重合闸需要相互引接;采用双操作箱时,TJR/TJF闭锁重合闸也需要相互引接。 3.两套保护之间需要相互闭锁重合闸的原因 3.1、有条件三重运行方式(单相故障,三相跳闸三相重合闸;相间故障,闭锁重合闸),采用单操作箱时,上述三种重合闸运行方式均应将保护三相跳闸(永跳)接点引入另一套保护装置,用于可靠闭锁重合闸。 原因一:对侧一套母差保护或线路保护检修期间,若发生对侧母线故障,在投入断路器位置不对应启动重合闸的情况下,本侧另一套线路保护将误重合闸。 采用单操作箱时,两面保护柜间相互闭锁

35KV常规线路保护屏介绍

目录 第一部分35KV线路控制保护实验屏概述 (1) 一、PXH-91U-ZLG/Y35K V线路控制保护屏 (1) 二、线路控制保护屏内万能转换开关简介 (1) 第二部分实验内容............................................................................................ 错误!未定义书签。 实验一保护屏安装接线 .................................................................................. 错误!未定义书签。 实验二三段式电流保护模拟瞬时故障、永久性故障................................... 错误!未定义书签。 实验三自动重合闸实验 .................................................................................. 错误!未定义书签。 实验四断路器控制回路实验 .......................................................................... 错误!未定义书签。 实验五断路器防跳实验 .................................................................................. 错误!未定义书签。注意事项.. (3)

35kV 线路控制保护实验屏概述 一、PXH-91U-ZLG/Y 35kV 线路控制保护屏 PXH-91U-ZLG/Y 35kV 线路控制保护屏是按照35kV 线路保护配置的典型模式建设,主要用于学生进行二次回路安装接线实训,使其掌握二次回路安装接线的基本流程和工艺要求,掌握二次回路故障查找、消缺等职业技能。PXH-91U-ZLG/Y 35kV 线路控制保护屏主要的实验内容为保护屏内的安装接线,模拟当发生瞬时性故障和永久性故障时三段式电流保护的动作过程,三相一次重合闸实验和断路器控制回路等。屏内选用的继电器均采用具有有机玻璃壳罩,从外面可以清楚的观察装置的动作情况。便于学生理解屏内各继电器动作过程和状态。 二、线路控制保护屏内万能转换开关简介 PXH-91U-ZLG/Y 35kV 线路控制保护屏内选择的控制开关为LW38A-164Q/la.4.6a.40.20.20/9 输配电分合闸控制开关。学生接线时建议按配套的图纸接线,不要随意改动。其接点图如下图所示: 开关型号 0手柄角度451---23---45---67---89---10 17---1819---2021---2213---1415---16 90分后预合合合后预分分 090135 23---2425---2627---2829---3031---3233---34LW38A-164Q/la.4.6a.40.20.20/911---1235---36

500kV线路保护介绍

500kV线路保护介绍 目录 1 前言┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(1) 2 500kV线路保护介绍┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(1) 2.1 保护配置要求┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(1) 2.2 高频保护的介绍┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(4) 3 500kV线路保护运行说明┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ (8) 3.1 线路保护正常运行状态说明┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(8) 3.2. 500kV线路保护停役注意点┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(9) 4、500kV线路保护的相关技术问题讨论┄┄┄┄┄┄┄┄┄┄┄ (10) 4.1 暴露出的主要问题┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(10) 4.2 保护应对措施和需改进要点┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(11) 5 结语┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(12) 6 参考文献┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ (12)

1 前言 线路分相电流差动保护具有原理简单、工作可靠、选择性好等突出优点,目前在华东电网广泛应用。2008年1月的冰灾中,许多线路覆冰远远超出线路承受的能力,造成大面积断线或倒塔。架设在输电线路上的OPGW光缆和ADSS光缆,也遭到极大的破坏。电网多条线路OPGW光缆(分相电流差动保护通道)因覆冰严重而断线,500kV线路上的光纤电流差动保护因光纤通道中断而被迫退出运行。对于同时配置两套分相电流差动保护的线路,OPGW光缆断线后,相当于线路两套主保护同时失去。在这种情况下,如主保护通道无法快速迂回,线路极有可能被迫拉停。 2 500kV线路保护介绍 2.1保护配置要求 2.1.1 500kV线路保护配置基本要求 对于500kV线路,应装设两套完整、独立的全线速动它保护。线路主保护按原理分三类:方向高频、高频距离和分相电流差动保护。主保护双重化;后备保护配置原则:1)、采用近后备 2)对相间短路,宜用阶段式距离保护;3)对接地短路,应装设接地距离保护并辅以阶段式或反时限零序电流保护。 (1)主保护:满足系统稳定和设备安全要求,能以最快速度有选择地切除故障的保护。500kV保护按双重化原则配置。正常运行时,均有两套完全独立的保护装置同时运行。两套保护分别经不同的跳闸线圈跳闸;两套保护的直流电源分别取自两组完全独立的直流电源; (2)后备保护:当主保护或开关拒动时,用以切除故障的保护。分近后备和远后备。近后备:故障元件自身的后备保护动作切除故障(失灵保护);远后备:相邻元件的保护动作切除故障。 (3)辅助保护:补充主保护和后备保护性能,或当主保护和后备保护退出时用以切除故障的保护。(短线保护、开关临时过流保护)

防反接保护电路

防反接保护电路 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

防反接保护电路 防反接保护电路 1,通常情况下直流电源输入防反接保护电路是利用二极管的单向导电性来实现防反接保护。如下图1示: 这种接法简单可靠,但当输入大电流的情况下功耗影响是非常大的。以输入电流额定值达到2A,如选用Onsemi的快速恢复二极管 MUR3020PT,额定管压降为,那么功耗至少也要达到:Pd=2A×=,这样效率低,发热量大,要加散热器。 2,另外还可以用二极管桥对输入做整流,这样电路就永远有正确的极性(图2)。这些方案的缺点是,二极管上的压降会消耗能量。输入电流为2A时,图1中的电路功耗为,图2中电路的功耗为。 图1,一只串联二极管保护系统不受反向极性影响,二极管有的压降 图2 是一个桥式整流器,不论什么极性都可以正常工作,但是有两个二极管导 通,功耗是图1的两倍 MOS管型防反接保护电路 图3利用了MOS管的开关特性,控制电路的导通和断开来设计防反接保护电路,由于功率MOS管的内阻很小,现在 MOSFET Rds(on)已经能够做到毫欧级,解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题。 极性反接保护将保护用场效应管与被保护电路串联连接。保护用场效应管为PMOS场效应管或NMOS场效应管。若为PMOS,其栅极和源极分别连接被保护电路的接地端和电源端,其漏极连接被保护电路中PMOS元件的衬底。若是NMOS,其

栅极和源极分别连接被保护电路的电源端和接地端,其漏极连接被保护电路中NMOS元件的衬底。一旦被保护电路的电源极性反接,保护用场效应管会形成断路,防止电流烧毁电路中的场效应管元件,保护整体电路。 具体N沟道MOS管防反接保护电路电路如图3示 图3. NMOS管型防反接保护电路 N沟道MOS管通过S管脚和D管脚串接于电源和负载之间,电阻R1为MOS管提供电压偏置,利用MOS管的开关特性控制电路的导通和断开,从而防止电源反接给负载带来损坏。正接时候,R1提供VGS电压,MOS饱和导通。反接的时候 只有20mΩ实际损耗MOS不能导通,所以起到防反接作用。功率MOS管的R ds(on) 很小,2A的电流,功耗为(2×2)×=根本不用外加散热片。解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题。 VZ1为稳压管防止栅源电压过高击穿mos管。NMOS管的导通电阻比PMOS的小,最好选NMOS。 NMOS管接在电源的负极,栅极高电平导通。 PMOS管接在电源的正极,栅极低电平导通。 用MOS管防止电源反接的原理 反接,会给电路造成损坏,不过,反接是不可避免的。所以,我么就需要给电路中加入保护电路,达到即使接反电源,也不会损坏的目的。 一般可以使用在电源的正极串入一个解决,不过,由于二极管有压降,会给电路造成不必要的损耗,尤其是供电场合,本来电池电压就,你就用二极管降了,使得电池使用时间大减。

220KV线路保护二次回路介绍

220KV 线路保护二次回路介绍 二次设备是指对一次设备的工作进行监视、控制、调节、保护以及为运行、维护人员提供运行状况或生产指挥信号所需的低压电器设备。由二次设备相互连接,构成对一次设备监视、控制、调节和保护的电器回路称为二次回路。 一、TA 二次电流回路 220KV TA 一般有六个二次绕组,分别用于本线路保护(两组)、母差保护(两组)、测量、计量。以某一220KV 线路保护为例,如图(一)所示,交流电流回路的联结关系为TA 本体接线盒——TA 端子箱——CSC-122A 断路器保护——CSC-101A 线路保护——录波屏。如图(二)所示,交流电流回路的联结关系为TA 本体接线盒——TA 端子箱——PSL601G 线路保护。 CSC-101A 1x CSC-122A 3x 端子箱 A 屏 图(一) 1n PSL601G 端子箱 B 屏 图(二) 注意事项: 1)电流回路严禁开路。电流互感器的二次回路不允许开路,否则将产生危险的高电压,威胁人身和设备的安全。因为电流互感器二次回路在运行中开路时,其一次电流均成为励磁电流使铁芯中的磁通密度急剧上升,从而在二次绕组中感应高达数千伏的感应电势,严重威胁设备本身和人身的安全。 这就要求回路各个连接环节的螺丝必须紧固,连接二次线无断线或接触不良,同时回路的末端必须可靠短接好,如上图(一)中的录波屏处2C2、2C4、2C6、2C7端子和图(二)中的PSL601G 保护屏处1D17、1D18、1D19、1D20端子。 2)每组二次绕组的N 回路有且只能有一点接地,严禁多点接地。电流互感器的二次回路必须有一点直接接地,这是为了避免当一、二次绕组间绝缘击穿后,使二次绕组对地出现

相关主题
文本预览
相关文档 最新文档