当前位置:文档之家› [PKPM] 桁架、支架、排架建模设计

[PKPM] 桁架、支架、排架建模设计

[PKPM] 桁架、支架、排架建模设计
[PKPM] 桁架、支架、排架建模设计

桁架、支架、排架

桁架建模设计

支架建模设计

排架建模设计

桁架的建模和计算

常见的桁架样式:

三角形桁架梯形桁架

空间桁架

桁架下部的短柱是否有意义??由于桁架中的杆件属于轴心受力构件,所以必然有一定的轴向变形,当桁架的跨度

增大以后,这种变形的累积也就越大。如

果这种变形的累积得不到释放的话,就会

在杆件的端部形成一个反向的作用力。

当跨度较大时,端部的水平力就会很大,对桁架的支座来说,这么大的水平力

集中力是非常危险的(比如混凝土柱就会

造成柱头被推坏)。所以一般厂房都会做

成能释放水平变形的滑动支座。

短柱的作用就是模拟水平变形释放的

滑动支座,必须设置成两端铰接。

不同端部约束的弦杆轴力对比不做端部变形

约束

对端部做水平

约束

?支座杆都设置成铰接了,是否是机构?

程序在处理上,对铰接节点做了特殊处理,使结构依然有解。计算结果中的支座位移不用处理。

?替代方案:滑动支座

新增加的支座形式,建议使用。但需要注意不能将两个支座端部都加上滑动支座,否则即为机构。

杆件截面的选择,输入截面时需要注意的事项?由于桁架的杆件都是以轴力为主,应按照柱输入。按梁输

入是不正确的,因为梁是按纯弯构件进行验算的。

?一般杆件选择使用角钢或角钢组合,不同的角钢组合形式的几何参数不同,因根据组合的特性,确定杆件的布置。?注意输入时,对型钢组合截面,肢间距必须留出节点板的厚度。

?注意布置时的截面转角,当存在次弯矩时,会对计算结果造成影响。

上下弦的截面的选择和计算长度确定?由于上弦杆的压力比较大,需要选择面积较大的截面,同时还要考虑稳定问题。由于还有较大的端部弯矩,截面也要有一定的抗弯刚度。

?上弦杆由于相互间的支持作用,实际平面内计算长度小于1.0,可以偏安全取1.0。

?下弦杆以受拉为主,程序会自动判断是否为纯拉杆,并自动按拉杆控制。

?平面外的计算长度还是按照支撑点间距取。

柱构件与梁构件的区别

模型1(构件按柱输入)模型2(构件按梁输入)荷载简图

弯矩图

剪力图

是否有必要将桁架节点都设置为铰接?如何考虑节点

的次弯矩?

?传统的计算模型将桁架设为铰接主要是为了手算方便。实际用节点板时更接近于半刚接。但是由于输入的杆件截面模量比较小,变形导致的节点次弯矩也较小,所以按铰接计算时,差别不是太大。

?为了考虑次弯矩,可以按固接输入。铰接只是输入习惯问题,使用计算机设计时,完全可以都按固接处理(支座杆

除外)?规范中8.4.5条中对于可不考虑次弯矩的情况作了规定,主要出发点就是转动刚度越小,次弯矩就越小。

上弦杆线刚度较大时次弯矩的影响不考虑次弯

矩影响,上

部弦杆的弯

矩为0

考虑次弯矩

影响,上部

弦杆的弯矩

较大

桁架上恒活荷载的输入

?程序中对于柱的,只记录两个端点的内力,所以,对于柱间的等量竖向荷载,两个端点的剪力都是一样的,特别是铰接时,按照柱间均布荷载和节点荷载输入完全是等效的。

为了简化输入,可以直接按均布荷载输入?注意均布荷载的类型选择。

桁架上风荷载的输入

?两种布置方式:自动布置和手动节点布置

-对于规则的桁架模型,可以采用自动布置,程序会自动

判断体型系数,并按垂直杆件的方向布置均布风荷载。

(注意桁架的高度,应按实际桁架的高度输入,会影响

风压高度变化系数)-如果存在部分斜度较大的杆件,可能会超出程序的识别范围

-对于程序无法自动识别的体系,需要手动进行布置。注

意通过节点风荷载布置时,程序可以按x,y向分解。输入

时注意方向,向→为正,向←为负。或者08版中直接可

以按柱间均布风荷载输入。

05版程序到08版程序的变动

05版对斜柱的作用力不垂直于构件柱间风荷载自表面,需要转化为节动处理点风荷载输入

08版对斜柱的作用力垂直于构件表柱间风荷载自面,无需调整

动处理

桁架上下弦及腹杆的平面内外计算长度的选取?默认情况下,程序的计算长度系数都为-1,即由程序自动确定,确定的原则由“参数输入”-“总信息参数”-“钢柱计算长度系数方法”控制,桁架可按无侧移控制。?由于节点板的转动约束,实际的腹杆平面内的计算长度系数都偏小,规范中认为可以按0.8取值

?由于节点板平面外基本没有刚度,腹杆平面外的计算长度可按原长(节点之间的距离)取,而对于上下弦杆来说,

则是平面外的支撑点间距离。

设计参数的正确选择

?设计规范应按钢结构规范

?控制长细比按照钢结构规范的表5.3.8和表5.3.9选取,一般可按150/350控制。

?确定计算长度方法可按“无侧移”考虑,建议可以按照前面的确定规则,手动修改计算长度或长

度系数。

桁架结构的优化

?结构类型选择桁架

?桁架的杆件都以轴力为主,所以如果为了达到用钢量最小,在分组时可以参考内力情况来分组。

上下弦可分别单设一组,腹杆按内力相近情况可分多组进行优化。

?优化以当前截面的类型的最大尺寸为上限,如果仍无法满足应力比和长细比要求,可以修改截面

类型

桁架计算结果的查看与控制

?应力比和长细比

-一般桁架构件都是按轴心受压构件进行强度验算,所以如果截面强度不满足时,增大截面一般都能满足;

如果在稳定方面存在不满足的情况,可以根据不满足

的方向,减小该方向的长细比。

-长细比可以通过增加截面的回转半径来减小。

-角钢等单轴对称截面还要考虑绕u轴的稳定

?挠度的控制:按桁架下弦中心点的位移量/桁架的跨度来确定桁架的整体挠度。

?如果使用了铰接立柱作为支座,则桁架的水平位移没有参考意义

施工图和节点设计

?注意程序对上下弦杆和腹杆的识别是否正确

?使用快速建模时选择的支座腹杆可以在施工图中

进行调整,但注意不要偏移过大。

?节点设计按照钢结构规范条文说明中的表10,由支撑的轴力,直接决定后面施工图的节点板厚度。

焊缝的设计按照支撑轴力计算?节点板绘制偏大时,可以修改出图的比例。

构件不同钢号的节点设计设计原则:

?在节点上,节点板的钢号

应是采用该节点上,所有

构件钢号中最小的做为节

点板钢号。

?施工图中如果弦杆各段采

用了不同的钢号,会自动

设置拼接,并在材料表中

统计材料上分别统计。

?填板统一采用总信息钢号。

连接节点的设置,构件刚接对次弯矩的影响?由于弦杆的截面高度较大,在受力上接近于连续梁,应全部刚接连续处理。

?当弦杆的转动刚度较大时,由于变形引起的次弯矩就不可忽略了。

PKPM框架结构步骤

一、执行PMCAD主菜单1,输入结构的整体模型 (一)根据建筑平、立、剖面图输入轴线 1、结构标准层“轴线输入” 1)结构图中尺寸是指中心线尺寸,而非建筑平面图中的外轮廓尺寸 2)根据上一层建筑平面的布置,在本层结构平面图中适当增设次梁 3)只有楼层板、梁、柱等构件布置完全一样(位置、截面、材料),并且层高相同时,才能归并为一个结构标准层 2、“网格生成”——轴线命名 (二)估算(主、次)梁、板、柱等构件截面尺寸,并进行“构件定义” 1、梁 1)抗震规范第6.3.6条规定:b≥200 2)主梁:h = (1/8~1/12) l ,b=(1/3~1/2)h 3)次梁:h = (1/12~1/16) l ,b=(1/3~1/2)h 2、框架柱: 1)抗震规范第6.3.1条规定:矩形柱bc、hc≥300,圆形柱d≥350 2)控制柱的轴压比 ——柱的轴压比限值,抗震等级为一到四级时,分别为0.7~1.0 ——柱轴力放大系数,考虑柱受弯曲影响, =1.2~1.4 ——楼面竖向荷载单位面积的折算值, =13~15kN/m2 ——柱计算截面以上的楼层数 ——柱的负荷面积

3、板 楼板厚:h = l /40 ~ l /45 (单向板) 且h≥60mm h = l /50 ~ l /45 (双向板) 且h≥80mm (三)选择各标准层进行梁、柱构件布置,“楼层定义” 1、构件布置,柱只能布置在节点上,主梁只能布置在轴线上。 2、偏心,主要考虑外轮廓平齐。 3、本层修改,删除不需要的梁、柱等。 4、本层信息,给出本标准层板厚、材料等级、层高。 5、截面显示,查看本标准层梁、柱构件的布置及截面尺寸、偏心是否正确。 6、换标准层,进行下一标准层的构件布置,尽量用复制网格,以保证上下层节点对齐。 (四)定义各层楼、屋面恒、活荷载,“荷载定义” 1、荷载标准层,是指上下相邻且荷载布置完全相同的层。 2、此处定义的荷载是指楼、屋面统一的恒、活荷载,个别房间荷载不同的留在PM主菜单3局部修改 (五)根据建筑方案,将各结构标准层和荷载标准层进行组装,形成结构整体模型,“楼层组装” 1、楼层的组装就遵循自下而上的原则。 2、楼层组装完成后整个结构的层数必然等于几何层数。 3、确定“设计参数”,总信息、地震信息、风荷载信息等。 二、执行PMCAD主菜单2,布置次梁楼板 1、此处次梁是指未在主菜单1布置过的次梁,对于已将其当作主梁在主菜单1布置过的梁,不得重复布置。 2、对楼梯间进行全房间开洞,“楼板开洞”

pkpm结构设计详细步骤

PM操作步骤(第二题卓老师) ①②③④⑤⑥⑦⑧⑨⑩ 双击击如下图标,进入PKPM主菜单 一、模块(PM整体结构建模与形成数据文件) (当前工作目录要自己先指定好路径) 点击 1.布置轴网 ①点击轴网输入,选择正交轴网 ②点击确定,布置如下 ③点击使用或两点直线命令,增加一条轴线 ④点击按TAP键成批输入,命名如下所示 2.楼层定义(布置柱子和梁) ①点击后点击 1)布置柱子出现柱布置菜单如下图所示,可进入柱截面定义、布置等 ②点然后 ③点击确定 选择500*500的柱后,选 柱布置如下 2)梁布置 ④点击250*400200*300 选择250*400布置如下 ⑤点击选择200*300布置(次梁也用来布置) ⑥点击 3)偏心对齐 ⑦点击选偏心如下所示 4)复制标准层 ⑧点击添加两个标准层 3.荷载输入 1)第1标准层荷载输入

选择第一标准层 ①点击选择如下所示 ②荷载输入 布置9KN/m的荷载 布置5KN/m的荷载 2)第2标准层荷载输入 ①选择先布置9KN/m的梁间荷载 ②再布置m的梁间荷载 2)第3标准层荷载输入 ①选择主菜单点击选择 ②点击选择输入m的荷载 4)楼面荷载的输入 ①点击添加如下 ②点击确定 4.设计参数 4.设计参数 ①单击“设计参数”出现如下对话框 ②点击 ③单击地震信息,出现如下对话框 ④单击风荷载信息,出现如下对话框 ⑤单击绘图参数,出现如下对话框 点击确定 ⑥单击楼层定义的换标准层,然后单击添加标准层,选则全部复制,同样的方法添加两个标准层 添加完两个标准层,然后对第二标准层进行修改如下图所示,对第三标准层进行修改,如下图所示 5.楼层组装 1) 2) ①保存退出

排架施工方案

码头台 编制人 审核人 批准人 江苏万成钢便桥安装有限公司

第一部分:便桥结构设计 一、主要技术标准 二、编制依据和参考文献 三、施工图 1 、码头平台布置1 2 、码头平台布置2 3 、结构断面1 4 、结构断面2 5 、结构断面3 第二部分:结构检算 1、设计依据及技术标准 2、结构检算(工况一) 3、结构检算(工况二) 4、计算总结 第三部分:施工组织 、施工方法 二、施工工艺流程 2.1 平台安装示意五年七月 12 15 15 15 15 15 2.2 工艺流程16

三、施工方案16 3.1测量放线16 3.2材料的准备17 3.3机具准备17 3.4 场地17 3.5下部结构17 3.6 上部结构安装18 四、安全管理及应急预案19 4.1建立健全安全保证组织机构19 4.2安全生产保证体系19 4.3 安全保证措施20 4.4施工期安全保障应急预案21 码头灌注桩施工需要,搭设临时钻孔平台,平台包括三部分,分别为码头 平台、临时栈桥平台及配电房平台。平台下部结构为管桩基础,管桩直径为 529mm ,壁厚8mm ,桩顶分配梁为双拼45 号工字钢,上部结构为贝雷桁架,

桁架2片一组,布置时预留下灌注桩位置,横向分配梁为 25号工字钢,上铺 桥面板,桥面板满铺,钻孔时相应位置处面板拆除,成桩后恢复,满足施工机 械和人员的作业要求。 第一部分:便桥结构设计 8m 。上部贝雷桁架,花架为 900mm 或450mm , 下部管桩基础。 一、主要技术标准 恒载:结构荷载; 200KN (考虑冲击作用可能产生的的最大荷载值, 25T 汽车吊包括重量400KN )。 平台面施工车辆限速:6KM/h ; 限载:单孔跨径内仅容许一辆重车通行。 使用期限:10个月。 二、编制依据和参考文献 1、《主桥施工图纸》。 2、根据国家及有关部门的设计规范,施工技术规程、规范,质量检验评 定标准及验收办法。 3、《公路桥涵设计通用规范》(JTGD60-2004) 4、《公路桥涵地基与基础设计规范》(JTG D63-2007) 5、《公路桥梁施工技术规范》(JTGT F50-2011) 6、《钢结构设计规范》(GB50017-2003 ) 7、《公路桥涵钢结构及木结构设计规范》(JTJ025-86) 码头平台长165m , 宽28m ,支栈桥平面尺寸为15m 20m ,配电房 平台平面尺寸为38m 可变荷载:钻机荷载

PKPM建模步骤

PKPM建模步骤 常识:1KN相当于100KG物体的重量,10KPa约等于1t/m2(即1m2上1t重的物体产生的压强) 第一步:看建筑图 主要看轴线尺寸,柱位,墙的位置,楼梯的位置,建筑标高,室内外高差,层高,檐口的高度,看立面图确定层高,根据建筑平面图及使用功能确定荷载,根据建筑物的总高度确定抗震等级。 初步从建筑图中获取信息,估算外圈梁高,柱截面尺寸,板厚,以及确定要建模型的标准层数。一般情况下边柱和中柱尺寸做成一样。结构高度是建筑标高减去面层的高度。 梁的截面尺寸,宜符合下列要求:截面宽度不宜小于200mm;截面高宽比不宜大于4;净跨与截面高度之比不宜小于4(抗规6.3.1 第60页)。框架梁的经济跨度一般为6到8米。框架结构主梁截面高度可按主梁计算跨度的十五分之一到十分之一确定,主梁截面的宽度可取主梁高度的二分之一到三分之一。主梁比次梁至少高50mm。 当梁底距外窗顶尺寸较小时,宜加大梁高做至窗顶。 尽量避免长高比小于4的短梁,采用时箍筋应全梁加密,梁上筋通长,梁纵筋不宜过大。 梁宽大于350时,应采用四肢箍。 柱的截面尺寸,宜符合下列要求:1.截面的宽度和高度,四级或不超过2层时不宜小于300mm,一二三级且超过2层时不宜小于400mm;圆柱的直径,四级或不超过2层时不宜小于350mm,一二三级且超过2层时不宜小于450mm。2.剪跨比宜大于2(简支梁上集中荷载作用点到支座边缘的最小距离a与截面有效高度h之比)。3.截面长边与短边的边长比不宜大于3。(抗规6.3.5 第61页)。 所有框架柱的配筋要进行优化归并,减少柱的种类和钢筋的种类,并且柱配筋每一侧至少要有1.2的放大系数,不能采用pkpm自动生成的结果。 板厚取值:取板跨短边1/35——1/40,一般现浇板厚取100mm,屋面板厚取120mm。异型板厚取110——150mm,一般取120mm。 开洞和板厚为零的区别:全房间开洞则板上无荷载;板厚为零则荷载仍然可以传递。 第二步:建立模型 建立工作目录,进入PKPM软件中的PMCAD,定轴网,布置梁柱。 第三步:荷载输入 楼梯间一般定义板厚为零 若勾选自动计算现浇楼板自重,则只需输入附加恒载即可,附加恒载,住宅取1.5KN/m2,商铺取2.5 KN/m2,楼梯取7 KN/m2。活载查荷载规范,一般民用住宅,宿舍,办公楼2KN/m2,食堂餐厅2.5KN/m2,非上人屋面0.5KN/m2,上人屋面2.5KN/m2,消防楼梯3.5KN/m2。 屋面恒载可取4KN/m2 楼梯间的导荷方式为对边导荷 梁上荷载主要是墙重及其他作用与梁上的荷载,自定义荷载数值,然后布置到梁上,梁上无活荷载 SATWE参数设置 混凝土容重考虑抹灰等,一般框架结构取26KN/m2,框剪结构取27KN/m2,纯剪力墙结构取28KN/m2 梁柱板保护层厚度:梁一般为25mm;柱一般为30mm;板一般为15mm。 一般认为计算振型个数应该大于9,多塔结构振型应该更多些,但应该注意一点,此处指定的

pkpm结构设计详细步骤

P M操作步骤(第二题卓老师) ?????????? ①②③④⑤⑥⑦⑧⑨⑩ 双击击如下图标,进入PKPM主菜单 一、模块(P M整体结构建模与形成数据文件) (当前工作目录要自己先指定好路径) 点击 1.布置轴网 ①点击轴网输入,选择正交轴网 ②点击确定,布置如下 ③点击使用或两点直线命令,增加一条轴线 ④点击按TAP 键成批输入,命名如下所示 2.楼层定义(布置柱子和梁) ①点击后点击 1)布置柱子出现柱布置菜单如下图所示,可进入柱截面定义、布置等 ②点然后 ③点击确定 选择500*500的柱后,选 柱布置如下 2)梁布置 ④点击250*400 200*300 选择250*400布置如下 ⑤点击选择200*300布置(次梁也用来布置) ⑥点击 3)偏心对齐 ⑦点击选偏心如下所示 4)复制标准层 ⑧点击添加两个标准层 3.荷载输入 1)第1标准层荷载输入 选择第一标准层 ①点击选择如下所示 ②荷载输入

布置9KN/m的荷载 布置5KN/m的荷载 2)第2标准层荷载输入 ①选择先布置9KN/m的梁间荷载 ②再布置 1.5KN/m的梁间荷载 2)第3标准层荷载输入 ①选择主菜单点击选择 ②点击选择输入1.5kn/m的荷载 4)楼面荷载的输入 ①点击添加如下 ②点击确定 4.设计参数 4.设计参数 ①单击“设计参数”出现如下对话框 ②点击 ③单击地震信息,出现如下对话框 ④单击风荷载信息,出现如下对话框 ⑤单击绘图参数,出现如下对话框 点击确定 ⑥单击楼层定义的换标准层,然后单击添加标准层,选则全部复制,同样的方法添加两个标准层 添加完两个标准层,然后对第二标准层进行修改如下图所示,对第三标准层进行修改,如下图所示5. 楼层组装 1) 2) ①保存退出 ②确定(pmcad 的第一部就完成了) 6. 全房间开洞、修改板厚、荷载修改 ①单击“应用”出现如下图标 保存退出

PKPM软件JCCAD筏板基础设计步骤举例

PKPM软件JCCAD筏板基础设计步骤举例PKPM软件JCCAD筏板基础设计步骤举例 一、地质资料输入 1、PKPM软件的JCCAD部分进行基础设计时,不一定要输入地质资料。 对于无桩的基础,如果不进行沉降计算,则可以不输入地质资料;如果要进行沉降计算,则需要输入地质资料。输入土的力学指标包括:压缩模量、重度。 对于有桩基础,如果不进行单桩刚度及沉降计算的话,可以不输入地质资料;否则就要输入。输入土的力学指标包括:压缩模量、重度、状态参数、内摩擦角和粘聚力。 2、在PKPM软件主界面“结构”页中选择“JCCAD”软件的第一项“地质资料输入”,程序进入地质资料输入环境,如下图所示: 3、土层布置

给地质资料命名之后,开始进行土层布置,点击右侧菜单“土层布置”,如下图所示: 弹出土层参数对话框,显示用于生成各勘测孔柱状图的地基土分层数据,如下图所示:4、输入孔点

单击“孔点输入”→“输入孔位”,以相对坐标和米为单位,逐一输入所有勘测孔点的相对 位置。孔点输入结束后,程序自动用互不重叠的三角形网格将各个孔点连接起来,并用插值法将孔点之间和孔点外部的场地土情况计算出来。如下图所示: 程序要求孔点形成的三角形网格互不交叉,互不重叠。如孔点位置十分复杂,程序自动形成的网格不能满足上述要求,可以通过“网格修改”命令由人工修改完成。 点击“修改参数”,点取已输入的孔点,弹出孔点土层参数对话框,如下图所示。对话框中显示的是标准孔点的土参数,应按各勘测孔的情况修改表中的数据,如土层低标高、土层参数、空口标高、探孔水头标高等。空口位置一般不采用绝对坐标,不必修改孔口坐标。如某一列各勘测孔的土参数相同,可以选择“用于所有点”,以减少修改土层参数的工作量。

砌体结构pkpm设计步骤

砌体结构的pkpm设计步骤 具体步入程序时所出现的菜单次序一样: 一: 第1步:“轴线输入” 是利用作图工具绘制建筑物整体的平面定位轴线。这些轴线可以是与墙、梁等长的线段也可以是一整条建筑轴线。可为各标准层定义不同的轴线,即各层可有不同的轴线网格,拷贝某一标准层后,其轴线和构件布置同时被拷贝,用户可对某层轴线单独修改。 第2步:“网点生成” 是程序自动将绘制的定位轴线分割为网格和节点。凡是轴线相交处都会产生一个节点,轴线线段的起止点也做为节点。这里用户可对程序自动分割所产生的网格和节点进行进一步的修改、审核和测试。网格确定后即可以给轴线命名。删除不无用的节点。 第3步:“构件定义” 是用于定义全楼所用到的全部柱、梁、墙、墙上洞口及斜杆支撑的截面尺寸,以备下一步骤使用。 第4步:“楼层定义” 是依照从下至上的次序进行各个结构标准层平面布置。凡是结构布置相同的相邻楼层都应视为同一标准层,只需输入一次。由于定位轴线和网点业已形成,布置构件时只需简单地指出哪些节点放置哪些柱;哪条网格上放置哪个墙、梁或洞口。 注意:1构造柱布置,构造柱的设置位置应符合相应抗震规范; 2、墙体布置,墙体布置完毕后,荷载不必再输入,系统自动计算墙体荷载; 3、门窗洞口布置,注意洞口大小尺寸(厨卫门宽800mm、卧室900、大门1000,门高2.1米;窗户一般高1.8、1.6米,宽1.5米,满足窗地比即可。洞口设置时至左右节点距离应加以设置。避免洞口超过墙) 4、阳台或者要布置预制板但又不是规则闭合矩形的位置加设梁,此梁按主梁布置,相应的荷载设置也应布置。 第5步:“荷载定义” 是依照从下至上的次序定义荷载标准层。凡是楼面均布恒载和活载都相同的相邻楼层都应视为同一荷载标准层,只需输入一次。 荷载输入-恒活设置时,选择自动计算现浇板自重 注意:1、楼面恒载,根据楼面做法,经计算一般取1.0到1.2,卫生间加做防水后取1.6左右。楼梯处取梯段板及踏步换算厚度后,乘以相应容重加上粉刷层容重,为4.5左右。预制板恒载为3或2.96(自重2+粉刷0.4+做法0.6) 顶层楼面恒载加大,2.2考虑保温隔热。 2、楼面活荷载查荷载规范。

pkpm框架结构设计附上主要步骤

设计说明: 一、建模前的准备工作: 1、确定结构体系: 根据设计任务,本工程为一五层建筑,采用全钢筋混凝土框架结构,底层至顶层全部采用现浇楼板。 2、结构尺寸估算: 根据建筑图中的开间、进深及层高,结合各楼层采用的砼强度等级及受荷情况,根据设计规范及构造要求可以估算基本构件尺寸(单位:mm ) A 、柱:本工程可取400×400mm 。 B 、梁: 主梁:128 L h L ≥≥; 32h b h ≥ ≥; 本工程根据图纸得5700/12=475《h 《5700/8=712.5,取 h=600mm,b=300mm 次梁:1812 L h L ≥≥; 32h b h ≥ ≥; 本工程根据图纸得4200/18=233《h 《4200/12=350,取 h=350mm,b=200mm 悬挑梁:一般取为悬臂长的1/6, C 、板: 40/;80L h mm h ≥≥,本工程可取120mm ; 3、确定荷载 A 、楼面恒载(包括楼板自重): 一层~五层楼面:4KN/m 2,卫生间:3.5KN/m 2,楼梯间:5.5KN/m 2, 屋面:6KN/m 2,

B、楼面活载: 一层~五层楼面:2.0KN/m2,卫生间:2.0KN/m2,楼梯间:2.0KN/m2, 阳台:2.5KN/m2 不上人屋面:0.5KN/m2, C、墙荷载: 外横墙:9.4KN/m 外纵墙:4.0KN/m 内墙:6.0KN/m 女儿墙:4 KN/m 4、确定结构标准层和荷载标准层 根据建筑图及所采用的结构体系进行标准层划分,本工程根据建筑图及荷载情况,可分为3个结构标准层,2个荷载标准层。 三个结构标准层: 第一标准层为▽3.000楼板,层高4000(1000+3000=4000); 第二标准层为▽6.000、9.000、12.000楼板,层高均为3000; 第三标准层为▽15.000屋面板,层高3000。 二个荷载标准层: 第一标准层楼面恒载:4KN/m2,活载:2.0KN/m2, 第二标准层屋面恒载:6KN/m2,活载:0.5KN/m2, 二、结构建模基本步骤: 1、执行PMCAD主菜单1建筑模型与荷载输入 A、建立和生成网格,根据所给建筑图建立第一结构标准层的轴线 可用正交轴网进行,然后进行轴线命名

PKPM初学者建模步骤

pkpm 初学者建模一般过程 pkpm 初学者建模一般过程 轴线输入――网格生成――构件定义――楼层定义――荷载定义――楼层组装――保存文件 注意柱、梁、楼板截面的选取,在PMCAD中柱、梁、楼板截面定义用的着: [1]框架柱截面估算: 高与宽一般可取(1/10~1/15)层高。并可按下列方法初步确定。 1。按轴压比要求 又轴压比初步确定框架柱截面尺寸时,可按下式计算: [$micro]N = N/Acfc 式中 [$micro]N ----- 框架柱的轴压比 Ac -------框架柱的截面面积 f c--------柱混凝土抗压强度设计值 N---------柱轴向压力设计值 柱轴向压力设计值可初步按下式估算: N = γgQSNα1α2β 式中: γg -----竖向荷载分项系数 Q---------每个楼层上单位面积的竖向荷载,可取q=12~14KN/m[$sup2] S--------柱一层的荷载面积 N---------柱荷载楼层数 α1------考虑水平力产生的附加系数,风荷载或四级抗震时α1=1.05,三~一级抗震时α1=1.05~1.15 α2------边角柱轴向力增大系数,边柱α2 =1.1,角柱α2 =1.2 β------柱由框架梁与剪力墙连接时,柱轴力折减系数,可取为0.7~0.8 框架柱轴压比 [$micro]N 的限值宜满足下列规定: 抗震等级为一级时, 轴压比限值 0.7 抗震等级为二级时, 轴压比限值 0.8 抗震等级为三级时, 轴压比限值 0.9 抗震等级为四级及非抗震时, 轴压比限值 1.0 Ⅳ类场地上较高的高层建筑框架柱,其轴压比限值应适当加严,柱净高与截面长边尺寸之比小于4时,其轴压比限值按上述相应数值减小0.05。 此外,高层建筑框架柱的最小尺寸hc不宜小于400mm,柱截面宽度bc不宜小于350mm,柱净高与截面长边尺寸之比宜大于4 [2]梁截面估算: 梁高与跨度的关系 主梁一般取为跨度的1/8~1/12 次梁一般取为跨度的1/12~1/15 悬挑梁一般取为悬臂长的1/6 梁宽 主梁 200,250,300…… 次梁 200…… 跨度较小的厨房和厕所可以取到120,150…… [3]楼板厚度估算:

PKPM荷载计算步骤详细讲解

一、PM参数输入 1、在计算底板时,注意梁、板保护层厚度取50mm;与土直接接触的梁板保护层厚度取50mm; 关于保护层厚度取值问题,可参见二类a环境下,结构构件保护层厚度和裂缝控制的感想 2、在计算底板抗浮,按倒楼盖配筋时,注意混凝土容重取0KN/M3; 3、一般情况下混凝土容重取26KN/M3; 4、上部楼层梁柱混凝土保护层厚度统一取30mm,不再区分25mm和30mm; 5、楼面恒活荷载输入时,按自动计算现浇楼板自重,且普通住宅装修层荷载按1.6KN/M2考虑,其它按实际情况取; 6、梁间墙体线荷载,240墙体统一按4.2KN/M2,120墙体统一按3.0KN/M2,注意考虑门窗洞口折减和挑板自重; 7、地下室外墙按混凝土墙建模,如遇到剪力墙和混凝土墙相临情况,可局部用深梁替代,这样便于JCCAD导荷布桩. 二、结构楼面布置信息: 1、板厚一般按板短跨1/35取值;普通楼层板厚不小于100mm,屋面板厚不小于120mm,对局部露台,当板跨较小时,板厚也可以取100mm; 2、楼梯间板厚取0,电梯间全房间开洞,且注意楼板错层; 三、楼面荷载传导计算: 1、一般楼面和屋面活荷载按荷载规范取,楼梯间恒载取8.0KN/M2,活载对普通多层住宅楼梯取2.5KN/M2,对高层住宅或者消防楼梯取3.5KN/M2,当梯板为较大跨度或者较厚板厚时,按实际情况取恒载; 2、应注意楼梯间实际的导荷方式,如板式楼梯,为两边楼梯梁受力,应选择单向导荷方式; 四、画结构平面图: 1、一般情况下,普通楼层考虑0.3mm裂缝控制,底板考虑0.2mm裂缝控制,地下车库顶板可根据覆土厚度,先按0.3mm控制,可做一定放大,如按0.25mm裂缝控制,这个具体工程自己把握,对车库顶板上有消防车情况,可按0.3mm进行裂缝控制;

pkpm框架结构设计-附上主要步骤

pkpm框架结构设计-附上主要步骤

设计说明: 一、建模前的准备工作: 1、确定结构体系: 根据设计任务,本工程为一五层建筑,采用全钢筋混凝土框架结构,底层至顶层全部采用现浇楼板。 2、结构尺寸估算: 根据建筑图中的开间、进深及层高,结合各楼层采用的砼强度等级及受荷情况,根据设计规范及构造要求可以估算基本构件尺寸(单位:mm ) A 、柱:本工程可取400×400mm 。 B 、梁: 主梁:128L h L ≥≥; 32h b h ≥≥; 本工程根据图纸得 5700/12=475《h 《5700/8=712.5,取h=600mm,b=300mm 次梁:1812L h L ≥≥; 32h b h ≥≥; 本工程根据图纸得 4200/18=233《h 《4200/12=350,取h=350mm,b=200mm 悬挑梁:一般取为悬臂长的1/6, C 、板: 40/;80L h mm h ≥≥,本工程可取120mm ; 3、确定荷载 A 、楼面恒载(包括楼板自重): 一层~五层楼面:4KN/m 2,卫生间:3.5KN/m 2,楼梯间:5.5KN/m 2, 屋面:6KN/m 2, B 、楼面活载: 一层~五层楼面:2.0KN/m 2,卫生间:2.0KN/m 2,楼梯间:2.0KN/m 2, 阳台:2.5KN/m 2

不上人屋面:0.5KN/m2, C、墙荷载: 外横墙:9.4KN/m 外纵墙:4.0KN/m 内墙:6.0KN/m 女儿墙:4 KN/m 4、确定结构标准层和荷载标准层 根据建筑图及所采用的结构体系进行标准层划分,本工程根据建筑图及荷载情况,可分为3个结构标准层,2个荷载标准层。 三个结构标准层: 第一标准层为▽3.000楼板,层高4000(1000+3000=4000); 第二标准层为▽6.000、9.000、12.000楼板,层高均为3000; 第三标准层为▽15.000屋面板,层高3000。 二个荷载标准层: 第一标准层楼面恒载:4KN/m2,活载:2.0KN/m2, 第二标准层屋面恒载:6KN/m2,活载:0.5KN/m2, 二、结构建模基本步骤: 1、执行PMCAD主菜单1 建筑模型与荷载输入 A、建立和生成网格,根据所给建筑图建立第一结构标准层的轴线 可用正交轴网进行,然后进行轴线命名

利用PKPM软件进行结构设计的流程

利用PKPM软件进行结构设计的流程 0前言 结构计算软件出现之前,对于简单的框架以及砌体结构,结构师要得到近似的解答,往往也要手算数月,对于高层或者复杂结构,则只能使束手无策。随着计算机技术的高速发展,PKPM软件被广泛应用于各种建筑的结构设计中。这就使得结构师从事高层或者复杂结构有了可能。随着软件的革新,结构师越来越依靠结构软件,以至于在很多设计中,并没有经过理论分析和查找相应的规范就草草利用软件进行设计,使得计算结果偏离实际很多。本文着重讨论设计流程,并且强调采用结构设计基本理论与规范相结合进行设计。只有这样,才能得到理想的结果,使得结构设计工作者有的放矢。 1设计前的工作 结构师在拿到工程后,首先在拿到设计任务时应仔细研究一下方案,全面分析,与建筑设计人员充分沟通,充分了解工程的各种情况(如平面布置、平面功能、立面造型等),而不要盲目建模。 模型输入的时候采用的是PKPM中的PMCAD,一定要了解每个参数的意义,不清楚的地方不应盲目改动,应及时查阅用户手册及技术条件。在输入荷载时,应准确计算,按照《荷载规范》(GB50009-2001)严格执行。根据建筑做法,房间使用功能来计算,不应估算,不应随意扩大荷载。在计算中,应考虑在满足设计规范的条件下,尽量经济、合理,不应随意加大配筋和加大构件的截面尺寸 2基础设计 基础设计的原则是①基础本身应具有足够的强度来传递整个建筑物的荷载,而地基则应具有良好的稳定性以保证建筑物的均匀沉降不超过允许值;②基础还应具有足够的耐久性; ③基础及人工地基方案的确定,要做到技术合理、经济并符合当地施工条件。 基础荷载计算时,不应漏掉荷载。计算机倒算的荷载,是恒载+活载,计算基底面积及埋深或按单桩承载力确定桩数时应采用荷载标准组合;确定基础配筋和验算材料强度时应采用荷载基本组合。对于墙下条基应考虑基础重叠作用。但对于框架结构,不应仅考虑竖向荷载作用(恒+活),还应考虑其余各种荷载组合,选取最不利组合,最好采用JCCAD进行荷载选取。 采用桩基础时,同一结构单元宜避免采用不同类型的桩,而且不能将浅基础和深基础混用。桩基础的设计应严格按照JGJ94-2008《桩基规范》和GB50007-2002《地基规范》8.5节的规定执行。 3楼板设计 板的厚度一般应由设计计算确定,应满足承载能力、刚度和裂缝的要求,还应考虑使用要求、预埋管线、施工和经济方面的因素。板厚度可参考表一中的数值确定。当现浇板内需预埋管道时,板的最小厚度应大于3倍预埋管道外径,而且预埋管道应放置在顶部和底部钢筋之间,其混凝土保护层不宜小于40MM。 板的厚度与跨度的最小比值HL。表一 注:1.L。为板的计算跨度;对双向板为短向计算跨度。 2.跨度〉4m的板应适当加厚。荷载较大时,板厚另行考虑。

PKPM计算流程最全

利用PKPM 进行多层框架结构设计的主要步骤 1 执行PMCAD 主菜单:输入结构的整体模型 1.1 建筑模型与荷载输入 1. 结构标准层“轴线输入” (1) 结构图中尺寸是指中心线尺寸,而非建筑平面图中的外轮廓尺寸 (2) 根据上一层建筑平面的布置,在本层结构平面图中适当增设次梁 (3) 只有楼层板、梁、柱等构件布置完全一样(位置、截面、材料),并且层 高相同时,才能归并为一个结构标准层 2. “网格生成”——轴线命名 3. “楼层定义”:选择各标准层进行梁、柱构件布置 (1) 估算(主、次)梁、板、柱等构件截面尺寸) 1) 梁:框架主梁的经济跨度是6-9米,次梁跨度一般为4-6米。○ 1抗震规范第6.3.6条规定:b ≥200;○2主梁:h = (1/8~1/12) l ,b =(1/3~1/2)h ;○3次梁:h = (1/12~1/16) l ,b =(1/3~1/2)h 2) 柱:○1抗震规范第6.3.1条规定:矩形柱bc 、hc ≥300,圆形柱d ≥350;○2控 制柱的轴压比 c c c c f wnS f N A λγλ== λ——柱的轴压比限值,抗震等级为一到四级时,分别为0.7~1.0 γ——柱轴力放大系数,考虑柱受弯曲影响,γ=1.2~1.4 w ——楼面竖向荷载单位面积的折算值,w =13~15kN/m 2 n ——柱计算截面以上的楼层数

S——柱的负荷面积 3)板:单向板跨度位于1.7-2.5米,一般不宜超过2.5米;双向板跨度不宜超过4米。○1单向板:h = l /40 ~l /45 (单向板) 且h≥60mm;○2h = l /50 ~l /45 (双向板) 且h≥80mm (2)选择各标准层进行梁、柱构件布置 1)构件布置,柱只能布置在节点上,主梁只能布置在轴线上。 2)偏心,主要考虑外轮廓平齐。 3)本层修改,删除不需要的梁、柱等。 4)本层信息,给出本标准层板厚、材料等级、层高。 5)截面显示,查看本标准层梁、柱构件的布置及截面尺寸、偏心是否正确。 6)换标准层,进行下一标准层的构件布置,尽量用复制网格,以保证上下层节点对齐。 4.“荷载输入”:定义梁间荷载;各层楼、屋面恒荷载;各层楼面、屋面活荷载; (1)梁间荷载:输入各标准层梁间恒荷载(梁间活荷载为0)。将各梁上部墙体及窗户的自重产生的恒荷载换算成线荷载加在梁上(注意计算时不用包括梁自重)(2)“梁间荷载”对梁承受的非板传来的荷载(如填充墙等)进行输入,注意,对梁承受填充墙荷载的需考虑窗洞。楼梯间全房间开洞的须根据实际情况计算梯段传至楼层梯梁的均布恒(活)载、梯段及休息平台经平台梯梁(、梯柱)传至下层框架梁的集中恒(活)载 (3)“节点荷载”梯段及休息平台经平台梯梁(、梯柱)传至框架柱的集中恒(活)载 (4)程序能对梁的自重、板的导荷进行自动计算,这些荷载都不能在此处重复计算,荷载的输入是指程序不能计算和导算的外加荷载,一定要根据实际情况进行计算输入,不得多输,更不能漏掉荷载。切记,楼梯间的荷载往往容易漏掉! (5)楼面恒、活荷载输入通过建立荷载标准层的方法输入。荷载标准层,是指上下相邻且荷载布置完全相同的层。 (6)此处定义的荷载是指楼、屋面统一的恒、活荷载,个别房间荷载不同的留

结构pkpm设计步骤参数审核总结

结构pkpm设计步骤参数审核总结 以SATW软件为例,进行结构设计计算步骤的讨论,对一个典型工程而言,使用结构软件进行结构计算分四步较为科学。 1 .完成整体参数的正确设定 计算开始以前,设计人员首先要根据新规范的具体规定和软件手册对参数意义的描述,以及工程的实际情况,对软件初始参数和特殊构件进行正确设置。但有几个参数是关系到整体计算结果的,必须首先确定其合理取值,才能保证后续计算结果的正确性。这些参数包括振型组合数、最大地震力作用方向和结构基本周期等,在计算前很难估计,需要经过试算才能得到。 (1)振型组合数是软件在做抗震计算时考虑振型的数量。该值取值太小不能正确反映模型应当考虑的振型数量,使计算结果失真;取值太大,不仅浪费时间,还可能使计算结果发生畸变。《高层建筑混凝土结构技术规程》 5.1.13-2条规定,抗震计算时,宜考虑平扭藕联计算结构的扭转效应,振型数不宜小于15, 对多塔结构的振型数不应小于塔楼的9倍,且计算振型数应使振型参与质量不小于总质量的90%。一般而言,振型数的多少于结构层数及结构自由度有关,当结构层数较多或结构层刚度突变较大时,振型数应当取得多些,如有弹性节点、多塔楼、转换层等结构形式。振型组合数是否取值合理,可以看软件计算书中的x,y向的有效质量系数是否大于0.9。具体操作是,首先根据工程实际情况及设计经验预设一个振型数计算后考察有效质量系数是否大于0.9,若小于0.9,可 逐步加大振型个数,直到x,y两个方向的有效质量系数都大于0.9为止。必须指出的是,结构的振型组合数并不是越大越好,其最大值不能超过结构得总自由度数。例如对采用刚性板假定得单塔结构,考虑扭转藕联作用时,其振型不得超过结构层数的3倍。如果选取的振型组合数已经增加到结构层数的3倍,其有效质量系数仍不能满足要求,也不能再增加振型数,而应认真分析原因,考虑结构方案是否合理。 (2)最大地震力作用方向是指地震沿着不同方向作用,结构地震反映的大小 也各不相同,那么必然存在某各角度使得结构地震反应值最大的最不利地震作用方

相关主题
文本预览
相关文档 最新文档