当前位置:文档之家› 全生物降解颗粒真的环保吗

全生物降解颗粒真的环保吗

全生物降解颗粒真的环保吗
全生物降解颗粒真的环保吗

PHA是一个庞大的“家族”,其中包含150种以上的单体结构,PHA中有一种名为PHB (聚β-羟基丁酸)的物质,则是“主角”。美国研究人员花了几年时间将新基因序列植入柳枝稷(一种草)内,就是为了让改变了基因结构的柳枝稷把二氧化碳转换成为PHB。下面就让康多亨生物环保带您简单了解一下吧!

全生物降解材料原料丰富,很多微生物在自然生长的过程中,会天然合成一种细胞内聚酯。这种名为PHA(聚羟基脂肪酸酯)的一系列物质,是高分子生物材料,具有良好的生物相容性能、生物可降解性和塑料的热加工性能,可以依据生物高分子材料学知识,被提取出来,合成可降解塑料。

它以其易降解、对环境无损害的特殊优势,获得了行业的共同认可。

全生物降解颗粒真的环保吗,推荐您咨询康多亨生物环保。

安徽康多亨生物环保科技有限公司主要从事生物降解材料、全生物降解材料、生物降解颗粒、玉米淀粉、淀粉生物降解材料的研发与生产,是一家致力于新型绿色环保材料领域,集技术研发、规模化生产和市场营销为一体的专业化公司。公司生产的生物降解材料、全生物降解材料、生物降解颗粒、淀粉生物降解材料,在土壤和自然环境下可按照设计要求完整、快速降解,无毒、无公害、无异味,降解后

不会破坏土质结构,真正做到“源于自然,还于自然”,是塑料、纸制包装的较好替代品。

生物全降解科技有限责任公司创业计划书

生物全降解科技有限公司 创业计划书

目录 一、项目概述分析 (4) 1.1 公司介绍 (5) 1.2 项目背景 (5) 1.3 产品特色与商业价值 (6) 1.4 竞争策略 (7) 1.5 公司发展战略 (7) 1.6 营销策略 (8) 二、项目开发创意 (8) 2.1 生物全降解技术 (8) 2.2 低碳环保 (9) 三、竞争分析 (10) 3.1 竞争分析 (10) 3.2 核心竞争力分析 (10) 四、营销策略 (10) 4.1 营销策略 (12) 4.2 业务渠道的建立 (13) 4.3 公关与广告策略 (14) 五、赢利模式、经济及财务状况 (16) 5.1 成本分析 (17) 5.2销售预测 (18)

六、融资方案和回报 (19) 6.1 融资情况 (20) 6.2 股份制 (20) 6.3 投资方权益 (20) 6.4投资方义务 (21) 6.5股东会及行使职权 (21) 6.6 公司收益 (21) 七、经营管理和运作方案 (22) 7.1公司文化 (22) 7.2公司战略 (23) 7.3人力资源配置 (23) 7.4人员培训 (24) 7.5激励机制 (25) 7.6其他情况 (25) 八、创业团队 (25) 8.1前期团队 (26) 8.2后期团队 (27) 8.3 团队成员介绍 (28)

一、项目概述分析 1.1 公司简介 生物全降解科技有限责任公司是一个拟建中的公司,总部位于某某省某某市。公司以某某理工大学为依托,拥有以教授、博士、硕士为代表的高学历、高素质、年轻化、充满激情的团队。公司配备各种高科技的先进软件和设备,以科学化的管理体系、人性化的信息服务为广大的人民提供优质的全降解一次性餐具。我们公司致力于环境的保护和人们身体健康安全,达到以人为本、和谐自然的环保理念。 1.2项目背景 现在的人们生活节奏越来越快,人们在就餐的时候喜欢选择快捷、方便的就餐方式。因而许多的人会在饭店、快餐店、小摊等地方使用一次性餐具就餐,然而很多的一次性餐具都是“三无”的不可降解的餐具,这种“三无”产品不仅会对环境造成污染也会对我们的身体健康造成危害。有的可能会使用可降解的一次性餐具,虽然是可降解但对环境还是有一些危害的,应为单纯的可降解并不能将餐具全部降解,而是将大片的降解成小片的,而且需要大量的时间,这样也会在某种程度上给环境带来损害。现我们公司推出一种新型的生物全降解的一次性餐具,这种新型的一次性餐具不仅不会污染环境而且对我们的身体也是无害的。由于我们的使用一次性餐具的人群较多,使用非常的普遍,因而给我们的公司生产提供了可能。

最新完全生物降解材料

完全生物降解材料 摘要:可完全生物降解材料是指在适当和可表明期限的自然环境条件 下,能够被微生物(如细菌、真菌和藻类等)完全分解变成低分子化合物的材料,对环境有积极的作用。本文介绍了完全生物降解材料的定义、分类、降解性能的评价及其发展趋势。 关键词:生物降解,测试,应用 前言:人类在创造现代文明的同时,也带来负面影响----白色污染。 一次性餐具、一次性塑料制品以及农用地膜等均难以再回收利用,其处理方法以焚烧和掩埋为主。焚烧会产生大量的有害气体,污染环境;掩埋则其中的聚合物短时间内不能被微生物分解,也污染环境。残弃的塑料膜存在于土壤中,阻碍农作物根系的发育和对水分、养分的吸收,使土壤透气性降低,导致农作物减产;动作食用残弃的塑料膜后,会造成肠梗阻而死亡;流失到海洋中或废弃在海洋中的合成纤维渔网和钓线已对海洋生物造成了相当的危害,因此提倡绿色消费与加强环境保护势在必行。面对日益枯竭的石油资源,符合潮流的生物降解材料作为高科技产品和环保产品正成为一个研发热点。 1、生物降解材料 理想的生物降解塑料是一种具有优良的使用性能、废气后可被环境微生物完全分解、最终被无机化合成为自然界中碳素循环的一个组成部分的高分子材料。 1.1、生物降解材料的分类 生物降解材料按其生物降解过程大致可分为两类。 一类为完全生物降解材料,如天然高分子纤维素、人工合成的聚己内酯等,其分解作用主要来自:①由于微生物的迅速增长导致塑料结构的物理性崩溃;②由于微生物的生化作用、酶催化或酸碱催化下的各种水解; ③其他各种因素造成的自由基连锁式降解。 另一类为生物崩解性材料,如淀粉和聚乙烯的掺混物,其分解作用主要由于添加剂被破坏并削弱了聚合物链,使聚合物分子量降解到微生物能够消化的程度,最后分解为二氧化碳(CO2)和水。 生物崩解性材料大多采用添加淀粉和光敏剂的方法,与聚乙烯和聚苯乙烯共混生产。研究表明,淀粉基生物降解塑料袋最终将进入垃圾场,不接触阳光,即使其中有发生物双降解作用,所发生的降解作用也主要以生物降解为主。一定时间的试验表明:垃圾袋无明显的降解现象,垃圾袋没有自然破损,甚至对袋里的垃圾起到一定的“保鲜”作用。

全生物降解改性原料项目投资合作方案(模板及范文)

全生物降解改性原料项目投资合作方案 投资合作方案参考模板,仅供参考

摘要 该全生物降解改性原料项目计划总投资15991.71万元,其中:固 定资产投资12796.66万元,占项目总投资的80.02%;流动资金 3195.05万元,占项目总投资的19.98%。 达产年营业收入23506.00万元,总成本费用17655.57万元,税 金及附加284.53万元,利润总额5850.43万元,利税总额6941.92万元,税后净利润4387.82万元,达产年纳税总额2554.10万元;达产 年投资利润率36.58%,投资利税率43.41%,投资回报率27.44%,全部投资回收期5.14年,提供就业职位331个。 坚持安全生产的原则。项目承办单位要认真贯彻执行国家有关建 设项目消防、安全、卫生、劳动保护和环境保护的管理规定,认真贯 彻落实“三同时”原则,项目设计上充分考虑生产设施在上述各方面 的投资,务必做到环境保护、安全生产及消防工作贯穿于项目的设计、建设和投产的整个过程。 本全生物降解改性原料项目报告所描述的投资预算及财务收益预 评估基于一个动态的环境和对未来预测的不确定性,因此,可能会因 时间或其他因素的变化而导致与未来发生的事实不完全一致。

全生物降解改性原料项目投资合作方案目录 第一章全生物降解改性原料项目绪论 第二章全生物降解改性原料项目建设背景及必要性第三章建设规模分析 第四章全生物降解改性原料项目选址科学性分析第五章总图布置 第六章工程设计总体方案 第七章项目风险说明 第八章职业安全与劳动卫生 第九章项目进度说明 第十章投资估算与经济效益分析

2020年(生物科技行业)完全生物降解材料

(生物科技行业)完全生物 降解材料

完全生物降解材料 摘要:可完全生物降解材料是指在适当和可表明期限的自然环境条件下,能够被微生物(如细菌、真菌和藻类等)完全分解变成低分子化合物的材料,对环境有积极的作用。本文介绍了完全生物降解材料的定义、分类、降解性能的评价及其发展趋势。 关键词:生物降解,测试,应用 前言:人类在创造现代文明的同时,也带来负面影响----白色污染。壹次性餐具、壹次性塑料制品以及农用地膜等均难以再回收利用,其处理方法以焚烧和掩埋为主。焚烧会产生大量的有害气体,污染环境;掩埋则其中的聚合物短时间内不能被微生物分解,也污染环境。残弃的塑料膜存在于土壤中,阻碍农作物根系的发育和对水分、养分的吸收,使土壤透气性降低,导致农作物减产;动作食用残弃的塑料膜后,会造成肠梗阻而死亡;流失到海洋中或废弃在海洋中的合成纤维渔网和钓线已对海洋生物造成了相当的危害,因此提倡绿色消费和加强环境保护势在必行。面对日益枯竭的石油资源,符合潮流的生物降解材料作为高科技产品和环保产品正成为壹个研发热点。1、生物降解材料 理想的生物降解塑料是壹种具有优良的使用性能、废气后可被环境微生物完全分解、最终被无机化合成为自然界中碳素循环的壹个组成部分的高分子材料。 1.1、生物降解材料的分类 生物降解材料按其生物降解过程大致可分为俩类。 壹类为完全生物降解材料,如天然高分子纤维素、人工合成的聚己内酯等,其分解作用主要来自:①由于微生物的迅速增长导致塑料结构的物理性

崩溃;②由于微生物的生化作用、酶催化或酸碱催化下的各种水解;③其他各种因素造成的自由基连锁式降解。 另壹类为生物崩解性材料,如淀粉和聚乙烯的掺混物,其分解作用主要由于添加剂被破坏且削弱了聚合物链,使聚合物分子量降解到微生物能够消化的程度,最后分解为二氧化碳(CO2)和水。 生物崩解性材料大多采用添加淀粉和光敏剂的方法,和聚乙烯和聚苯乙烯共混生产。研究表明,淀粉基生物降解塑料袋最终将进入垃圾场,不接触阳光,即使其中有发生物双降解作用,所发生的降解作用也主要以生物降解为主。壹定时间的试验表明:垃圾袋无明显的降解现象,垃圾袋没有自然破损,甚至对袋里的垃圾起到壹定的“保鲜”作用。 对于解决环境污染,尽管含淀粉基的塑料比壹次性塑料制品有效,但由于仍采用不能生物降解的聚乙烯或聚酯材料为原料,故除了添加的淀粉能够降解外,剩余的大量聚乙烯或聚酯仍会残存而不能完全生物降解,只是分解为碎片,无法回收,进入土壤后情况更糟,对废弃物的处理造成混乱,因而完全生物降解材料成为降解材料的研究重点。 1.2、完全生物降解材料的品种和性能 完全生物降解材料包括天然高分子纤维素、人工合成的聚己内酯、聚乙烯醇等。自然界本身有分解吸收和代谢天然高分子纤维素的自净化能力。该材料在用过废弃后能被自然界微生物的酶降解,降解产物能被微生物作为碳源吸收代谢。 (1)聚己内酯(PCL)是目前价格较低的全微生物分解性合成高分子,所用的聚己内酯是环状单体——己内酯,己内酯是利用有机金属化合物进行开环

生物降解塑料中英文对照

Poly(Butylene-Succinate) PBS 聚丁二酸丁二醇酯 Poly(butylene succinate-co-butylene adipate) PBSA丁二酸丁二醇酯-己二酸丁二醇酯共聚物 poly(butylene succinate-co-terephthalate)s PBST聚丁二酸/对苯二甲酸丁二醇酯 Soft biodegradable material technology 软性生分解材料技术 Photodegradable Plastics光降解性塑胶 Disintegradable Plastics 崩解性塑胶 Biodegradable Materials生物可分解材料 Bio-Polymer生物高分子聚合物 Green Plastics绿色塑胶 Aliphatic-Aromatic Polyester Copolymers 脂肪族—芳香族聚酯的嵌段分子聚合物Aliphatic Polyesters脂肪族聚酯 CPLA, Polylactide Aliphatic Polyester Copolymers 聚乳酸—脂肪族聚酯的嵌段分子聚合物Polycaprolactone PCL 聚己内酯 Polyhydroxyalkanoates PHA聚羟基羧酸酯 Poly-beta-hydroxybutyrate PHB聚羟基丁酸酯 Polyhydroxybutyrate-valerate PHBV聚羟基戊酸酯 Polylactide PLA聚乳酸 poly(butylene adipate-co-terephthalate) (PBAT) 己二酸-对苯二甲酸-丁二酯共聚物(PBAT) Poly(butylene Succinate-co-butylene Fumarate) 聚(琥珀酸丁二醇酯-共-富马酸丁二醇酯) 目前可降解塑料除了PLA还有哪些种类? 降解塑料(degradable plastic)是指,在规定环境条件下,经过一段时间和包含一个或更多步骤,导致材料化学结构的显著变化而损失某些性能(如完整性、分子量、结构或机械强度)和/或发生破碎的塑料。应使用能反映性能变化的标准试验方法进行测试,并按降解方式和使用周期确定其类别。降解塑料按照其设计的最终降解途径分为生物分解塑料、可堆肥塑料、光降解塑料、热氧降解塑料。 生物分解塑料(biodegradable plastic)是指,在自然界如土壤和/或沙土等条件下,和/或特定条件如堆肥化条件下或厌氧消化条件下或水性培养液中,由自然界存在的微生物如细菌、霉菌和海藻等作用引起降解,并最终完全降解变成二氧化碳(CO2)或/和甲烷(CH4)、

全生物降解材料聚乙烯醇(PVA)淀粉合金项目简介

全生物降解材料聚乙烯醇(PVA)/淀粉合金项目简介 塑料包装材料质轻、强度高,可制成适应性强的多功能包装材料,因此人 们对塑料包装的依赖愈来愈大。但塑料包装物的大量一次性使用也产生大量废 弃物,由于这些废弃物量大、分散、收集再生利用成本高昂,而且其原料大部分属惰性材料,很难在自然环境中降解等原因,使得它们对环境造成的污染和 生态平衡的破坏不断积累,已经成为二十一世纪社会与生态的噩梦。 因此解决塑料的自然降解,使塑料进入生态良性循环,解除其对自然与环 境的破坏,成为各国科学家与企业开发热点。 降解塑料的研究开发可追溯到20世纪70年代,当时在美国开展了光降解 塑料的研究。20世纪80年代又研究开发了淀粉填充型“生物降解塑料”,其 曾风靡一时。但经过几年应用实践证明,这种材料没有获得令人信服的生物降解效果。20世纪90年代以来降解塑料技术有了较大进展,并开发了光生物降 解塑料、光热降解塑料、淀粉共混型降解塑料、水溶性降解塑料、完全生物降解塑料等许多新品种。近年来,生物降解塑料特别是生物物质塑料,完全可以 融入自然循环,是最有社会与市场前景的降解材料,已在业界成为共识,并有成果不断涌现。 降解塑料是塑料家族中的一员,对它既要求在用前保持或具有普通塑料的 特性,而用后又要求在自然环境条件下快速降解。稳定与降解本是一对矛盾, 而要求它在同一产品不同阶段实现,难度很大,是集合尖端高新技术的材料。 降解塑料由于它具有易降解功能,只适于特定的应用领域和某些塑料产品,如一次性包装材料、地膜、医用卫生材料等。这些产品受污染严重,不易回收,或即使强制收集利用价值不大,效益甚微或无效益。 当前市场所见的相当部分降解塑料属崩坏性降解,尚不能快速降解和完全 降解。它在一定环境条件下和一定周期内可劣化、碎裂成相对较易被环境消纳 的碎片(碎末),再经过很长时间,最终能降解,但降解的速度远赶不上废物产生的速度。完全生物降解塑料在一定环境条件下,能较快和较完全生物降解 成CO2和水,它与堆肥化处理方法相结合,作为回收利用的补充,被认为是治理塑料包装废弃物污染环境的好办法,是当前国际上的开发方向。 生物降解塑料(BDP)是指在自然界中能被酶或微生物(如细菌、霉菌和藻类)及其分泌物分解利用(包括高分子化合物及其配合物)的材料。 生物降解塑料的降解机理,即生物降解塑料被细菌、霉菌等作用消化吸收 的过程,大致有3种方式: 生物的物理作用——由生物细胞的生长而使物质发生机械性毁坏; 生物的化学作用——微生物对聚合物的作用而产生新的物质; 酶的直接作用——微生物侵蚀部分导致塑料分解或氧化崩裂。 BDP是高分子化学结构等分子层次的研究。其研究无论从地球环境保护的 实际角度,或从开发取之不尽的可再生资源角度,还是从合成高分子的学术研

主要有机化合物可生物降解性的评定

序号名称COD/(mg/m BOD 5/(mg/m BOD 全/(mg/mg)BOD 5/BOD 全BOD 全/COD BOD 5/COD 可生物降解性一、烃类135******** 不能降解 主要有机化合物可生物降解性的评定 汽油 3.540.110.0312苯 3.070.50 1.150.4350.3750.163经长期驯化可降解3正丁苯 3.220.490.0000.152经长期驯化可降解 4异戊二烯 3.240.430.550.7820.1700.133不易降解5二甲苯 3.170.980.98 1.0000.3090.309经驯化可降解 6松香油 2.10.60 1.20.5000.5710.286可降解7α-甲基苯乙烯 3.11 1.40 1.580.886 0.5080.450 可降解8丙苯 1.6 1.20.750可降解9丙烯不可降解10甲苯 1.870.19 1.10.1730.5880.102经驯化可降解11苯乙烯 3.07 1.12 1.60.7000.5210.365可降解12异戊间二烯 3.290.43 0.550.782 0.1670.131 不易降解13四聚丙烯 3.430.470.137不易降解乙烯基甲苯31013004214 3.10.130.042不能降解 二、醇类15丙烯醇 2.2 1.5 0.682 可降解16戊醇 2.73 1.230.451 可降解25115059817苯甲醇 2.51 1.50.598可降解18丁醇 2.6 1.26 1.43 0.8810.5500.485可降解19丙三醇(甘油) 1.230.770.860.8950.6990.626可降解20一缩二乙二醇 1.270.060.180.3330.1420.047不可降解21 2.70.8 1.80.4440.6670.296二甲基苯甲醇 可降解22异戊醇 2.73 1.50.0000.549可降解23异丁醇 2.6 1.66 1.4 1.186 0.5380.638可降解24甘露醇 1.030.680.660可降解25三甲基-1,3-丁二醇 2.15 1.350.628可降解26 甲醇 1.5 0.77 0.98 0.786 0.653 0.513 可降解 M E R S U R E

可降解生物材料

可降解生物材料 摘要:本文介绍了可降解生物材料的定义,阐述生物降解材料的降解机理及分类(掺混型、化学合成型、天然高分子型以及微生物合成型材料)。指出降解材料当前存在的主要问题, 并对其发展前景进行展望。 关键词:生物材料;可降解性;降解机理;分类 前言 合成高分子材料具有质轻、强度高、化学稳定性好以及价格低廉等优点,与钢铁、木材、水泥并列成为国民经济的四大支柱[1]。然而,在合成高分子材料给人们生活带来便利、改善生活品质的同时,其使用后的大量废弃物也与日俱增,成为白色污染源,严重危害环境,造成地下水及土壤污染,危害人类生存与健康,给人类赖以生存的环境造成了不可忽视的负面影响[2]。另外,生产合成高分子材料的原料——石油也总有用尽的一天,因而,寻找新的环境友好型材料,发展非石油基聚合物迫在眉睫,而可生物降解材料正是解决这两方面问题的有效途径。 1.可生物降解材料定义及降解机理 生物降解材料,亦称为“绿色生态材料”,指的是在土壤微生物和酶的作用下能降解的材料。具体地讲,就是指在一定条件下,能在细菌、霉菌、藻类等自然界的微生物作用下,导致生物降解的高分子材料[3]。理想的生物降解材料在微生物作用下,能完全分解为CO2和H2O。 生物降解材料的分解主要是通过微生物的作用,因而,生物降解材料的降解机理即材料被细菌、霉菌等作用消化吸收的过程。 首先,微生物向体外分泌水解酶与材料表面结合,通过水解切断表面的高分子链,生成小分子量的化合物,然后降解的生成物被微生物摄入体内,经过种种代谢路线,合成微生物体物或转化为微生物活动的能量,最终转化成CO2和H2O[4]。在生物可降解材料中,对降解起主要作用的是细菌、霉菌、真菌和放线菌等微生物,其降解作用的形式有3种[5]: 生物的物理作用,由于生物细胞的增长而使材料发生机械性毁坏;生物的生化作用,微生物对材料作用而产生新的物质;酶的直接作用,微生物侵蚀材料制品部分成分进而导致材料分解或氧化崩溃。 2.可生物降解材料的分类及应用 根据降解机理生物降解材料可分为[6]生物破坏性材料和完全生物降解材料。生物破坏性材料属于不完全降解材料,是指天然高分子与通用型合成高分子材料

关于生物降解材料

关于生物降解材料 篇一:浅谈生物可降解高分子材料的开发利用 [摘要]我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。本文探讨了生物可降解高分子材料现阶段的开发应用情况。 [摘要]我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。本文探讨了生物可降解高分子材料现阶段的开发应用情况。 [关键词]高分子材料可降解生物 我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。生物可降解材料,是指在自然界微生物,如细菌、霉菌及藻类作用下,可完全降解为低分子的材料。这类材料储存方便,只要保持干燥,不需避光,应用范围广,可用于地膜、包装袋、医药等领域。生物可降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。按照上述机理,现将目前研究的几种主要的可生物可降解的高分子材料介绍如下。

1、生物可降解高分子材料概念及降解机理 生物可降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。 生物可降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子材料的生物可降解是经过两个过程进行的。首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物;然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。 因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。到目前为止,有关生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。生物可降解高分子材料的降解除与材料本身性能有关外,还与材料温度、酶、ph值、微生物等外部环境有关。 2、生物可降解高分子材料的类型 按来源,生物可降解高分子材料可分为天然高分子和人工

生物全降解材料项目投资计划书

生物全降解材料项目投资计划书 xxx有限责任公司

生物全降解材料项目投资计划书目录 第一章概论 一、项目名称及建设性质 二、项目承办单位 三、战略合作单位 四、项目提出的理由 五、项目选址及用地综述 六、土建工程建设指标 七、设备购置 八、产品规划方案 九、原材料供应 十、项目能耗分析 十一、环境保护 十二、项目建设符合性 十三、项目进度规划 十四、投资估算及经济效益分析 十五、报告说明 十六、项目评价 十七、主要经济指标

第二章项目建设背景 一、产业政策及发展规划 二、鼓励中小企业发展 三、宏观经济形势分析 四、区域经济发展概况 五、项目必要性分析 第三章建设规划方案 一、产品规划 二、建设规模 第四章选址可行性研究 一、项目选址原则 二、项目选址 三、建设条件分析 四、用地控制指标 五、用地总体要求 六、节约用地措施 七、总图布置方案 八、运输组成 九、选址综合评价 第五章项目工程方案分析

一、建筑工程设计原则 二、项目工程建设标准规范 三、项目总平面设计要求 四、建筑设计规范和标准 五、土建工程设计年限及安全等级 六、建筑工程设计总体要求 七、土建工程建设指标 第六章风险防范措施 一、政策风险分析 二、社会风险分析 三、市场风险分析 四、资金风险分析 五、技术风险分析 六、财务风险分析 七、管理风险分析 八、其它风险分析 九、社会影响评估 第七章实施安排方案 一、建设周期 二、建设进度

三、进度安排注意事项 四、人力资源配置 五、员工培训 六、项目实施保障 第八章投资方案分析 一、项目估算说明 二、项目总投资估算 三、资金筹措 第九章经营效益分析 一、经济评价综述 二、经济评价财务测算 二、项目盈利能力分析 第十章附表 附表1:主要经济指标一览表 附表2:土建工程投资一览表 附表3:节能分析一览表 附表4:项目建设进度一览表 附表5:人力资源配置一览表 附表6:固定资产投资估算表 附表7:流动资金投资估算表

全生物降解地膜试验方案

附件: 2013年甘肃省全生物降解地膜试验方案 一、材料与方法 1、材料:三种类型的降解地膜和一种对照地膜(表1);降解地膜试验材料由三菱化学(中国)商贸有限公司提供(A,B,C),对照地膜由兰州金土地塑料制品有限公司提供(ck),试验材料由省农业技术推广总站分送承试县。A:宽度为1400mm,厚度为18μ(0.018mm,已进行过两年试验,标准膜);B:宽度为1400mm,厚度为18μ(0.018mm,改良膜);C:宽度为1400mm,厚度为15μ(0.015mm,改良膜);ck:宽度为1400mm,厚度为10μ(0.01mm)。 2、试验地点与设计:在榆中县、广河县、通渭县、庄浪县、华池县五个县每县选择1个试验点,用地8亩,其中每个试验点生物降解地膜4亩,对照2亩,边界行两边各1亩。共设4个处理:A、B、C、ck,不设重复(表2)。按照全膜双垄沟播技术规程进行选地、整地、施肥、起垄覆膜、播种、田间管理,起垄覆膜用小四轮拖拉机牵引的起垄覆膜压土一体机。各承试县于3月18日前选好试验点,准备好地膜,机械等物资,安排好人员;3月19日,5个试验点同时起垄覆膜,一天内全部完成。 3、品种:沈单16; 4、播种密度:3500株/亩; 5、覆盖方式:全膜双垄沟(120cm宽,大垄70cm,小垄40cm); 6、铺膜日期:3月19日 7、播种日期:各县试验点自行确定;

8、试验准备:预计试验连续定位3年,连作玉米。每年收获后,地膜不捡翻入土壤,第二年重新覆膜。田间管理按照当地大田进行,旱作,不灌溉。 表1 试验材料基本情况表 表2 试验设计 二、田间测定内容: 1、地膜取样 普通地膜和降解地膜在铺设前,各取80cm×100cm的样品,进行力学性能和红外光谱(FTIR)测试。以后在玉米播种后10天、拔节期、大喇叭口期、收获前每个试验处理选用梅花型或s型采集3-5个点的地膜样品,取样面积600cm2,尺寸为20cm(地膜横向)×30cm (地膜纵向)。样品按照处理分别编号后装入自封袋。每次取样后及时将样品寄回省农技总站。 2. 土壤温湿度观测 在农作物生长的重要时间节点,取4天,分别测定普通地膜和降解地膜膜下5cm、1Ocm、15cm、20cm、25cm土壤在9:00、14:30、18:30

生物降解性

生物降解性:更新控制微生物在清理蓄水层污染的概念 从被污染的蓄水层去除有机污染物,生物降解是最被看好的和可持续的手段之一但主要转向因素仍然令人惊讶地知之甚少。越来越多的证据质疑的一些既定的概念控制生物降解。在这里,我们讨论批判经典概念,如氧化还原热力学分带,或使用稳态运输方案,以评估生物降解率。此外,我们讨论如果没有具体的降解菌人口可以解释生物降解差。我们建议关于生物降解的,在控制更新观点污染羽。这些措施包括羽边缘的概念,运输的限制,和瞬态条件目前低估了影响生物降解的过程。 1、引言 在过去的150年里,发布了有机化学品的数量到环境中显着增加,1留下在地球上前所未有的化学足迹。许多地下水从污染点源产生,源自事故或污染的工业用地。这些污染物通常形成羽状物高浓度的污染物(微克/升成mg / L的范围内)。另外,化学物质可能通过广泛应用在农业进入地下水或从污水处理排放到河流中。这里,农药,医药,或消费者护理产品引入非点源,通常发生在更小浓度(微量以ng / L到微克/ L范围内)。2对于一个艰巨的角度看,似乎一见钟情,性质幸运的是有地方补救:生物降解。微生物可以氧化有机污染物的氧化碳,同时减少电子受体例如分子氧,硝酸盐,铁(Ⅲ)(和其它金属氧化物),或硫酸盐(图1)。或者,一些污染物,如氯化溶剂可以作为电子受体(图1,右侧)。然而,尽管数十来生物降解研究的,真正的司机理事污染物降解仍不佳了解。本文重温和挑战当前的概念在控制和生物降解的含水层的限制。它危重讨论(ⅰ)生物降解是否是主要热力学(即氧化还原区划)的管辖受污染场地,(ii)如生物降解可充分通过考虑地下作为一个反应性预测车厢和环境工程方面应用(停留时间,反应时间),和(iii)的生物控制生物降解。我们认为,地下水生态系统更多的异构,动态比目前察觉。此外,我们建议的动力学控制 生物降解已经在很大程度上忽视当前概念依靠对热力学考虑和稳态假设的很大一部分,而过程是动态的频繁。在很多情况下,转向参数不被认为是在适当的空间和时间尺度。然而,关键的下面讨论生物降解的控件提供了潜在不断变化的科学项目的未来设计,监控运动,或补救策略。 图1.污染物可作为电子供体受体或含水层的微生物 2.重温氧化还原带的划分污染含水层

相关主题
文本预览
相关文档 最新文档