当前位置:文档之家› 无线传感网mac协议设计

无线传感网mac协议设计

一种符合无线传感器网络特征的MAC层协议设计

1. 无线传感器网络

无线传感器网络(Wireless Sensor Network, WSN)是由大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,以协作地感知、采集、处理和传输网络覆盖地理区域内被感知对象的信息,并最终把这些信息发送给网络的所有者。无线传感器网络所具有的众多类型的传感器,可探测包括地震、电磁、温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等周边环境中多种多样的现象。潜在的应用领域可以归纳为: 军事、航空、防爆、救灾、环境、医疗、保健、家居、工业、商业等领域。

2. 无线传感器网络特征

1) 传感节点体积小,成本低,计算能力有限。

2) 传感节点数量大、易失效,具有自适应性。

3) 通信半径小,带宽很低。

4) 电源能量是网络寿命的关键。

5) 数据管理与处理是传感器网络的核心技术。

3. MAC层协议设计

3.1 MAC层协议设计的考虑

无线传感器网络是应用相关的网络,不同应用网络,对MAC协议的考虑也不尽相同,不存在一个适用于所有无线传感器网络的通用MAC协议。MAC协议设计时,需要着重考虑以下几个方面:

节省能量传感器网络节点一般是以干电池、纽扣电池等提供能量,电池能量通常难以补充,MAC协议在满足应用要求前提下,应尽量节省节点的能量。可扩展性传感器网络中网络节点数目一般较大。另外,由于节点死亡、新节点加入、节点移动导致节点数目、分布密度等在传感器网络生存过程中不断变化。因此,MAC协议应具有可扩展性,以适应动态变化的拓扑结构。

兼顾网络性能网络性能包括网络的公平性、实时性、吞吐量以及带宽利用率。不同应用的传感器网络产生不同特征的流量,要求不同的性能参数,所以MAC 协议应能兼顾好这些网络性能。

3.2 传感器网络能耗浪费问题

经过大量实验和理论分析,人们发现可能造成传感器网络能量浪费的主要原因包

括如下几个方面:

碰撞冲突问题节点在发送数据过程中,可能会引起多个节点之间发送的数据产生碰撞。而重传数据,将消耗节点更多能量。

串音问题节点接收并处理不必要的数据。这种串音现象造成节点的无线接收模块和处理模块消耗更多的能量。

空闲侦听问题节点在不需要发送数据时一直保持对信道的空闲侦听,过度空闲侦听或没必要的空闲侦听会造成节点能量浪费。

控制消息消耗如果控制消息过多,也会消耗较多的能量。

3.3 参考S—MAC协议的一种无线传感器网MAC协议设计

美国加州大学信息科学院的Wei Ye和Estrin等人在802.11MAC协议的基础上,提出了S—MAC(SensorMAC协议)n1。该协议主要针对无线传感器网络的节省能量要求。s—MAC协议通常假设传感器网络的数据传输量少,节点协作完成共同任务,网络内部能够进行数据处理和融合减少数据通信量,网络能够容忍一定程度通信延迟。S—MAC协议就是为减少空闲侦听、冲突避免和减少控制开销而设计的,采用了工作/休眠策略,将时间分为帧,每一帧分为工作阶段和休眠阶段。其主要采用以下几种措施:

1.周期性侦听/睡眠:每个节点独立地调度他的工作状态,周期性地转入睡眠

状态,睡眠期间关掉无线电收发部分,在苏醒后侦听信道状态,判断是否需要发送或接收数据。如图2所示。

每个节点用SYNC消息通告自己的调度信息,同时维护一个调度表,保存所有相邻节点的调度信息。具有相同调度的节点形成一个虚拟簇,簇的边界节点记录两个或者多个调度,如图3所示。部署区域内,可能形成多个簇。为了适应新节点的加入,每个都要定期广播自己的调度,使新节点可以与已经存在的相邻节点保持同步。

2.流量自适应侦听机制:通信节点的邻居节点在通信结束后不立即进入睡眠状

态而是侦听信道一段时间,无须等待下一次调度,减少了多跳方式引起的传输延迟。

3.串音避免:每个节点在传输数据时,都要经历RTS/CTS/DATA/ACK的通信

过程。每个分组都有一个域值(NAV)表示剩余通信过程需要持续的时间长度。

若邻居节点处于侦听周期时,记录这个时间长度值,同时进入睡眠状态。NAV 变为0时,节点就被唤醒。

4.消息传递:S—MAC协议利用RTS/CTS机制,一次预约发送整个长消息的时

问,并把一个长消息分成许多短消息。如图4所示。

不同的是:S—MAC的RTS/CTS控制消息和数据消息携带的时问是整个长消息的剩余时间,其他节点接收到这个剩余时间然后进入睡眠状态,直至长消息发送完成。而IEEE802.11MAC协议考虑网络的公平性,RTS/CTS只预约下一个发送短消息的时间,其他节点在每个短消息发送完成后都必须醒来进入侦听状态。S—MAC协议增加了能量的效率,避免了冲突造成的能量浪费,但是也存在不足:第一,由于是周期性的侦听和睡眠,一个节点给邻居发送数据只能等到他处于侦听状态,造成延时。第二,当邻居节点同时唤醒信道时,一致同步会增加邻居间冲突。第三,固定占空比不能随网络流量变化动态调整,低流量情况下会导致能量浪费,增加时延。

无线传感器网络原理及方法复习题

1.简述无线网络介质访问控制方法CSMA/CA的工作原理 CSMA/CA机制: 当某个站点(源站点)有数据帧要发送时,检测信道。若信道空闲,且在DIFS时间内一直空闲,则发送这个数据帧。发送结束后,源站点等待接收ACK确认帧。如果目的站点接收到正确的数据帧,还需要等待SIFS时间,然后向源站点发送ACK确认帧。若源站点在规定的时间内接收到ACK确认帧,则说明没有发生冲突,这一帧发送成功。否则执行退避算法。 2.802.11无线LAN提供的服务有哪些? ?802.11规定每个遵从该标准的无线局域网必须提供9种服务,这些服务分为两类,5种分布式服务和4种站服务。 分布式服务涉及到对单元(cell)的成员关系的管理,并且会与其它单元中的站点进行交互。由AP提供的5种服务将移动节点与AP关联起来,或者将它们与AP解除关联。 ?⑴建立关联:当移动站点进入一个新的单元后,立即通告它的身份与能力。能力包括支持的数据速率、需要PCF服务和功率管理需求等。 AP可以接受或拒绝移动站点的加入。如果移动站点被接受,它必须证明它自己的身份。 ?⑵解除关联。无论是AP还是站点都可以主动解除关联,从而中止它们之间的关系?⑶重建关联。站点可以使用该服务来改变它的首选AP 。 ?⑷分发。该服务决定如何将发送到AP的帧发送出去。如果目的站在同一个AP下,帧可以被直接发送出去,否则必须通过有线网络转发。 ?⑸集成。如果一个帧需要通过一个非802.11网络(具有不同的编址方案或帧格式)传输,该服务可将802.11格式转换成目的网络要求的格式 站服务4种站服务用于管理单元内的活动。 ?⑴身份认证。当移动站点与AP建立了关联后, AP会向移动站点发送一个质询帧,看它是否知道以前分配给它的密钥;移动站点用自己所知道的密钥加密质询帧,然后发回给AP ,就可以证明它是知道密钥的;如果AP检验正确,则该移动站点就会被正式加入到单元中。 ?⑵解除认证。一个以前经过认证的站想要离开网络时,需要解除认证。 ?⑶保密。处理加密和解密,加密算法为RC4。 ⑷数据传递。提供了一种数据传送和接收方法 3.简述无线传感器网络系统工作过程 无线传感器网络(WSN)是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,目的是协作地采集、处理和传输网络覆盖地域内感知对象的监测信息,并报告给用户 4.为什么无线传感器网络需要时间同步,简述RBS、TPSN时间同步算法工作原理? 在分布式的无线传感器网络应用中,每个传感器节点都有自己的本地时钟。不同节点的晶体振荡器频率存在偏差,以及湿度和电磁波的干扰等都会造成网络节点之间的运行时间偏差, RBS同步协议的基本思想是多个节点接收同一个同步信号,然后多个收到同步信号的节点之间进行同步。这种同步算法消除了同步信号发送一方的时间不确定性。这种同步协议的缺点是协议开销大

一种层次型无线传感器网络的集中式节能分簇算法

2012年第12期福建电脑 一种层次型无线传感器网络的集中式节能分簇算法 陈振华 (钦州学院广西钦州535000) 【摘要】:无线传感器网络节点受能量有限、计算能力弱、存储空间小等特点的限制,需要设计高效节能的路由协议来延长网络的生存时间。本文提出一种集中式分簇算法CEEC,采用“定簇异头,集中控制”的方式,均匀分布各个簇,由基站根据各节点的能量状态和位置信息,选取簇内通信代价最小的节点作为簇头,使整个网络的能量开销最小,从而延长了网络的生存时间。 【关键词】:无线传感器网络;LEACH;簇头;CEEC;能量开销 0.引言 随着微机电系统(MEMS,Micro-Electro-Mechanism System)、片上系统(SOC,System On Chip)和无线通信技术高速发展,一种新的信息获取和处理模式:无线传感器网络(WSN,Wireless Sensor Network)产生并得到了快速的发展。无线传感器网络是由大量具有特定功能的传感器节点通过自组织的无线通信方式,相互传递信息,协同地完成特定功能的智能专用网络[1]。传感器节点具有能量有限、计算能力弱、存储空间小等特点,受这些特点的限制,设计高效节能的路由算法,减少网络能量消耗,延长网络的生存时间是设计无线传感器网络协议必须首先考虑的问题。 LEACH是一个较早提出的优秀的层次型无线传感器网络分簇协议,通过自适应分布式成簇和TDMA技术,可以有效地降低能耗,延长网络生存时间。但由于其簇头的选择是基于一个随机数来判断,并且没有实时考虑节点能量状态,能量的分布具有很大的随机性,容易出现能量分布不均匀、网络负载不平衡等问题,影响了网络的效率。本文在LEACH成簇思想的基础上,考虑了各节点的能量状态和能耗因素,提出了一种集中式节能分簇算法,由基站根据各节点的能量状态和位置集中选择簇头,使网络总能耗最小化,从而有效地延长了网络的生存时间。 1.LEACH算法简介 LEACH(low-energy adaptive clustering hierarchy)[2]是由MIT的Heinzelman等人提出的一种层次型网络分簇协议,其基本思想是通过随机地循环选择簇头,将整个网络的能量负载平均分配到每个传感器节点,从而达到降低网络能量耗费、延长网络生命周期的目的。 LEACH算法建立在网内所有节点都是同构且无线电信号的传送能耗各向同性的的假设上。在LEACH算法中,节点自组织形成不同的簇,每个簇只有一个簇头。所有非簇头节点将自己的数据发给所在簇的簇头节点,簇头节点在将数据融合后发送给基站。每个非簇头节点只需要知道自己所在簇的簇头信息即可,无须与周围节点通信,簇头也只需要维持很小的路由表。 LEACH的执行过程是周期性的,每轮循环的基本过程由簇头选择、簇的形成、时刻表的创建、数据传输阶段四个阶段组成。节点在[0,1]之间产生一个随机数,该随机数如果比系统中预设定的阈值大,则该节点在当前轮竞选成为簇头。节点成为簇头后,向周围节点广播自己成为簇头的消息,等候周围节点申请加入形成一个簇。簇头根据簇内节点的数量创建TDMA时刻表并通知每个节点何时开始传输数据。在经历一段时间后,新的一轮又从新开始。上述过程循环进行,直到所有节点失效。 LEACH算法是较早提出的一种层次型无线传感器网络的分簇算法,其思想影响了以后很多算法的设计。和平面路由算法相比,LEACH算法可以延长将近30%的网络生存时间[3]。但是,由于LEACH算法中簇头的产生具有极大的随机性,可能会出现部分簇头相距过近或部分区域的节点离簇头太远的情况,大大增加了节点的传输能耗,故不能有效地延长网络生存时间。而且由于簇头选举的随机性使得网络的簇头需要负担的节点数不 基金项目:广西自然科学基金(桂科自09236004) 13

无线传感器网络试题库

《无线传感器网络》 一、填空题(每题4分,共计60分) 1.传感器网络的三个基本要素:传感器、感知对象、用户(观察者) 2.传感器网络的基本功能:协作式的感知、数据采集、数据处理、发布感知信息 3、 3.无线传感器节点的基本功能:采集数据、数据处理、控制、通信 4.无线通信物理层的主要技术包括:介质选择、频段选取、调制技术、扩频技术 5.扩频技术按照工作方式的不同,可以分为以下四种:直接序列扩频、跳频、跳时、宽带 线性调频扩频 6.定向扩散路由机制可以分为三个阶段:兴趣扩展阶段、梯度建立阶段、路径加强阶段 7.无线传感器网络特点:大规模网络、自组织网络、可靠的网络、以数据为中心的网络、 应用相关的网络 8.无线传感器网络的关键技术主要包括:网络拓扑控制、网络协议、时间同步、定位技术、 数据融合及管理、网络安全、应用层技术 9.IEEE 标准主要包括:物理层。介质访问控制层 10.简述无线传感器网络后台管理软件结构与组成:后台管理软件通常由数据库、数据处理 引擎、图形用户界面和后台组件四个部分组成。 11.数据融合的内容主要包括:多传感器的目标探测、数据关联、跟踪与识别、情况评估和 预测 12.无线传感器网络可以选择的频段有:_800MHz___915M__、、___5GHz 13.传感器网络的电源节能方法:_休眠(技术)机制、__数据融合 14.传感器网络的安全问题:(1) 机密性问题。 (2) 点到点的消息认证问题。 (3) 完整 性鉴别问题。 15.规定三种帧间间隔:短帧间间隔SIFS,长度为 28 s a)、点协调功能帧间间隔PIFS长度是 SIFS 加一个时隙(slot)长度,即78 s b)分布协调功能帧间间隔DIFS ,DIFS长度=PIFS +1个时隙长度,DIFS 的长度为 128 s 16.任意相邻区域使用无频率交叉的频道是,如:1、6、11频道。 17.网络的基本元素SSID标示了一个无线服务,这个服务的内容包括了:接入速率、工作 信道、认证加密方法、网络访问权限等 18.传感器是将外界信号转换为电信号的装置,传感器一般由敏感元件、转换元件、转换电 路三部分组成 19.传感器节点由传感器模块、处理器模块、无线通信模块和能量供应模块四部分组成 20.物联网是在计算机互联网的基础上,利用RFID、无线数据通信等技术,构造一个覆盖 万物的网络。RIFD无线识别、嵌入式系统技术、能量供给模块和纳米技术列为物联网关键技术。 二、基本概念解释(每题5分,共40分) 1.简述无线网络介质访问控制方法CSMA/CA的工作原理 CSMA/CA机制: 当某个站点(源站点)有数据帧要发送时,检测信道。若信道空闲,且在DIFS时间内一直空闲,则发送这个数据帧。发送结束后,源站点等待接收ACK确认帧。如果目的站点接收到正确的数据帧,还需要等待SIFS时间,然后向源站点发送ACK确认帧。若源站点在规定的时间内接收到ACK确认帧,则说明没有发生冲突,这一帧发送成功。否则执行退避算法。

无线传感网mac协议设计

一种符合无线传感器网络特征的MAC层协议设计 1. 无线传感器网络 无线传感器网络(Wireless Sensor Network, WSN)是由大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,以协作地感知、采集、处理和传输网络覆盖地理区域内被感知对象的信息,并最终把这些信息发送给网络的所有者。无线传感器网络所具有的众多类型的传感器,可探测包括地震、电磁、温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等周边环境中多种多样的现象。潜在的应用领域可以归纳为: 军事、航空、防爆、救灾、环境、医疗、保健、家居、工业、商业等领域。 2. 无线传感器网络特征 1) 传感节点体积小,成本低,计算能力有限。 2) 传感节点数量大、易失效,具有自适应性。 3) 通信半径小,带宽很低。 4) 电源能量是网络寿命的关键。 5) 数据管理与处理是传感器网络的核心技术。 3. MAC层协议设计 3.1 MAC层协议设计的考虑 无线传感器网络是应用相关的网络,不同应用网络,对MAC协议的考虑也不尽相同,不存在一个适用于所有无线传感器网络的通用MAC协议。MAC协议设计时,需要着重考虑以下几个方面: 节省能量传感器网络节点一般是以干电池、纽扣电池等提供能量,电池能量通常难以补充,MAC协议在满足应用要求前提下,应尽量节省节点的能量。可扩展性传感器网络中网络节点数目一般较大。另外,由于节点死亡、新节点加入、节点移动导致节点数目、分布密度等在传感器网络生存过程中不断变化。因此,MAC协议应具有可扩展性,以适应动态变化的拓扑结构。 兼顾网络性能网络性能包括网络的公平性、实时性、吞吐量以及带宽利用率。不同应用的传感器网络产生不同特征的流量,要求不同的性能参数,所以MAC 协议应能兼顾好这些网络性能。 3.2 传感器网络能耗浪费问题 经过大量实验和理论分析,人们发现可能造成传感器网络能量浪费的主要原因包

一种低能耗层次型无线传感器网络拓扑控制算法

第36卷第4期自动化学报Vol.36,No.4 2010年4月ACTA AUTOMATICA SINICA April,2010 一种低能耗层次型无线传感器网络拓扑控制算法 康一梅1李志军2胡江3董吉昌4 摘要提出一种低能耗层次型拓扑控制算法(A low-power hierarchical wireless sensor network topology control algo-rithm,简称LPH算法).该算法是一种支持多跳网络、降低能耗的多级组网控制算法.它将拓扑控制分为组网和拓扑维护两个阶段,其中组网阶段包括选择簇头、标识簇头及簇内节点、优化拓扑三个任务,算法在各个阶段、各个任务中都考虑了节能.同时,在簇头选择时考虑了簇头节点分布均衡问题,通过优化拓扑降低簇内通信能耗.其次,通过静态地址与动态地址结合的方式提高网络层次及可维护性.本文详细介绍了LPH算法及其思想,给出算法的空间复杂度、时间复杂度及能耗分析,并基于NS2仿真工具,对LEACH、PEGASIS和LPH三种算法分别进行了模拟仿真,说明LPH算法的性能与优势. 关键词拓扑控制算法,多跳网络,分簇拓扑算法,低能耗,网络生存期 DOI10.3724/SP.J.1004.2010.00543 A Low-power Hierarchical Wireless Sensor Network Topology Control Algorithm KANG Yi-Mei1LI Zhi-Jun2HU Jiang3DONG Ji-Chang4 Abstract In this paper,a low-power hierarchical wireless sensor network(WSN)topology control algorithm,which is called LPH,is presented.LPH is a multi-level topology control algorithm.In this algorithm,the topology control is divided into two phases:network building and network maintaining.The phase of network building includes three tasks: cluster head election,cluster head and nodes identi?cation,and topology optimization.LPH provides solutions to reduce energy consumption in every phase and every task.LPH also provides a solution to balance the distribution of the cluster head nodes.On the other hand,the algorithm extends the network-level and improves the maintainability of WSN by using combination of the static address and dynamic address.The paper analyzes space complexity,time complexity and energy consumption of LPH.Finally,this paper introduces the simulation of LEACH,PEGASIS and LPH algorithms based on NS2,and analyzes the simulation results. Key words Topology control algorithm,multi-hop network,clustered topology algorithm,low power,network life cycle 网络拓扑结构是自组织无线传感器网络中路由算法、MAC协议、数据融合、时间同步和目标定位等的基础,好的网络拓扑控制算法能够提高通信效率和网络拓扑结构的鲁棒性、节省能量,并延长网络的生存期. 基于分簇机制的层次型拓扑控制算法是目前常用的一类拓扑控制算法.层次型拓扑控制算法的关键在于推选出合适的簇头节点.近年来,研究人员提出了多种传感器网络的层次型拓扑控制算法[1?9]: Heinzelman等提出的LEACH层次型拓扑控制算法[1],在每个数据收集的周期开始,一小部分节点随机成为簇头,在数据传输阶段,簇头以单跳通信的方 收稿日期2008-07-10录用日期2009-09-19 Manuscript received July10,2008;accepted September19, 2009 1.北京航空航天大学软件学院嵌入式实验室北京100083 2.西门子(中国)研究院无线通信部北京100102 3.中国兵器工业计算机应用技术研究所北京100102 4.握奇数据系统有限公司平台开发中心北京100102 1.Embedded Software Laboratory,College of Software,Bei-hang University,Beijing100083 2.Wireless Communications Department of Siemens(China)Corporate Technology,Beijing 100102 3.Beijing Institute of Computer Application and Technology,Beijing100102 4.Platform Develop Department of Watchdata System Co,Ltd.,Beijing100102式将融合后的数据传输给Sink节点.为了提高簇的生成质量,Heinzelman等又提出了集中式的层次型拓扑控制算法LEACH-C以及考虑节点能量的算法[2].Lindsey等提出的PEGASIS算法将网络中的节点组织为链状,数据在链上经融合处理,最后传输至汇聚点[3],算法需要知道每个节点的位置信息,为了延长网络的生命周期,节点只需要和它们最近的邻居之间进行通信.节点与汇聚点间的通信过程是轮流进行的,这种轮流通信机制使得能量消耗能够统一地分布到每个节点上,因此降低了整个传输所需消耗的能量.Dasgupta等提出了一种基于分簇的启发式算法来最大化网络的存活时间,算法需要知道节点的位置信息和能量信息[4].Choi等提出两阶段分簇协议TCP,在簇内构造多跳路由链路以节约能量[5]. 近年来,国内也提出了很多新的拓扑控制算法: EEUC高效非均匀分簇算法通过以主动的方式来均衡网络中所有节点的能量消耗,特别是均衡簇头的能量消耗[6].EC-LEACH算法通过对LEACH算法中的簇头选举阈值的修改以及让簇头主动“让贤”的方法选择簇头,从而达到平衡网络节点消耗的目的[7].DCPC基于能量保护的分布式拓扑控制算法

无线传感器网络MAC协议

无线传感器网络MAC协议 摘要近年来,无线传感器网络(WSNs)作为国内外一个新兴的研究方向,吸引了许多研究者和机构的广泛关注。本文从无线传感器网络MAC 协议角度出发,介绍了无线传感器网络的MAC 协议及当前的研究现状,分析了无线传感器网络协议和传统网络协议在设计上的不同点,对已有的MAC 协议进行分类,着重研究和比较了S-MAC和T-MAC无线传感器网络MAC 协议。最后,展望了无线传感器网络MAC协议的进一步研究策略和发展趋势。 关键词无线传感器网络(WSNs),MAC协议,能量有效性 Abstract In recent years, wireless sensor networks (WSNs), as a new research direction at home and abroad, has attracted the attention of many researchers and organizations. We conduct a deeply research on wireless sensor network MAC protocol,and we propose the difference between WSN and traditional networks, not only given the characteristic of WSN, we also have illustrate the research orientation in this area.Focus on the research and comparison of S-MAC and T-MAC wireless sensor network MAC protocol. Finally, the future research strategies and trends of MAC protocols in WSNs are summarized. Key words Wireless sensor networks (WSNs), MAC protocols, energy-efficiency

无线传感器网络期末复习题

《无线传感器网络原理与应用》复习题 一、填空题: 1.无线传感器网络的三个基本要素是:、和。 2.无线传感器网络实现了、和的三种功能。 3.无线传感器网络包括四类基本实体对象:目标、观测节点、和 。 4.根据无线传感器网络系统架构,无线传感器网络系统通常包括传感器节点(sensor node)、和。 5.无线传感器节点通常包含四个模块,他们是:数据采集模块、、无线通信模块和。 6.无线传感器网络的协议栈包括物理层、、、传输层和,还包括能量管理、移动管理和任务管理等平台。 7.无线传感器网络的MAC层和物理层协议采用的是国际电气电子工程师协会(IEEE)制定的协议。 8.无线通信物理层的主要技术包括、、调制技术和。 9.在无线通信系统中,有三种影响信号传播的基本机制:、绕射和。 10.无线传感器节点处于、接收状态、侦听状态和时单位时间内消耗的能量是依次减少的。 11.无线传感器网络MAC协议根据信道的分配方式可分为、 和混合式三种。 12.根据无线传感器网络不同的应用可以将其路由协议分为五类,你知道的有:、、。(任意给出3种)。 13. IEEE 标准将无线传感器网络的数据链路层分为两个子层,即和。 14. Zigbee的最低两层即物理层和MAC层使用标准,而网络层和应用层由 Zigbee联盟制定。 15. Zigbee协议中定义了三种设备,它们是:、和Zigbee终端设备。

16.Zigbee支持三种拓扑结构的网络,它们是:、和。 17.无线传感器网络的时间同步方法有很多,按照网络应用的深度可以划分三种:、和。 18.无线传感器网络的时间同步方法有很多,按照时间同步的参考时间可以划分为和。 19.无线传感器网络的时间同步方法有很多,根据需要时间同步的不同应用需求以及同步对象的范围不同可以划分为和。 20.无线传感器网络定位技术大致可以划分为三类:、和 。 21.无线传感器网络典型的非测距定位算法有、 APIT算法、 以及等。 22.无线传感器网络的数据融合策略可以分为、以及。 23.无线传感器网络的故障可以划分为三个层次:、和 。 24. 根据网络提供服务的能力可以将QoS分为3种等级,分别是:、 和。 25. 传感器网络的支撑技术包括:、、及安全机制等。 26. 无线传感器节点的能耗主要集中在模块。 二、名词解释: 1.无线自组织网络 2.无线传感器网络(WSN) 3.基带信号 4.模拟调制 5.数字调制 6.物理信道 7.逻辑信道

无线传感器网络的MAC协议综述

2010届无线传感器 网络论文 题目: 无线传感器网络的MAC协议综述 院系名称:通信学院 专业班级:电子与通信工程8班 学生姓名:郭鑫学号: S100131025 指导教师:王恒教师职称:教授 2010年12月26日 摘要: 无线传感网络作为汁算机、通信和传感器三项技术相结合的产物,已成为计算机与通信领域一个活跃的研究分支。进行实时检测、感知和采集网络分布区域内的各种监测对象的信息,具有极为广阔的应用和发展前景。本文主要介绍了无线传感网MAC协议的特点以及分类,然后对其中MAC协议进行了一一介绍.并作了性能对比。最后阐明了无线传感网基于竞争的MAC协议的发展趋势。

关键词:无线传感网络 MAC协议性能对比 Title:General Analysis of Wireless Sensor Network MAC Protocols Abstract:Wireless sensor networks as juice calculate machine, communication and sensor three technical combination of computer and communication, has become an active field of research branch. Real-time detection, awareness and collecting network distribution area of all sorts of monitoring information about objects, is extremely broad application and development prospect. This article mainly introduced the wireless sensor network MAC protocols of characteristic and classification, and then to the one which MAC protocols are introduced. And performance comparison. At last illustrates wireless sensor network based on competition of MAC protocols development trend. Keyword:Wireless Sensor Network MAC protocols Comparative performance 1.绪论 1.1 研究本课题的意义 随着通信技术、嵌入式计算技术和传感器技术的日益成熟,无线技术的迅猛发展和人们对检测需求的多样化,人们所希望的是能够检测一定区域内的各种环境变量和被监控对象的详尽信息,通过对这些信息的综合处理和传输,使用户获得所需要的各种信息,于是人们提出了无线传感器网络(Wireless Sensor Networks,WSN)的概念。无线传感网能进行实时检测、感知和采集网络分布区域内的各种监测对象的信息,具有极为广阔的应用和发展前景。现已成为计算机与通信领域一个活跃的研究分支,受到人们的极大重视。 1.2 无线传感器网络的应用 无线传感器网络是一种低成本、低功耗特殊的无线自组网,传感器网由大量具有感知能力、计算能力和通信能力的微型传感器节点组成,这些传感器节点不但能够协作地感知、采集和处理网络覆盖区域中感知对象的信息,而且可以处理收集到的探测数据,并将处理后的数据以多跳无线传输的方式送到数据收集节点(sink node)或基地台(base station),从而实现“无处不在的计算”理念。无线传感器网络在军事侦察、生物栖息环境监测、环境信息检测、农业生产、医疗健康监护、建筑与家居、工业生产控制以及商业等领域都有着广泛的应用前景,是近年来军事部门、工业界、学术界极受关注的技术。

无线传感器网络结构

无线传感器的网络结构 一个典型的无线传感器网络的系统架构包括分布式无线传感器节点(群)、接收发送器汇聚节点、互联网或通信卫星和任务管理节点等,如下图所示: 无线传感器网络系统架构 其中A—E则为分布式无线传感器节点群,这些节点群随机部署在监测区域内部或附近,能够通过自组织方式构成网络。这些节点通常是一个微型的嵌入式系统,它们的处理能力、存储能力和通信能力相对较弱,通过携带有限能量的电池供电。从功能上看这些节点,它们不仅要对本地收集的信息进行收集及处理,而且要对其他节点转发来的数据进行存储、管理和融合等处理,同时与其他节点协作完成一些特定的任务。 汇聚节点的各方面能力相对于上述节点群而言相对比较强,它连接传感器网络、Internet等外部网络,实现两种协议栈之间的通信协议转换,同时发布管理节点的监测任务,并把收集的数据转发到外部网络上。 当我们设计无线传感器网络体系结构时要注重以下几个方面: 1.节点资源的有效利用。由于大量低成本微型节点的资源有限,怎样有效地管 理和使用这些资源,并最大限度地延长网络寿命是WSN研究面临的一个关键技术挑战,需要在体系结构的层面上给予系统性的考虑。可供着手的方面有:○1选择低功耗的硬件设备,设计低功耗的MAC协议和路由协议。○2各功能模块间保持必要地同步,即同步休眠与唤醒。○3从系统的角度设计能耗均衡的路由协议,而不是一味的追求低功耗的路由协议,这就需要体系结构提供跨层设计的便利。○4由于节点上计算资源与存储资源有限,不适合进行复杂计算与大量数据的缓存,因此一些空间复杂度和时间复杂度高的协议与算法不适合于WSN的应用。○5随着无线通信技术的进步,带宽不断增加,例

无线传感器网络MAC协议进展

龙源期刊网 https://www.doczj.com/doc/2110386997.html, 无线传感器网络MAC协议进展 作者:李红映高峰 来源:《电脑知识与技术》2009年第13期 摘要:MAC协议是无线传感器网络协议的重要组成部分,网络的性能(如吞吐量、容量、时延及功耗等)依赖于所采用的MAC协议,也是无线传感器网络设计研究的主要技术难点之一。该文指出了无线传感器网络MAC协议设计的主要问题,对几种典型的MAC协议进行了分析和研究,并分析研究了无线传感器网络MAC协议的研究与应用方向。 关键词:无线传感器网络;MAC协议;基于预约的MAC协议;基于竞争的MAC协议;混合MAC协议 中图分类号:TP393文献标识码:A文章编号:1009-3044(2009)13-3394-04 无线传感器网络(Wireless Sensor Networks,简称WSN)是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的、自组织的网络系统,其目的是协作地感知、采集和处理网络覆盖区域中感知对象的信息,并发送给观察者,使得人们能在任何时间、地点和任何环境条件下都能获取大量详实而可靠的信息。传感器网络由于其具有易扩展、自组织、分布式结构、健壮性和实时性等特点,能够广泛地应用在军事国防、工农业、城市管理、 生物医疗、环境监测、抢险救灾、防恐反恐、危险区域远程控制等诸多领域。 在无线传感器网络中,介质访问控制(medium access control,MAC)协议决定无线信道的使用方式,在传感器节点之间分配有限的无线通信资源。用来构建无线传感器网络系统的底层基础 结构。MAC协议处于传感器网络协议的底层部分,对传感器网络的性能有较大影响。是保证无线传感器网络高效通信的关键网络协议之一。 1 无线传感器网络MAC协议设计要点 传感器节点的能量、存储、计算和通信带宽等资源有限,因而单个传感器节点的处理能力 通常比较弱。无线传感器网络的强大功能需要众多节点密切协作才能实现。局部范围内的多点通信需要MAC协议协调节点间的无线信道分配,以高效的支持在整个网络范围内的路由选择与通信路径的正确连通。在设计无线传感器网络的MAC协议时,需要着重考虑以下几个方面: 1) 能源有效性。WSN的基本特征就是能量的局限性。节点一般是以干电池、纽扣电池等提供能量,而且电池的能量通常难以进行补充。在WSN中,无线通信是传感器能量的主要消 耗。MAC协议要尽可能的节约能源,如减少冲突和串音、最小化控制开销、降低占空比和尽量

无线传感器网络练习题

一、填空 1.无线传感器网络系统通常包含汇聚节点、传感器节点、管理节点。 2.传感器节点一般由通信模块、传感器模块、存储模块和电源模块 组成。 3.无线传感器节点的基本功能是:采集数据、数据处理、控制和通 信。 4.传感器节点通信模块的工作模式有发送、接收和空闲。 5.无线通信物理层的主要技术包括介质的选择、频段的选择、调制 技术和扩频技术。 6.扩频技术按照工作方式的不同,可以分为四种:直接序列扩频、 跳频、跳时和宽带线性调频扩频。 7.目前无线传感器网络采用的主要传输介质包括无线电波、光纤、 红外线等。 8.无线传感器网络可以选择的频段有:868MHz、915MHz、和5GHz。 9.传感器网络的电源节能方法:休眠机制、数据融合。 10.根据对传感器数据的操作级别,可将数据融合技术分为一下三类: 决策级融合、特征级融合、数据级融合。 11.根据融合前后数据的信息含量分类(无损失融合和有损失融合) 12.根据数据融合与应用层数据语义的关系分类(依赖于应用的数据 融合、独立于应用的数据融合、结合以上两种技术的数据融合)13.定向扩散路由机制可以分为三个阶段:兴趣扩散、梯度建立、路 径加强。

14.无线传感器网络的关键技术主要包括:时间同步机制、数据融合、 路由选择、定位技术、安全机制等。 15.无线传感器网络通信安全需求主要包括结点的安全保证、被动抵 御的入侵能力、主动反击入侵的能力。 16.标准用于无线局域网,标准用于低速无线个域网。 17.规定三种帧间间隔:SIFS、PIFS、DIFS。 18.标准为低速个域网制定了物理层和MAC子层协议。 19.ZigBee主要界定了网络、安全和应用框架层,通常它的网络层支 持三种拓扑结构:网状网络、树形网络、星型网络。 20.传感器网络中常用的测距方法有:接收信号强度指示、到达时间 差、到达角。 21.ZigBee网络分4层分别为:物理层、网络层、应用层、数据链路 层。 22.与传统网络的路由协议相比,无线传感器网络的路由协议具有以 下特点:能量优先、基于局部拓扑、以数据为中心、应用相关。 23.数据融合的内容主要包括:目标探测、数据关联、跟踪与识别、 情况评估与预测。 24.无线传感器网络信息安全需求主要包括数据的机密性、数据鉴别、 数据的完整性、数据的实效性。 25.传感器结点的限制条件是电源能量有限、通信能力有限、计算和 存储能力有限。

无线传感器网络MAC协议:SMAC和TMAC

无线传感器网络MAC协议:SMAC和TMAC 摘要:无线传感器网络是一种新兴的网络技术,它的出现使得环境智能成为现实。它是由一些微小的节点在特设环境中彼此连接,并相互配合,而形成的一个网络。它具有广泛的应用,例如入侵者警报和跟踪,环境监测,工业过程监测和战术系统等潜在领域。然而,当无线网络在地势陡峻的地方传播时,为了实现地区全覆盖就需要使用大量的无线传感器,但它们的电池一旦耗尽时要想更换就很困难。所以节能对于传感器网络是非常必要的特别是在MAC层水平。现已经提出了多种针对不同目标的MAC协议的无线传感器网络。在各种协议中SMAC就是其中一个简单修改的成果。SMAC有静态睡眠时间表同时TMAC有动态睡眠时间表。在本文中,我们首先概述了无线传感器网络的基础知识,然后我们讨论了MAC层的性能特征,在随后的一节中概括了WSN中能源浪费的原因。紧接着描述了 i.e SMAC 和TMAC两个协议的各自的优缺点。最后,在结束之前,根据无线传感器网络与SMAC 和TMAC有关的各种设计过程都包含在文章中。 关键词:无线传感器网络,环境智能,MAC层,能源废物,SMAC,TMAC 1.引言 在开始介绍无线传感器网络前,我们需要了解为无线传感器网络发明铺平道路的要求和条件。通常情况下在我们的工作场所我们所使用的系统,主要包括个人电脑,笔记本电脑,电脑,智能手机和平板电脑等。这些系统都是建立在“人 - 系统”互动的概念上的。在这种人与信息处理系统交流互动的系统中。整个装置是间接连接到物理环境的。由用户和用户交流系统读取物理环境。另一方面,系统的装置与物理环境相互作用,并自行调整。在图1和图2中描绘了这两个方案。 系统人环境 图 1 人机交互 系统环境人 图 2 系统环境交互

苏州大学无线传感器网络期末总复习

一、无线传感器网络概述 1.无线传感器分为两种: (1)有基础设施网,需要固定基站 (2)无基础设施网,称为无线Ad Hoc网络,节点为分布式 A.移动Ad Hoc网络,终端是快速移动的 B.无线传感器网络,节点是静止的或移动很慢 2.无线传感器网络的标准定义:是大量的静止或移动的传感器以自组织和多跳的方式 构成的无线网络,目的是协作地探测、处理和传输网络覆盖区内感知对象的监测信息,并报告给用户(数据采集[传感器技术]、处理[计算机技术]和传输功能[通信技术]) 3.无线传感器网络的三个基本元素 (1)传感器 (2)感知对象 (3)用户 4.节点的工作模式:发送、接收、空闲、睡眠 5.传感器节点由4个部分组成,传感器单元、处理器单元、无线通信单元、电源单元。 除了电源单元,其他都在消耗能量,传感器单元能耗比处理器与无线传输能耗低很多。 6.传感器节点由传感器模块、处理器模块、无线通信模块和能量供应模块四部分组成

7.能量消耗的两种类型:通讯相关、计算相关。 8.传感器节点的限制 传感器节点在实现各种网络协议和应用系统时,存在一些限制和约束,这些约束把无线传感器网络和计算机网络区分开来。 (1)电源能量有限(消耗能量的模块有传感器、处理器和无线通信模块[发送、接收、空闲、睡眠]) (2)通信能力有限 (3)计算和存储能力有限 9.传感器组网的特点(与其他网络的区别) (1)自组织性:自动进行配置和管理,通过图谱控制机制和网络协议,自动形成转 发监测数据的多跳无线网络系统 (2)以数据为中心:根据任务采集数据,关心数据本身和数据产生位置 (3)应用相关性:不同的应用对传感器网络的要求不同 (4)动态性:结点故障失效、通信链路宽带变化、新节点加入、基本元素的移动而 造成拓扑结构的改变 (5)网络规模大:分布在很大的地理区域内,结点部署密集 A.通过不同空间视角获得的信息具有更大的信噪比 B.分布式处理大量采集信息,提高检测的精确度 C.大量冗余节点的存在,使系统具有很强的容错性能

《无线传感器网络》选修课试题

一、填空题(每题4分,共计60分) 1、传感器网络的三个基本要素:传感器,感知对象,观察者 2、传感器网络的基本功能:协作地感知、采集、处理和发布感知信息 3、无线传感器节点的基本功能:采集、处理、控制和通信等 4、传感器网络常见的时间同步机制有: 5、无线通信物理层的主要技术包括:介质的选择、频段的选择、调制技术和扩频技术 6扩频技术按照工作方式的不同,可以分为以下四种: :直接序列扩频、跳频、跳时、宽带线性调频扩频 7、定向扩散路由机制可以分为三个阶段:周期性的兴趣扩散、梯度建立和路径加强 8、无线传感器网络特点:大规模网络、自组织网络、可靠的网络、以数据为中心的网络、应用相关的网络 9、无线传感器网络的关键技术主要包括:网络拓扑控制、网络协议、时间同步、定位技术、数据融合及管理、网络安全、应用层技术等 10、IEEE 802.15.4标准主要包括:物理层和MAC层的标准 11、简述无线传感器网络后台管理软件结构与组成:后台管理软件通常由数据库、数据处理引擎、图形用户界面和后台组件四个部分组成。 12、数据融合的内容主要包括:多传感器的目标探测、数据关联、跟踪与识别、情况评估和预测 13、无线传感器网络可以选择的频段有:868MHZ、915MHZ、2.4GHZ 5GHZ 14、传感器网络的电源节能方法:休眠机制、数据融合等, 15、传感器网络的安全问题:(1) 机密性问题。 (2) 点到点的消息认证问题。 (3) 完整性鉴别问题。 16、802.11规定三种帧间间隔:短帧间间隔SIFS,长度为 28 μs 、点协调功能帧间间隔PIFS长度是 SIFS 加一个时隙(slot)长度,即78 μs 分布协调功能帧间间隔DIFS ,DIFS长度=PIFS +1个时隙长度,DIFS 的长度为128 μs

无线传感器网络体系结构

无线传感器的网络体系结构 一个典型的无线传感器网络的系统架构包括分布式无线传感器节点(群)、接收发送器汇聚节点、互联网或通信卫星和任务管理节点等,如下图所示: 无线传感器网络系统架构 其中A—E则为分布式无线传感器节点群,这些节点群随机部署在监测区域内部或附近,能够通过自组织方式构成网络。这些节点通常是一个微型的嵌入式系统,它们的处理能力、存储能力和通信能力相对较弱,通过携带有限能量的电池供电。从功能上看这些节点,它们不仅要对本地收集的信息进行收集及处理,而且要对其他节点转发来的数据进行存储、管理和融合等处理,同时与其他节点协作完成一些特定的任务。 汇聚节点的各方面能力相对于上述节点群而言相对比较强,它连接传感器网络、Internet等外部网络,实现两种协议栈之间的通信协议转换,同时发布管理节点的监测任务,并把收集的数据转发到外部网络上。 当我们设计无线传感器网络体系结构时要注重以下几个方面: 1.节点资源的有效利用。由于大量低成本微型节点的资源有限,怎样有效地管 理和使用这些资源,并最大限度地延长网络寿命是WSN研究面临的一个关键技术挑战,需要在体系结构的层面上给予系统性的考虑。可供着手的方面有:○1选择低功耗的硬件设备,设计低功耗的MAC协议和路由协议。○2各功能模块间保持必要地同步,即同步休眠与唤醒。○3从系统的角度设计能耗均衡的路由协议,而不是一味的追求低功耗的路由协议,这就需要体系结构提供跨层设计的便利。○4由于节点上计算资源与存储资源有限,不适合进行复杂计算与大量数据的缓存,因此一些空间复杂度和时间复杂度高的协议与算法不适合于WSN的应用。○5随着无线通信技术的进步,带宽不断增加,例如超宽带(UWB)技术支持近百兆的带宽。WSN在不远的将来可以胜任视频音频传输,因此我们在体系结构上设计时需要考虑到这一趋势,不能仅仅

无线传感器网络作业

1分析WSN和AD hoc网络特征的相同之处和不同处? 移动Ad hoc网络是由无线移动节点组成的具有任意和临时性网络拓扑的动态自组织网络系统,有时称作MANET(Mobile Ad hoc NETworks,移动Ad hoc 网络)。每个节点既可以作为主机,同时也可以作为路由器来使用,除了可以运行用户应用程序,还可以通过其它节点转发数据包,节点之间是以对等方式连接的。 无线传感器网络是一种独立出现的计算机网络,它的基本组成单位是节点,这些节点集成了传感器、微处理器、无线接口和电源四个模块。 1.1 相同点 都是自组织网络,网络自动配置,动态拓扑结构,需要考虑网络的安全性等。 1.2 不同点 无线传感器网络作为一种分布式传感器网络和移动Ad hoc网络有相似点,但又有很多不同。移动Ad hoc网络可以用于没有无线基础设施存在或出于费用和安全方面的考虑不方便设置无线基础设施的场合,而传感器很多时候被布置在近地环境中,地波吸收现象不能被忽视,并且高密度布置的传感器网络中的多用户接口也造成了很高的误比特率。 作为移动通信的两种基本组网模式之一,移动ad hoc 网络中的传输模型是典型的多对多式,而传感器网中的传输模型更偏向于分层次模型(多对一传输)。一般来说,无线传感器网络的节点比典型的移动终端或手持设备有更多的资源受限要求,但对于计算的要求则是可有可无的,当需要执行计算任务时,如果通信成本比计算成本低,计算任务就被送到中心节点去执行。 2.WSN和传统无线宽带网络在设计中,各自的首要设计目标是什么? 2.1 WSN的首要设计目标 通常传感器节点都由能量有限的电池提供能量,且在实际应用中由于传感器节点数量多,分布广,部署环境复杂,因而在大多数部署环境中通过更换电池或充电的方式来补充能量是不可行的。能量有限是WSN发展的一个瓶颈。因此,如何合理有效地使用现有能量最大化WSN的生命周期便成了首要的设计目标。其中生命周期是指从网络开始正常运行到第一个节点由于能量耗尽所经历的时间。 2.2 无线宽带网络的首要设计目标 传统宽带无线网络的首要设计目标是提供高服务质量和高效带宽利用,其次才考虑节约能源。

相关主题
文本预览
相关文档 最新文档