当前位置:文档之家› 搅拌器设计计算复习过程

搅拌器设计计算复习过程

搅拌器设计计算复习过程
搅拌器设计计算复习过程

搅拌器设计计算

搅拌器设计计算

(作者:纪学鑫)

一、设计数据:

1、混合池实际体积V=1.15m ×1.15m ×6.5m ≈8.60m 3

∴设混合池有效容积V=8m 3

2、混合池流量Q=0.035m 3/s

3、混合时间t=10s

4、混合池横截面尺寸1.15m ×1.15m ,当量直径D=πω4L =π

15.115.14??=1.30m 5、混合池液面高度H =

24πD V =m ..π036301842≈?? ∴混合池高度H '=6.03m+(0.3~0.5)m=6.33~6.53 (m);取6.5m

6、挡板结构及安装尺寸()m 54.0036.0m 241361~)(~≈??

? ??D ;数值根据《给水排水设计手册》表4-28查得,以下均已此手册作为查询依据。

7、取平均水温时,水的粘度值()s a ?P μ=1.14×10-3s a ?P

取水的密度3/kg 1000m =ρ

8、搅拌强度

1)搅拌速度梯度G ,一般取500~1000s -1。

混合功率估算:N Q =K e Q(kw)

K e --单位流量需要的功率,K e 一般=4.3~173/s kw m ?

∴混合功率估算:3/s kw 17~3.4m N Q ?=

1-3-3

e e )30.1365~65.686(s

8s a 1014.1m /s kw 17~3.41000t 1000t 1000s P K Q Q K G ≈????===?)(μμ

取搅拌速度梯度1-s 740=G

2)体积循环次数'Z

搅拌器排液量'Q ,213.08.008.1385.0)/(333'=??==s m nd k Q q

折叶桨式,片,245=?=Z θ,流动准数385.0k q 取,见表4-27查取;

---n 搅拌器转速)

(s /r ;d 搅拌器直径(m) 转速d 60n πν=

;---线速度v ,直径d ,根据表4-30查取。 ()266.03===?V

t nd k V t Q Z q ''容积 3)混合均匀度U ,一般为80%~90%。U 取80%。

9、搅拌机的布置形式、加药点设置。

1)立式搅拌机的布置:一般采用中央置入(或称顶部插入)式。

2)搅拌器的位置及排泄方向:搅拌器的位置应避免水流直接影响侧面冲击。搅拌器距液面的距离通常小于搅拌器直接的1.5倍。

二、搅拌器的选用及主要参数

1. 选用折叶桨式

2. 桨叶数2=Z

3. 搅拌器直径0.8m d m 0.867~433.0m 32~31d ==??

? ??=,取)()(D 4. 搅拌器螺距d s =

5. 搅拌器层数d

H ,取7,(公司取层数4) 6. 搅拌器外缘线速度ν取(1.0~5.0)m/s

7. 搅拌器宽度:b=(0.1~0.25)d=(0.08~0.2)m,取0.11m

三、搅拌器转速及功率设计

1、根据要求的搅拌梯度G 值计算:

1)搅拌器外缘线速度ν取2.72m/s

2)搅拌器转速:

r/s .~.r/.~.m/s π

..~.πd v n )()()(002400min 3711987238005016060≈≈?==, 取65r/min=1.08r/min 。

2)搅拌器功率计算:

① 求雷诺准数:6322e 10606010

141100008180R ?≈???==....μn ρd -,流动形态属于层流。

② 求功率准数:查网络数据,功率准数p N 查得0.52:p N 取0.63~0.75

③ 求搅拌功率:()()2.1/35.0e 3e 3e p sin R 2.310R 2.110R 66.066.0θD b p D H B A N +??

? ?????? ??+++=, ()[]185********

+-+=).(d/D b/D A ()()[]D d D B /14.15.0/b 4-3.1210--=,()()()D b D d D b P /75.0/5.2/41.12

---+=,根据表4-22查得,或者查图4-33。 999.0821.023.174.29====E P B A ,,,

5168.0=?P N ,()kw .....kw g d ρn N N p 215081

9102800811000516801025353=????== 校核合格。,kw 212.01000t kw 215.02

P ==≈=G Q N N Q μ

2、根据要求的体积循环次数Z'计算: 计算搅拌器排液量:/s m ..t Z'V Q'321301082660=?==

计算搅拌器转速:min 6508180385021303

3r/r/s ....d K Q'n q ≈=?== 校核搅拌器外缘线速度:m/s .π..πdn v 71208180≈?==

。校核合格0571201m/s,.m/s .v m/s .<=<

计算搅拌器功率:kw .d ρn N N P 21501000

5

3== 3、电动机功率计算:274.099

.095.0215.02.154=??===ηηηKgN KgN N A

高速公路沥青路面设计实例

高速公路沥青路面设计实例 一、设计资料: 本公路等级为高速公路,经调查得,近期交通量如下表所示。交通量年平均 区。 增长率为9.5%,设计年限为15年,该路段处于Ⅳ 2 二、交通分析: 轴载分析路面设计以BZZ-100为标准轴载。 1、以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次 (1)累计当量轴次 注:轴载小于25KN的轴载作用不计。 (2)累计当量轴次 根据公路沥青路面设计规范,高速公路沥青路面的设计年限取15年,六车道的车道系数η取0.3~0.4,取0.3。交通量平均增长率为9.5%。

2、验算半刚性基层层底拉应力中的累计当量轴次 (1)轴载换算 车型i P(KN) C1C2i N(次/日) 小客车 前轴16.5 1 18.5 6750 0.0686 后轴23.0 1 1 6750 0.05286 中客车 SH130 前轴25.55 1 18.5 2000 0.67194 后轴45.10 1 1 2000 3.42328 大客车 CA50 前轴28.70 1 18.5 1250 1.06448 后轴68.20 1 1 1250 58.5039 小货车 BJ130 前轴13.40 1 18.5 4250 0.00817 后轴27.40 1 1 4250 0.13502 中货车 CA50 前轴28.70 1 18.5 1500 1.27737 后轴68.20 1 1 1500 70.2047 中货车 EQ140 前轴23.70 1 18.5 2125 0.39131 后轴69.20 1 1 2125 111.74 大货车 JN150 前轴49.00 1 18.5 2125 130.647 后轴101.60 1 1 2125 2412.73 特大车日野 KB222 前轴50.20 1 18.5 1500 111.916 后轴104.30 1 1 1500 2100.71 拖挂车 五十铃 前轴60.00 1 18.5 187.5 58.2617 后轴100(3轴) 3 1 187.5 562.5 5624.304 注:轴载小于50KN的轴载作用不计 (2)累计当量轴次 根据公路沥青路面设计规范,高速公路沥青路面的设计年限取15年,六车道的车道系数η取0.3~0.4,取0.3。交通量平均增长率为9.5%。 三、设计指标的确定 8 2 1 ? ? ? ? ? ' ' P P n C C i i 8 2 1 1 ? ? ? ? ? ' ' ='∑ = P P n C C N i i i i

小型搅拌器三维造型设计及关键零部件工艺设计

小型搅拌器三维设计及关键零部件工艺分析 摘要 搅拌设备使用历史悠久,应用范围广。在化学工业、石油工业、建筑行业等等传统工业中均有广泛的使用。搅拌操作看来似乎简单,但实际上,它所涉及的内容却极为广泛。本文介绍了小型搅拌器设计的基本思路和基本理论,分析了搅拌器的基本结构及其相关内容及搅拌器的运动和其动力装置。通过对搅拌器的基本设备的描述和对其基本工作原理、作用和功能等相关文献的参考,从而对小型搅拌器的设计加以综述。用pro/e 设计软件对搅拌器的零部件和整体进行三维设计。并对关键的零部件进行了工艺分析。 关键词:传动装置,联轴器,支承装置,电动机,减速器

The 3D Design of Small Blender and the Process analysis for the Key components Author:Du Bing Tutor:Yang Hansong Abstract The equipment of pulsator have a long history and are used in most areas. meawhile pulsator are used in tradition industry such as chemistry industry,petroleum industry,architecture industry and so on. The operation of mix round looks as if simpleness,but actually,the ingredient it involved are plaguy complexity. Tht text introduces the basic consider way and the basic theoretics of small pulsator design,and analyzed the basic configuration of pulsator and interfix content and analyzed the athletics and motivity equipment of describe the basic fixture of pulsator and consult its basic employment principle,function and operation,thereby summarize the design of small https://www.doczj.com/doc/2114137769.html,ing Pro/e software to draw a stirrer on the components and the overall three-dimensional image.And the analysis of key parts of the process. Key word: Gearing,Join shaft ware,Bearing device,Electromotor,Reducer 目录

671 搅拌器的设计

摘要 完成絮凝过程的絮凝池(一般常称反应池),在净水处理中占有重要的地位。天然水中 的悬浮物质及肢体物质的粒径非常细小。为去除这些物质通常借助于混凝的手段,也就是 说在原水中加入适当的混凝剂,经过充分混和,使胶体稳定性被坏(脱稳)并与混凝剂水介 后的聚合物相吸附,使颗粒具有絮凝性能。而絮凝池的目的就是创造合适的水力条件使这 种具有絮凝性能的颗粒在相互接触中聚集,以形成较大的絮凝体(絮粒)。因此,絮凝池设 计是否确当,关系到絮凝的效果,而絮凝的效果又直接影响后续处理的沉淀效果。絮凝搅 拌机是絮凝池机械搅拌的装置,它主要用于废水处理的搅拌过程。本设计提到了絮凝池的 设计,搅拌机的设计以及其工艺流程。 关键词:絮凝池 混凝剂 沉淀效果 絮凝性能 Abstract Accomplish flocculation process flocculation pool (call reaction in general often pool) , handle middle in clean water occupying important position. Natural water suspension matter and limb matter grain diameter are very trivial.Be to dislodge these matter being backed by the means drifting along curdling generally , that is ,add the appropriate coagulant , blend through sufficiently in raw water, let colloid stability be spoiled the polymer (coming off after steady) and being situated between with coagulant water looks at and appraises an adsorption , makes a pellet have the flocculation function.But, that flocculation pool purpose is to create appropriate waterpower condition makes this have flocculation function pellet assembling, to form bigger flocculation body (catkin granule) in contacting middle mutually.But therefore, flocculation pool designs thinking that indeed or not, effect being related to a flocculation, the flocculation effect has direct impact to follow-up treatment precipitayion effect. The flocculation mixer is flocculation pool mechanical rabble device , it is used for the waste water treatment mixing process mainly. Design the design having mentioned flocculation pool originally, the mixer design and whose process flow. Keywords:Flocculation pool Coagulant Precipitayion effect Flocculation function

路面结构设计计算示例

课程名称: 学生: 学生学号: 专业班级: 指导教师: 年月日

路面结构设计计算 1 试验数据处理 1.1 路基干湿状态和回弹模量 1.1.1 路基干湿状态 路基土为粘性土,地下水位距路床顶面高度0.98m~1.85m。查路基临界高度参考值表可知IV5区H1=1.7~1.9m,H2=1.3~1.4m,H3=0.9~1.0m,本路段路基处于过湿~中湿状态。 1.1.2 土基回弹模量 1) 承载板试验 表1.1 承载板试验数据 承载板压力(MPa) 回弹变形 (0.01mm) 拟合后的回弹变形 (0.01mm) 0.02 20 10 0.04 35 25 0.06 50 41 0.08 65 57 0.10 80 72 0.15 119 剔除 0.20 169 剔除 0.25 220 剔除 计算路基回弹模量时,只采用回弹变形小于1mm的数据,明显偏离拟合直线的点可剔除。拟合过程如图所示:

路基回弹模量: 210101 1000 (1)4 n i i n i i p D E l πμ===-=∑∑ 2)贝克曼梁弯沉试验 表1.2 弯沉试验数据 测点 回弹弯沉(0.01mm ) 1 155 2 182 3 170 4 174 5 157 6 200 7 147 8 173 9 172 10 207 11 209 12 210 13 172 14 170 根据试验数据: l = ∑ll l = 155+?+170 14 =178.43

15.85(0.01mm)S = =s = √∑(ll ?l )2l ?1 =20.56(0.01mm) 式中:l ——回弹弯沉的平均值(0.01mm ); S ——回弹弯沉测定值的标准差(0.01mm ); l i ——各测点的回弹弯沉值(0.01mm ); n ——测点总数。 根据规要求,剔除超出(2~3)l S ±的测试数据,重新计算弯沉有效数据的平均值和标准差。计算代表弯沉值: 1174.79 1.64515.85200.86(0.01mm)a l l Z S - =+=+?=l 1=l +l l l =178.43+ 1.645×20.56=21 2.25 Z a 为保证率系数,高速公路、一级公路取2.0,二、三级公路取1.645,四级公路取1.5。 土基的回弹模量: 220201220.70106.5 (1)(10.35)0.71246.3(MPa)200.860.01 p E l δμα??= -=?-?=? 1.2 二灰土回弹模量和强度 1. 2.1 抗压回弹模量 二灰土抗压回弹模量为:735MPa 。 1.2.2 f50mm×50mm试件劈裂试验 表1.3 二灰土试件劈裂试验数据 f50mm×50mm试件劈裂试验 最大荷载(N ) 2t P Dh σπ= (kPa ) 处理结果 有效数据平均值t σ(kPa ) 250.57 有效数据样本标准差S (kPa ) 12.07 变异系数C v (%) 4.82 变异系数应小于6%,否则可在剔除偏差较大的数据后,重新计算平均值和标准差。设计

搅拌机设计计算

搅拌机的设计计算 7.5kw 搅拌机设计: 雷,此时为湍流,2 K Np ==φ常数。 查表知:诺数的计算: 4 032 .08.0130010436833Re 285 2?≈===??μραi n 即4 10Re >蜗轮式,四平片时,5.42 =K 。 由公式5 1 3d n N N p ρ=,式中Np ——功率准数。 则,搅拌功率5 1 32d n K N ρ= 5 360 858.0)(13005.4???= W W 45.55450== 则,电机的最小功率为: η N N =电 ,取η=0.85 则KW N 41.685 .045.5电 == 则选用电机的功率为7.5KW 。 圆盘直径υ450mm ,选定叶轮直径υ800mm 。 桨叶的危险断面Ⅰ—Ⅰ(如上图): 该断面的弯矩值: (对于折叶蜗轮)

θSin n N x r x Z j M 155 .90 30?? ? =- 式中n ——转速;N ——功率; x ——桨叶上液体阻力的合力的 作用位置。 计算公式为: 3 2 31 4 24143 0r r r r x --?= 3 34412.04.012.04.04 3--? = =0.306(m) 则θ Sin n N x r x Z j M 155.90 30? ? ? =- 03 45185 105.7306 .0225.0306.04 55 .9Sin ?? ?= ?- =78.86(N.m )(Z=4叶片,θ=45°倾 角) 对于Q235A 材料,MPa 240~2205 =σ 当取n=2~2.5时,[σ]=88~100Mpa. 取[σ]=90Mpa 计算,得62 bh =ω(矩形截面) 且b=200mm ,求h 值。 由][σω≥M 有6 66.8109022.0?≥??h η, 可得h ≥0.00512m, 即h ≥5.12mm 考虑到腐蚀,则每边增加1mm 得腐蚀余量。 即,需叶片厚度为≥7.12, 取8mm 厚的钢板。 叶轮轴扭转强度计算验证

L真空搅拌机设计说明书

毕业论文(设计)论文(设计)题目:真空搅拌机的设计 姓名沈委 学号 院系机电工程学院 专业机械设计制造及其自动化 年级级 指导教师刘文平 年月日

目录 摘要 ............................................................. 错误!未指定书签。 ................................................................... 错误!未指定书签。第章引言 ..................................................... 错误!未指定书签。 选题的目的和意义...................................... 错误!未指定书签。 国内外发展概况及趋势................................ 错误!未指定书签。第章设计参数 ....................................................................... 设计依据 .................................................. 错误!未指定书签。 产品的用途及使用范围................................ 错误!未指定书签。 主要工作原理............................................ 错误!未指定书签。 关键问题及解决办法................................... 错误!未指定书签。 传动系统的选择..................................... 错误!未指定书签。 机构的功能特点..................................... 错误!未指定书签。第章设计计算 ............................................... 错误!未指定书签。 总体方案设计............................................ 错误!未指定书签。 传动系统总体设计............................................................... 传动系统的选择..................................... 错误!未指定书签。 选择电动机........................................... 错误!未指定书签。 选择联轴器........................................... 错误!未指定书签。 选择减速器.................................................................... 旋转盘的设计........................................ 错误!未指定书签。 旋转盘上键槽及键选择 ....................................................

路面结构设计计算书

公路路面结构设计计算示例 、刚性路面设计 交通组成表 1 )轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ①轴载换算: 双轴一双轮组时,按式 i 1.07 10 5 p °型;三轴一双轮组时,按式 N s i N i P i 16 100 式中:N s ——100KN 的单轴一双轮组标准轴载的作用次数; R —单轴一单轮、单轴一双轮组、双轴一双轮组或三轴一双轮组轴型 i 级轴载的总重KN ; N i —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i —轴一轮型系数,单轴一双轮组时, i =1 ;单轴一单轮时,按式 3 2.22 10 P 0.43 计算; 8 0.22 2.24 10 R 计算

N i1 NA 注:轴载小于40KN 的轴载作用不计。 ②计算累计当量轴次 根据表设计规范,一级公路的设计基准期为 30年,安全等级为二级,轮迹横向分布系数 g r 0.08,则 , :t 30 N N s (1 g r ) 1 365 834.389 (1 0.08) g r 4 4 量在100 10 ~ 2000 10中,故属重型交通。 2) 初拟路面结构横断面 由表3.0.1,相应于安全等级二级的变异水平为低 ~中。根据一级公路、重交通等级和低级变异水平等 级,查表 初拟普通混凝土面层厚度为 24cm ,基层采用水泥碎石,厚 20cm ;底基层采用石灰土,厚 20cm 。 普通混凝土板的平面尺寸为宽 3.75m ,长5.0m 。横缝为设传力杆的假缝。 式中:E t ――基层顶面的当量回弹模量,; E 0——路床顶面的回弹模量, E x ――基层和底基层或垫层的当量回弹模量, E 1,E 2 ――基层和底基层或垫层的回弹模量, h x ――基层和底基层或垫层的当量厚度, 1 365 0.2 6900125362 其交通 0.08 查表的土基回弹模量 设计弯拉强度:f cm 结构层如下: E 。 35.0MP a ,水泥碎石 E 1 1500MP a ,石灰土 E ? 550 MP a 5.0MP a E c 3.1 104 MP a 水泥混凝土 24cm E = . x .g'-iF 水泥碎石20cm E :=150OMP Q 石灰土 20cm E =53C MPa E x h 2 D x h ; E z h ; h x 12 3 1500 0.2 12 4.700(MN ( 12D ( W E t 12 6.22 0.202 1500 0.202 550 2 2 1025MP a 0.202 0.202 m 0)2 ( 1 4 3 550 0.2 (0.2 12 m) ( 1025 0.380m 1 )1 E 2h 2 0.2) 4 2 ( 1500 0.2 550 0.2 1 )1 1.51(牙) E 。 0.45 6.22 1 1.51 (^) 0.45 35 4.165 E x 、0.55 1 1.44( ) 1 E E 1 ah E ( -) 4.165 0.38635 1.44 (些)0.55 35 0.786 1025 丄 ( )3 212276MP a 35 按式() s tc 计算基层顶面当量回弹模量如下: h 12 E 1 h ;E 2 2 3) 确定基层 E , E

搅拌器设计计算复习过程

搅拌器设计计算

搅拌器设计计算 (作者:纪学鑫) 一、设计数据: 1、混合池实际体积V=1.15m ×1.15m ×6.5m ≈8.60m 3 ∴设混合池有效容积V=8m 3 2、混合池流量Q=0.035m 3/s 3、混合时间t=10s 4、混合池横截面尺寸1.15m ×1.15m ,当量直径D=πω4L =π 15.115.14??=1.30m 5、混合池液面高度H = 24πD V =m ..π036301842≈?? ∴混合池高度H '=6.03m+(0.3~0.5)m=6.33~6.53 (m);取6.5m 6、挡板结构及安装尺寸()m 54.0036.0m 241361~)(~≈?? ? ??D ;数值根据《给水排水设计手册》表4-28查得,以下均已此手册作为查询依据。 7、取平均水温时,水的粘度值()s a ?P μ=1.14×10-3s a ?P 取水的密度3/kg 1000m =ρ 8、搅拌强度 1)搅拌速度梯度G ,一般取500~1000s -1。 混合功率估算:N Q =K e Q(kw) K e --单位流量需要的功率,K e 一般=4.3~173/s kw m ? ∴混合功率估算:3/s kw 17~3.4m N Q ?= 1-3-3 e e )30.1365~65.686(s 8s a 1014.1m /s kw 17~3.41000t 1000t 1000s P K Q Q K G ≈????===?)(μμ

取搅拌速度梯度1-s 740=G 2)体积循环次数'Z 搅拌器排液量'Q ,213.08.008.1385.0)/(333'=??==s m nd k Q q 折叶桨式,片,245=?=Z θ,流动准数385.0k q 取,见表4-27查取; ---n 搅拌器转速) (s /r ;d 搅拌器直径(m) 转速d 60n πν= ;---线速度v ,直径d ,根据表4-30查取。 ()266.03===?V t nd k V t Q Z q ''容积 3)混合均匀度U ,一般为80%~90%。U 取80%。 9、搅拌机的布置形式、加药点设置。 1)立式搅拌机的布置:一般采用中央置入(或称顶部插入)式。 2)搅拌器的位置及排泄方向:搅拌器的位置应避免水流直接影响侧面冲击。搅拌器距液面的距离通常小于搅拌器直接的1.5倍。 二、搅拌器的选用及主要参数 1. 选用折叶桨式 2. 桨叶数2=Z 3. 搅拌器直径0.8m d m 0.867~433.0m 32~31d ==?? ? ??=,取)()(D 4. 搅拌器螺距d s = 5. 搅拌器层数d H ,取7,(公司取层数4) 6. 搅拌器外缘线速度ν取(1.0~5.0)m/s 7. 搅拌器宽度:b=(0.1~0.25)d=(0.08~0.2)m,取0.11m 三、搅拌器转速及功率设计

结构设计原理知识点

第一章 钢筋混凝土结构基本概念及材料的物理力学性能 1.混凝土立方体抗压强度cu f :(基本强度指标)以边长150mm 立方体试件,按标准方法制作养护28d ,标准试验方法(不涂润滑剂,全截面受压,加载速度0.15~0.25MPa/s )测得的抗压强度作为混凝土立方体抗压强度 cu f 。 影响立方体强度主要因素为试件尺寸和试验方法。尺寸效应关系: cu f (150)=0.95cu f (100) cu f (150)=1.05cu f (200) 2.混凝土弹性模量和变形模量。 ①原点弹性模量:在混凝土受压应力—应变曲线图的原点作切线,该切线曲率即为原点弹性模量。表示为:E '=σ/ε=tan α0 ②变形模量:连接混凝土应力应变—曲线的原点及曲线上某一点K 作割线,K 点混凝土应力为σc (=0.5c f ),该割线(OK )的斜率即为变形模量,也称割线模量或弹塑性模量。 E c '''=tan α1=σc /εc 混凝土受拉弹性模量与受压弹性模量相等。 ③切线模量:混凝土应力应变—上某应力σc 处作一切线,该切线斜率即为相应于应力σc 时的切线模量''c E =d σ/d ε 3 . 徐变变形:在应力长期不变的作用下,混凝土的应变随时间增长的现象称为徐变。 影响徐变的因素:a. 内在因素,包括混凝土组成、龄期,龄期越早,徐变越大;b. 环境条件,指养护和使用时的温度、湿度,温度越高,湿度越低,徐变越大;c. 应力条件,压应力σ﹤0.5 c f ,徐变与应力呈线性关系;当压应力σ介于(0.5~0.8)c f 之间,徐变增长比应力快;当压应力σ﹥0.8 c f 时,混凝土的非线性徐变不收敛。 徐变对结构的影响:a.使结构变形增加;b.静定结构会使截面中产生应力重分布;c.超静定结构引起赘余力;d.在预应力混凝土结构中产生预 应力损失。 4.收缩变形:在混凝土中凝结和硬化的物理化学过程中体积随时间推移而减少的现象称为收缩。 混凝土收缩原因:a.硬化初期,化学性收缩,本身的体积收缩;b.后期,物理收缩,失水干燥。 影响混凝土收缩的主要因素:a.混凝土组成和配比;b.构件的养护条件、使用环境的温度和湿度,以及凡是影响混凝土中水分保持的因素;c.构件的体表比,比值越小收缩越大。 混凝土收缩对结构的影响:a.构件未受荷前可能产生裂缝;b.预应力构件中引起预应力损失;c.超静定结构产生次内力。 5.钢筋的基本概念 1.钢筋按化学成分分类,可分为碳素钢和普通低合金钢。 2钢筋按加工方法分类,可分为a.热轧钢筋;b.热处理钢筋;c.冷加工钢筋(冷拉钢筋、冷轧钢筋、冷轧带肋钢筋和冷轧扭钢筋。) 6.钢筋的力学性能 物理力学指标:(1)两个强度指标:屈服强度,结构设计计算中强度取值主要依据;极限抗拉强度,材料实际破坏强度,衡量钢筋屈服后的抗拉能力,不能作为计算依据。(2)两个塑性指标:伸长率和冷弯性能:钢材在冷加工过程和使用时不开裂、弯断或脆断的性能。 7.钢筋和混凝土共同工作的的原因:(1)混凝土和钢筋之间有着良好的黏结力;(2)二者具有相近的温度线膨胀系数;(3)在保护层足够的前提下,呈碱性的混凝土可以保护钢筋不易锈蚀,保证了钢筋与混凝土的共同作用。 第二章 结构按极限状态法设计计算的原则 1.结构概率设计的方法按发展进程划分为三个水准:a.水准Ⅰ,半概率设计法,只对影响结构可靠度的某些参数,用数理统计分析,并与经验结合,对结构的可靠度不能做出定量的估计;b.水准Ⅱ,近似概率设计法,用概率论和数理统计理论,对结构、构件、或截面设计的可靠概率做出近似估计,忽略了变量随时间的关系,非线性极限状态方程线性化;c.水准Ⅲ,全概略设计法,我国《公桥规》采用水准Ⅱ。 2.结构的可靠性:指结构在规定时间(设计基准期)、规定的条件下,完成预定功能的能力。 可靠性组成:安全性、适用性、耐久性。 可靠度:对结构的可靠性进行概率描述称为结构可靠度。 3.结构的极限状态:当整个结构或构件的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态称为该功能的极限状态。 极限状态分为承载能力极限状态、正常使用极限状态和破坏—安全状态。 承载能力极限状态对应于结构或构件达到最大承载力或不适于继续承载的变形,具体表现:a.整个构件或结构的一部分作为刚体失去平衡;b.结构构件或连接处因超过材料强度而破坏;c.结构转变成机动体系;d.结构或构件丧失稳定;e.变形过大,不能继续承载和使用。 正常使用极限状态对应于结构或构件达到正常使用或耐久性能的某项规定限值,具体表现:a.由于外观变形影响正常使用;b.由于耐久性能的局部损坏影响正常使用;c.由于震动影响正常使用;d.由于其他特定状态影响正常使用。 破坏—安全状态是指偶然事件造成局部损坏后,其余部分不至于发生连续倒塌的状态。(破坏—安全极限状态归到承载能力极限状态中) 4.作用:使结构产生内力、变形、应力、应变的所有原因。 作用分为:永久作用、可变作用和偶然作用。 永久作用:在结构使用期内,其量值不随时间变化,或其变化与平均值相比可忽略不计的作用 可变作用:在结构试用期内,其量值随时间变化,且其变化值与平均值相比较不可忽略的作用。

搅拌桨叶的选型和设计计算

第二节搅拌桨叶的设计和选型一、搅拌机结构与组成 组成:搅拌器电动机 减速器容器 排料管挡板 适用物料:低粘度物料 二、混合机理 利用低粘度物料流动性好的特性实现混合 1、对流混合 在搅拌容器中,通过搅拌器的旋转把机械能传给液体物料造成液体的流动,属强制对流。包括两种形式: (1)主体对流:搅拌器带动物料大范围的循环流动 (2)涡流对流:旋涡的对流运动 液体层界面强烈剪切旋涡扩散 主体对流宏观混合 涡流对流 2、分子扩散混合 液体分子间的运动微观混合 作用:形成液体分子间的均匀分布 对流混合可提高分子扩散混合 3、剪切混合 剪切混合:搅拌桨直接与物料作用,把物料撕成越来越薄的薄层,达到混合的目的。 高粘度过物料混合过程,主要是剪切作用。 电 动 机 减速器 搅 拌 器 容 器 排料管

三、混合效果的度量 1、调匀度I 设A 、B 两种液体,各取体积vA 及vB 置于一容器中, A B A B a b 则容器内液体A 的平均体积浓度CA0为: (理论值) 经过搅拌后,在容器各处取样分析实际体积浓度CA ,比较CA0 、CA , 若各处 CA0=CA 则表明搅拌均匀 若各处 CA0=CA 则表明搅拌尚不均匀,偏离越大,均匀程度越差。 引入调匀度衡量样品与均匀状态的偏离程度 定义某液体的调匀度 I 为: (当样品中CA CA0时) 或 (当样品中CA CA0时) 显然 I ≤1 若取m 个样品,则该样品的平均调匀度为 当混合均匀时 2、混合尺度 设有A 、B 两种液体混合后达到微粒均布状态。 B A A A V V V C +=00A A C C I =0 11A A C C I --=m I I I I m +??++=- 211 =- I

路面结构设计计算书有计算过程的样本

公路路面结构设计计算示例 一、 刚性路面设计 交通组成表 1) 轴载分析 路面设计双轮组单轴载100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: 16 1100∑=? ?? ??=n i i i i s P N N δ 式中 : s N ——100KN 的单轴—双轮组标准轴载的作用次数; i P —单轴—单轮、 单轴—双轮组、 双轴—双轮组或三轴—双轮组轴型i 级轴载的总重KN; i N —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i δ—轴—轮型系数, 单轴—双轮组时, i δ=1; 单轴—单轮时, 按 式43.031022.2-?=i i P δ计算; 双轴—双轮组时, 按式22.05 1007.1--?=i i P δ; 三轴—双轮组时, 按式22.08 1024.2--?=i i P δ计算。

轴载换算结果如表所示 车型 i P i δ i N 16)(P P N i i i δ 解放CA10B 后轴 60.85 1 300 0.106 黄河JN150 前轴 49.00 43.03491022.2-?? 540 2.484 后轴 101.6 1 540 696.134 交通SH361 前轴 60.00 43.03601022.2-?? 120 12.923 后轴 2?110.00 22.052201007.1--?? 120 118.031 太脱拉138 前轴 51.40 43.0340.511022.2-?? 150 1.453 后轴 2?80.00 22.051601007.1--?? 150 0.969 吉尔130 后轴 59.50 1 240 0.059 尼桑CK10G 后轴 76.00 1 1800 2.230 16 1 )( P P N N i i i n i δ∑== 834.389 注: 轴载小于40KN 的轴载作用不计。 ② 计算累计当量轴次 根据表设计规范, 一级公路的设计基准期为30年, 安全等级为二级, 轮迹横向分布系数η是0.17~0.22取0.2, 08.0=r g , 则 [][] 362 .69001252.036508 .01 )08.01(389.8343651)1(30=??-+?=?-+=ηr t r s e g g N N 其 交通量在4 4102000~10100??中, 故属重型交通。 2) 初拟路面结构横断面 由表3.0.1, 相应于安全等级二级的变异水平为低~中。根据一级公路、 重交通等级和低级变异水平等级, 查表 4.4.6 初拟普通混凝土面层厚度为24cm, 基层采用水泥碎石, 厚20cm; 底基层采用石灰土, 厚20cm 。普通混凝土板的平面尺寸为宽3.75m, 长5.0m 。横缝为设传力杆的假缝。 3) 确定基层顶面当量回弹模量tc s E E , 查表的土基回弹模量a MP E 0.350=, 水泥碎石a MP E 15001=, 石灰土

结构设计原理计算方法

结构设计原理案例计算步骤 一、单筋矩形截面受弯构件正截面承载力计算 计算公式: ——水平力平衡 ()——所有力对受拉钢筋合力作用点取矩() ()——所有力对受压区砼合力作用点取矩()使用条件: 注:/,&& 计算方法: ㈠截面设计yy 1、已知弯矩组合设计值,钢筋、混凝土强度等级及截面尺寸b、h,计算。 ①由已知查表得:、、、; ②假设; ③根据假设计算; ④计算(力矩平衡公式:); ⑤判断适用条件:(若,则为超筋梁,应修改截面尺寸或提 高砼等级或改为双筋截面); ⑥计算钢筋面积(力平衡公式:); ⑦选择钢筋,并布置钢筋(若 ,则按一排布置); 侧外 ⑧根据以上计算确定(若与假定值接近,则计算,否则以的确定值作 为假定值从③开始重新计算); ⑨以的确定值计算; ⑩验证配筋率是否满足要求(,)。 2、已知弯矩组合设计值,材料规格,设计截面尺寸、和钢筋截面面积。 ①有已知条件查表得:、、、; ②假设,先确定; ③假设配筋率(矩形梁,板); ④计算(,若,则取); ⑤计算(令,代入); ⑥计算(,&&取其整、模数化); ⑦确定(依构造要求,调整); ⑧之后按“1”的计算步骤计算。 ㈡承载力复核 已知截面尺寸b、,钢筋截面面积,材料规格,弯矩组合设计值,

所要求的是截面所能承受的最大弯矩,并判断是否安全。 ①由已知查表得:、、、; ②确定; ③计算; ④计算(应用力平衡公式:,若,则需调整。令, 计算出,再代回校核); ⑤适用条件判断(,,); ⑥计算最大弯矩(若,则按式计算最大弯矩) ⑦判断结构安全性(若,则结构安全,但若破坏则破坏受压区,所以应以受压区控制设计;若,则说明结构不安全,需进行调整——修改尺寸或提高砼等级或改为双筋截面)。 二、双筋矩形截面梁承载力计算 计算公式: , ,()+() 适用条件: (1) (2) 注:对适用条件的讨论 ①当&&时,则应增大截面尺寸或提高砼等级或增加的用量(即 将当作未知数重新计算一个较大的);当时,算得的即为安全要 求的最小值,且可以有效地发挥砼的抗压强度,比较经济; ②当&&时,表明受压区钢筋之布置靠近中性轴,梁破坏时应变较 小,抗压钢筋达不到其设计值,处理方法: a.《公桥规》规定:假定受压区混凝土压应力的合力作用点与受压区钢筋合力作用 点重合,并对其取矩,即 令2,并 () 计算出; b.再按不考虑受压区钢筋的存在(即令),按单筋截面梁计算出。 将a、b中计算出的进行比较,若是截面设计计算则取其较小值,若是承载能力复核则取其较大值。 计算方法: ㈠截面设计 1.已知截面尺寸b、h,钢筋、混凝土的强度等级,桥梁结构重要性系数,弯矩组合 设计值,计算和。 步骤: ①根据已知查表得:、、、、; ②假设、(一般按双排布置取假设值); ③计算;

搅拌器设计

搅拌器毕业设计 第一章 绪论 搅拌可以使两种或多种不同的物质在彼此之中互相分散,从而达到均匀混合;也可以加速传热和传质过程。在工业生产中,搅拌操作时从化学工业开始的,围绕食品、纤维、造纸、石油、水处理等,作为工艺过程的一部分而被广泛应用。 搅拌操作分为机械搅拌与气流搅拌。气流搅拌是利用气体鼓泡通过液体层,对液体产生搅拌作用,或使气泡群一密集状态上升借所谓上升作用促进液体产生对流循环。与机械搅拌相比,仅气泡的作用对液体进行的搅拌时比较弱的,对于几千毫帕·秒以上的高粘度液体是难于使用的。但气流搅拌无运动部件,所以在处理腐蚀性液体,高温高压条件下的反应液体的搅拌时比较便利的。在工业生产中,大多数的搅拌操作均系机械搅拌,以中、低压立式钢制容器的搅拌设备为主。搅拌设备主要由搅拌装置、轴封和搅拌罐三大部分组成。其结构形式如下:(结构图) 搅拌设备在工业生产中的应用范围很广,尤其是化学工业中,很多的化工生产都或多或少地应用着搅拌操作。搅拌设备在许多场合时作为反应器来应用的。例如在三大合成材料的生产中,搅拌设备作为反应器约占反应器总数的99%。。搅拌设备的应用范围之所以这样广泛,还因搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围较广,又能适应多样化的生产。 搅拌设备的作用如下:①使物料混合均匀;②使气体在液相中很好的分散;③使固体粒子(如催化剂)在液相中均匀的悬浮;④使不相溶的另一液相均匀悬浮或充分乳化;⑤强化相间的传质(如吸收等);⑥强化传热。 2 搅拌罐结构设计 1.1 罐体的尺寸确定及结构选型 1.1.1 筒体及封头型式 选择圆柱形筒体,采用标准椭圆形封头 1.1.2 确定内筒体和封头的直径 先忽略封头体积,估算筒体内径Di Di=3 4i V πφ V -工艺给定的容积,53m i -通体高径比,i=H / Di,由于是液-液混合体系选i=1.1; φ -装料系数,因搅拌状态比较平稳故取0.8。 3 450.8 16673.14 1.1 Di mm ??= =? Di 取整为1700mm ,即筒体直径DN=1700mm 1.1.3 确定筒体高度 封头直径确定后,确定筒体高度: 2 4() d V V H Di π-=

机械原理课程设计 搅拌机

机械原理 课程设计说明书 设计题目:搅拌机 学院:工程机械 专业:机械设计制造及其自动化 目录 一、机构简介 (2) 二、设计数据 (2)

三、设计内容 (3) 四、设计方案及过程 (4) 1.做拌勺E的运动轨迹 (4) 2.做构件两个位置的运动简图 (4) 3.对构件处于位置3和8时进行速度和加速度分析 (6) 五、心得体会 (9) 六、参考文献 (10) 一、机构简介 搅拌机常应用于化学工业和食品工业中对拌料进行搅拌工作如附图1-1(a)所示,电动机经过齿轮减速,通过联轴节(电动机与联轴节图中未画)带动曲柄2顺时针旋转,驱使曲柄摇杆机构1-2-3-4运动,同时通过蜗轮蜗杆带动容器绕垂直轴缓慢旋转。当连杆3运动时,固联在其上的拌勺E即沿图中虚线所示轨迹运动而将容器中的拌料均匀拨动。

工作时,假定拌料对拌勺的压力与深度成正比,即产生的阻力按直线变化,如附图1-1(b )所示。 附图1-1 搅拌机构(a )阻力线图(b )机构简图 二、设计数据 设计数据如附表1-1所示。 附表1-1 设计数据 三、设计内容 连杆机构的运动分析 已知:各构件尺寸及重心位置,中心距x,y,曲柄2每分钟转速n 2。 要求:做构件两个位置(见附表1-2)的运动简图、速度多边形和加速度多边形,拌勺E 的运动轨迹。以上内容画在2号图纸上。 附表1-2 机构位置分配图

摇杆在左极限位置时所对应的曲柄作为起始 位置1,按转向将曲柄圆周作十二等分,得12 个位置。并找出连杆上拌勺E的各对应点 E1,E2…E12,绘出正点轨迹。按拌勺的运动轨迹 的最低点向下量40mm定出容器地面位置,再 根据容器高度定出容积顶面位置。并求出拌勺 E离开及进入容积所对应两个曲柄位置8’和 11’。附图1-2 曲柄位置 四、设计方案及过程 选择第三组数据(x =535mm,y=420mm,l AB=245mm,l BC=590mm,l CD=420mm,l BE=1390mm)进行设计。 1.做拌勺E的运动轨迹

《结构设计原理》述课

《结构设计原理》述课 一、前言 (一)课程基本信息 1.课程名称:结构设计原理 2.课程类别:专业平台课 3.学时:两学期总计84学时,2周课程设计 4.适用专业:交通工程 (二)课程性质 1.课程性质 结构是土木工程中最基本的元素,《结构设计原理》课程围绕着工程中常用的钢筋混凝土结构、预应力混凝土结构、圬工结构的设计计算进行理论和实践性的教学。 《结构设计原理》是土木工程专业的一门重要的专业必修课程,是学生运用已学的《工程制图》、《理论力学》、《材料力学》、《结构力学》、《工程材料》等知识,初步解决结构原理及结构设计问题的一门课程。其特点是:兼具理论性和实用性且承前启后,为学好专业课打好基础的课程,也是学生感到比较难学的一门课程。所以《结构设计原理》及其系列课程一直是土木工程专业的主干课,从开设的《结构设计原理》、《结构设计原理》课程设计,到毕业设计都渗透结构设计的理论,课程贯穿交通工程专业教学的所有环节。 本课程主要介绍钢筋混凝土结构、预应力混凝土结构和圬工结构的各种基本构件受力特性、设计原理、计算方法和构造设计。 2.本课程的作用 本课程主要培养学生掌握钢筋混凝土基本构件和结构的设计计算方法和与施工及工程质量有关的结构的基本知识,培养学生具有识读桥梁结构图纸的识读能力、基本构件的设计能力、使用和理解各种结构设计规范能力、解决工程结构实际问题的能力、综合分析问题的能力、学习能力和与人合作等能力,从而为继续学习后续专业课程奠定扎实的基础,以进一步培养学生树立独立思考、吃苦耐劳、勤奋工作的意识以及诚实、守信的优秀品质,为今后从事施工生产一线的工作奠定良好的基础。 本课程以“材料力学”、“理论力学”和“工程材料”的学习为基础共同打造学生的专业核心技能。

相关主题
文本预览
相关文档 最新文档