当前位置:文档之家› 解析几何专题03圆锥曲线的定义方程及几何性质

解析几何专题03圆锥曲线的定义方程及几何性质

解析几何专题03圆锥曲线的定义方程及几何性质
解析几何专题03圆锥曲线的定义方程及几何性质

解析几何专题03圆锥曲线的定义、方程及几何性质

学习目标

(1)理解圆锥曲线的定义,并能正确运用圆锥曲线的定义解决一些简单的问题; (2)掌握圆锥曲线的标准方程,并能熟练运用“待定系数法”求圆锥曲线的方程; (3)能根据圆锥曲线的方程研究圆锥曲线的一些几何性质(尤其是焦点、离心率以及双曲线的渐近线等)。

知识回顾及应用

1.圆锥曲线的定义 (1)椭圆 (2)双曲线 (3)抛物线

2.圆锥曲线的方程 (1)椭圆的标准方程 (2)双曲线的标准方程 (3)抛物线的标准方程 3.圆锥曲线的几何性质 (1)椭圆的几何性质 (2)双曲线的几何性质 (3)抛物线的几何性质

4.应用所学知识解决问题:

【题目】已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点53

(,)22

-,

求椭圆的方程。 答案:22

1106

x y +

= 【变式1】写出适合下列条件的椭圆的标准方程:

(1)离心率14

e b =

=,焦点在x 轴上;

(2)4,a c ==焦点在y 轴上;

(3)10,a b c +==

答案:(1)22116x y +=;(2)22

116y x +=;(3)2213616x y +

=或2213616

y x +=。 【变式2】写出适合下列条件的椭圆的标准方程: (1)3a b =,且经过点(3,0)P ;

(2)经过两点3(2-。 答案:(1)22

19x y +=或221819y x +=;(2)2214

x y +=。

问题探究(请先阅读课本,再完成下面例题)

【类型一】圆锥曲线的方程

例1.已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆

和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.求这三条曲线的方程。 解:设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =

24y x ∴= 抛物线方程为:

由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1 对于椭圆,1222a MF MF =++(2

2

2222211321

a a

b a

c ∴=+∴=+=+∴=-=+∴= 椭圆方程为:

对于双曲线,1222a MF MF '=-=

2222221321

a a

b

c a '∴='∴=-'''∴=-=∴= 双曲线方程为:

练习:1.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为

2

。过1F 的直线L 交C 于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。

答案:22

1168

x y +

=求圆锥曲线的方程主要采用“待定系数法”

。需要注意的是在求解此类问题时应遵循“先定位,再定量”的原则。注意:当“焦点所在轴不定”时,要有“分类讨论”意识,

2.若方程222(2)(1)1k k x k y +-++=表示焦点在y 轴上的双曲线,则k ?(1,1)-.

3.求过点A (-3,2)的抛物线的标准方程。

答案:292x y =或24

3y x =-

【类型二】 圆锥曲线的几何性质

例2.(1)若双曲线222x y k -=的焦距是6,则k = 。

【解析】若0k >,则双曲线的标准方程为22

12

x y k k -

=, 所以2223,,22k k

a b k c ===,又3c =,

所以392

k

=,6k =;

若0k <,则双曲线的标准方程为

22

12

y x k

k -=--, 所以2223,,22

k k

a k

b

c =-=-=-,又3c =,

所以392

k -=,6k =-;

综上可知,6k =±。

(2)设双曲线122

22=-b

y a x 的一条渐近线与抛物线21y x =+只有一个公共点,则

双曲线的离心率等于 。

【解析】不妨取双曲线12222=-b y a x 的一条渐近线为b

y x a

=,

代入21y x =+并整理得20ax bx a -+= 由题设知,2222450

b a

c a ?=-=-= 根据圆锥曲线的方程研究圆锥曲线的性质的基本程序是:先将方程化为标准方程,再寻找数量关系。特别地,在求圆锥曲线离心率的时候,常常需要列出一个关于,,a b c 的

所以双曲线的离心率为c

e a

==

练习:(1)已知椭圆2

2:14

x G y +=,求椭圆G 的焦点坐标和离心率。

【解析】由已知得,1,2==b a 所以.322--=b a c

所以椭圆G 的焦点坐标为)0,3(),0,3(-; 离心率为.2

3==

a c e (2)在椭圆22

221(0)x y a b a b

+=>>中, 12,F F 为其左、右焦点,以21F F 为直径的

圆与椭圆交于D C B A ,,,四个点,若21,F F ,D C B A ,,,恰好为一个正六边形的六个顶点,则椭圆离心率为( C ) A.

1

B.2

1-

【类型三】圆锥曲线的定义

例3(1)已知定点A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,求另一焦点F 的轨迹方程.

解 设F (x ,y )为轨迹上的任意一点, ∵A 、B 两点在以C 、F 为焦点的椭圆上,

∴|FA |+|CA |=2a ,|FB |+|CB |=2a (其中a 表示椭圆的长半轴长),

一般地,对于椭圆和双曲线,只要与两个焦点距离有关的问题就应该优先考虑它们

的定义

;而对于抛物线,利用其定义将抛物线上的点与焦点间的距离和该点到准线的距离进行互化是基本手段,要加强这方面的认识。

∴|FA |+|CA |=|FB |+|CB |,

∴|FA |-|FB |=|CB |-|CA |

=122+92-122+(-5)2=2, ∴|FA |-|FB |=2<14.

由双曲线的定义知,F 点在以A 、B 为焦点,2为实轴长的双曲线的下支上, ∴点F 的轨迹方程是y 2

-x 248

=1 (y ≤-1).

(2)点P 是抛物线x y 42=上一动点,则点P 到点(0,1)A -的距离与到直线1-=x 的

距离和的最小值是 ( D )

(A (B (C )2 (D )2

练习:(1)在平面直角坐标系xOy 中,已知△ABC 的顶点A (-6,0)和C (6,0),若顶

点B 在双曲线x 225-y 211=1的左支上,则sin A -sin C sin B

=________.5

6

(2)抛物线2

4y x =上一点M 与该抛物线的焦点F 的距离||4MF =,则点M 的横坐

标x = 3 .

(3)若椭圆

12

2=+n

y m x 与双曲线q p n m q y p x ,,,(122=-均为正数)有共同的焦点F 1,F 2,P 是两曲线的一个公共点,则||||21PF PF ?等于 p m -

检测

1.已知点F 1、F 2分别是椭圆

19

252

2=+y x 的左、右焦点,点P 在此椭圆上,则△PF 1F 2的周长等于( B )

A.20

B.18

C.16

D.14

2.椭圆

115

2

2=+y m x 的焦距等于2,则m 的值是( B ) A.5或3 B.16或14 C.5 D.16

3.已知椭圆x 2

4+y 2=1的左、右焦点分别为F 1、F 2,点M 在该椭圆上,且MF 1→·MF 2

→=

0,则点M 到y 轴的距离为

( B )

A.233

B.263

C.33

D.3

4.(2013海淀一模) 抛物线24y x =的焦点为F ,点(,)P x y 为该抛物线上的动点,又点(1,0)A -,则

||

||

PF PA 的最小值是( B )

A. 12

B.

2 D. 3

5.双曲线的焦点在x 轴上,实轴长为4,离心率为3,则该双曲线的标准方程为

22

1432

x y -=,渐近线方程为6.抛物线28x y =的焦点坐标为 )32

1

,

0( . 7.已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.则椭圆离心率的范围是 。

解 设椭圆方程为x 2a 2+y 2

b

2=1 (a >b >0),|PF 1|=m ,|PF 2|=n ,

则m +n =2a .

在△PF 1F 2中,由余弦定理可知,

4c 2=m 2+n 2-2mn cos 60°=(m +n )2-3mn

=4a 2-3mn ≥4a 2

-3·?

??

??m +n 22=4a 2-3a 2=a 2(当且仅当m =n 时取等号). ∴c 2a 2≥14,即e ≥1

2

. 又0

【能力提升】

8.已知点P 是椭圆22

195

x y +=上一动点,F 为椭圆的左焦点,定点(1,1)A ,则PF PA

+

的最小值是6(提示:利用椭圆的定义)

9.(1)方程22)1()3(-++y x -20x y -+=在直角坐标系中表示的曲线是( C ) A 两条相交直线 B 椭圆 C 双曲线 D 抛物线 (提示:移项平方转化即可,也可以利用双曲线的第二定义)

(2)方程22)1()3(-++y x 20y -+=在直角坐标系中表示的曲线是(D ) A 两条相交直线 B 椭圆 C 双曲线 D 抛物线 (提示:利用抛物线的定义)

(3)方程22)1()3(-++y x -20x y ++=在直角坐标系中表示的曲线是( A ) A 两条相交直线 B 椭圆 C 双曲线 D 抛物线

(提示:移项平方转化即可。注意:点(3,1)-在直线20x y ++=上,故不能使用双曲线的第二定义)

纠错矫正

总结反思

(注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待你的好评与关注!)

第二章平面解析几何初步章末总结附解析苏教版必修

第二章平面解析几何初步章末总结(附解 析苏教版必修2) 【金版学案】2015-2016高中数学第二章平面解析几何初步章末知识整合苏教版必修2 一、数形结合思想的应用 若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且 ∠POQ=120°(其中O为原点),则k的值为________. 解析:本小题考查直线与圆的位置关系和数形结合的方法. y=kx+1恒过点(0,1),结合图知,直线倾斜角为120°或60°. ∴k=3或-3. 答案:3或-3 规律总结:根据数学问题的条件和结论之间的内在联系,将抽象的数学语言和直观的图形相结合,使抽象思维和 形象思维相结合. 1.以形助数,借助图形的性质,使有关“数”的问题直接形象化,从而探索“数”的规律.比如,研究两曲线 的位置关系,借助图形使方程间关系具体化;过定点的 直线系与某确定的直线或圆相交时,求直线系斜率的范

围,图形可帮助找到斜率的边界取值,从而简化运算;对于一些求最值的问题,可构造出适合题意的图形,解题中把代数问题几何化. 2.以数助形,借助数式的推理,使有关“形”的问题数量化,从而准确揭示“形”的性质. ►变式训练 1.若过定点M(-1,0)且斜率为k的直线与圆x2+4x+y2-5=0在第一象限内的部分有交点,则k的取值范围是________. 解析:∵x2+4x+y2-5=0,∴(x+2)2+y2=9是以(-2,0)为圆心,以3为半径的圆.如图所示:令x=0得y=±5. ∴点C的坐标为(0,5). 又点M的坐标为(-1,0), ∴kMC=5-00-(-1)=5. 结合图形得0k5. 答案:(0,5) 2.当P(m,n)为圆x2+(y-1)2=1上任意一点时,若不等式m+n+c≥0恒成立,则c的取值范围是________.解析:方法一∵P(m,n)在已知圆x2+(y-1)2=1上,且使m+n+c≥0恒成立,即说明圆在不等式x+y+c≥0

圆锥曲线的几何性质及其解题应用

圆锥曲线的几何性质及其解题应用 一、正确掌握圆锥曲线的几何性质,提高解题效率 1、椭圆中一些线段的长度及其关系如: ①椭圆上的点到焦点最近的距离为AF a c =-,最近的距离为BF a c =+; ②Rt OFC ?中,2 2 2 a b c =+; ④△F PQ '的周长与菱形F CFD '的周长相等,为4a . 例题1、如下图,椭圆中心为O ,F 是焦点,A 、C ,P Q 在椭圆上且PD l ⊥于D ,QF OA ⊥于F ① PF PD ② QF BF ③ AO BO ④ AF BA ⑤ FO AO ⑥ OF FC 能作为椭圆的离心率的是 (填正确的序号)2① 12OB OB b ==;12OA OA a ==. ② 焦点F 向渐近线引垂线,垂足为P ,则 bc PF b c = = =, 又因为OF c =,故有OP a = ③ 由②可知2Rt OA Q Rt OPF ???. ⑥ A A B B ③当PQ x ⊥轴时,2 2b PQ a =?,叫椭圆的通径.

例题2.已知双曲线22 214x y b -=的右焦点与抛物线x y 122=的焦点重合,则该双曲线的 焦点到其渐近线的距离等于 . 【解析】双曲线的焦点到其渐近线的距离等于b ,由抛物线方程x y 122 =易知其焦点坐标 为)0,3(,又根据双曲线的几何性质可知2234=+b ,所以5= b . 【点评】平时如果能理解并记住一些有用的结论,可以在考试中节省许多宝贵的时间. 3、抛物线中一些线段的长度及其关系如: ① 通过焦点且垂直对称轴的直线,与抛物线相交于两点,连接这两点的线段AB 叫做抛物线的通径,且2AB p =. ② 2DF p =,几何意义知道吗? ③ 由①②易知Rt ADF ? ④ 题目中涉及到焦点F 虑定义PF PQ =这个性质.

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

第五讲 圆锥曲线及其几何性质

回顾复习五:圆锥曲线及其几何性质 ☆考点梳理 1.圆锥曲线的轨迹定义与统一定义. 2.圆锥曲线的标准方程及其推导. 3.圆锥曲线的几何性质:范围、对称性、焦点、离心率、准线、渐近线.☆基础演练 1.如图,椭圆中心为O,A、B为左右顶点,F为左焦点, 左准线l交x轴于C,点P、Q在椭圆上,PD⊥l于D, QF⊥OA于F.给出下列比值: 其中为离心率的有_________________. 2.若 12 ,F F为椭圆 22 1 25 x y m +=的焦点,且 12 8 F F=,则m的 值为. 3.过抛物线的焦点F作直线交其于A、B两点,A、B在抛物线准线上的射影分别为A1、 B1,则 11 A FB ∠=____________. 4.经过两点() 143 ,, ?? - ? ? ?? 的圆锥曲线的标准方程是________________. 5.过双曲线 22 22 1 x y a b -=的右焦点F作一条渐近线的垂线分别交于A、B两点,O为坐标 原点,若OA、AB、OB成等差数列,且BF,FA u u u r u u u r 同向,则离心率e=_________. 6.椭圆 22 1 2516 x y +=的两个焦点为F1、F2,弦AB过F1,若 2 ABF ?的内切圆周长为π, ()() 1122 A x,y, B x,y,则 12 y y -=____________. ☆典型例题 1.椭圆的定义 例1.如图,已知E,F为平面上的两个定点,G为动点, 610 EF,FG, ==点P为线段EG的中垂线与GF的交点. ⑴建立适当的平面直角坐标系求出点P的轨迹方程; ⑵若点P的轨迹上存在两个不同的点A、B,且线段AB 的中垂线与EF(或EF的延长线)相交于一点C,线段EF 的中点为O,证明: 9 5 OC<. 2.中点弦问题 例3.直线l交椭圆 22 1 2016 x y +=于M,N两点,点() 04 B,,若⊿BMN的重心恰为椭圆 右焦点,则直线l的方程是_________________. 3.椭圆的几何性质 例2.已知 1 F、 2 F分别是椭圆() 22 22 10 x y a b a b +=>>的左右焦点,右准线l,离心率e. ⑴若P为椭圆上的一点,且 12 F PF ∠=θ,则 12 PF F S ? =_____________. ⑵若椭圆上存在一点P,使得 12 PF PF ⊥,则e的范围是_____________. ⑶若椭圆上存在一点P,使得 12 PF ePF =,则e的范围是_____________. ⑷若在l上存在一点P,使得线段 1 PF的中垂线经过 2 F,则e的范围是___________. ⑸若P为椭圆上的一点,线段 2 PF与圆222 x y b +=相切于中点Q,则e=________. ⑹过F且斜率为k的直线交椭圆于A、B两点,且3 AF FB = u u u r u u u r ,若 2 e=,则k=___. 4.最值问题 例4.已知动点P在椭圆 22 1 1612 x y +=上,(,(2,0) A B. ⑴若2 PA PB +取最小值,则点P的坐标为____________; ⑵若动点M满足||1 BM= u u u u r ,且0 PM BM= u u u u r u u u u r g,则| |的最小值是; ⑶PA PB +的取值范围是________________________. 例5.椭圆W的中心在原点,焦点在x轴上,离心率为 3 两条准线间的距离为6.椭 圆W的左焦点为F,过左准线与x轴的交点M任作一条斜率不为零的直线l与椭圆W 交于不同的两点A、B,点A关于x轴的对称点为C. ⑴求椭圆W的方程;⑵求证:CF FB λ = u u u r u u u r ;⑶求MBC ?面积S的最大值. ☆方法提炼 1.椭圆的标准方程有两种形式,有时需要就焦点位置进行讨论. 2.椭圆有两种定义方式,解题时要学会“回到定义去”. 3.椭圆有两个焦点、两条准线,解题时建议联系起来考虑. 4.解解析几何问题,“画个图”是个好建议;中点弦问题利用“点差法”可简化运算. 5.在处理直线与椭圆相结合的问题时,要学会利用韦达定理整体处理. P H E F G 第 1 页

平面解析几何初步(知识点 例题)

个性化简案 个性化教案(真题演练)

个性化教案

平面解析几何初步 知识点一:直线与方程 1. 直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角.倾斜角)180,0[?∈α,?=90α斜率不存在. 2. 直线的斜率:αtan ),(211 21 2=≠--= k x x x x y y k .(111(,)P x y 、222(,)P x y ). 3.直线方程的五种形式 【典型例题】 例1:已知直线(2m 2+m -3)x +(m 2-m)y =4m -1.① 当m = 时,直线的倾斜角为45°.②当m = 时,直线在x 轴上的截距为1.③ 当m = 时,直线在y 轴上的截距为-2 3.④ 当m = 时,直线与x 轴平行.⑤当m = 时,直线过原点. 【举一反三】 1. 直线3y + 3 x +2=0的倾斜角是 ( ) A .30° B .60° C .120° D .150° 2. 设直线的斜率k=2,P 1(3,5),P 2(x 2,7),P (-1,y 3)是直线上的三点,则x 2,y 3依次是 ( ) A .-3,4 B .2,-3 C .4,-3 D .4,3 3. 直线l 1与l 2关于x 轴对称,l 1的斜率是-7 ,则l 2的斜率是 ( ) A .7 B .- 77 C .77 D .-7 4. 直线l 经过两点(1,-2),(-3,4),则该直线的方程是 . 例2:已知三点A (1,-1),B (3,3),C (4,5).求证:A 、B 、C 三点在同一条直线上. 练习:设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3)、B (b ,b 3)、C (c ,c 3)在同一直线上,求证:a+b+c=0. 例3:已知实数x,y 满足y=x 2-2x+2 (-1≤x≤1).试求:2 3 ++x y 的最大值与最小值.

高二数学 圆锥曲线的几何性质练习

圆锥曲线的几何性质 一、选择题(' ' 6636?=) 1. .设22221(0)x y a b a b +=>>为 黄金椭圆,F 、A 分别是它的左焦点和右端点,B 是它的短轴的一个端点,则ABF ∠=( ) A ,60 B ,75 C ,90 D ,120 2.已知双曲线22 221(0,0)x y a b a b -=>>右焦点为F ,右准线为l ,一直线交双曲线于P ,Q 两点,交l 于R 点,则( ) A ,PFR QFR ∠>∠ B ,PFR QFR ∠=∠ C ,PFR QFR ∠<∠ D ,PFR ∠与QFR ∠的大小不确定 3.已知点A(0,2)和抛物线24y x =+上两点B 、C ,使得AB BC ⊥,当点B 在抛物线上移动时,点C 的纵坐标的取值范围是 ( ) A ,(,0][4,)-∞+∞ B ,(,0]-∞ C ,[4,)+∞ D ,[0,4,] 4.设椭圆方程2 213 x y +=,(0,1)A -为短轴的一个端点,M ,N 为椭圆上相异两点。若总存在以MN 为底边的等腰AMN ?,则直线MN 的斜率k 的取值范围是 ( ) A ,(1,1)- B ,[1,1]- C ,(1,0]- D ,[0,1] 5.已知12,F F 分别为双曲线22 221(0,0)x y a b a b -=>>的左、右焦点,P 为双曲线右支上的任 意一点,若 2 12 PF PF 的最小值为8a ,则双曲线的离心率e 的取值范围是 ( ) A ,(1,)+∞ B ,(1,2] C , D ,(1,3] 6.已知P 为抛物线2 4y x =上一点,记P 到此抛物线的准线的距离为1d ,P 到直线 2120x y +-=的距离为2d ,则12d d +的最小值为 ( )

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:122 2 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. > ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆 )0(12222 b a b y a x =+ 上的一点,21,F F 为左、右焦点,则 》 ii.设),(00y x P 为椭圆)0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 200201 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆: 12 22 2=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 ? -=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

苏教版《第二章平面解析几何初步综合小结》word教案

苏教版《第二章平面解析几何初步综合小结》 w o r d教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学同步测试—第二章章节测试 本试卷分第Ⅰ卷和第Ⅱ卷两部分.共150分. 第Ⅰ卷(选择题,共50分) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把 正确答案的代号填在题后的括号内(每小题5分,共50分). 1.方程x 2 + 6xy + 9y 2 + 3x + 9y –4 =0表示的图形是 ( ) A .2条重合的直线 B .2条互相平行的直线 C .2条相交的直线 D .2条互相垂直的直线 2.直线l 1与l 2关于直线x +y = 0对称,l 1的方程为y = ax + b ,那么l 2的方程为 ( ) A .a b a x y -= B .a b a x y += C .b a x y 1+= D .b a x y += 3.过点A (1,-1)与B (-1,1)且圆心在直线x+y -2=0上的圆的方程为 ( ) A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .4(x +1)2+(y +1)2=4 D .(x -1)2+(y -1)2= 4.若A(1,2),B(-2,3),C(4,y )在同一条直线上,则y 的值是 ( ) A .2 1 B .23 C .1 D .-1 5.直线1l 、2l 分别过点P (-1,3),Q (2,-1),它们分别绕P 、Q 旋转,但始终保持平 行,则1l 、2l 之间的距离d 的取值范围为 ( ) A .]5,0( B .(0,5) C .),0(+∞ D .]17,0( 6.直线1x y a b +=与圆222(0)x y r r +=>相切,所满足的条件是 ( ) A .ab r =B .2222()a b r a b =+ C .22||ab r a b =+ D .22ab r a b =+ 7.圆2223x y x +-=与直线1y ax =+的交点的个数是 ( ) A .0个 B .1个 C .2个 D .随a 值变化而变化

圆锥曲线的概念与几何性质

第十六单元圆锥曲线的概念与几何性质 考点一椭圆的标准方程和几何性质 1.(2017年全国Ⅰ卷)设A,B是椭圆C:+=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是(). A.(0,1]∪[9,+∞) B.(0,]∪[9,+∞) C.(0,1]∪[4,+∞) D.(0,∪[4,+∞) 【解析】当03时,焦点在y轴上, 要使C上存在点M满足∠AMB=120°, 则≥tan 60°=,即≥,解得m≥9. 故m的取值范围为(0,1]∪[9,+∞). 故选A. 【答案】A 2.(2014年大纲卷)已知椭圆C:+=1(a>b>0)的左,右焦点为F1,F2,离心率为,过F2的直线l交C于A,B两点.若△AF1B的周长为4,则C的方程为(). A.+=1 B.+y2=1 C.+=1 D.+=1 【解析】因为△AF1B的周长为4,所以|AF1|+|AB|+|BF1|=|AF1|+|AF2|+|BF1|+|BF2|=4a=4,所以a=.又因为椭圆的离心率e==,所以c=1,所以b2=a2-c2=3-1=2,所以椭圆C的方程为+=1,故选A. 【答案】A 3.(2013年全国Ⅱ卷)设椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为(). A. B. C. D.

【解析】(法一)由题意可设|PF2|=m,结合条件可知|PF1|=2m,|F1F2|=m,故离心率e=====. (法二)由PF2⊥F1F2可知点P的横坐标为c,将x=c代入椭圆方程可解得y=±,所以|PF2|=.又由∠PF1F2=30°可得 |F1F2|=|PF2|,故2c=·,变形可得(a2-c2)=2ac,等式两边同除以a2,得(1-e2)=2e,解得e=或e=-(舍去). 【答案】D 4.(2017年全国Ⅲ卷)已知椭圆C:+=1(a>b>0)的左,右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为(). A.B.C.D. 【解析】由题意知以A1A2为直径的圆的圆心坐标为(0,0),半径为a. ∵直线bx-ay+2ab=0与圆相切, ∴圆心到直线的距离d==a,解得a=b, ∴=, ∴e==- =-= -=.故选A. 【答案】A 考点二双曲线的标准方程和几何性质 5.(2016年全国Ⅰ卷)已知方程- - =1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(). A.(-1,3) B.(-1,) C.(0,3) D.(0,) 【解析】若已知方程表示双曲线,则(m2+n)(3m2-n)>0,解得-m20,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为(). A.-=1 B.-=1 C.-=1 D.-=1 【解析】因为双曲线C的渐近线方程为y=±x,所以=.又因为椭圆与双曲线的焦点为(±3,0),即c=3,且c2=a2+b2,所以a2=4,b2=5,故双曲线C的方程为-=1. 【答案】B 7.(2017年全国Ⅱ卷)若双曲线C:-=1(a>0,b>0)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为().

平面解析几何初步典型例题整理后

平面解析几何初步 §7.1直线和圆的方程 经典例题导讲 [例1]直线l 经过P (2,3),且在x,y 轴上的截距相等,试求该直线方程. 解:在原解的基础上,再补充这样的过程:当直线过(0,0)时,此时斜率为:2 3 0203=--= k , ∴直线方程为y= 2 3x 综上可得:所求直线方程为x+y-5=0或y= 2 3 x . [例2]已知动点P 到y 轴的距离的3倍等于它到点A(1,3)的距离的平方,求动点P 的轨迹方程. 解: 接前面的过程,∵方程①化为(x-52 )2+(y-3)2 = 214 ,方程②化为(x+12 )2+(y-3)2 = - 34 , 由于两个平方数之和不可能为负数,故所求动点P 的轨迹方程为: (x-52 )2+(y-3)2 = 214 (x ≥ 0) [例3]m 是什么数时,关于x,y 的方程(2m 2+m-1)x 2+(m 2-m+2)y 2 +m+2=0的图象表示一个 圆? 解:欲使方程Ax 2+Cy 2 +F=0表示一个圆,只要A=C ≠0, 得2m 2+m-1=m 2-m+2,即m 2 +2m-3=0,解得m 1=1,m 2=-3, (1) 当m=1时,方程为2x 2+2y 2 =-3不合题意,舍去. (2) 当m=-3时,方程为14x 2+14y 2=1,即x 2+y 2=1 14 ,原方程的图形表示圆. [例4]自点A(-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线所在直线与圆x 2+y 2 -4x-4y+7=0相切,求光线L 所在的直线方程. 解:设反射光线为L ′,由于L 和L ′关于x 轴对称,L 过点A(-3,3),点A 关于x 轴的对称点A ′(-3,-3), 于是L ′过A(-3,-3). 设L ′的斜率为k ,则L ′的方程为y-(-3)=k [x-(-3)],即kx-y+3k-3=0, 已知圆方程即(x-2)2+(y-2)2 =1,圆心O 的坐标为(2,2),半径r =1 因L ′和已知圆相切,则O 到L ′的距离等于半径r =1 即 1 1k 5 k 51k 3 k 32k 22 2 =+-= +-+- 整理得12k 2 -25k+12=0 解得k = 34或k =4 3 L ′的方程为y+3=34(x+3);或y+3=4 3 (x+3)。 即4x-3y+3=0或3x-4y-3=0 因L 和L ′关于x 轴对称 故L 的方程为4x+3y+3=0或3x+4y-3=0. [例5]求过直线042=+-y x 和圆01422 2 =+-++y x y x 的交点,且满足下列条件之一的圆的方程:

圆锥曲线几何性质总汇

圆锥曲线的几何性质 一、椭圆的几何性质 (以22a x +22 b y =1(a ﹥b ﹥0)为例) 1、⊿ABF 2的周长为4a(定值) 证明:由椭圆的定义 12121212242AF AF a AF AF BF BF a BF BF a +=?? ?+++=?+=?? 即2 4ABF C a = 2、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2 tan 2θ?b (2)(S ⊿PF1F2)max = bc (3)当P 在短轴上时,∠F 1PF 2最大 证明:(1)在 12AF F 中 ∵ 2 2 21212 4cos 2PF PF c PF PF θ+-=? ∴ () 2 1212 122cos 2PF PF PF PF PF PF θ?=+-?∴ 2 1221cos b PF PF θ ?=+ ∴ 12 22112sin cos tan 21cos 2 PF F b S b θθθθ-=??=?+ (2)(S ⊿PF1F2)max = max 1 22 c h bc ??= (3 ()()() 2 2 22 2 2 22 12002 2222 2 212 00 4444cos 12222PF PF c a ex a ex c a c PF PF a e x a e x θ+-++---= = =-?-+ 当0x =0时 cos θ有最小值22 2 2a c a - 即∠F 1PF 2最大 3、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M 则M 的轨迹是x 2+y 2=a 2 证明:延长1F M 交2F P 于F ,连接OM x x x

解析几何专题03圆锥曲线的定义方程及几何性质

解析几何专题03圆锥曲线的定义、方程及几何性质 学习目标 (1)理解圆锥曲线的定义,并能正确运用圆锥曲线的定义解决一些简单的问题; (2)掌握圆锥曲线的标准方程,并能熟练运用“待定系数法”求圆锥曲线的方程; (3)能根据圆锥曲线的方程研究圆锥曲线的一些几何性质(尤其是焦点、离心率以及双曲线的渐近线等)。 知识回顾及应用 1.圆锥曲线的定义 (1)椭圆 (2)双曲线 (3)抛物线 2.圆锥曲线的方程 (1)椭圆的标准方程 (2)双曲线的标准方程 (3)抛物线的标准方程 3.圆锥曲线的几何性质 (1)椭圆的几何性质 (2)双曲线的几何性质 (3)抛物线的几何性质 4.应用所学知识解决问题: 【题目】已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点53 (,)22 -, 求椭圆的方程。 答案:22 1106 x y + = 【变式1】写出适合下列条件的椭圆的标准方程: (1)离心率14 e b = =,焦点在x 轴上; (2)4,a c ==焦点在y 轴上; (3)10,a b c +== 答案:(1)22116x y +=;(2)22 116y x +=;(3)2213616x y + =或2213616 y x +=。 【变式2】写出适合下列条件的椭圆的标准方程: (1)3a b =,且经过点(3,0)P ; (2)经过两点3(2-。 答案:(1)22 19x y +=或221819y x +=;(2)2214 x y +=。

问题探究(请先阅读课本,再完成下面例题) 【类型一】圆锥曲线的方程 例1.已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆 和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.求这三条曲线的方程。 解:设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p = 24y x ∴= 抛物线方程为: 由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1 对于椭圆,1222a MF MF =++(2 2 2222211321 a a b a c ∴=+∴=+=+∴=-=+∴= 椭圆方程为: 对于双曲线,1222a MF MF '=-= 2222221321 a a b c a '∴='∴=-'''∴=-=∴= 双曲线方程为: 练习:1.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为 2 。过1F 的直线L 交C 于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。 答案:22 1168 x y + =求圆锥曲线的方程主要采用“待定系数法” 。需要注意的是在求解此类问题时应遵循“先定位,再定量”的原则。注意:当“焦点所在轴不定”时,要有“分类讨论”意识,

必修二平面解析几何初步知识点及练习带答案

1直线的倾斜角与斜率: (1 )直线的倾斜角:在平面直角坐标系中,对于一条与x轴相交的直线,如果把x轴绕着 交点按逆时针方向旋转到和直线重合时所转的最小正角记为叫做 直线的倾斜角? 倾斜角[0,180 ), 90斜率不存在■ (2)直线的斜率:k y2 X2 —^(为X2), k X1 tan . ( R(X1, yj、巳佑y:)) 2 ?直线方程的五种形式: (1)点斜式: 注:当直 y y1 k(x X1)(直线1过点R(X1,y1),且斜率为k ). 1■线斜率不存在时,不冃匕用点斜式表示,此时万程为X X0 . (2)斜截式:y kx b ( b为直线1在y轴上的截距). (3)两点式: y y1 x X1 ( (% y2, X1 X2). y2 y1 X2 X1 注:①不能表示与x轴和y轴垂直的直线; ②方程形式为:(x2 x1)(y y1) (y2y1 )(x x1) 0时,方程可以表示任意直线. (4)截距式: X y 1 ( a,b分别为x轴y轴上的截距,且a 0,b 0). a b 注:不能表示与x轴垂直的直线,也不能表示与y轴垂直的直线,特别是不能表示过原点的直线. (5) —般式:Ax By C 0 (其中A、B不同时为0). AC A 一般式化为斜截式:y x ,即,直线的斜率:k B B B 注:(1)已知直线纵截距b,常设其方程为y kx b或x 0. 已知直线横截距x0,常设其方程为x my x0(直线斜率k存在时,m为k的倒数)或y 0 . 已知直线过点(X。,y°),常设其方程为y k(x x°) y或x x°. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1 )直线在两坐标轴上的截距相等直线的斜率为1或直线过原点. (2 )直线两截距互为相反数直线的斜率为1或直线过原点. (3 )直线两截距绝对值相等直线的斜率为1或直线过原点. 4.两条直线的平仃和垂直: (1 )若11 : y k1x b1,12 : y k2X b2 ① 11//12k1k2,b1 b2 ;② 1112k1k2 1 (2 )若11 : A1x B1y C1 0, 1 2 : A Q X B2 y C2 0,有 ① 11 //12 A i B2 A2 B i 且 A C? A2C1.② 11 12 A i A2 B i B2 0 . 5.平面两点距离公式:

圆锥曲线的定义及几何性质

圆锥曲线的定义及几何性质 1. 椭圆 222 2 1x y a b + =和 222 2 x y k a b + =(0)k >一定具有( ) A .相同的离心率 B .相同的焦点 C .相同的顶点 D .相同的长轴长 2. 已知1F 、2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若2 ABF ?是正三角形,则这个椭圆的离心率是( ) A . 2 B . 3 C 2 D 3 3. 已知1F 、2F 是椭圆的两个焦点,满足120M F M F ?= 的点M 总在椭圆内部,则椭圆离心率的 取值范围是( )A .(01), B .1(0]2 , C .(02 D .1)2 4. 过椭圆 222 2 1(0) x y a b a b + =>>的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若 1260F PF ∠=°,则椭圆的离心率为( ) A . 2 B . 3 C .12 D .1 3 5. 已知椭圆 2222 1x y a b +=的左、 右焦点分别为1F 、2F ,且12||2F F c =,点A 在椭圆上,1120AF F F ?= ,2 12AF AF c ?= ,则椭圆的离心率e = ( ) A . 3 B . 2 C 2 D 2 6. 已知P 是以12F F ,为焦点的椭圆 222 2 1(0)x y a b a b + =>>上的一点,若 120 PF PF ?= , 121tan 2 PF F ∠= ,则此椭圆的的离心率为( ) A . 12 B . 23 C .1 3 D 3 7. 已知椭圆 2 2 15 x y m + = 的离心率e 5 =m 的值为( ) A .3 B . 253 或3 C . D 8. 椭圆的长轴为12A A ,B 为短轴的一个端点,若∠012120A BA =,则椭圆的离心率为( ) A . 12 B 3 C 3 D 2 9. 椭圆 222 2 1(0)x y a b a b + =>>的四个顶点为A 、B 、C 、D ,若四边形ABC D 的内切圆恰好过椭 圆的焦点,则椭圆的离心率是( ) A . 2 B . 4 C 2 D 4 10. 设12F F ,分别是椭圆 222 2 1x y a b + =(0a b >>)的左、右焦点,若在直线2 :a l x c = 上存在P (其 中c =),使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( ) A .0, 2? ?? B .0, 3? ? ? C .,12????? D .,13? ???? 11. 椭圆上一点A 看两焦点的视角为直角,设1AF 的延长线交椭圆于B ,又2||||AB AF =,则椭圆的 离心率e =( ) A .2-+ B . C 1- D 12. 椭圆() 222 2 10x y a b a b + =>>的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点满足线 段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( ) 13. A .02? ? ? B .102? ? ?? ?, C .)11 , D .112 ???? ??, 14. 已知椭圆() 222 2 10x y a b a b + =>>,A 是椭圆长轴的一个端点,B 是椭圆短轴的一个端点,F 为 椭圆的一个焦点. 若AB BF ⊥,则该椭圆的离心率为 ( ) 224416. 在ABC △中,A B B C =,7cos 18 B =- .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离 心率e = . 17. 在平面直角坐标系xOy 中,设椭圆 222 2 1(0) x y a b a b +=>>的焦距为2c ,以点O 为圆心,a 为 半径作圆M .若过点20a P c ?? ? ?? ,作圆M 的两条切线互相垂直,则椭圆的离心率为 . 18. 直线:220l x y -+=过椭圆的左焦点1F 和一个顶点B ,该椭圆的离心率为_________. 19. 设12(0)(0)F c F c -,,,是椭圆 222 2 1(0) x y a b a b + =>>的两个焦点,P 是以12F F 为直径的圆与椭 圆的一个交点,若12 21 2PF F PF F ∠=∠,则椭圆的离心率等于________. 20. 椭圆 222 2 1(0)x y a b a b + =>>的半焦距为c ,若直线2y x =与椭圆一个交点的横坐标恰为c ,椭圆 的离心率为_________ 21. 已知1F ,2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A B ,两点,若 2ABF △是正三角形,则这个椭圆的离心率是_________.

圆锥曲线几何性质总汇

,. 圆锥曲线的几何性质 一、椭圆的几何性质 (以22a x +22 b y =1(a ﹥b ﹥0)为例) 1、⊿ABF 2的周长为4a(定值) 证明:由椭圆的定义 12121212242AF AF a AF AF BF BF a BF BF a +=?? ?+++=?+=?? 即24ABF C a =< 2、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2 tan 2θ?b (2)(S ⊿PF1F2)max = bc (3)当P 在短轴上时,∠F 1PF 2最大 证明:(1)在12AF F <中 ∵ 2 2 2 1212 4cos 2PF PF c PF PF θ+-= ? ∴ () 2 1212 122cos 2PF PF PF PF PF PF θ?=+-?- ∴ 21221cos b PF PF θ ?=+ ∴ 12 22112sin cos tan 21cos 2 PF F b S b θθθθ-=??=?+ (2)(S ⊿PF1F2)max = max 1 22 c h bc ??= ()()2 2 2 2 2222 12004444PF PF c a ex a ex c a c +-++---x x

,. 当0x =0时 cos θ有最小值22 2 2a c a - 即∠F 1PF 2最大 3、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M 则M 的轨迹是x 2+y 2=a 2 证明:延长1F M 交2F P 于F ,连接OM 由已知有 1PF FP = M 为1 F F 中点 ∴ 212OM FF = =()121 2 PF PF +=a 所以M 的轨迹方程为 2 2 2 x y a += 4、以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切 证明:取1PF 的中点M ,连接OM 。令圆M 的直径1PF ,半径为∵ OM =()211111 2222 PF a PF a PF a r =-=-=- ∴ 圆M 与圆O 内切 ∴ 以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切 5、任一焦点⊿PF 1F 2的内切圆圆心为I ,连结PI 延长交长轴于则 ∣IR ∣:∣IP ∣=e 证明:证明:连接12,F I F I 由三角形内角角平分线性质有 ∵ 1212121222F R F R F R F R IR c e PI PF PF PF PF a +=====+ x x y x

必修二平面解析几何初步知识点及练习带答案

1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着 交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 21 2=≠--= k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式: 1 21 121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示 任意直线. (4)截距式: 1=+b y a x ( b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示 过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的 倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截.距相等...?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),2212212 1)()(y y x x P P -+-=.x 轴上两点间距离:

(完整word版)平面解析几何初步复习课教学设计.doc

平面解析几何初步复习课教学设计 (一)教材分析 解析几何的主要内容为直线与圆,圆锥曲线,坐标系与参数方程。根据课程标准要 求,在必修 2 解析几何初步中,学生学习的最基本内容为直线与直线方程,圆与圆的方 程,并初步建立空间坐标系的概念。这一内容是对全体学生设计的,大部分学生在选修 中还将进一步学习圆锥曲线,坐标系与参数方程等有关内容。因此,本章要求学生掌握 解析几何最基本的思想方法--------用代数的方法研究曲线的几何性质,并学习最基本 的直线,圆的方程,并通过方程研究他们的图形性质。这样的安排,一方面降低了解析 几何的难度,多次反复又逐步提高学生对解析几何的认识,另一方面对部分在解析几何 学习上有较高要求的学生,可以在选修部分拓广加强。 因此教学中,要体会必修 2 的 4 个特点①是学习立体几何与解析几何的初级阶段②仅 仅是初步③是螺旋式上升的开始④ . 感性认识到理性认识的过渡期。 ( 二 )课程内容标准(教学大纲与课程标准比较) 《教学大纲》《课程标准》主要变化点 直线和圆的方程 (22 课时 ) 平面解析几何初步 ( 约 18 课时 ) 1.平面解析几何分 直线的倾斜角和斜率。直线(1) 直线与方程层为三块:初步(必 方程的点斜式和两点式。直①在平面直角坐标系中,结合具体修)、圆锥曲线(必 线方程的一般式。图形,探索确定直线位置的几何要选)和坐标系与参数 两条直线平行与垂直的条素。方程(自选)。 件。两条直线的交角。点到②理解直线的倾斜角和斜率的概2.线性规划问题移 直线的距离。念,经历用代数方法刻画直线斜率到《数学 5》“不等 用二元一次不等式表示平面的过程,掌握过两点的直线斜率的式”部分;原立几 B 区域。简单线性规划问题。计算公式。教材“空间直角坐 实习作业。③能根据斜率判定两条直线平行标系”移至解几初 曲线与方程的概念。由已知或垂直。步。 条件列出曲线方程。④根据确定直线位置的几何要素,3.注重过程教学,

相关主题
文本预览
相关文档 最新文档