当前位置:文档之家› 对透射闪耀光栅的傅里叶分析

对透射闪耀光栅的傅里叶分析

对透射闪耀光栅的傅里叶分析
对透射闪耀光栅的傅里叶分析

对透射闪耀光栅的傅里叶分析

【摘要】一般的透射光栅光谱的缺点是,没有色散的零级主极大占去了入射能量中的很大一部分,剩下的能量又要分配到正负各级主极大上,造成用来分析的有色散的那些谱线中只分配到很小的能量。在实际的应用中,要设法把能量集中分配到所要利用的那级光谱中,闪耀光栅就是为此目的设计的。研究从不同方向入射透射闪耀光栅的透射函数,利用傅里叶光学,从理论上分析透射闪耀光栅衍射图样的复振幅和光强分布与闪耀角及波长的关系。

【关键词】透射闪耀光栅;闪耀角;波长

Abstract:the general transmission grating spectroscopy of disadvantage is that not the dispersion of the zero level great Lord takes up a large part of the incident energy,the remaining energy to be assigned to all levels of the main great,used for analysis of dispersion of the spectral line caused by assigned to only small fraction of energy.In the actual application,try to focus your energy allocation to have to use the magnitude spectrum,blazed grating is designed for this purpose.Research from different direction incident transmission of blazed grating transmission function,using the Fourier optics,theoretically analyzed transmission blazed grating diffraction pattern of complex amplitude distribution of light intensity and blaze Angle and the relationship between the wavelength.

Keywords:transmission blazed grating;blaze Angle;wavelength

1.引言

最早的光栅要归功于美国天文学家李敦豪斯。1786年,他在两根由钟表匠制作的细牙螺丝之间,平行地绕上细丝,在暗室里透过它去看百叶窗上的小狭缝时,观察到三个亮度差不多相同的像,在每边还有几个另外的像,“离主线越远,它们越暗淡,有彩色,并且有些模糊。”他实际上制成了透射光栅,还在费城做了光栅实验。他制作的最好光栅,约为4.3线/mm。1801年杨氏在“光的理论”一文中,介绍了他研究光栅的情况,他利用一块刻有相邻间隔约为0.05mm的一系列平行线的玻璃测微尺,当作光栅。1813年,他认识到所观察到的彩色是由于相邻刻线的微小距离所致。1821年,夫琅和费发现衍射角与丝的粗细或缝宽窄无关,而只与这两者之和即光栅常量d有关。1867年卢瑟福设计了以水轮机为动力的刻划机,制作的光栅优于当时最好的光栅;1870年他在50mm宽的反射镜上用金刚石刻刀刻划了3500槽,这是第一块分辨率和棱镜相当的光栅;1877年他制出了680线/mm的光栅。19世纪80年代,罗兰为了系统地测量光谱线的波长,致力于光栅刻划技术的提高,制成了优良的衍射光栅。1920年,伍德研究出通过改进光栅刻槽的形状,即利用“闪耀”技术,大大提高光栅的衍射效率。经过一代又一代物理学家的不懈努力,光栅已成为实用的分光元件,在光谱学研究中发挥了重要作用。

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T 上满足狄里克莱条件:1o

)(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T - 上就可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= , ),2,1,0(,cos )(2 22Λ==?-n dt t n t f T a T T n ω, (2) ),3,2,1(,sin )(2 22 Λ==?-n dt t n t f T b T T n ω, (3) 根据欧拉(Euler )公式:θθθsin cos j e j +=,(1)式化为 ∑∞=--?? ????-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω ∑∞=-?? ? ???++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令 dt t f T c T T ?-=22 0)(1 Λ,3,2,1,)(1 ]sin )[cos (1 sin )(1cos )(1222 2222 22==-=-=-=????-----n dt e t f T dt t n j t n t f T dt t n t f T j dt t n t f T jb a c T T t jn T T T T T T n n n ωωωωω Λ,3,2,1,)(1 22 ==?--n dt e t f T c T T t jn n ω 综合n n c c c -,,0,可合并成一个式子 Λ,2,1,0,)(1 22 ±±==?--n dt e t f T c T T t jn n ω, (5)

光栅衍射实验实验报告

工物系 核11 李敏 2011011693 实验台号19 光栅衍射实验 一、 实验目的 (1) 进一步熟悉分光计的调整与使用; (2) 学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3) 加深理解光栅衍射公式及其成立条件; 二、 实验原理 2.1测定光栅常数和光波波长 如右图所示,有一束平行光与光栅的法线成i 角,入射到光栅上产生衍射;出射光夹角为?。从B 点引两条垂线到入射光和出射光。如果在F 处产生了一个明条纹,其光程差AD CA +必等于波长λ的整数倍,即 ()sin sin d i m ?λ ±= (1) m 为衍射光谱的级次, 3,2,1,0±±±.由这个方程,知道了λ?,,,i d 中的三个 量,可以推出另外一个。 若光线为正入射,0=i ,则上式变为 λ ?m d m =sin (2) 其中 m ?为第m 级谱线的衍射角。 据此,可用分光计测出衍射角m ?,已知波长求光栅常数或已知光栅常数求 波长。 2.2用最小偏向角法测定光波波长 如右图。入射光线与m 级衍射光线位于光栅法线同侧,(1)式中应取加号,即d (sin φ+sin ι)=mλ。以Δ=φ+ι为偏向角,则由三角形公式得 2d (sin Δ 2cos φ?i 2 )=mλ (3) 易得,当φ?i =0时,?最小,记为δ,则(2.2.1)变

为 ,3,2,1,0,2 sin 2±±±==m m d λδ (4) 由此可见,如果已知光栅常数d ,只要测出最小偏向角δ,就可以根据(4)算出波长λ。 三、 实验仪器 3.1分光计 在本实验中,分光计的调节应该满足:望远镜适合于观察平行光,平行光管发出平行光,并且二者的光轴都垂直于分光计主轴。 3.2光栅 调节光栅时,调节小平台使光栅刻痕平行于分光计主轴。放置光栅时应该使光栅平面垂直于小平台的两个调水平螺钉的连线。 3.3水银灯 1.水银灯波长如下表 2.使用注意事项 (1)水银灯在使用中必须与扼流圈串接,不能直接接220V 电源,否则要烧 毁。 (2)水银灯在使用过程中不要频繁启闭,否则会降低其寿命。 (3)水银灯的紫外线很强,不可直视。 四、 实验任务 (1)调节分光计和光栅使满足要求。 (2)测定i=0时的光栅常数和光波波长。 (3)测定i=15°时的水银灯光谱中波长较短的黄线的波长

傅里叶分析报告教程(完整版)

傅里叶分析之掐死教程(完整版)更新于2014.06.06 Heinrich · 6 个月前 作者:韩昊知乎:Heinrich 微博:@花生油工人知乎专栏:与时间无关的故事 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。 转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更感激不尽了。 我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者…… 这篇文章的核心思想就是: 要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生

上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。 ——————————————以上是定场诗—————————————— 下面进入正题: 抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多…… p.s.本文无论是cos还是sin,都统一用“正弦波”(Sine Wave)一词来代表简谐波。 一、什么是频域 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。 先举一个公式上并非很恰当,但意义上再贴切不过的例子: 在你的理解中,一段音乐是什么呢?

对透射闪耀光栅的傅里叶分析

对透射闪耀光栅的傅里叶分析 【摘要】一般的透射光栅光谱的缺点是,没有色散的零级主极大占去了入射能量中的很大一部分,剩下的能量又要分配到正负各级主极大上,造成用来分析的有色散的那些谱线中只分配到很小的能量。在实际的应用中,要设法把能量集中分配到所要利用的那级光谱中,闪耀光栅就是为此目的设计的。研究从不同方向入射透射闪耀光栅的透射函数,利用傅里叶光学,从理论上分析透射闪耀光栅衍射图样的复振幅和光强分布与闪耀角及波长的关系。 【关键词】透射闪耀光栅;闪耀角;波长 Abstract:the general transmission grating spectroscopy of disadvantage is that not the dispersion of the zero level great Lord takes up a large part of the incident energy,the remaining energy to be assigned to all levels of the main great,used for analysis of dispersion of the spectral line caused by assigned to only small fraction of energy.In the actual application,try to focus your energy allocation to have to use the magnitude spectrum,blazed grating is designed for this purpose.Research from different direction incident transmission of blazed grating transmission function,using the Fourier optics,theoretically analyzed transmission blazed grating diffraction pattern of complex amplitude distribution of light intensity and blaze Angle and the relationship between the wavelength. Keywords:transmission blazed grating;blaze Angle;wavelength 1.引言 最早的光栅要归功于美国天文学家李敦豪斯。1786年,他在两根由钟表匠制作的细牙螺丝之间,平行地绕上细丝,在暗室里透过它去看百叶窗上的小狭缝时,观察到三个亮度差不多相同的像,在每边还有几个另外的像,“离主线越远,它们越暗淡,有彩色,并且有些模糊。”他实际上制成了透射光栅,还在费城做了光栅实验。他制作的最好光栅,约为4.3线/mm。1801年杨氏在“光的理论”一文中,介绍了他研究光栅的情况,他利用一块刻有相邻间隔约为0.05mm的一系列平行线的玻璃测微尺,当作光栅。1813年,他认识到所观察到的彩色是由于相邻刻线的微小距离所致。1821年,夫琅和费发现衍射角与丝的粗细或缝宽窄无关,而只与这两者之和即光栅常量d有关。1867年卢瑟福设计了以水轮机为动力的刻划机,制作的光栅优于当时最好的光栅;1870年他在50mm宽的反射镜上用金刚石刻刀刻划了3500槽,这是第一块分辨率和棱镜相当的光栅;1877年他制出了680线/mm的光栅。19世纪80年代,罗兰为了系统地测量光谱线的波长,致力于光栅刻划技术的提高,制成了优良的衍射光栅。1920年,伍德研究出通过改进光栅刻槽的形状,即利用“闪耀”技术,大大提高光栅的衍射效率。经过一代又一代物理学家的不懈努力,光栅已成为实用的分光元件,在光谱学研究中发挥了重要作用。

傅里叶级数及其应用.

毕业论文 题目:傅里叶级数及其应用作者:姜广辉 指导教师:李博 职称:讲师 院系:理学院数学系 专业:数学与应用数学 班级:10级1班 日期: 2014年5月

傅里叶级数及其应用 摘要:傅里叶级数是数学分析中的一个重要概念,具有较好的几何和代数性质,伴随着科技的进步与发展,涉及了许多数学命题的讨论和应用,傅里叶级数的相关知识已经成为从事科学研究和工程设计等科技人员必备的数学基础.通过对傅里叶、拉格朗日、狄利克雷、黎曼等人在傅里叶级数方面的贡献,介绍了傅里叶级数起源和发展历程.同时文章以在图案设计和铁路客运量预测上的应用说明了傅里叶级数的价值.在图案设计设计方面,运用MATLAB软件,编写傅里叶级数的程序语言,通过自定义函数、编写画图函数程序、对图形多余部分处理、图形线条加粗等步骤,进而得到傅里叶级数的图形.通过对最基本的傅里叶级数的图形的组合、排列可以构成丰富的图案.在铁路客运量预测方面,基于傅里叶级数预测模型,以我国2004—2009年铁路客运量为数据基础,通过将时间序列划分为趋势性和季节性部分,分别采用最小二乘法和傅里叶级数预测法对两者进行拟合,应用MATLAB软件,求出预测模型,并进行预测.通过对预测结果的误差分析,表明:采用傅里叶级数预测法预测我国铁路客运量的效果较好.因此傅里叶级数在一定程度上受到了很多数学家的欢迎. 关键词:傅里叶级数;收敛性;MATLAB软件;图案设计;预测模型

Fourier series and its applications Abstract:Fourier series is a mathematical analysis of an important concept,and has good geometry and algebraic properties,along with the progress and development of technology,involving a lot of discussion and application of mathematical propositions,Fourier series of relevant knowledge has become a mathematical foundation for scientific research and engineering design and other technical personnel necessary. Through Fourier,Lagrange,Dirichlet, Riemann,who contribute in terms of Fourier series,Fourier series introduces the origin and development process,while the article in the graphic design and rail application passenger traffic forecast illustrates the value of the Fourier series. In the design of graphic design,the use of MATLAB software program written in the language of Fourier series,via a custom function,the preparation process of drawing functions,the excess part of the graphics processing,graphics,bold lines and other steps,then get the Fourier series pattern by the combination of the basic pattern of the Fourier series,the arrangement may constitute a rich patterns. Railway passenger traffic forecast,prediction model based on Fourier series to the railway passenger traffic volume of 2004-2009 data base,by the time series into trend and seasonal part,respectively,using the least squares method and fourier Fourier series prediction method for both fitting using MATLAB software,find the prediction model and predict the outcome of the prediction error by analysis showed that:Fourier series prediction method to predict the effect of China's railway passenger volume better. So to some extent,the Fourier series has been welcomed by many mathematicians. Keywords:Fourier series;convergence;MATLAB software;graphic design;prediction model

光栅的选择与分析

最基础的光栅方程如下: (1-1) 在大多数单色仪中,入口狭缝和出口狭缝位置固定,光栅绕其中心旋转。因此,分离角D V成为常数,由下式决定, (1-2) 对于一个给定的波长l,如需求得a和b,光栅方程(1-1)可改写为: (1-3) 假定D V值已知,则a和b可通过式(1-2)、(1-3)求出,参看图1.1、1.2和第2.6节。 图 1.1 单色仪结构示意

图 1.2 摄谱仪结构示意 L = 入射臂长度 A L = 波长l n处出射臂长度 B b =光谱面法线和光栅面法线的夹角 H L =光栅中心到光谱面的垂直距离 H 1.2 角色散 rad/nm (1-4) dβ = 两个不同波长衍射后角度的差值(弧度) dλ = 两个波长的差值(nm) 1.3 线色散 线色散定义为聚焦平面上沿光谱展开方向单位长度对应的光谱宽度,单位是nm/mm,?/mm,cm-1/mm。以两台线色散不同的光谱仪为例,其中一台将一段0.1nm宽的光谱衍射展开为1mm,而另一台则将10nm宽的光谱衍射展开为1mm。 很容易想象,精细的光谱信息更容易通过第一台光谱仪得到,而非第二台。相比于第一台的高色散,第二台光谱仪只能被称为低色散仪器。线色散指标反映了光谱仪分辨精细光谱细节的能力。 中心波长l在垂直衍射光束方向的线色散可表示为: nm/mm (1-5) 式中L B为等效出射焦距长度,单位mm,而dx是单位间隔,单位mm。参见图1.1。 单色仪中,L B为聚焦镜到出口狭缝的距离,或者当光栅为凹面型时光栅到出口狭缝的距离。因此,线色散与cos b成正比,而与出射焦长L B、衍射级数k以及刻线密度n这些参数成反比。

信号与系统matlab实验傅里叶分析及应用报告答案

实验二傅里叶分析及应用 姓名学号班级 一、实验目的 (一)掌握使用Matlab进行周期信号傅里叶级数展开和频谱分析 1、学会使用Matlab分析傅里叶级数展开,深入理解傅里叶级数的物理含义 2、学会使用Matlab分析周期信号的频谱特性 (二)掌握使用Matlab求解信号的傅里叶变换并分析傅里叶变换的性质 1、学会运用Matlab求连续时间信号的傅里叶变换 2、学会运用Matlab求连续时间信号的频谱图 3、学会运用Matlab分析连续时间信号的傅里叶变换的性质 (三)掌握使用Matlab完成信号抽样并验证抽样定理 1、学会运用MATLAB完成信号抽样以及对抽样信号的频谱进行分析 2、学会运用MATLAB改变抽样时间间隔,观察抽样后信号的频谱变化 3、学会运用MATLAB对抽样后的信号进行重建 二、实验条件 需要一台PC机和一定的matlab编程能力 三、实验内容 2、分别利用Matlab符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)[注:图中时间单位为:毫秒(ms)]。

符号运算法: Ft= sym('t*(Heaviside(t+2)-Heaviside(t+1))+Heaviside(t+1)-Heaviside(t-1)+(-t)*(Heavi side(t-1)-Heaviside(t-2))'); Fw = fourier(Ft); ezplot(abs(Fw)),grid on; phase = atan(imag(Fw)/real(Fw)); ezplot(phase);grid on; title('|F|'); title('phase'); 3、试用Matlab 命令求ω ωωj 54 -j 310)F(j ++= 的傅里叶反变换,并绘出其时域信号图。

光栅衍射实验报告

字体大小:大| 中| 小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 --- ---实验日期: 20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2.加深对分光计原理的理解。 3.用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上

的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵,常用的是复制光栅和全息光栅。图1中的为刻痕的宽度, 为狭缝间宽度, 为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入射时衍射光路图3光栅衍射光谱示意图图4载物台 当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射,所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜,在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 出现明纹时需满足条件 (2) (2)式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2)式光栅方程,若波长已知,并能测出波长谱线对应的衍射角,则可以求出光栅常数d 。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色1=435.8nm;绿色2=546.1nm;黄色两条3=577.0nm和4=579.1nm。 衍射光栅的基本特性可用分辨本领和色散率来表征。 角色散率D(简称色散率)是两条谱线偏向角之差Δ两者波长之差Δ之比:

数学分析傅立叶级数习题讲解

第十五章 傅里叶级数 一.填空题 1. 设)(x f 是周期为π2的函数,在),[ππ-上的表达式为 ???????<<=<≤--=ππππ x x x x f 0,2 ,0,0,0,2 )(,则)(x f 的傅里叶系数=n a . 2.若)(x f 在],[ππ-上按段光滑,则)(x f 在],[ππ-上的傅里叶级数 ()=++∑∞ =1 sin cos 2n n n nx b nx a a . 3. 设, 0(),0,0 x x f x x ππ≤≤?=? -≤

傅里叶变换及应用

傅里叶变换在MATLZB里的应用 摘要:在现代数学中,傅里叶变换是一种非常重要的变换,且在数字信号处理中有着广泛的应用。本文首先介绍了傅里叶变换的基本概念、性质及发展情况;其次,详细介绍了分离变数法及积分变换法在解数学物理方程中的应用。傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号,再利用傅立叶反变换将这些频域信号转换成时域信号。应用MATLAB实现信号的谱分析和对信号消噪。 关键词:傅里叶变换;MA TLAB软件;信号消噪 Abstract: In modern mathematics,Fourier transform is a transform is very important ,And has been widely used in digital signal processing.This paper first introduces the basic concepts, properties and development situation of Fourier transform ;Secondly, introduces in detail the method of separation of variables and integral transform method in solving equations in Mathematical Physics.Fourier transformation makes the original time domain signal whose analysis is difficult easy, by transforming it into frequency domain signal that can be transformed into time domain signal by inverse transformation of Fourier. Using Mat lab realizes signal spectral analysis and signal denoising. Key word: Fourier transformation, software of mat lab ,signal denoising 1、傅里叶变换的提出及发展 在自然科学和工程技术中为了把较复杂的运算转化为较简单的运算,人们常常采用所谓变换的方法来达到目的"例如在初等数学中,数量的乘积和商可以通过对数变换化为较简单的加法和减法运算。在工程数学里积分变换能够将分析运算(如微分,积分)转化为代数运算,正是积分变换这一特性,使得它在微分方程和其它方程的求解中成为重要方法之一。 1804年,法国科学家J-.B.-J.傅里叶由于当时工业上处理金属的需要,开始从事热流动的研究"他在题为<<热的解析理论>>一文中,发展了热流动方程,并且指出如何求解"在求解过程中,他提出了任意周期函数都可以用三角级数来表示的想法。他的这种

闪耀光栅数字微镜的设计与模拟仿真

闪耀光栅数字微镜的结构设计与模拟仿真 引言 基于MEMS 制造技术的闪耀光栅数字微镜显示技术是一种全新的显示技术, 它的基本工作原理为:平行的复合白色光线以固定的入射角照射在闪耀光栅微镜阵列上,驱动电路驱动每个像素单元的闪耀光栅微镜偏转不同角度,在特定的衍射方向上得到的R 、G 、B 以及不可见波长的光线经过成像镜头后形成彩色画面。 微镜结构设的计基本要求 闪耀光栅数字微镜显示技术的核心部件是闪耀光栅数字微镜。要达到便携应用和投影应用的目的,闪耀光栅数字微镜结构设计需满足以下基本要求。 1、 尽可能减小显示单元的尺寸 为了得到准确的基色,要求入射的复合白色光线在微镜总像素尺度范围内保持平行,否则,由于入射光线的角度偏差,将导致画面色彩的偏离。当微镜总像素尺度较小时,容易得到理想的、具有较强亮度的平行照射光线。若增加像素单元尺寸,需要更大面积的平行强光,这无疑会增加光源系统的功率和制造成本。 2、 尽可能提高像素的填充率 闪耀光栅数字微镜的填充率主要取决于像素间距,而像素间距的大小又与驱动方式有关。在MEMS 系统中,最为高效的驱动方式为静电驱动。通过在两块板上施加电压,可以在板间形成静电场,两片板间的静电力由以下公式计算。 22 021F d WLV r d εε= 式中,r ε为相对介电常数,0ε为自由空间介电常数,W 是电极板的宽,L 是电极板长,d 是电极板间的距离,V 为施加于电极板之间的电压,d F 是垂直于电极板的静电力。 从以上公式可知,静电力的大小与电极板之间的距离平方成反比,与电极板的面积成正比,降低板间距离和增加电极板面积都能增加静电力。梳状电极是增加面积的常用方式,在单镜以及扫描镜成像方式中,梳状致动器被广泛采用。通常,梳状致动器需耗用较大硅面积,对于像素阵列而言,这将极大降低填充率,无法形成可以接受的显示画面。提高静电力的更好办法是尽可能降低电极板之间的距离。 3、采用尽可能低的驱动电压 从静电力公式还可以看到,静电力的大小与驱动电压的平方成正比。提高驱动电压可以有效地提高静电力。对于便携应用,电源通常是锂电池,输出电压多为十伏以内。这就要求微镜的驱动电压也必须与之相适应,基于固定应用的220V 电压驱动电压显然不适合用于移动应用中。 4、确定的几何结构参数要确保微镜具有足够的强度和寿命 与GLV 通过光栅节距的变化来实现光线的空间调制不同,闪耀光栅微镜是通过微镜的偏转,使入射光线的入射角发生变化来实现光线的空间调制。微镜的偏转主要有变形、移动、活塞和扭转等方式。变形、移动和活塞方式通常利用材料的变形来产生,例如,在压电或聚合材料上施加电压时,能使这些材料产生较大尺度的变形,经过运动机构的作用,使材料变形转变为镜面的转动。在以上方式中,扭转轴方式以响应速度快、黏结性低、无磨损的优点被广泛采用。扭转微镜结构设计时要考虑的主要内容是要能够用尽可能低的驱动电压达到所需偏转角度的同时,还需保证特定材料的几何结构能通过剪切应力的校核。 根据材料力学,矩形截面扭转轴的扭转角由以下公式确定: GJ TL =φ 式中,T 为电极板产生的静电力引起的对于扭转轴的扭矩,L 为扭转轴支点到扭转轴镜面连接点的长度,G

光栅衍射实验报告

光栅衍射实验报告 字体大小:大|中|小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 ------实验日期: 20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2. 加深对分光计原理的理解。 3. 用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其

示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上

,常用的是复制光栅和 的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵 全息光栅。图1中的为刻痕的宽度,为狭缝间宽度,为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹 数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入射时衍射光路 图3光栅衍射光谱示意图图4载物台 当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射, 所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜, 在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 岀现明纹时需满足条件 (2) (2 )式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2 )式光栅方程,若波长已知,并能测岀波长谱线对应的衍射角,则可以求岀光栅常数 d。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的 两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同 的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色1=435.8nm; 绿色2=546.1 nm; 黄色两条3=577.0nm 和4=579.1 nm 。 衍射光栅的基本特性可用分辨本领和色散率来表征。

傅里叶变换和拉普拉斯变换的性质及应用

1.前言 1.1背景 利用变换可简化运算,比如对数变换,极坐标变换等。 类似的,变换也存在于工程,技术领域,它就是积分变换。 积分变换的使用,可以使求解微分方程的过程得到简化, 比如乘积可以转化为卷积。什么是积分变换呢?即为利用 含参变量积分,把一个属于A函数类的函数转化属于B函 数类的一个函数。傅里叶变换和拉普拉斯变换是两种重要 积分变换。分析信号的一种方法是傅立叶变换,傅里叶变换能 够分析信号的成分,也能够利用成分合成信号。可以当做信号 的成分的波形有很多,例如锯齿波,正弦波,方波等等。傅立 叶变换是利用正弦波来作为信号的成分。 拉普拉斯变换最早由法国数学家天文学家 Pierre Simon Laplace (拉普拉斯)(1749-1827)在他的与概率论相关科学研究 中引入,在他的一些基本的关于拉普拉斯变换的结果写在 他的著名作品《概率分析理论》之中。即使在19世纪初, 拉普拉斯变换已经发现,但是关于拉普拉斯变换的相关研 究却一直没什么太大进展,直至一个英国数学家,物理学 家,同时也是一位电气工程师的Oliver Heaviside奥利 弗·亥维赛(1850-1925)在电学相关问题之中引入了算 子运算,而且得到了不少方法与结果,对于解决现实问题 很有好处,这才引起了数学家对算子理论的严格化的兴 趣。之后才创立了现代算子理论。算子理论最初的理论依 据就是拉普拉斯变换的相关理论,拉普拉斯变换相关理论 的继续发展也是得益于算理理论的更进一步发展。这篇文 章就是针对傅里叶变换和拉普拉斯变换的相关定义,相关 性质,以及相关应用做一下简要讨论,并且分析傅里叶变 换和拉普拉斯变换的区别与联系。 1.2预备知识

快速傅里叶变换原理及其应用(快速入门)

快速傅里叶变换的原理及其应用 摘要 快速傅氏变换(FFT),是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。傅里叶变换的理论与方法在“数理方程”、“线性系统分析”、“信号处理、仿真”等很多学科领域都有着广泛应用,由于计算机只能处理有限长度的离散的序列,所以真正在计算机上运算的是一种离散傅里叶变换. 虽然傅里叶运算在各方面计算中有着重要的作用,但是它的计算过于复杂,大量的计算对于系统的运算负担过于庞大,使得一些对于耗电量少,运算速度慢的系统对其敬而远之,然而,快速傅里叶变换的产生,使得傅里叶变换大为简化,在不牺牲耗电量的条件下提高了系统的运算速度,增强了系统的综合能力,提高了运算速度,因此快速傅里叶变换在生产和生活中都有着非常重要的作用,对于学习掌握都有着非常大的意义。 关键词快速傅氏变换;快速算法;简化;广泛应用

Abstract Fast Fourier Transform (FFT), is a discrete fast Fourier transform algorithm, which is based on the Discrete Fourier Transform of odd and even, false, false, and other characteristics of the Discrete Fourier Transform algorithms improvements obtained. Its Fourier transform theory has not found a new, but in the computer system or the application of digital systems Discrete Fourier Transform can be said to be a big step into. Fourier transform theory and methods in the "mathematical equation" and "linear systems analysis" and "signal processing, simulation," and many other areas have a wide range of applications, as the computer can only handle a limited length of the sequence of discrete, so true On the computer's operation is a discrete Fourier transform. Fourier Although all aspects of computing in the calculation has an important role, but its calculation was too complicated, a lot of computing system for calculating the burden is too large for some Less power consumption, the slow speed of operation of its system at arm's length, however, have the fast Fourier transform, Fourier transform greatly simplifying the making, not in power at the expense of the conditions to increase the speed of computing systems, and enhance the system The comprehensive ability to improve the speed of operation, the Fast Fourier Transform in the production and life have a very important role in learning to master all have great significance. Key words Fast Fourier Transform; fast algorithm; simplified; widely used

光栅衍射实验报告

光栅衍射实验 系别 精仪系 班号 制33 姓名 李加华 学号 2003010541 做实验日期 2005年05月18日 教师评定____________ 一、0i =时,测定光栅常数和光波波长 光栅编号:___2____;?=仪___1’___;入射光方位10?=__7°6′__;20?=__187°2′__。 由衍射公式,入射角0i =时,有sin m d m ?λ=。 代入光谱级次m=2、绿光波长λ=546.1及测得的衍射角m ?=19°2′,求得光栅常数 ()2546.13349sin sin 192/60m m nm d nm λ??= ==+? cot cot 2m m m d d ?????==?=? ()4cot 192/601/60 5.962101802180ππ-????=+??=? ? ????? 445.96210 5.962103349 1.997d d nm nm --?=??=??= ()33492d nm =± 代入其它谱线对应的光波的衍射角,得 ()3349sin 2013/60sin 578.72 m nm d nm m ?λ?+?===黄1

()3349sin 209/60576.82 nm nm λ?+? = =黄2 ()3349sin 155/60435.72 nm nm λ?+?==紫 λ λ?== 578.70.4752nm nm λ?==黄1 576.80.4720nm nm λ?= =黄2 435.70.4220nm nm λ?==紫()578.70.5nm λ=±黄1,()576.80.5nm λ=±黄2,()435.70.4nm λ=±紫 由测量值推算出来的结果与相应波长的精确值十分接近,但均有不同程度的偏小。由于实验中只有各个角度是测量值(给定的绿光波长与级数为准确值),而分光计刻度盘读数存在的误差为随机误差,观察时已将观察显微镜中心竖直刻线置于谱线中心——所以猜测系统误差来自于分光镜调节的过程。 二、150'i =?,测量波长较短的黄线的波长 光栅编号:___2____;光栅平面法线方位1n ?=__352°7′__;2n ?=__172°1′__。

傅里叶级数通俗解析

傅里叶级数 本文意在阐述傅里叶级数是什么,如何通过数学推导得出,以及傅里叶级数代表的物理含义。 1.完备正交函数集 要讨论傅里叶级数首先得讨论正交函数集。如果n个函数 φ1t,φ2t,…,φn t构成一个函数集,若这些函数在区间t1,t2上满足 φi tφj t t2 t1dt= 0 ,i≠j K i ,i=j(1) 如果是复数集,那么正交条件是 φi tφj?t t2 t1dt= 0 ,i≠j K i ,i=j(2) φj?t为函数φj t的共轭复函数。 有这个定义,我们可以证明出一些函数集是完备正交函数集。比如三角函数集和复指数函数集在一个周期内是完备正交函数集。 先证明三角函数集: 设φn t=cos nωt,φm t=cos mωt,把φn t,φm t代入(1)得 φi tφj t t0+T t0dt=cos nωt cos mωt dt t0+T t0 当n≠m时 =1 2 cos n+mωt+cos n?mωt t0+T t0 dt =1 2sin n+mωt (n+m)ω +sin n?mωt (n?m)ωt t0+T =0 (n,m=1,2,3,…,n≠m) 当n=m时 =1 2 cos2nωt t0+T t0 dt =T 2 再证两个都是正弦的情况 设φn t=sin nωt,φm t=sin mωt,把φn t,φm t代入(1)得 φi tφj t t0+T t0dt=sin nωt sin mωt dt t0+T t0 当n≠m时

=1 2 cos n+mωt?cos n?mωt t0+T t0 dt =1 2sin n+mωt (n+m)ω ?sin n?mωt (n?m)ωt t0+T =0 (n,m=1,2,3,…,n≠m) 当n=m时 =1 2 cos2nωt t0+T t0 dt =T 2 最后证明两个是不同名的三角函数的情况 设φn t=cos nωt,φm t=sin mωt,把φn t,φm t代入(1)得 φi tφj t t0+T t0dt=cos nωt sin mωt dt t0+T t0 =1 2 sin n+mωt?sin n?mωt t0+T t0 dt =1 2 ?cos n+mωt (n+m)ω +cos n?mωt (n?m)ωt t0+T =0 (n,m为任意整数) 因为两个三角函数相乘只有以上三种情况:两个皆为余弦函数相乘;两个皆为正弦函数相乘;一个为正弦函数,另一个为余弦函数相乘;三种情况皆满足正交函数集的定义,所以三角函数集为正交函数集。至于三角函数集的完备性可以从n,m的取值为任意整数可以得出,三角函数集是完备正交函数集。证毕。 由于三角函数集是完备正交函数集,而根据欧拉公式,我们容易联想到复指数函数集是否也是完备正交函数集呢。 接着是复指数函数集的证明 设φn t=?jnωt,φm t=?jmωt,则φj?t=??jmωt把φn t,φj?t代入(2)得 φi tφj?t t0+T t0dt=?jnωt t0+T t0 ??jmωt dt =?j(n?m)ωt t0+T t0 dt 当n≠m时,根据欧拉公式 =cos n?mωt+j sin?(n?m)ωt t0+T t0 dt =sin n?mωt n?mω?j cos?(n?m)ωt n?mωt t0+T =0 (n,m=1,2,3,…,n≠m)

相关主题
文本预览
相关文档 最新文档