当前位置:文档之家› NTC热敏电阻器在高精度温度测量中的应用

NTC热敏电阻器在高精度温度测量中的应用

NTC热敏电阻器在高精度温度测量中的应用
NTC热敏电阻器在高精度温度测量中的应用

NTC热敏电阻器在高精度温度测量中的应用

于丽丽1,王剑华2,殳伟群2

(1.同济大学电子信息学院,上海200092;2.同济大学中德学院,上海200092)

摘 要:介绍了用NT C热敏电阻器进行高精度温度测量的几点考虑。分析了影响测量精度的各种因素,并提出了一些解决方法,主要的措施有:直流恒流源微安级电流;四线制测量电路;高分辨力(24位)ADC;数字滤波;仪器自校准等。实际测量表明:使用恰当的热敏电阻器在较窄的范围内(0~60℃)测量精度可达±0.001℃。

关键词:热敏电阻器;高精度温度测量;校准

中图分类号:TP223 文献标识码:A 文章编号:1000-9787(2004)12-0075-03

Application of NTC thermistor in high accurate

temperature measurement

Y U Li2li1,W ANGJian2hua2,SH U Wei2qun2

(1.Dept of E lct I nfo,Tongji U niversity,Sh angh ai200092,China;

2.Dept of China2G erm any,Tongji U niversity,Sh angh ai200092,China)

Abstract:A few res olvents of the problems in high accurate tem perature measurement using NT C thermistors are intro2 duced.The various factors affected measurement accuracy are analyzed,and a few res olvents are advanced.S ome mea2 sures are used:constant current s ource offering microam pere current,4wire tem perature measuring circuit,ADC with ex2 cellent res olution,digital filter,instrument recalibration itself,etc.I t is indicated that high accuracy of0.001℃in a nar2 row range of tem perature(0~60℃)can be achieved by using fit thermistors.

K ey w ords:thermistor;high2accurate tem perature measurement;calibration

0 引 言

NT C热敏电阻器除具有体积小、响应快、耐振动等优点外,还有阻值高、温度特性曲线的斜率大等特点。由于阻值高,往往可以忽略引线电阻的影响,即允许采用二线制接法。由于阻值随温度变化大,相应输出较大,对二次仪表的要求相对较低。缺点是量程窄、互换性差。

针对本文涉及研制项目温度测量量程窄、测量精度要求高(22℃±0.01℃)等特点,选用了经反复老化、长期稳定性指标优于0.002℃/a的热敏电阻器。尽管其阻值很高,仍然采用四线制的接法,以消除很小一点的引线电阻影响。对单支传感器进行了量程范围内多个温度点的严格标定。将其与采用特殊结构的61

2

电阻测量仪表相配合,最后,得到了期待的精度[1]。

1 高精度温度测量系统的研究

1.1 数学模型

热敏电阻与温度的关系是严重非线性。为了对这种非线性进行尽可能准确的描述,采用了如下的S teinhart2Hart 方程

收稿日期:2004-06-27

R=exp(A+

B

T

+C

T2

+D

T3

),(1)式中 T为绝对温度值,K;R为热敏电阻器在温度为T时的电阻值,Ω。A,B,C,D则为4个特定的参数。一般需要采用多个温度点(至少4点)的标定获得热敏电阻器在已知温度点的阻值,然后,经过拟合获得模型的参数。这是一个从T和R出发推算A,B,C,D的过程,即校准或建模的过程。而测量时,则是在已知A,B,C,D的前提下,根据测出的R和数学模型推算出T的过程,这实际上是个内插的过程。

1.2 影响测量精度的因素

为了用热敏电阻器进行高精度的温度测量,必须研究各种影响因素,并采取相应的对策。在不考虑热敏电阻器的长期稳定性的前提下,尚有如下因素应当考虑:

(1)热敏电阻器的标定:从第1.1节的表述可以看出:高精度的测量实际是一个高精度的内插问题。而要进行高精度的内插,需要事先进行高精度的建模。而高精度的建

57

 2004年第23卷第12期 传感器技术(Journal of T ransducer T echnology)

模又需要依据高精度的标定数据、并经过可靠的数据处理后才能实现;

(2)激励电流的影响:电阻本身是不能直接测量的,必

须对其供恒流电,然后,测其两端电压才能计算出电阻来。但这样做存在以下问题:因为精密的恒流源无法保证其真正“恒”流。从严格意义上讲,电流难免会因环境(如温度)的因素而发生一些微小的变化。即便这种变化可以忽略,但为了从电压计算出电阻,还必须知道激励电流的准确数值,这又涉及到对电流进行更高精度的测量,而这是极其困难的;

(3)热电动势:传感器在接入仪表的过程中不可避免会

使用一些导线,经过一些节点。而这些导线几乎不可能是同一种金属构成的,且各节点也几乎不可能处在同一温度环境中。这样接点处就不可避免会产生热电势。而这些热电势将进入测温电路,影响到测量结果,使测量精度降低;

(4)自热效应、引线电阻、噪声和分辨力的影响:这些影

响因素也是高精度温度测量中应该考虑的问题[2]。

2 高精度温度测量系统的实现

2.1 校准和建模

选择0.01℃(水三相点)及25,30,32,37,60℃共6个温度点。除水三相点为额定温度值外,其余均用高精度恒温槽产生,其真实温度值(约定真值)用一等标准铂电阻作为上级标准读取。除此以外,为适应项目需要,将22℃作为测试检测点。

为了消除由温场波动带来的不确定性,传感器在上述

6个温度点的每个温度点上分别进行600次测量取其平均

值作为结果。在获得基本的标定数据以后,采用最小二乘法进行拟合处理,以获得S teinhart 2Hart 方程的系数。

所谓最小二乘法是指使实测数据和根据数学模型计算出来的理论数据之差的平方和为最小。这里的实测数据是指标定过程中测量得到的、与各已知温度点对应的电阻值,数学模型则是指S teinhart 2Hart 方程。根据最小二乘法,应有

S =∑6

i =1

(R ti

-R mi )

2

=

6

i =1

[exp (A +

B T i +

C T 2i +D

T 3i

)-R mi ]2=min ,(2)

式中 下标t 表示理论值;m 表示实测值。由于上述方程的非线性,很难通过对其求导数推导出正则方程组。为此,对式(1)两侧取自然对数,并令x =1/T ,可得y =1n R =A

+B x +C x 2

+D x 3

。这样,就重新给出最小二乘条件如下

S L =

∑6

i =1

(y

ti

-y mi )

2

=

6

i =1

[A +B x i +C x 2i +D x 3i -y mi ]2

=!

min ,

(3)

式中 y mi =ln R mi 为实测电阻值的自然对数。这样,就将问题转换为人们熟知的多项式拟合。将式(3)对待求系数A ,

B ,

C ,

D 分别求导,并令其为0,可得到A ,B ,C ,D 应当满

足的条件(正则方程组)为

A N +B

∑x

n

+C

∑x 2n +D ∑x 3n =∑y

n

A ∑x n

+B ∑x 2n

+C ∑x 3n +D ∑x 4n =∑x n y

n

A ∑x 2n +

B ∑x 3n +

C ∑x 4n +

D ∑x 5n =∑x 2

n y

n

A ∑x 3n +

B ∑x 4n +

C ∑x 5n +

D ∑x 6n =∑x 3

n y

n

,

(4)

式中 N 为数据的点数,所有的连加运算均从1进行到

N 。这是一个线性方程组,由实测数据中的温度值和电阻

值构成等号左侧的系数矩阵和等号右侧的列矢量。用矩阵求逆法不难求得参数列矢量,即A ,B ,C ,D 的具体数值来[3]。这样,求出的结果是在式(3)定义的最小二乘意义下的最佳参数。但式(3)中的S L 和式(2)中的S 是有区别的,即,使S L 最小的参数A ,B ,C ,D 不一定同时使S 达到最小。其深层次原因是测量噪声的分布和影响因非线性变换

x =1/T 和y m =1n R m 而发生改变。例如:原先的高斯噪声

在非线性变换后就不再是高斯的。对此这里不作进一步的讨论,而认为其差别可忽略不计。以下为某一只热敏电阻器的实际校准数据和最终拟合结果

A =-4.2802962922;

B =3.9169640484×103

;C =-4.6737162323×103

;D =-1.3616951174×107.

具体的实验数据、拟合数据和拟合误差见表1。

表1 实验数据/拟合数据和拟合误差

T ab 1 Experimetal d ata ,fitting d ata and fitting error

温度

(℃)

测试电阻值

(Ω)

数学模型计算电阻值(Ω)

拟合误差

(℃)0.0111253.53725011253.5233840-0.00002253987.4835003987.4649242-0.0001230

3297.6772523297.6051971-0.0005832

3060.8202683060.94342320.0010037

2550.3107052550.2686165-0.0004660

1172.257771

1172.2586787

0.00002

可以发现:在32℃点拟合误差稍大一些。其原因可能是上述非线性变换引起的。但不管怎么说,总体拟合精度还是相当好的。当然,为了保证数学模型长期可靠,应当定期(如,每年一次)对传感器进行校准,并重新进行参数拟合。通过Matlab 软件得该热敏电阻器的电阻2温度拟合曲线如图1所示,

67 传 感 器 技 术 第23卷

图1 热敏电阻器电阻2温度特性曲线

Fig 1 R esistance 2temperature curve of thermistor

2.2 不利因素的消除

2.2.1激励电流影响的消除

为了消除激励电流的影响,测温仪并不直接依赖于对测温电阻两端电压的测量精度,而是在仪器内部装入了预先标定过的参考电阻。将外置电阻(测温电阻)和内置参考电阻串联供以同一电流,通过继电器切换分别测出各电阻两端的电压降。然后,比较这2个电压值得到比值,由于供电电流是一样的,这一比值就是外置电阻和内置参考电阻的比值。通过将内置参考电阻乘上这一比值就得到外置电阻的阻值,即

R x =

U x I ,R R =U R I ]R x =R R =U x

U R

,(5)

式中 下标x 表示外置待测参数;下标R 表示内置参考参数。

基本测量电路如图2

图2 基本测量电路

Fig 2 B asic measurement circuit

采取这样的措施后,不必知道恒流电流的具体数值,因为它并不出现在具体计算中。也不要求恒流电流具有长期稳定性,而只要求该电流在继电器切换阶段并未改变即可。

通过这一方法,还可在一定程度上避免由放大器和

A/D 转换器的波动或不准确造成的误差,因为这些误差是

同时作用于外置电阻和内置参考电阻的。

2.2.2热电动势作用的消除

(1)使用交流激励电流,并使用只检测交流信号而抑制

直流电动势的测量电路;

(2)定期关闭传感器电流,并直接测量热电动势。这种

方法的问题在于,施加在传感器上的激励电流变化而导致的自热效应变化,从而导致误差;

(3)测温仪对外置电阻和内置电阻2个电阻均进行两

次电压的测量。一次电流正向流过;一次电流反向流过。

由于这2个电压测量值(短期内)是恒定的,因此,将它们相减就可以消除偏移电压(包括由热电势产生的偏移电压)。具体来说,每次测量需要测量4个电压值,即,外置电阻(传感器)在正向供电时的电压U x 1,外置电阻在反向供电时的电压U x 2;内置参考电阻在正向供电时的电压U R 1,参考电阻在反向供电时的电压U R 2。由此得到比值

r =

U x 1-U x 2U R 1-U R 2=R x

R R

.

(6)

相比而言,第三种方法较为简单、可行。

3 结 论

在满足一定先决条件的前提下,采用热敏电阻器可以进行很高精度的温度测量。使用这种传感器最大的好处是输出大、耐振动,可以方便地用较长的引线安装到设备上。本应用研究中,使用的热敏电阻器经过与标准铂电阻温度计反复比对,在22℃时,连续几天内温度示值差不大于

0.001℃,满足了控温系统的需要。

参考文献:

[1] Quinn T J.T em perature [M].New Y ork :Academ ic Press Inc ,1983.

231-235.

[2] 王绍纯.自动检测技术[M].北京:冶金工业出版社,1985.224

-270.

[3] 王世儒,王金金,冯有前,等.计算方法[M].西安:西安电子科

技大学出版社,1996.115-124.

作者简介:

于丽丽(1980-),女,吉林省大安人,同济大学电子信息学院硕士研究生,研究方向为检测技术与自动化装置。

(上接第74页)4 结束语

本文介绍的汽车智能节胎系统已申报专利,并已经推广应用,取得了较好的社会经济效益。经过市场反馈和实验表明:该项技术减少了约30%的轮胎磨损,起到了延长车辆使用寿命和保证安全行车的目的。参考文献:

[1] 李 仁.电器控制[M].北京:机械工业出版社,1990.25-28.[2] 张风珊.电气控制及可编程序控制器[M].北京:中国轻工业

出版社,1999.48-51.

[3] 罗帮杰.工程机械液力传动[M ].北京:机械工业出版社,

1998.58-60.

[4] 刘迎春.传感器原理与应用[M].长沙:国防科技大学出版社,

1997.49-52.

[5] 贾伯年,俞 朴.传感器技术[M].南京:东南大学出版社,

1992.49-52.

作者简介:

郑宏婕(1962-),女,江苏连云港人,现在淮海工学院电子工程系任教,副教授,研究方向为应用电子专业。1994年,主编《电力电子技术》,并已主持多项省市教委及科委科研开发项目。

7

7第12期 于丽丽等:NT C 热敏电阻器在高精度温度测量中的应用

NTC热敏电阻[概念_计算方法_应用场合]

NTC负温度系数热敏电阻[概念,计算方法,应用场合] NTC负温度系数热敏电阻 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数 -2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量 功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数(e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。

用热敏电阻测量温度

PB05210298 张晶晶 实验报告三 实验题目:用热敏电阻测量温度 实验原理: 1. 半导体热敏电阻的电阻——温度特性 某些金属氧化物半导体(如:Fe 3O 4、MgCr 2O 4等)的电阻与温度关系满足式(1): T B T e R R ∞= (1) 式中R T 是温度T 时的热敏电阻阻值,R ∞是T 趋于无穷时热敏电阻的阻值,B 是热敏电阻的材料常数,T 为热力学温度。 金属的电阻与温度的关系满足(2): )](1[1212t t a R R t t -+= (2) 式中a 是与金属材料温度特性有关的系数,R t1、R t2分别对应于温度t 1、t 2时的电阻值。 根据定义,电阻的温度系数可由式(3)来决定: dt dR R a t t 1= (3) R t 是在温度为t 时的电阻值,由图3.5.2-1(a )可知,在R-t 曲线某一特定点作切线,便可求出该温度时的半导体电阻温度系数a 。 2. 惠斯通电桥的工作原理 半导体热敏电阻和金属电阻的阻值范围,一般在1~106 Ω,需要较精确测量时常用电桥法,惠斯通电桥是应用很广泛的一种仪器。 惠斯通电桥的原理,如图3.5.2-2(a )所示。四个电阻R 0、R 1、R 2、R x 组成一个四边形,即电桥的四个臂,其中R x 就是待测电阻。在四边形的一对对角A 和C 之间连接电源E ,而在另一对对角B 和D 之间接入检流计G 。当B 和D 两点电位相等时,G 中无电流通过,电桥便达到了平衡。平衡时必有02 1 R R R R x = ,

R 1/R 2和R 0都已知,R x 即可求出。R 1/R 2称电桥的比例臂,由一个旋钮调节,它采用十进制固定值,共分0.001、0.01、0.1、1、10、100、1000 七挡。R 0为标准可变电阻,由有四个旋钮的电阻箱组成,最小改变量为1Ω,保证结构有四位有效数字。 02 1 R R R R x 是在电桥平衡的条件下推导出来的。电桥是否平衡是由检流计有无偏转来判断的,而检流计的灵敏度总是有限的。如实验中所用的张丝式检流计,其指针偏转一格所对应的电流约为10-6A ,当通过它的电流比10-7A 还小时,指针的偏转小于0.1格,就很难觉察出来。假设电桥在R 1/R 2=1时调到平衡,则有

NTC热敏电阻原理及应用.

NTC热敏电阻原理及应用 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。 材料常数(热敏指数) B 值( K )

基于NTC热敏电阻的温度测量与控制系统设计(论文)

题目名称:基于NTC热敏电阻的温度测量与控 制系统设计 摘要:本系统由TL431精密基准电压,NTC热敏电阻(MF-55)的温度采集,A/D和D/A转换,单片机STC89C51为核心的最小控制系统,LCD1602的显示电路等构成。温度值的线性转换通过软件的插值方法实现。该系统能够测量范围为0~100℃,测量精度±1℃,并且能够记录24小时内每间隔30分钟温度值,并能够回调选定时刻的温度值,能计算并实时显示24小时内的平均温度、温度最大值、最小值、最大温差,且有越限报警功能。由于采用两个水泥电阻作为控温元件,更有效的增加了温度控制功能。 关键词: NTC TL431 温度线性转换 Abstract: The system is composed of TL431 as precise voltage,the temperature acauisition circuit with NTC thermistors (MF-55), the transform circuit of A/D and D/A, the core of the minimum control system with STC89C51, 1the display circuit usingLCD1602, etc. Get the temperature of the linear transformation by the software method. The range of the measure system is 0 ~ 100 ℃, measurement accuracy + 1 ℃.It can record 24 hours of each interval temperature by per 30 minutes selected of temperature.The time can be calculated and real-time display within 24 hours of the average temperature, maximum temperature and minimum temperature, maximum value, and each temperature sensor has more all the way limit alarm function. Due to the two cement resistance as temperature control components, the more effective increase the temperature control function. Keyword: NTC TL431 temperature linear conversion

热敏电阻测温电路设计

电子设计大赛论文 (B组) 热敏电阻测温电路设计 第三十组 K3队 组队成员:顾代辉黄龑罗程 2010年5月23日

摘要:科技发展,很多工业化的生产都需要温度测量,这使得温度测量仪器变成一个 很重要的东西。下面我们将题目所给的温度测量电路进行分析和改动设计。题目所给图是一个在工业场合的温度测量系统,采用RTD 电阻温度检测器。通过分析可知,ref R 两端分到的电压即为ref V ,Vo3输出的电压即为NTC 两段分到的电压。而要求我们设计的电路所用的是NTC 负温度系数热敏电阻器。题目要求我们将电流产生电路的电流控制在0.1m A 。这里我们简 单的将 ref R 改成25k 。对于滤波电路,我们设计各个参数使得其截至频率在100Hz 左右,就 能滤掉1000HZ 的干扰信号;对于基准源,我们都用基本的连接方法,输出电压为2.5V ;对于稳压管,输出电压为恒定的5V ;对于串口连接,我们用到MAX232芯片其中一个接口,与单片机的RXD/TXD 连接传输数据。 关键词:温度传感器 AVR 串口显示 I .电路分析 (1) 电流产生电路分析: 首先对于运放A1,由虚短和虚断,可知 111211 120 V V I I === 有: 1121221 O V V V R R --= 可解得:1121122=O V V V = 即第一个运放功能为将信号放大两倍。 对于运放A2,同理,有 212221 220 V V I I === 有:221O V V =可见,运放A2是一个电压跟随器。

又:24211234( )2 REF O REF O O V V R V V V V R R -?+=+=+ 11122O REF O V V V V ==+ 故: REF R 两端分到的电压为 122R O REF REF O O REF V V V V V V V =-=+-= 由此可见: REF R 两端分压恒为基准电压 REF V ,只要基准电压和 REF R 的值不变,则 通过 REF R 的电流REF REF V I R = 2.5 12.5mA k ==为恒定值,该电路的作用为产生恒定电流。 由于3233p n V V V ==,故Rline 和R6相当于并联, 66'1001R R I I Rline ==,故100'101 I I I =≈ 故可认为恒定电流I 都通过热敏电阻RTD 。 运放A3以及NTD 分析: 由叠加法分析,当31V 接地时,033131317100'6100R k V V V V R k =- =-=- 当32V 接地时,03323276100100''26100R R k k V V V R k ++= == 故0303033231'''2V V V V V =+=- …………………… ① 而32()'RTD V Rline R I =+? …………………… ② 31(2)'RTD V Rline R I =+? …………………… ③

ntc热敏电阻作用 7个常见例子

ntc热敏电阻作用7个常见例子 负温度NTC热敏电阻利用其特性,在N多种场合、N多种产品中发挥重要的作用。随温度的增大、阻值变小;温度下降,阻值变大~ NTC热敏电阻在体温探头的作用 体温探头其温度精度达到±0.1℃。这对NTC热敏电阻的要求是:体积小,高精度,高可靠,良好的耐热循环能力. 档监护仪采用双道体温测量电路,用于重症病人监护方面.它要求一个体温探头能同时提供双道测量温度,以配合监护仪的双道测量电路. 传统的做法,是将两粒NTC热敏电阻并联起来,制作成一个体温探头。但因受其尺寸限制,这种做法不能适应其小型化要求。 一是测量精度更准确,因其两粒芯片所测温度可以作对比,可以更能准确的测量出实际温度。二是可靠性更强,在工作中,即使其中一粒芯片突然失效,另一粒芯片仍可继续工作。 NTC热敏电阻医用植入式传感器 植入式传感器应当体积小,重量轻,并且和身体兼容,同时还要求其功率非常小。更重要的是,它们不能随着时间的推移而衰变。由于这类传感器属于第Ⅲ类医疗器械,因此需要有食品及药物管理局(FDA)的批准才能使用。一般来讲,这类传感器价格非常昂贵,而且需要专家做外科手术进行移植。 NTC热敏电阻和体液相接触的外用传感器 有几类一次性传感器是附在体外使用的,但是它们却是和体液相接触的。比如一次性血压传感器(DSP),(见图5)。这类传感器用于外科手术和重症监护,以便持续地监控病人的血压情况。这是在给病人进行静脉输液(IV)的同时测量

其血压的最理想方式。这类传感器需要每24个小时更换一次,以保证传感器的清洁卫生。这类传感器被连到一个监控器上,以便记录下所有的信息。还有其它几类与药物或是体液相接触的传感器。 NTC热敏电阻 "临时性"插入传感器 这类传感器要求能够通过切口插入体内(典型的方式是通过导管插入)。和植入式传感器相比,这种传感器的危险性不高。这种传感器的应用也很敏感,同样需要食品及药物管理局的批准才能使用。根据外科手术的不同,这些传感器可能会发挥几分钟到几个小时的功效。在理想情况下,这些传感器不需要外部动力进行驱动,但是如果必要的话,也可以通过外部途径进行驱动。 NTC热敏电阻太阳能热水器水温水位传感器 传感器就是一种能够感受水温水位,并且将感受到的水温水位转变成变化的电信号的仪器。在太阳热水器的发展史上,水温水位传感器一直起着举足轻重的作用,热水器的智能化、人性化都与水温水位传感器密不可分,水温水位测控仪更是离不开水温水位传感器,水温水位传感器工作稳定是对整个热水器智能控制的保障。 NTC热敏电阻在电源电路中的作用 NTC电阻串联在交流电路中主要是起"电流保险"作用. 压敏电阻并联在交流侧 电路中主要是起"限制电压超高"作用. 采用NTC抑制开机浪涌的电源设备,不能够频繁的开关机.需要等NTC冷却,恢复至其冷态阻值后,才能再次开机.要不,安装NTC的意义就没有了 NTC热敏电阻在医疗电子体温计中的应用 现在,很多大型医院都采用电子式体温计,这种温度传感器测量时间短、测量精度高、读数方便,并且还具有记忆功能,在临床上使用方面,性能突出。它通常由感温探头、信号处理单元、显示屏、电源四部分构成。感温探头是敏感部件,一般选用一个或几个高精度快速反应的热敏电阻,它直接关系到输出温度的准确性和响应速度;信号处理单元内部有加热和预测两种算法。

基于热敏电阻的数字温度计设计

目录 1 课程设计的目的 (1) 2 课程设计的任务和要求 (1) 3 设计方案与论证 (1) 4 电路设计 (2) 4.1 温度测量电路 (3) 4.2 单片机最小系统 (6) 4.3 LED数码显示电路 (8) 5 系统软件设计 (9) 6 系统调试 (9) 7 总结 (11) 参考文献 (13) 附录1:总体电路原理图 (14) 附录2:元器件清单 (15) 附录3:实物图 (16) 附录4:源程序 (17)

1 课程设计的目的 (1)掌握单片机原理及应用课程所学的理论知识; (2)了解使用单片机设计的基本思想和方法,学会科学分析和解决问题; (3)学习单片机仿真、调试、测试、故障查找和排除的方法、技巧; (4)培养认真严谨的工作作风和实事求是的工作态度; (5)锻炼自己的动手动脑能力,以提高理论联系实际的能力。 2 课程设计的任务和要求 (1)采用LED 数码管显示温度; (2)测量温度范围为-10℃~110℃; (3)测量精度误差小于0.5℃。 3 设计方案与论证 方案一:本方案主要是在温度检测部分利用了一款新型的温度检测芯片DS18B20,这个芯片大大简化了温度检测模块的设计,它无需A/D 转换,可直接将测得的温度值以二进制形式输出。该方案的原理框图如图3-1所示。 DS18B20是美国达拉斯半导体公司生产的新型温度检测器件,它是单片结构,无需外加A/D 即可输出数字量,通讯采用单线制,同时该通讯线还可兼作电源线,即具有寄生电源模式。它具有体积小、精度易保证、无需标定等特点,特别适合与单片机合用构成智能温度检测及控 制系统。 图3-1 方案一系统框图 单片机 最小系统 数码 显示 温度传感器 DS18B20

NTC热敏电阻抑制浪涌电流

抑制浪涌电流用NTC热敏电阻器 产品概述 在有电容器,加热器和马达的电子电路中,在电流接通的瞬间,必将产生一个很大的电流,这种浪涌电流作用的时间虽短,但其峰值却很大。在转换电源,开关电源,UPS电源中,这种浪涌电流甚至超过工作电流的100倍以上。因此,必须有效的抑制这种浪涌电流。当电流直接加在功率型NTC热敏电阻器上时,其电阻值就会随着电阻体发热而迅速下降。由于功率型NTC热敏电阻器有一个规定的零功率电阻值,当其串联在电源回路中时,就可以有效地抑制开机浪涌电流,并且在完成抑制浪涌电流作用以后,由于通过其电流的持续作用,功率型NTC热敏电阻器的电阻值将下降到非常小的程度,它消耗的功率可以忽略不计,不会对正常的工作电流造成影响。所以,在电源回路中使用功率型NTC热敏电阻器,是抑制开机时的浪涌电流,以保护电子设备免遭破坏的最为简便而有效的措施。 主要参数 额定零功率电阻R25(Ω) 最大稳态电流I(A) 最大电流时近似电阻值R(Ω) 时间常数(S) 耗散系数(mW/℃ ) 工作温度范围: -55 ~ +200℃ 抑制浪涌电流用NTC热敏电阻器应用前后对比 负荷--温度特性曲线

应用实例:

温度测量、控制用NTC热敏电阻器 产品概述 NTC热敏电阻器给许多温度测量与控制设备提供实用的,低成本的解决方案,适用于-55 ℃到+300 ℃的温度范围内。 MF58型玻壳精密型 MF58型热敏电阻器采用陶瓷工艺与半导体工艺相结合的工艺技术制作而成,为两端轴向引出线玻璃封装结构。 MF52 E型珠状精密型 MF52 E型热敏电阻器是采用新材料、新工艺生产的小体积的环氧树脂包封型NTC热敏电阻器,具有高精度和快速反应等优点。 主要参数额定零功率电阻值R25 (Ω) R25允许偏差(%) B值(25/50 ℃)/(K) B值允许偏差(%) 耗散系数≥2.0mW/ ℃ 热时间常数≤7S 额定功率≤50mW 工作温度范围: -55 ~+300 ℃ 应用原理及实例 温度测量(惠斯登电桥电路) 温度控制

温度监测及报警电路(热敏电阻+LM324)

温度监测及报警电路(热敏电阻+LM324)姓名:_____孔亮______ 学号:____0928401116____ 一、元件介绍: 1、热敏电阻MF53-1:

2、LM324: LM324是四运放集成电路,它采用14脚双列直插塑料封装,lm324原理图如图所示。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。 每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。lm324引脚图见图2。 图一图二由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。 3、LED——发光二极管 LED(Light-Emitting-Diode中文意思为发光二极管,是一种能够将电能转化为可见光的半导体,它改变了白炽灯钨丝发光与节能灯三基色粉发光的原理,而采用电场发光。据分析,LED的特点非常明显,寿命长、光效高、无辐射与低功耗。LED的光谱几乎全部集中于可见光频段,其发光效率可超过150lm/W(2010年)。 一般LED工作时,加10mA足以使之正常工作,故电阻值为V o/10mA,即为外加电阻的值,如+5V的电压下可以使用500欧姆的电阻。 二、设计原理: 检测电路采用热敏电阻RT(MF53-1)作为测温元件;采用LM324作比较电路;用发光二极管实现自动报警。 报警分三级:温度>20O C,一个灯亮; 温度>40O C,二个灯亮; 温度>60O C,三个灯亮。

热敏电阻

热敏电阻根据温度系数分为两类:正温度系数热敏电阻和负温度系数热敏电阻。由于特性上的区别,应用场合互不相同。 正温度系数热敏电阻简称PTC(是Positive Temperature Coefficient 的缩写),超过一定的温度(居里温度---居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。这时的磁敏感度约为10的负6次方。)时,它的电阻值随着温度的升高呈阶跃性的增高。其原理是在陶瓷材料中引入微量稀土元素,如La、Nb...等,可使其电阻率下降到10Ω.cm以下,成为良好的半导体陶瓷材料。这种材料具有很大的正电阻温度系数,在居里温度以上几十度的温度范围内,其电阻率可增大 4~10个数量级,即产生所谓PTC效应。 目前大量被使用的PTC热敏电阻种类:恒温加热用PTC热敏电阻;低电压加热用PTC热敏电阻;空气加热用热敏电阻;过电流保护用PTC热敏电阻;过热保护用PTC热敏电阻;温度传感用PTC热敏电阻;延时启动用PTC 热敏电阻。 负温度系数热敏电阻简称NTC(是Negative Temperature Coefficient 的缩写),泛指负温度系数很大的半导体材料或元器件。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 PTC、NTC两种热敏电阻都可以用作温度传感,在目前的实际应用中,多采用NTC热敏电阻作为温度测量、控制的温度传感器。 NTC负温度系数热敏电阻专业术语 零功率电阻值R T(Ω) R T指在规定温度T时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。

热敏电阻温度测量电路

热敏电阻温度测量电路 下图是温度在0~50℃范围的测量电路。当温度为0℃时输出电压是0V ,温度为50℃时是5V 。他可以与电压表链接来测量温度,也可以连接AD 转换器变换为数字量,利用计算机之类进行测量。 1、工作原理 该电路由检测温度的热敏电阻和1个运算放大器电路,以及将0~50℃的温度信息变换为0~5V 电压的2个运算放大器电路构成。 热敏电阻检测温度时,利用热敏电阻TH R 与电阻3R 分压后的电压作为检测电压进行处理,在这里是利用运算放大器1OP 的电压跟随器电路提取的。输出电压的极性为正,随着温度的上升,热敏电阻的电阻值降低,所以输出电压也下降。 检出的信号加在1OP 和电阻~4R 7R 构成的差动放大电路的正输入端上,而加在负输入端上的是由8R 、9R 、1VR 对5V 分压后的电压,这部分是电压调整电路,可以在温度为0℃时将1OP 的输出电压调整为0V ,这样就可以输出与温度上升成比例的负电压。 2OP 的输出加在由3OP 构成的反转放大电路上被放大,放大倍数为—10211/)(R VR R +倍。调整2VR 可以使温度达50℃时3OP 的输出电压为+5V 。 通过调整1VR 和2VR ,可以在0℃时得到0V 的输出电压,50℃时得到5V 的输出电压,使输出电压与温度成比例。 2、设计 (1)温度测量范围以及输出电压、电源电压的确定:设定温度测量范围为0~50℃,这时的输出电压是0~5V 。电路使用的电源为±15V ,基准电压为5V 。 (2)热敏电阻和运算放大器的选定:这里使用NTC 型热敏电阻,选用25℃的电阻值为10K Ω,误差在±1%以内的NTH4G39A 103F02型,这种热敏电阻的常数为B=3900。 (3)补偿电阻3R 的确定:电阻3R 的作用是当热敏电阻的温度变化时,将相对应的输出电压的变化线性化。设线性化的温度范围是0~50℃,,那么补偿电阻3 R

NTC热敏电阻器在高精度温度测量中的应用

NTC热敏电阻器在高精度温度测量中的应用 于丽丽1,王剑华2,殳伟群2 (1.同济大学电子信息学院,上海200092;2.同济大学中德学院,上海200092) 摘 要:介绍了用NT C热敏电阻器进行高精度温度测量的几点考虑。分析了影响测量精度的各种因素,并提出了一些解决方法,主要的措施有:直流恒流源微安级电流;四线制测量电路;高分辨力(24位)ADC;数字滤波;仪器自校准等。实际测量表明:使用恰当的热敏电阻器在较窄的范围内(0~60℃)测量精度可达±0.001℃。 关键词:热敏电阻器;高精度温度测量;校准 中图分类号:TP223 文献标识码:A 文章编号:1000-9787(2004)12-0075-03 Application of NTC thermistor in high accurate temperature measurement Y U Li2li1,W ANGJian2hua2,SH U Wei2qun2 (1.Dept of E lct I nfo,Tongji U niversity,Sh angh ai200092,China; 2.Dept of China2G erm any,Tongji U niversity,Sh angh ai200092,China) Abstract:A few res olvents of the problems in high accurate tem perature measurement using NT C thermistors are intro2 duced.The various factors affected measurement accuracy are analyzed,and a few res olvents are advanced.S ome mea2 sures are used:constant current s ource offering microam pere current,4wire tem perature measuring circuit,ADC with ex2 cellent res olution,digital filter,instrument recalibration itself,etc.I t is indicated that high accuracy of0.001℃in a nar2 row range of tem perature(0~60℃)can be achieved by using fit thermistors. K ey w ords:thermistor;high2accurate tem perature measurement;calibration 0 引 言 NT C热敏电阻器除具有体积小、响应快、耐振动等优点外,还有阻值高、温度特性曲线的斜率大等特点。由于阻值高,往往可以忽略引线电阻的影响,即允许采用二线制接法。由于阻值随温度变化大,相应输出较大,对二次仪表的要求相对较低。缺点是量程窄、互换性差。 针对本文涉及研制项目温度测量量程窄、测量精度要求高(22℃±0.01℃)等特点,选用了经反复老化、长期稳定性指标优于0.002℃/a的热敏电阻器。尽管其阻值很高,仍然采用四线制的接法,以消除很小一点的引线电阻影响。对单支传感器进行了量程范围内多个温度点的严格标定。将其与采用特殊结构的61 2 电阻测量仪表相配合,最后,得到了期待的精度[1]。 1 高精度温度测量系统的研究 1.1 数学模型 热敏电阻与温度的关系是严重非线性。为了对这种非线性进行尽可能准确的描述,采用了如下的S teinhart2Hart 方程 收稿日期:2004-06-27 R=exp(A+ B T +C T2 +D T3 ),(1)式中 T为绝对温度值,K;R为热敏电阻器在温度为T时的电阻值,Ω。A,B,C,D则为4个特定的参数。一般需要采用多个温度点(至少4点)的标定获得热敏电阻器在已知温度点的阻值,然后,经过拟合获得模型的参数。这是一个从T和R出发推算A,B,C,D的过程,即校准或建模的过程。而测量时,则是在已知A,B,C,D的前提下,根据测出的R和数学模型推算出T的过程,这实际上是个内插的过程。 1.2 影响测量精度的因素 为了用热敏电阻器进行高精度的温度测量,必须研究各种影响因素,并采取相应的对策。在不考虑热敏电阻器的长期稳定性的前提下,尚有如下因素应当考虑: (1)热敏电阻器的标定:从第1.1节的表述可以看出:高精度的测量实际是一个高精度的内插问题。而要进行高精度的内插,需要事先进行高精度的建模。而高精度的建 57  2004年第23卷第12期 传感器技术(Journal of T ransducer T echnology)

(推荐)热敏电阻测温电路

热敏电阻测温电路 热敏电阻测量电路 本测温控温电路适用于家用空调、电热取暖器、恒温箱、温床育苗、人工孵化、农牧科研等电热设备。其使用温度范围是0~50℃,测控温精度为±(0.2~0.5)℃. 2.2.1 原理电路 本测温控温电路由温度检测、显示、设定及控制等部分组成,见图2.2.1。图中D1~D4为单电源四运放器LM324的四个单独的运算放大器。RT1~RTn为PTC感温探头,其用量取决于被测对象的容积。 RP1用于对微安表调零,RP2用于调节D2的输出使微安表指满度。S 为转换开关。 图2.2.1 测温控温电路由RT检测到的温度信息,输入D1的反馈回路。该信息既作为D2的输入信号,经D2放大后通过微安表显示被测温度;又作为比较器D4的同相输入信号,与D3输出的设定基准信号,构成D4的差模输入电压。当被控对象的实际温度低于由RP3预设的温度时,RT的阻值较小,此时D4同相输入电压的绝对值小于反相输入电压的绝对值,于是D4输出为高电位,从而使晶体管V饱和导通,继电器K得电吸合常开触点JK,负载RL由市电供电,对被控物进行加热。当被控对象的实际温度升到预设值时, D4同相输入电压的绝对值大于反相输入电压的绝对值, D4的输出为低电位,从而导致V截止,K失电释放触点JK至常开,市电停止向RL供电,被控物进入恒温阶段。如此反复运行,达到预设的控温目的。

2.2.2 主要元器件选择本测温控温电路选用PTC热敏电阻为感温元件,该元件在0℃时的电阻值为264Ω,制作成温度传感器探测头,按图2.2.2线化处理后封装于护套内, 其电阻-温度特性见图2.2.3. 图2.2.2 线化电路线化后的PTC热敏电阻感温探头具有良好的线性,其平均灵敏度达16Ω/℃左右。如果采用数模转换网络、与非门电路及数码显示器,替代本电路的微安表显示器,很容易实现远距离多点集中的遥测。继电器的选型取决于负载功率。为便于调节,RP1~RP4选用线性带锁紧机构的微调电位器。 2.2.3 安装与调试调试工作主要是调整指示器的零点和满度指示。先将S接通R0,调节RP1使微安表指零,于此同时,调节RP4使其阻值与RP1相同,以保持D1与D4的对称性。然后将S接通R1,调节RP2使微安表指满度。最后,按RT的标准阻-温曲线,将RP3调到与设定温度相应的阻值,即可投入使用。本测温控温电路适用于家用空调、电热取暖器、恒温箱、温床育苗、人工孵化、农牧科研等电热设备。其使用温度范围是0~50℃,测控温精度为±(0.2~0.5)℃.

热敏电阻测温电路的设计说明

课程题目:热敏电阻测温电路的设计院系:机电汽车工程学院 班级: 学生: 学号: 小组成员: 指导教师:

目录 一、设计目的、要求及方案选择-----------------------------------------------------(2) 1、设计目的---------------------------------------------------------------------------(2) 2、设计要求---------------------------------------------------------------------------(2) 3、设计方案的选择--------------------------------------------------------------------( 2) 二、硬件系统各模块电路的设计---------------------------------------------------(3) 1、单片机系统的设计---------------------------------------------------------------(3)1-1、AT89C51的简介及管脚功能---------------------------------------------(3) 1-1、AT89C51的最小系统介绍-----------------------------------------------(5) 2、基于MF58的NTC热敏电阻温度测量电路设计 ---------------------------(7) 2-1、MF58热敏电阻的介绍---------------------------------------------------(8) 2-2、温度测量电路的设计----------------------------------------------------(10) 3、LED数码管显示电路的设计---------------------------------------------------(11) 3-1、显示电路驱动系统的设计

NTC热敏电阻工作原理

NTC热敏电阻工作原理、参数解释 作者:时间:2010-3-14 5:09:12 ntc负温度系数热敏电阻工作原理 ntc是negative temperature coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓ntc热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。ntc热敏电阻器在室温下的变化范围在10o~1000000欧姆,温度系数-2%~-6.5%。ntc热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 ntc负温度系数热敏电阻专业术语 零功率电阻值 rt(ω) rt指在规定温度 t 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: rt = rn expb(1/t – 1/tn) rt :在温度 t ( k )时的 ntc 热敏电阻阻值。 rn :在额定温度 tn ( k )时的 ntc 热敏电阻阻值。 t :规定温度( k )。 b : nt c 热敏电阻的材料常数,又叫热敏指数。 exp:以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 tn 或额定电阻阻值 rn 的有限范围内才具有一定的精确度,因为材料常数b 本身也是温度 t 的函数。 额定零功率电阻值 r25 (ω) 根据国标规定,额定零功率电阻值是 ntc 热敏电阻在基准温度25 ℃ 时测得的电阻值 r25,这个电阻值就是ntc 热敏电阻的标称电阻值。通常所说 ntc 热敏电阻多少阻值,亦指该值。 材料常数(热敏指数) b 值( k )

热敏电阻测量温度(已批阅)

少年班 系 06 级 学号 PB06000680 姓名 张力 日期 2007-4-28 实验题目:热敏电阻测量温度 实验目的:了解热敏电阻的电阻-温度特性和测温原理,掌握惠斯通电桥的原理和使用方法,学习坐标、曲 线改直的技巧和用异号法消除零点误差等方法。 实验原理:1、半导体热敏电阻的电阻-温度特性 对于某些金属氧化物:T B T e R R ∞=,B 为材料常数; 对于金属电阻)](1[1212t t a R R t t -+=,定义其中的dt dR R a t t 1=为温度系数; 两种情况分别图示如下: 两者比较,热敏电阻的电阻和温度是呈非线性的,而金属氧化物的是线性;热敏电阻的温 度系数为负,金属的温度系数为正;热敏电阻对温度变化反应更灵敏。这些差异的产生是因为当温度升高时,原子运动加剧,对金属中自由电子的运动有阻碍作用,故金属的电阻随温度的升高而呈线性缓慢增加;而在半导体中是靠空穴导电,当温度升高时,电子运动更频繁,产生更多的空穴,从而促进导电。 2、惠斯通电桥的工作原理 原理图如右图所示: 若G 中检流为0,则B 和D 等势,故此时02 1R R R R x = ,在 检流计的灵敏度范围内得到R x 的值。

少年班 系 06 级 学号 PB06000680 姓名 张力 日期 2007-4-28 实验内容: 1、按图3.5.2-3接线,先将调压器输出调为零,测室温下的热敏电阻阻值,注意选择惠斯通电桥合适的量 程。先调电桥至平衡得R 0,改变R 0为R 0+ΔR 0,使检流计偏转一格,求出电桥灵敏度;再将R 0改变为R 0-ΔR 0,使检流计反方向偏转一格,求电桥灵敏度。求两次的平均值 2、 调节变压器输出进行加温,从25℃开始每隔5℃测量一次R t ,直到85℃。换水,再用9V 电压和3V 电 压外接电表进行测量,然后绘制出热敏电阻的R t -t 特性曲线。在t=50℃的点作切线,由式(3)求出该点切线的斜率dt dR 及电阻温度系数α。 3、作T R t 1}ln{-曲线,确定式(1)中的常数R ∞和B ,再由式(3)求α(50℃时)。 2 1T B dt dR R t t - == α 1. 比较式(3)和(5)两个结果,试解释那种方法求出的材料常数B 和电阻温度系数α更准确。 实验数据: 实验中,由于时间关系,只测量了内接检流计的情况:

负温度系数R25=3.4513k B值4200热敏电阻RT公式计算表

深圳市富温传感技术有限公司 人性科技感知温度 TEMPERATURE VS RESISTANCE TABLE Resistance 3.4513k Ohms at 114deg. C Resistance Tolerance + / - 1.5% B Value 4200K at 25/50 deg. C B Value Tolerance + / - 1 % Temp. (deg. C) Rmax (k Ohms) Rnor (k Ohms) Rmin (k Ohms) -20 1139.4650 1060.1345 986.1052 -19 1071.2083 997.2393 928.1697 -18 1007.4491 938.4533 873.9857 -17 947.8674 883.4849 823.2905 -16 892.1640 832.0642 775.8380 -15 840.0659 783.9421 731.4037 -14 791.3177 738.8882 689.7772 -13 745.6863 696.6897 650.7659 -12 702.9547 657.1495 614.1911 -11 662.9216 620.0852 579.8860 -10 625.4028 585.3280 547.6982 -9 590.2252 552.7214 517.4842 -8 557.2304 522.1205 489.1126 -7 526.2707 493.3907 462.4607 -6 497.2096 466.4075 437.4150 -5 469.9200 441.0550 413.8696 -4 444.2845 417.2257 391.7267 -3 420.1935 394.8199 370.8949 -2 397.5460 373.7448 351.2897 -1 376.2471 353.9141 332.8317 0 356.2099 335.2477 315.4483 1 337.3523 317.6710 299.0705 2 319.5989 301.1145 283.6353 3 302.8792 285.5136 269.0831 4 287.1273 270.8080 255.3588 5 272.2822 256.941 6 242.4108 6 258.2868 243.8621 230.1913 7 245.0881 231.5207 218.6553

怎样应用NTC热敏电阻

NTC元件是负温度系数的热敏电阻 电阻,物质对电流的阻碍作用就叫该物质的电阻。电阻小的物质称为电导体,简称导体。电阻大的物质称为电绝缘体,简称绝缘体。[全文] ,在业余无线电制作中应用较多。下面主要介绍三方面的应用: 1)仪表电路中的温度补偿 在仪表电路中,有很多像线绕电阻 线绕电阻是用镍铬线或锰铜线、康铜线绕在瓷管上制成的,分固定式和可调试两种。线绕电阻的特点是阻值精度极高,工作时噪声小、稳定可靠,能承受高温,在环境温度170℃下仍能正常工作。但它体积大、阻值较低,大多在100KΩ以下。另外,由于结构上的原因,其分布电容和电感系数都比较大,不能再高频电路中使用。这类电阻通常在大功率电路中作降压或负载等用。[全文] 一样用金属丝做的元件。金属丝一般都具有正温度系数,采用负温度系数的NTC热敏电阻 进行补偿,就能抵消由于温度变化所产生的误差。图1是一种温度补偿电路。是将NTC热敏电阻 与电阻 温度系数非常小的锰铜丝电阻并联后再与被补偿的元件串联,达到温度补偿的作用。 图1 NTC热敏电阻 热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻器(PTC)在温度越高时电阻值越大,负温度系数热敏电阻器(NTC)在温度越高时电阻值越低,它们同属于半导体器件。 在仪表温度补偿中的应用 2)TC用在晶体管 晶体管是由三层杂质半导体构成的器件,有三个电极,所以又称为半导体三极管,晶体三极管等,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。[全文] 电路中稳定工作点 图2是三种NTC热敏电阻稳定晶体管工作点的电路。 图2(a)所示为一个简单晶体管电流放大器,在基极回路中接大了一个NTC热"敏电阻RT。在环境温度变化时,线路输出电流也会有变化,加大了NTC后就可自动调整这一级晶体管的集电极直流电流,稳定晶体管的输出增益。 图2用NTC稳定晶体管工作点

相关主题
文本预览
相关文档 最新文档