当前位置:文档之家› 电子陶瓷工艺原理图文

电子陶瓷工艺原理图文

电子陶瓷工艺原理图文
电子陶瓷工艺原理图文

电子陶瓷

第三章电子陶瓷工艺原理

1

第三章电子陶瓷工艺原理

一电子陶瓷工艺概述

二电子陶瓷原料与粉碎

三电子瓷料合成原理

四电子陶瓷成型原理

五电子陶瓷烧结原理

六电子陶瓷表面加工

2

一电子陶瓷工艺概述

1 电子陶瓷基本工艺:

通常,从性能的改进来改善陶瓷材料的功能,需要从两方面入手:①内部组成:从材料的组成上直接调节,优化其内在品质②外界条件:改变工艺条件以改善和提高陶瓷材料性能,达到获得优质电子陶瓷材料的目的。

电子陶瓷基本工艺一般包括如下过程:

原料处理和加工、电子瓷料合成、成型、烧结、表面加工等基本单元操作。

3

(a(b (c(d(e

(g

(f

(h

一电子陶瓷工艺概述

2 电子陶瓷工业化流程: 造粒与成型

喷雾造粒干压成型

6

一电子陶瓷工艺概述

2 电子陶瓷工业化流程:

烧结与表面金属化

陶瓷烧结印刷电极

7

一电子陶瓷工艺概述

2 电子陶瓷工业化流程:

测试与包装

测试分选编带包装

8

二电子陶瓷原料与粉碎

1 电子陶瓷原料

2原料粒度与粉碎

3球磨法原理

9

二电子陶瓷原料与粉碎

1 电子陶瓷原料

原料对电子陶瓷的性能至关重要,对于电子陶瓷的粉料,必须了解下列三方面情况:

?化学成分

包括纯度、杂质的种类与含量、化学计量比

?颗粒度

包括粉粒直径、粒度分布与颗粒外形等

?结构

包括结晶形态、稳定度、裂纹与多孔性等

10

二电子陶瓷原料与粉碎

1 电子陶瓷原料

原料的化学成分,直接关系到电子陶瓷的各项物

理性能是否能够得到保证,而颗粒度与结构主要决定

坯体的密度及其可成型性。

粒度越细,结构越不完整,则其活性(不稳定性、可烧结性越大,越有利于烧结的进行。

电子陶瓷原料有天然原料和化工原料两类。

11

二电子陶瓷原料与粉碎

1 电子陶瓷原料

?天然原料:

直接来源于大自然,如粘土,石英,菱镁矿,刚玉矿等。

特点是含杂质较多,但价格便宜。

只要产品性能符合相应的标准和使用要求,生产中往往挑选和使用纯度尽可能高的天然原料,以降低生产成本。

12

二电子陶瓷原料与粉碎

1 电子陶瓷原料

?天然原料:

粘土是自然界中存在的松散的、膏状、多种微细矿物的混合体,其主要成份是含水的铝硅酸盐矿物

O3·y SiO2·zH2O。

(化学组成:xAl

2

粘土具有良好的可塑性和粘合性,加水后成为软泥,能进行塑性成型,烧后又变得致密坚硬。

Fe2O3、TiO2等是粘土类原料中的有害杂质,使坯体在烧成时产生熔洞、斑点等缺陷,同时影响瓷体的电绝缘性。

13

二电子陶瓷原料与粉碎

1 电子陶瓷原料

?天然原料:

矿物,存在的形态很石英是一种结晶状的SiO

2

多,有水晶、玛瑙、石英岩(石英多晶体等。

]互相以顶点连接而成的三维空间石英是由[SiO

4

架状结构。由于以共价键连接,结构紧密,空隙小,其它离子不易侵入网穴中,因而硬度与强度高,熔融温度也高。

石英在陶瓷制备中起着骨架作用、提高陶瓷的机械强度,绝缘性能及化学稳定性,抗腐蚀性等。

14

15二电子陶瓷原料与粉碎1 电子陶瓷原料

?化工原料:

化学方法提炼,提纯而得,由专业厂家完成,有多等级,标明含杂量,是电子陶瓷生产中最常用的原料。

如:氧化物TiO 2、ZrO 2、PbO 、Al 2O 3等氢氧化物Mg(OH2、NaOH 等

盐CaCO 3、BaTiO 3、Mn(NO 32等

杂质并非都有害,有的能与主成分形成低共熔物促进烧结;有的能作为离子补偿提高电学性能特点是纯度和物理特性可控。

二电子陶瓷原料与粉碎

2 原料粒度与粉碎

?粒度:

指粉粒直径大小,作为陶瓷的粉料,其粒度通常在0.1~50微米之间。一般而言,粉料的粒度越细,则其工艺性能越佳。

例如,当采用挤制、扎膜、流延等方法成型时,只有当粉料达到一定细度,才能使浆料达到必要的流动性、可塑性,才能保证制出的坯体具有足够的光洁度、均匀性和好的机械强度。此外,粒度越细,烧结温度越低。

16

17

二电子陶瓷原料与粉碎

?

粒度与形貌评价:

粒度分析仪电子显微镜

二电子陶瓷原料与粉碎

2 原料粒度与粉碎

?粉碎:

机械能转换为表面能的能量转化过程,即粉碎机械的动能或所做的机械功,通过粉料之间的撞击、碾压、摩擦,将粉料砸碎、破裂或磨去棱角等,使粉碎的比表面增加,因而表面自由能增加。

几种典型的粉碎技术:

球磨、振动磨、搅拌磨、砂磨、胶体磨、气流磨

18

二电子陶瓷原料与粉碎

3 球磨法原理

?球磨机:

影响球磨效率的因素:

①球磨机的转速低于临界转速

②球磨机装载量一般装载量占磨罐容积的70%~80%

③大小球配比、磨球形状、硬度及质量

④料、球、溶剂(水或乙醇等之比

⑤球磨时间的选择

20

二电子陶瓷原料与粉碎

3 球磨法原理

?行星磨机:

行星磨机是球磨机的一种,也称微粒球磨机。

行星磨机采用四只相同重量的球磨罐,置于同一旋转的圆盘上,使球磨罐“公转”,同时各个球磨罐又绕自身轴线“自转”。当公转速度足够大时,离心力大大超过地心引力,自转角速度也相应提高,磨球不置于贴附罐壁不动,从而克服了旧式球磨机之临界转速的限制,大大提高球磨效率。

21

二电子陶瓷原料与粉碎

3 球磨法原理

?高能球磨机(机械合金化:

a 晶粒细化:

粉末在碰撞中反复破碎和焊合,缺陷密度增加,很快使颗粒细化至纳米级,产生晶格缺陷、晶格畸变,并具有一定程度的无定形化。表面化学键断裂而产生不饱和键、自由离子和电子等原因,使矿物晶体内能增高,导致物质反应的平衡常数和反应速度常数显著增大。

23

二电子陶瓷原料与粉碎

3 球磨法原理

?高能球磨机(机械合金化:

b 局部碰撞点升温:

虽然磨罐内温度一般不超过70℃,但局部碰撞点的

温度要大大高于70℃,这样的温度将引起纳米尺寸的

化学反应。在碰撞点处,产生极高的碰撞力,有助于

晶体缺陷扩散和原子的重排。

24

25250o C-hydrotherm 750o C-calcing

惰性气体保护球磨系

高能球磨机设备

示例 ? 高能球磨机研究实例-PMN-PT纳米粉体合成 250oC-hydrotherm 750oC-calcing John Wang, et.al., Advanced Materials, 1999, 11(3: 210-213 26 材料楼 228 27

电子陶瓷工艺原理1-图文

电子陶瓷 第三章电子陶瓷工艺原理 1 第三章电子陶瓷工艺原理 一电子陶瓷工艺概述 二电子陶瓷原料与粉碎 三电子瓷料合成原理 四电子陶瓷成型原理 五电子陶瓷烧结原理 六电子陶瓷表面加工 2 一电子陶瓷工艺概述 1 电子陶瓷基本工艺: 通常,从性能的改进来改善陶瓷材料的功能,需要从两方面入手:①内部组成:从材料的组成上直接调节,优化其内在品质②外界条件:改变工艺条件以改善和提高陶瓷材料性能,达到获得优质电子陶瓷材料的目的。 电子陶瓷基本工艺一般包括如下过程: 原料处理和加工、电子瓷料合成、成型、烧结、表面加工等基本单元操作。 3

(a(b (c(d(e (g (f (h 一电子陶瓷工艺概述 2 电子陶瓷工业化流程:造粒与成型 喷雾造粒干压成型 6 一电子陶瓷工艺概述

2电子陶瓷工业化流程: 烧结与表面金属化 陶瓷烧结印刷电极 7 一电子陶瓷工艺概述 2 电子陶瓷工业化流程: 测试与包装 测试分选编带包装 8 二电子陶瓷原料与粉碎 1 电子陶瓷原料 2原料粒度与粉碎 3球磨法原理 9 二电子陶瓷原料与粉碎 1 电子陶瓷原料 原料对电子陶瓷的性能至关重要,对于电子陶瓷的粉料,必须了解下列三方面情况: ?化学成分

包括纯度、杂质的种类与含量、化学计量比 ?颗粒度 包括粉粒直径、粒度分布与颗粒外形等 ?结构 包括结晶形态、稳定度、裂纹与多孔性等 10 二电子陶瓷原料与粉碎 1 电子陶瓷原料 原料的化学成分,直接关系到电子陶瓷的各项物 理性能是否能够得到保证,而颗粒度与结构主要决定 坯体的密度及其可成型性。 粒度越细,结构越不完整,则其活性(不稳定性、可烧结性越大,越有利于烧结的进行。 电子陶瓷原料有天然原料和化工原料两类。 11 二电子陶瓷原料与粉碎 1 电子陶瓷原料 ?天然原料: 直接来源于大自然,如粘土,石英,菱镁矿,刚玉矿等。

陶瓷制作工艺流程

陶瓷制作工艺流程 在陶瓷民俗博览区古窑景区错落有致的分布着古制瓷作坊、古镇窑、陶人画坊。在作坊里可见到“手随泥走,泥随手变”,巧夺天工的拉坯成型;在镇窑里,可看到神奇的松柴烧瓷技艺,从中领略到景德镇古代手工制瓷的魅力。在古窑,我们看到了练泥、拉坯、印坯、利坯、晒坯、刻花、施釉、烧窑、彩绘、釉色变化等 练泥:从矿区采取瓷石,先以人工用铁锤敲碎至鸡蛋大小的块状,再利用水碓舂打成粉状,淘洗,除去杂质,沉淀后制成砖状的泥块。然后再用水调和泥块,去掉渣质,用双手搓揉,或用脚踩踏,把泥团中的空气挤压出来,并使泥中的水分均匀。这一环节在古窑里我没有见到,深感遗憾,于是我在前往三宝村途中仔细寻觅,有幸亲眼目睹。这种瓷石加工方法历史悠久,应与景德镇制瓷历史同步。

拉坯:将泥团摔掷在辘轳车的转盘中心,随手法的屈伸收放拉制出坯体的大致模样。拉坯是成型的第一道工序。拉坯成型首先要熟悉泥料的收缩率。景德镇瓷土总收缩率大致为18—20%,根据大小品种和不同器型及泥料的软硬程度予以放尺。由于景德镇瓷泥的柔软性,拉制的坯体均比之其他黏土成型的要厚。拉坯不仅要注意到收缩率,而且还要注意到造型。如遇较大尺寸的制品,则要分段拉制,从各个分段部位,可看出拉坯师傅的技艺好坏和水平高低。景德镇陶瓷的特殊美感和瓷文化的形成是与其独特的材质、工艺等有着密不可分的联系,甚至在某种程度上说:景德镇瓷器名扬天下,除当地“天赐”的优质黏土之外,基本上是那些“鬼斧神工”的技艺将这些普通的“东西”变成了人类的“宠物”。由此,真正被“神灵”护佑着的正是这制瓷技艺的不断分工、进化和传承。这千年相传的技艺造就和组成了人类陶瓷史甚至是文明史上最耀眼的光环,这光环让人炫目,也让人敬畏。

电子材料与元器件论文

CMOS图像传感器工作原理和应用 姓名: 学院: 班级: 组号: 日期:2014年12月9日

摘要 随着集成电路制造工艺技术的发展和集成电路设计水平的不断提高,基于CMOS集成电路工艺技术制造的CMOS图像传感器由于其集成度高、功耗低、体积小、工艺简单、成本低且开发周期较短等优势,目前在诸多领域得到了广泛的应用,特别是数码产品如数码相机、照相手机的图像传感器应用方面,市场前景广泛,因此对CMOS图像传感器的研究与开发有着非常高的市场价值。 本文首先介绍了CMOS图像传感器的发展历程和工作原理及应用现状。随后叙述了CMOS图像传感器的像元、结构及工作原理,着重说明了成像原理和图像信号的读取和处理过程,以及在数字摄像机,数码相机,彩信手机中的应用方式。 一、CMOS图像传感器的发展历史 上世纪60年代末期,美国贝尔实验室提出固态成像器件概念: 互补金属氧化物半导体图像传感器CMOS —Complementary Metal Oxide Semiconductor 电荷耦合器件图像传感器(CCD) CMOS与CCD图像传感器的研究几乎是同时起步,固体图像传感器得到了迅速发展。 CMOS图像传感器: 由于受当时工艺水平的限制,图像质量差、分辨率低、噪声降不下来,因而没有得到重视和发展。 CCD图像传感器: 光照灵敏度高、噪音低、像素少等优点一直主宰着图像传感器市场。 由于集成电路设计技术和工艺水平的提高,CMOS图像传感器过去存在的缺点,现在都可以找到办法克服,而且它固有的优点更是CCD器件所无法比拟的,因而它再次成为研究的热点。 1970年,CMOS图像传感器在NASA的喷气推进实验室JPL制造成功, 80年代末,英国爱丁堡大学成功试制出了世界第一块单片CMOS型图像传感器件, 1995年像元数为(128×128)的高性能CMOS 有源像素图像传感器由喷气推进实验室首先研制成功。 1997年英国爱丁堡VLSI Version公司首次实现了CMOS图像传感器的商品化。 2000年日本东芝公司和美国斯坦福大学采用0.35mm技术开发的CMOS-APS,

陶瓷的生产工艺流程.

陶瓷的生产工艺流程 一、陶瓷原料的分类 (1)粘土类 粘土类原料是陶瓷的主要原料之一。粘土之所以作为陶瓷的主要原料,是由于其具有可塑性和烧结性。陶瓷工业中主要的粘土类矿物有高岭石类、蒙脱石类和伊利石(水云母)类等,但我厂的主要粘土类原料为高岭土,如:高塘高岭土、云南高岭土、福建龙岩高岭土、清远高岭土、从化高岭土等。 (2)石英类 石英的主要成分为二氧化硅(SiO ),在陶瓷生产中,作为瘠性原料加入到陶瓷坯料中时, 2 在烧成前可调节坯料的可塑性,在烧成时石英的加热膨胀可部分抵消部分坯体的收缩。当添加到釉料中时,提高釉料的机械强度,硬度,耐磨性,耐化学侵蚀性。我厂的石英类原料主要有:釉宝石英、佛冈石英砂等。 (3)长石类 长石是陶瓷原料中最常用的熔剂性原料,在陶瓷生产中用作坯料、釉料熔剂等基本成分。在高温下熔融,形成粘稠的玻璃体,是坯料中碱金属氧化物的主要来源,能降低陶瓷坯体组分的熔化温度,利于成瓷和降低烧成温度。在釉料中做熔剂,形成玻璃相。我厂的主要长石类原料有南江钾长石、佛冈钾长石、雁峰钾长石、从化钠长石、印度钾长石等。 二、坯料、釉料制备 (1)配料 配料是指根据配方要求,将各种原料称出所需重量,混合装入球磨机料筒中。我厂坯料的配料主要分白晶泥、高晶泥、高铝泥三种,而釉料的配料可分为透明釉和有色釉。 (2)球磨 球磨是指在装好原料的球磨机料筒中,加入水进行球磨。球磨的原理是靠筒中的球石撞击和磨擦,将泥料颗料进行磨细,以达到我们所需的细度。通常,坯料使用中铝球石进行辅助球磨;釉料使用高铝球石进行辅助球磨。在球磨过程中,一般是先放部分配料进行球磨一段时间后,再加剩余的配料一起球磨,总的球磨时间按料的不同从十几小时到三十多个小时不等。如:白晶泥一般磨13个小时左右,高晶泥一般磨15-17小时,高铝泥一般磨14个小时左右,釉料一般磨33-38小时,但为了使球磨后浆料的细度要达到制造工艺的要求,球磨的总时间会有所波动。

题库---微电子工艺原理

微电子工艺原理复习知识点与题库 一、绪论微电子工艺的概述 知识点:集成度、摩尔定律、微电子系统的概念 1集成电路的制作可以分成三个阶段:①硅晶圆片的制作;②集成电路的制作;③集成电路的封装。 2评价发展水平:最小线宽,硅晶圆片直径,DRAM容量 二、晶体结构和晶体生长 知识点: 5金刚石结构特点:共价四面体,内部存在着相当大的“空隙” 6面心立方晶体结构是立方密堆积,(111)面是密排面。 7金刚石结构可有两套面心立方结构套购而成,面心立方晶格又称为立方密排晶格。 8双层密排面的特点:在晶面内原子结合力强,晶面与晶面之间距离较大,结合薄弱。两个双层面间,间距很大,而且共价键稀少,平均两个原子才有一个共价键,致使双层密排面之间结合脆弱 9金刚石晶格晶面的性质:由于{111}双层密排面本身结合牢固,而双层密排面之间相互结合脆弱,在外力作用下,晶体很容易沿着{111}晶面劈裂。 由{111}双层密排面结合牢固,化学腐蚀就比较困难和缓慢,所以腐蚀后容易暴露在表面上。因{111}双层密排面之间距离很大,结合弱,晶格缺陷容易在这里形成和扩展。 {111}双层密排面结合牢固,表明这样的晶面能量低。由于这个原因,在晶体生长中有一种使晶体表面为{111}晶面的趋势。 10肖特基缺陷:如果一个晶格正常位置上的原子跑到表面,在体内产生一个晶格空位,称肖特基缺陷。 11弗伦克尔缺陷:如果一个晶格原子进入间隙,并产生一个空位,间隙原子和空位是同时产生的,这种缺陷为弗伦克尔缺陷。 12堆垛层错:在密堆积的晶体结构中,由于堆积次序发生错乱 13固溶体:当把一种元素B(溶质)引入到另一种元素A(溶剂)的晶体中时,在达到一定浓度之前,不会有新相产生,而仍保持原来晶体A的晶体结构,这样的晶体称为固溶体。 14固溶度:在一定温度和平衡态下,元素B能够溶解到晶体A内的最大浓度,称为这种杂质在晶体中的最大溶解度 15固溶体分类:替位式固溶体,间隙式固溶体 16某种元素能否作为扩散杂质的一个重要标准:看这种杂质的最大固溶度是否大于所要求的表面浓度,如果表面浓度大于杂质的最大固溶度,那么选用这种杂质就无法获得所希望的分布。 题目 三扩散工艺 知识点:

华南理工大学陶瓷工艺原理复习思考题

1.粘土在陶瓷制备中的作用是什么? 2.石英在陶瓷制备中的作用是什么? 3.对石英进行预处理时,一般在1000℃左右预烧,然后快速冷却,其目的是什 么? 4.试述钾长石和钠长石在陶瓷制备中的作用,以及这两种长石在使用时的不同 之处。 5.如果要在陶瓷中引入MgO成分,试列出2种以上的原料。 6.试写出高岭土加热过程中的主要化学反应。 7.陶瓷原料标准化有什么好处? 8.试述相图在陶瓷研发中的价值 9.如何根据对产品的要求和相图确定配方的组成点? 10.试述氧化硅、氧化铝、氧化钾、氧化钠、碱土金属氧化物在陶瓷中的作用。 11.列出陶瓷配方的常见表示方法,各有什么特点? 12.由化学组成计算矿物组成的方法。 13.如何从坯式(实验式)换算到化学组成式? 14.当你用一片古陶瓷作为样品去恢复该古陶瓷品种时,应当怎样开展研究工 作? 15.如果想将一种未知的原料用于陶瓷配方,你应当对其进行什么检测和试验工 作? 16.影响泥团可塑性的因素有哪些? 17.如何克服泥料中颗粒定向排列? 18.泥料陈腐的作用是什么? 19.泥浆的触变性的产生机理是什么? 20.影响泥浆流动性有哪些因素? 21.试述釉的主要作用。 22.釉与坯体的接触边角(润湿角)的大小说明什么问题? 23.釉面受水、酸、碱侵蚀的机理分别是什么? 24.列出网络形成剂、网络修饰剂氧化物各2个。 25.由釉式计算矿物组成的方法。 26.试述乳浊釉的乳浊机理。 27.坯釉适应性包括哪些方面? 28.陶瓷中晶相是如何形成的?如果希望晶体在陶瓷中定向排列,可以采用什么 办法实现?请叙述相关的条件与原理。 29.何为晶界?晶界有何特点? 30.如何通过实验确定在含有三个相(气孔,玻璃和MgSiO3晶体)的块滑石瓷 中的气孔含量,玻璃含量和晶体含量? 31.有的陶瓷产品为了实现某些性能要求晶粒比较细小,假设该陶瓷产品是块体 材料(即不是膜材料),请说明要制备出晶粒细小的制品应当采用什么措施? 32.如何提高釉层的硬度? 33.影响陶瓷力学性能有哪些因素?如何提高陶瓷的高温强度? 34.部分陶瓷原料需要预烧,其原因何在? 35.原料-球磨的作用是什么?影响球磨效率有哪些因素? 36.陶瓷原料的纳米化有何优缺点? 37.对注浆用浆料的质量有何要求?

微电子工艺原理习题

微电子工艺原理习题 一、填空题 1.传统集成电路制造工艺的发展以的出现作为大致的分界线,现代集成电路制造工艺进入超大规模集成电路后又以工艺的作为划分标志。 2.能提供多余空穴的杂质称为,P型半导体中的多子是。 3.多晶硅转变成单晶硅的实质是。 4.单晶硅拉制过程中引晶阶段的温度选择非常重要,温度过高时会造成,温度过低时会形成。 5.SiO 2 网络中氧的存在有两种形式,其中原子浓度越高,网络的强度越强;原子浓度越高,网络的强度越弱。 6.目前常用的两种掺杂技术是和。 7.完整的光刻工艺应包括和两部分,随着集成电路生产在微细加工中的进一步细分,后者又可独立成为一个工序。 8.伴随刻蚀工艺实现的图形转换发生在和之间。 9.按照功能和用途进行分类,集成电路可以分为和两类。 10.能提供多余电子的杂质称为,N型半导体中的少子是。11.固溶体分为替位式固溶体和间隙式固溶体,两类大部分施主和受主杂质都与硅形成 固溶体。 12.单晶硅的性能测试涉及到的测试、的测试和缺陷检验等多个方面。 13.SiO 2中掺入杂质的种类对SiO 2 网络强度的影响表现在:掺入Ⅲ族元素如硼时,网络强 度;掺入Ⅴ族元素如磷时,网络强度。 14.常用的芯片封装方法有、和陶瓷封装。 15.光刻胶又叫,常用的光刻胶分为和两类。

1.下列有关集成电路发展趋势的描述中,不正确的是。 (A)特征尺寸越来越小(B)晶圆尺寸越来越小 (C)电源电压越来越低(D)时钟频率越来越高 2.下面几种薄膜中,不属于半导体膜的是。 (A)SiO 2 膜(B)单晶硅膜(C)多晶硅膜(D)GaAs膜 3.下列有关芯片封装的描述中不正确是。 (A)金属封装热阻小有良好的散热性能(B)塑料封装机械性能差,导热能力弱(C)金属封装成本低,塑料封装成本高(D)陶瓷封装的气密性好,但脆性较高4.下列选项中属于光刻工艺三要素之一的是。 (A)曝光(B)光刻胶(C)显影(D)刻蚀 5.下列有关扩散的几种描述中不正确的是。 (A)扩散是一种掺杂技术。(B)扩散有气态扩散、液态扩散和固态扩散三种。(C)替位型杂质在硅中的扩散方式有替代扩散、空位扩散以及间隙扩散三种。(D)替位型杂质的掺入不会改变材料的电学性质。 6.下列关于光刻胶的描述中正确的是。 (A)负胶具有较高的固有分辨率(B)正胶成本低,适合大批量生产(C)正胶的分辨率高,抗干法腐蚀能力强(D)负胶粘附性差,抗湿法腐蚀能力弱7.硅片中同时有浅施主和浅受主时,导电类型和载流子浓度由决定。 (A)杂质浓度差(B)施主杂质(C)受主杂质(D)杂质浓度和 8.下面几种材料的薄膜中,不属于介质膜的是。 (A)SiO 2膜(B)Si 3 N 4 膜(C)多晶硅膜(D)Al 2 O 3 膜 9.下列因素中对扩散系数大小不会造成影响的是。 (A)温度(B)杂质种类(C)扩散环境(D)杂质浓度变化率10.关于干法刻蚀的正确描述是。 (A)化学性刻蚀选择比高且是各向异性刻蚀; (B)反应离子刻蚀(RIE)兼具各向异性与高选择比等优点; (C)化学性刻蚀方向性好,可获得接近垂直的刻蚀侧墙; (D)物理性刻蚀的选择性好。

电子工艺材料授课教案

第1讲 实践教学目标 1、了解手工焊接的目的及意义; 2、掌握手工焊接的相关理论; 3、了解焊接的材料及工具; 4、掌握手工焊接的方法及技巧; 5、利用铜线焊制六面体及工艺品。 实践教学内容 [教学内容] 1、焊结概念 焊接是电子工业中应用最普遍的技术,在电气工程中占有重要的地位,也是电工、电子实践操作应掌握的技能之一。 焊接是金属加工的主要方法之一,它是将两个或两个以上分离的工件,按一定的形式和位置连接成一个整体的工艺过程。焊接的实质,是利用加热或其它方法,使焊料与被焊金属原子之间互相吸引、互相渗透,依靠原子之间的内聚力使两种金属达到永久、牢固地结合。 2、焊接特点 (1)焊料熔点低于焊件,焊接时将焊件与焊料共同加热到最佳焊接温度,焊料熔化而焊件不熔化,一般加热温度较低,对母材组织和性能影响小,变形小。 (2)锡焊连接的形式是由熔化的焊料润湿焊件的焊接面产生冶金、化学反应形成结合层而实现的,只需要简单的加热工具和材料即可加工,投资少。 (3)焊点有好的电气性能,适合于金属及半导体等电子材料的连接。 (4)焊接接头平整光滑,外形美观;焊接过程可逆,易于拆焊。 3、焊接原理 对于锡焊操作来说最基本的就是润湿、扩散和结合层这三点。 (1)润湿 润湿就是焊料对焊件的浸润。熔融焊料在金属表面形成均匀、平滑、连续并附着牢固的焊料层就称为润湿,它是发生在固体表面和液体之间的一种物理现象。只有焊料能润湿焊件,才能进行焊接。金属表面被熔融焊料润湿的特性叫可焊性。 (2)扩散 锡焊的本质就是焊料与焊件在其界面上的扩散。正是扩散作用,形成了焊料和焊件之间的牢固结合,实现了焊接。 (3)结合层 将表面清洁的焊件与焊料加热到一定温度,焊料熔化并润湿焊件表面,由于焊料和焊件金属彼此扩散,所以在两者交界面形成一种新的金属合金层,这就是我们所说的结合层。结合层的作用就是将焊料和焊件结合成一个整体。

电子陶瓷工艺原理复习重点整理

一、瓷绪论 1、广义瓷定义:采用原料粉碎—浆料(泥料)制备—坯体成型—高温烧结,这 一工艺制备过程所制备的产品,称为瓷。 2、新型瓷定义:采用人工精制的无机粉末为原料,通过结构上的设计,精确的化学计 量、合适的成型方法和烧成制度而达到特定的性能,经过加工处理使之符合要求尺寸精度的无机非金属材料制品。 3、新型瓷与传统瓷的区别 4新型瓷的特性与应用 (1)高度绝缘性和良好的导热性 (2)铁电性、压电性和热释电性 (3)半导性或敏感性 二、电子瓷瓷料制备原理 1、原料评价:化学成份、结构、颗粒度、形貌四个方面。 工业纯(IR)Industrial Reagent 98.0% 化学纯(CP)Chemical Purity 99.0% 分析纯(AR)Analytical Reagent 99.5% 光谱纯(GR)Guaranteed Reagent 99.9% 电子级原料专用 2、电子瓷原料的选择 (1)、在保证产品性能的前提下,尽量选择低纯度原料; 主晶相原料一般采用化学纯(CP99%)或电子级粉料 掺杂原料则应采用光谱纯(GR99.9%)。 (2)、各种杂质及种类对产品的影响要具体分析。 利:能对影响产品的不利因素进行克制,能与产品的某成份形成共熔物或固溶体从而促进烧结,降低烧结温度,使瓷件致密。 害:产生各种不必要的晶相及晶格缺陷,影响产品性能。 3、原料的颗粒度 要求:愈细愈好,在10μm以下(称细粉)。有利于各组份混合均匀,提高坯体的成型密度,提高粉料活性,降低烧成温度。

4、原料的粉碎方法及原理 粉碎方法:用机械装置对原料进行撞击、碾压、磨擦使原料破碎圆滑。 粉碎原理:机械能转换为粉料的表面能和缺陷能,能量转换过程。 5、球磨效率影响因素及优缺点、粉碎程度 1-转速太快贴壁,太慢沉底。 2-磨球形状球间点接触,柱间线接触。 3-筒体直径常用滚筒式球磨机的直径围一般在100cm~200cm之间。 4-磨球与衬的质料氧化铝(Al2O3)、氧化锆(ZrO2)、玛瑙(SiO2)、氧化锆 增韧氧化铝、钢球。 5-球磨时间一般为24~48小时,时间长杂质混入较多。 6-料、球和水的配比料/球/水=1/1/(0.6~1)体积比。 优—设备简单,混合料均匀,粒形好(圆形)。 缺—研磨体在有限高度泻落或抛落,产生撞击力和磨剥力,作用强度较弱;筒体 转速受临界转速限制,即碾磨能力也受到限制;不起粉碎作用的惰性区较广,间歇 作业。 粉碎程度:粗磨:50~10μm 细磨:10~2μm 超细磨:< 2μm 6、振磨效率影响因素及优缺点、粉碎程度 影响振磨效率的主要因素有球质量、振磨振动频率及振动幅度。(均正相关) 优—粉料在单位时间受研磨体的冲击与研磨作用次数极大,其作用次数成千倍于 球磨机,因此粉碎效率很高。粉碎粒度细,混入杂质较少。一方面粉碎是靠疲劳破 坏而粉碎,另一方面由于研磨效率高,所用时间短,因此减少了混入杂质的可能性。 缺—粒形较差,呈棱角,混合效果及均匀度较球磨差。振动噪音大,机械零件易 疲劳而损坏,装料尺寸应小于250μm(60目筛)。 粉碎程度:当进料尺寸不大于250μm,则成品料平均细度可达2~5μm。 7、砂磨效率影响因素及优缺点、粉碎程度 砂磨主要以剪切、滚碾磨擦为主,故中轴转速、磨体直径(指球形)及数量对砂磨 效率具有重要影响。 优—研磨时间短,效率高,是滚筒式球磨机的十倍。粒径细,分布均匀,研磨粒 径可达0.5μm。对环境污染小,基本没有粉尘,连续进料出料,便于自动化大批量 粉碎。 缺—进料要求细。 8、气流磨优缺点、粉碎程度 优—干磨式粉碎,粉碎平均粒径大约1μm,粒度分布狭窄陡直。产量大、效率高,机械磨损少,很适合对坚硬物料(莫氏硬度9.5)的加工。 缺—粉尘多、噪音较大,对环境有污染。 9、研磨粉料饱和极限及助磨剂原理 极限:电子瓷粉料通常都是无机氧化物或含氧的酸、碱性盐类,属离子晶体,破碎 后小粒的外层都带有电荷,即破碎后粉粒表面均带有电荷。还有些颗粒在粉碎过程 中获得能量被极化而产生电偶极矩,它们依赖极化作用力而聚合。同时粉料研磨达 到一定细度后,其表面增大,活性增强,表面吸附力也加大,表面吸附力增加到一 定程度也导致粉粒的聚合。 助磨剂:一般都是呈酸性或碱性的有机液体,且为极性基团(官能团)的极性分子。 (类似肥皂机理)①分散作用②润滑作用③劈裂作用 三、电子瓷的成型

电子陶瓷工艺原理复习重点整理

一、陶瓷绪论 1、广义陶瓷定义:采用原料粉碎—浆料(泥料)制备—坯体成型—高温烧结,这一 工艺制备过程所制备的产品,称为陶瓷。 2、新型陶瓷定义:采用人工精制的无机粉末为原料,通过结构上的设计,精确的化学 计量、合适的成型方法和烧成制度而达到特定的性能,经过加工处理使之符合要求尺寸精度的无机非金属材料制品。 3、新型陶瓷与传统陶瓷的区别 4、新型陶瓷的特性与应用 (1)高度绝缘性和良好的导热性 (2)铁电性、压电性和热释电性 (3)半导性或敏感性 二、电子瓷瓷料制备原理 1、原料评价:化学成份、结构、颗粒度、形貌四个方面。 工业纯(IR)Industrial Reagent 98.0% 化学纯(CP)Chemical Purity 99.0% 分析纯(AR)Analytical Reagent 99.5%

光谱纯(GR)Guaranteed Reagent 99.9% 电子级原料专用 2、电子瓷原料的选择 (1)、在保证产品性能的前提下,尽量选择低纯度原料; 主晶相原料一般采用化学纯(CP99%)或电子级粉料 掺杂原料则应采用光谱纯(GR99.9%)。 (2)、各种杂质及种类对产品的影响要具体分析。 利:能对影响产品的不利因素进行克制,能与产品的某成份形成共熔物或固溶体从而促进烧结,降低烧结温度,使瓷件致密。 害:产生各种不必要的晶相及晶格缺陷,影响产品性能。 3、原料的颗粒度 要求:愈细愈好,在10μm以下(称细粉)。有利于各组份混合均匀,提高坯体的成型密度,提高粉料活性,降低烧成温度。 4、原料的粉碎方法及原理 粉碎方法:用机械装置对原料进行撞击、碾压、磨擦使原料破碎圆滑。 粉碎原理:机械能转换为粉料的表面能和缺陷能,能量转换过程。 5、球磨效率影响因素及优缺点、粉碎程度 1-转速太快贴壁,太慢沉底。 2-磨球形状球间点接触,柱间线接触。 3-筒体直径常用滚筒式球磨机的直径范围一般在100cm~200cm之间。 4-磨球与内衬的质料氧化铝(Al2O3)、氧化锆(ZrO2)、玛瑙(SiO2)、氧化锆增韧氧化铝、钢球。

陶瓷工艺原理复习题 答案版

1.粘土在陶瓷制备中的作用是什么? ①在常温下可提高坯料的可塑性和结合性,高温下仍留在坯体中起结合作用; ②坯体是Al2O3成分的主要提供者,烧成中形成一次莫来石和二次莫来石; ③粘土使注浆泥料与釉料具有悬浮性和稳定性; ④粘土原料亲水及干燥后多孔性与干燥强度,使坯、釉层具有良好吸釉、印花能力; ⑤在生产中的不利因素:分解、收缩、杂质、有机物多、纯度低、定向排列。 2.石英在陶瓷制备中的作用是什么? ①在烧成前是瘠性原料,对泥料的可塑性起调节作用,降低坯体的干燥收缩,缩短干燥时间并防止坯体变形; ②烧成时,石英部分熔解于液相中,增加熔体粘度,未熔解石英构成坯体的骨架,防止坯体软化变形; ③在瓷器中,合理的石英颗粒能大大提高坯体的强度,否则效果相反。同时能改善瓷坯的透光度和白度; ④在釉料中石英是生成玻璃质的主要成分,能提高釉的熔融温度和粘度,赋予釉高的力学强度、硬度、耐磨性和耐化学腐蚀性。 3.对石英进行预处理时,一般在1000℃左右预烧,然后快速冷却,其目的是什 么? 天然石英是低温型的β-石英,其硬度为7,难于粉碎。故有些工厂在粉碎前先将石英煅烧到900-1000 ℃以强化晶型转变,然后急冷,产生内应力,造成裂纹或碎裂,有利于对石英的粉碎。此外通过煅烧可使着色氧化物显露出来。便于拣选。 4.一次莫来石与二次莫来石的形貌生成机理有何不同?

一次莫来石:鳞片状、短柱状。固相反应,升温高火期。 二次莫来石:针状、交织成网状。过饱和析晶,升温高火期。 5.可塑性;可塑性指数;可塑性指标 ?可塑性:在超过屈服点的外力作用下,泥团发生塑性变形,但并不破裂,除去外力后,仍保持变形后形状的性质。也可以说是可被塑造成为多种形状的性质。?可塑性指数:表示粘土(坯泥)能形成可塑泥团的水分变化范围,从数值上是液限含水率减去塑限含水率。 ?可塑性指标:是指在工作水分下,粘土(或坯料)受外力作用最初出现裂纹时应力与应变的乘积。 6.试写出高岭土加热过程中的主要化学反应。 ①脱水阶段:高岭石脱水后生成偏高岭石,同时收缩率增大,吸热效应,失重: Al2O3·2SiO2·2H2O = Al2O3·2SiO2 + 2H2O (偏高岭石) ②脱水后产物继续转化阶段: 偏高岭石由925 ℃开始转化为铝硅尖晶石,同时体积收缩,发生放热效应:2(Al2O3·2SiO2)= 2Al2O3·3SiO2 + SiO2 (铝-硅尖晶石) 铝硅尖晶石继续加热到1050℃开始转化成莫来石,分离出方石英发生放热效应:3(2Al2O3·3SiO2)= 2(3Al2O3·2SiO2)+ 5SiO2 铝-硅尖晶石莫来石方石英

建筑陶瓷生产工艺流程

建筑陶瓷生产工艺流程 建筑陶瓷是指建筑物室内外装饰用的较高级的烧土制晶,它属精陶或粗瓷类。其主要品种有外墙面砖、内墙面砖、地砖、陶瓷锦砖、陶瓷壁画等。 第一节陶瓷的基本知识 一、陶瓷的概念与分类 陶瓷的生产发展经历了漫长的过程,从传统的日用陶瓷、建筑陶瓷、电瓷发展到今天的氧化物陶瓷、压电陶瓷、金属陶瓷等特种陶瓷,虽然所采用的原料不同,但其基本生产过程都遵循着“原料处理一成型—煅烧”这种传统方式,因此,陶瓷可以认为是用传统的陶瓷生产方法制成的无机多晶产品。 根据陶瓷原料杂质的含量、烧结温度高低和结构紧密程度把陶瓷制品分为陶质、瓷质、和炻质三大类。 陶质制品为多孔结构,吸水率大(低的为9%—12%,高的可达18%—22%)、表面粗糙。根据其原料杂质含量的不同及施釉状况,可将陶质制品分为粗陶和细陶,又可分为有釉和无釉。粗陶一般不施釉,建筑上常用的烧结粘土砖、瓦均为粗陶制品。细陶一般要经素烧、施釉和釉烧工艺,根据施釉状况呈白、乳白、浅绿等颜色。建筑上所用的釉面砖(内墙砖)即为此类。 瓷质制品煅烧温度较高、结构紧密,基本上不吸水,其表面均施有釉层。瓷质制品多为日用制品、美术用品等。 炻质制品介于瓷质制品和陶质制品之间,结构较陶质制品紧密,吸水率较小。炻器按其坯体的结构紧密程度,又可分为粗炻器和细炻器两种,粗炻器吸水率一般为4~/0—8%,细炻器吸水率小于2%,建筑饰面用的外墙面砖、地砖和陶瓷锦砖(马赛克)等均属粗炻器。 二、陶瓷的原料 陶瓷工业中使用的原料品种很多,从它们的来源来分,一种是天然矿物原料,一种是通过化学方法加工处理的化工原料。天然矿物原料通常可分为可塑性物料、瘠性物料、助熔物料和有机物料等四类。下面介绍天然原料主要品种的组成、结构、性能及其在陶瓷工业中的主要用途。 1.可塑性物料——粘土

电子材料课后题

第一章电子材料概论 1.晶体有哪些基本特征?简述晶体与非晶体的异同。 答:晶体的宏观特征:(1)有规则的外形(自范性);(2)晶体的均匀性,来源于晶体中原子排布的周期性规则,宏观观察中分辨不出微观的不连续性;(3)物理性质的各异向性;(4)稳定性,晶体有固定的熔点;(5)解理性 非晶态的特点:原子的空间排列不具有周期性,长程无序,短程有序;物理性能各向同性;介稳状态。 2.晶体中的缺陷及其类型有哪些? 答:晶体中的缺陷,是指实际晶体与理想的点阵结构发生偏离的地区。由于点阵结构具有周期性和对称性,所以凡使晶体中周期性势场畸变的因素称为缺陷。 类型:电子缺陷,原子缺陷。原子缺陷:杂质、位错、空位等。原子缺陷按几何形状分为:点缺陷、线缺陷、面缺陷、体缺陷、微缺陷。 3.什么是晶粒间界?大角度晶界有哪些常用模型?相界有哪些类型? 答:单相多晶材料中,晶粒与晶粒间的过渡区,称晶粒间界(GB)。 大角度晶界常用模型:过冷液体模型,小岛模型。 相界:系统内含有两个或两个以上的相,当处于热力学平衡时,不同相之间的界面。类型:非共格相界,共格相界,准共格相界,分界面。 4.简述X射线结构分析的基本原理和常用方法。 答:由于晶体中原子排列的对称性和周期性,X射线对晶体来说是天然光栅,所以当X射线通过晶体时,就会出现衍射现象,因而通过对衍射花样的分析和计算,就可以获得晶体结构的各种参数。 常用方法:单晶衍射法,粉末法。 5.简述近代表面分析方法的基本原理和常用表面分析方法。 答:用一定能量的某种射线或粒子束去激发固体表面后,将产生带有某种表面信息的表面射线,用这种射线进行能量分布的分析。

电子陶瓷制备原理

第一章电子陶瓷制备原理 陶瓷:通常将经过制粉、成型、烧结等工艺制得的产品都叫做陶瓷。 无机烧结体(硬、脆) 显微结构:多晶多相结构 在人类文明发展史中,陶瓷常常作为论证标志之一,于是在相当长的年代里,陶瓷一词便作为陶器和瓷器的总称。 随着科技的发展,人们把陶瓷的概念扩大到整个无机非金属领域。 通常所称的陶瓷材料,不少人还是把它当作传统陶瓷来理解,传统陶瓷的制备是利用天然硅酸盐矿物作为原料,经过粉碎、配料、成型、烧结等工艺制造而成。 新型陶瓷:具有各种独特性质和制造这些材料所必须采用的特殊的工艺(摆脱传统的组成和工艺的范畴),所用原料从取之于天然硅酸盐矿物的方式扩大到广泛使用人工合成的化合物,包括纯氧化物、复合氧化物、卤化物、以及碳化物、氮化物、硼化物、硅化物,以及复合盐类单质。 从结构上,以硅氧四面体为基本结构单元,发展到以单纯铝氧、锆氧八面体和硅氧、硅碳四面体以及含有多种其它基本结构单元的结合。 尺度上从1-100μm(晶粒)到10-1000nm(层次),工艺上,由液相到少量液相或不含液相的固相烧结。 不论是传统还是新型,所具有独特的物理性质无不与它们的化学组成、物相和显微结构有关。[往往把玻璃、搪瓷、珐琅、釉、水泥、单晶或无机化合物,也列入近代陶瓷范畴(广义陶瓷)] 陶瓷属于多晶体,可分为单相多晶体(由单一的多个晶相组成),多相多晶体(除晶相外,还有气相和玻璃相。 陶瓷中晶相、玻璃相、气相数量和分布上的差异,使陶瓷具有不同的性能。 晶相是决定陶瓷基本性质的主导物相(形貌、大小、均化、细化) 玻璃相是陶瓷体中的低熔组成物 气相(气孔)以孤立状态分布在玻璃相之中,电介质陶瓷,气孔可增大陶瓷的介电损耗,气孔又是光的散射中心,使透过的光量大大地减少,透明陶瓷的透明度大大降低,变得不透明。狭义陶瓷:从所采用的原料来说,最早是直接应用粘土制成陶器,后来将天然原料进行加工配合制成瓷器,现在除天然原料外,还大量采用化工原料;成型从手工捏制、泥条盘筑到陶轮制坯,到复杂机械,到多种成型;煅烧从平地堆烧,到半地下式穴烧,到控制温度、气氛机械化窑炉。 生产力水平和科技进步的反映,漫长的历程使陶瓷从古老的工艺和艺术的宫殿中走出来,跨进了现代科学技术行列中,使它与金属材料、有机高分子材料共同构成三大材料。 §1.1 电子瓷及其原料 1 电子瓷定义及类别 电子陶瓷是指应用于电子技术中的各种陶瓷,也就是在电子工业中用于制造电子元件和器件的陶瓷材料,一般分为结构陶瓷和功能陶瓷。 用于制造电子元件、器件、部件和电路中的基体、外壳、固定件和绝缘零件等陶瓷材料,又称装置瓷。大致分为:电真空瓷、电阻基体瓷和绝缘零件等。

复习思考题--陶瓷工艺学

第三篇陶瓷工艺学 第一章绪论 1 、传统陶瓷的概念与现代陶瓷的概念有何不同? 答:( 1 )传统陶瓷:指以粘士和其它天然矿物为原料,经过粉碎、成型、焙烧等工艺过程所制得的各种制品。( 2 )现代陶瓷:指用陶瓷的生产方法制造生产的无机非金属固体材料和制 品。 2 、陶瓷如何分类? 答:( 1 )按用途来分:①传统陶瓷(普通陶瓷)、②特种陶瓷或新型陶瓷亦称精密陶瓷( 2 )按物理性能分:陶器、炻器、瓷器。 3 、在按陶瓷的基本物理性能分类法中,陶器、炻器和瓷器的吸水率和相对密度有何区别? 答:吸水率相对密度 陶器 3-15% 1.5-2.4 炻器 1-3% 1.3-2.4 瓷器<1% 2.4-2.6 4 、陶瓷工艺学的内容是什么? 答:由陶瓷原料到制成陶瓷制品的整个工艺过程中的技术及其基本原理。 5 、陶瓷生产基本工艺过程包括哪些工序? 答:有原料选定(进厂)、配料、坯釉料制备、成型、干燥、施釉烧成等工序。 6 、列举建筑卫生陶瓷产品中属于陶器、炻器和瓷器的产品? 答:陶器:内墙砖;炻器:建筑外墙砖;瓷器:卫生洁具、地砖。 第二章原料 1 、陶瓷原料分哪几类? 答:可塑性原料;熔剂类原料和瘠性类原料。炻炻 2 、粘土的定义如何? 答:粘土是一种或多种呈疏松或胶状密实的含水铝硅酸盐矿物的混合物。

3 、粘土是如何形成的? 答:粘土主要是由铝硅酸盐类岩石,如长石、伟晶花岗岩等经过长期地质年代的自然风化作用或热液浊变作用而形成的。长石转化为高岭石的反应大致如下: 2[KAlSi 3 O 8 ]+H 2 CO 3 ------Al 2 Si 2 O 5 (OH) 4 +4SiO 2 +K 2 CO3 4 、粘土按成因和耐火度可分为哪几类? 答:按成因分类: ( 1 )原生粘土。又称一次粘土、残留粘土,它是由母岩风化后残留在原地形成的。 ( 2 )次生粘土。又称二次粘土、沉积粘土。 按耐火度分类: ( 1 )耐火粘土。其耐火度> 158 0 ℃。 ( 2 )难熔粘土。耐火度为 1350~ 158 0 ℃ ( 3 )易熔粘土。耐火度在 135 0 ℃以下。 5 、粘土的化学组成和矿物组成是怎样的? 答:化学成分: (1)SiO 2 : 40-78% (2)AL 2 O 3 : 12~40% (3)R 2 O+RO : R 2 O=0.5~5%, RO=1~6% ( 4 ) Fe 2 O 3 、 TiO 2 ≤ 1% ( 5 )灼减量。 粘土的矿物组成: ( 1 )高岭石( Al 2 O 3 · 2SiO 2 · 2H ( 2 )蒙脱石( Al 2 O 3 · 4SiO 2 · nH 2 O , n > 2 ( 3 )伊利石( K 2 O · 3Al 2 O 3 · 6SiO 2 · 2H 2 O · nH 2 O )。 6 、什么是粘土的可塑性、塑性指数和塑性指标?

电子陶瓷材料

电子陶瓷材料 概述陶瓷学定义为制造和应用固体制品的技艺和科学,这种固体制品主要是由无机非全属材料作为基本组分组成的。电子陶瓷是应用于电子技术中的各种陶瓷现代陶瓷分为结构陶瓷和功能陶瓷两大类,是航天、新能源、新材料、微电子、激光、海洋工程和生物工程等高新技术的重要组成部分和不可缺少的物质基础,也是当前高技术竞争的热点之一。结构陶瓷指用于制造电子元件、器件、部件和电路中基体、外壳、固定件和绝缘零件等陶瓷材料,又称装置瓷。功能陶瓷是利用其特有的电、磁、声、光、热、弹等直接效应及其耦合效应所提供的一种或多种性质来实现特定的使用功能。 电子陶瓷——无机多晶体微观结构上,陶瓷是介乎单晶与玻璃之间的一类物质 ●电子陶瓷的主要化学结合力:离子键及共价键 ●化学组成主要有:碳、氧化物、氮化物、碳化物以及硼化物等 ●电子陶瓷晶相的晶体结构:单质材料主要有石墨和金刚石结构; AB型化合物主要有NaCl(岩盐)型结构、立方ZnS(闪锌矿)型结构、六方ZnS(纤维锌矿)型结构等;AB2型化合物主要有CaF2(萤石)型结构、TiO2(金红石)型结构等;A2B3型化合物则以α-Al2O3(刚玉)型结构为代表;ABO3型化合物主要有CaTiO3(钙钛矿)型结构、FeTiO3(钛铁矿)型结构及CaCO3(方解石)型结构;AB2O4型化合物最重要的结构是尖晶石结构,典型材料包括MgAl2O4、MnFe2O4、ZnFe2O4等。 ●电子陶瓷晶相的晶体结构:单质材料主要有石墨和金刚石结构; AB型化合物主要有NaCl(岩盐)型结构、立方ZnS(闪锌矿)型结构、六方ZnS(纤维锌矿)型结构等;AB2型化合物主要有CaF2(萤石)型结构、TiO2(金红石)型结构等;A2B3型化合物则以α-Al2O3(刚玉)型结构为代表;ABO3型化合物主要有CaTiO3(钙钛矿)型结构、FeTiO3(钛铁矿)型结构及CaCO3(方解石)型结构;AB2O4型化合物最重要的结构是尖晶石结构,典型材料包括MgAl2O4、MnFe2O4、ZnFe2O4等。 结构与分类从使用功能分类,电子陶瓷的主要种类包括绝缘陶瓷、介质陶瓷、微波陶瓷、铁电与压电陶瓷、热释电陶瓷、电光陶瓷、电致伸缩陶瓷、敏感陶瓷、高导热陶瓷、导电陶瓷、超导陶瓷等。电子陶瓷块体材料的常规制作工艺主要包括制粉、成型、烧结工艺。根据实际应用需求,还可以采用热压烧结工艺或填充烧结工艺制备无气孔的透明陶瓷或气孔率很高的多孔陶瓷。新近发展起来的电子陶瓷薄膜材料的制备工艺主要有射频磁控溅射、溶胶-凝胶法,脉冲激光沉积、金属氧化物气相沉积等工艺。电子陶瓷特殊效能的开发主要来源于对复杂多元氧化物的化学组成、物相结构、工艺、性能和使用效应之间相互关系的系统研究,其性能的调节和优化可借助离子置换、掺杂改性及工艺控制手段来实现。 近年来取得重要进展的技术领域:高纯超微粉体技术;致密化成型及烧结技术;陶瓷薄膜制备技术;材料分析及测试技术;====?对材料制备工艺的反应过程、表面与界面的结构与性质、显微结构的形成与变化以及这些因素对陶瓷性能的影响有了更深入的了解。 开拓了新的材料研究领域:电子陶瓷薄膜;超晶格材料;复合材料;纳米陶瓷材料;机敏材料及智能材料等 典型材料与应用:一般而言,由主晶相性质决定的陶瓷特性主要有介电性、铁电性、电子导电性、离子导电性、超导电性、热导性、光导性、电致变色性、电致伸缩性等;经极化处理的铁电陶瓷可具有压电性、热释电性、电光特性等;电子陶瓷的温度、气氛、湿度、电压等敏感特性除与陶瓷主晶相组成相关外,还受到晶界结构与性质的很大影响 电子陶瓷的典型材料及应用示例

《陶瓷工艺原理》学习指南

学习指南 说明:为配合学生《陶瓷工艺原理》课程的学习,根据材料科学与工程学院本科《陶瓷工艺原理》课程教学大纲的要求,对本课程基本情况、性质、任务、教材和多媒体课件的处理、学习参考书、考核要求及各章节重点、难点等均在本学习指南中做出了较详细的说明。同时针对各章的不同要求,配备了一定数量的自测练习题,学生通过自测检查可以发现自身学习中存在的问题,有的放矢地进行学习。 一、课程基本情况、性质、研究对象和任务 总学时:64学时。其中,课堂教学:57学时,实验教学:7学时。 先修课:《材料科学基础》、《材料物理性能》 《陶瓷工艺原理》是材料科学与工程专业复合材料方向本科生的必修课,其它专业方向的限定选修课。本课程主要讲述陶瓷原料、粉体的制备与合成、坯体和釉的配料计算、陶瓷坯体的成型及干燥、陶瓷材料的烧结、陶瓷的加工及改性等。目的在于使学生熟悉陶瓷生产中共同性的工艺过程及过程中发生的物理—化学变化,掌握工艺因素对陶瓷产品结构与性能的影响和基本的实验技能,能够从技术与经济的角度分析陶瓷生产中的问题和提出改进生产的方案,为毕业后从事专业工作打下必要的基础。 本课程重视“理论基础与工程实践并重”的课程教学体系及科研促进教学的教学方法,从而增强学生理论基础的实践性应用能力,既重视学生“应知应会”的陶瓷材料的设计、制备工艺、测试表征与应用的基础理论,又强调综合性、设计性、开放性、创新性实验教学,加强学生实验动手训练和设计能力培养,倡导学生创业能力的训练。 学完本课程应达到以下基本要求: 1.熟练掌握陶瓷主要原料的性能、用途,掌握部分新型陶瓷原料的性能、用途,对其它原料的性能和用途有所了解。 2.熟练掌握陶瓷制品的生产工艺流程,以及一些新型的工艺技术。

电子陶瓷工艺原理

电子陶瓷工艺原理 读书报告 班级 学号 姓名

电子瓷定义及类别 电子陶瓷是指应用于电子技术中的各种陶瓷,也就是在电子工业中用于制造电子元件和器件的陶瓷材料,一般分为结构陶瓷和功能陶瓷。用于制造电子元件、器件、部件和电路中的基体、外壳、固定件和绝缘零件等陶瓷材料,又称装置瓷。 大致分为:电真空瓷、电阻基体瓷和绝缘零件等。 功能陶瓷:用于制造电容器、电阻器、电感器、换能器、滤波器、传感器等并在电路中起一种或多种作用的陶瓷材料,它又分为:电容器瓷,铁电瓷,压电瓷,半导体瓷和磁性瓷等。 电子陶瓷在化学成分,微观结构和机电性能上,均与一般的电力用陶瓷有着本质的区别。 电子陶瓷需具有高的机械强度,耐高温高湿,抗辐射,介电常数变化范围宽,介质损耗小、电容温度系数可以调整,抗电强度和绝缘电阻高,以及老化性能优异。 电子陶瓷按特性可分为:高频和超高频绝缘陶瓷;高频高介陶瓷;铁电和反铁电陶瓷;压电陶瓷;半导体陶瓷;光电陶瓷;电阻陶瓷等。 电子陶瓷按应用范围可分为:固定用陶瓷;电真空陶瓷(主要

用于绝缘体,构架,基体,外壳及多层布线等);电容器瓷(高频或低频电容器介质,兼作电容器支承,构架材料;电阻瓷等。 按微观结构分:多晶;单晶;多晶和玻璃相;单晶和玻璃相。 利用陶瓷材料的高频或超高频电气物理特性可制作各种形状的固定零件, 陶瓷电容器,电真空陶瓷零件,碳膜电阻基体等,它们在通信、广播、电视、雷达、仪器、仪表等电子设备中是不可缺少的组成部分,此外,随着激光、计算、集成、光学等新技术的发展,电子陶瓷用途日益扩大。 电子陶瓷材料的发展同物理化学、应用物理、硅酸盐物理化学、固体物理学、光学、电学、声学、无线电电子学等的发展密切相关,相互促进,从而在电子技术的飞跃发展中,使电子陶瓷也相应地取得了很大的进展。 电子陶瓷的原料有三方面要求: (1)化学成分:纯度,杂质的种类与含量,化学计量比; (2)颗粒度:粉粒直径,粒度分布,颗粒外形; (3)结构:结晶形态,稳定度,裂纹,致密度和多孔性等。 粒度与结构主要决定着坯体的密度和成型性。颗粒细,结构不完整,则活性(不稳定性,可烧结性)愈大,有利于烧结。 电子瓷所用的原料大体可分为矿物原料和化工产品两类:矿物原料有粘土、膨润土、滑石菱镁矿、萤石、金红石刚玉;化工产品有工业纯80~90% 、化学纯95~99% 、分析纯99~99.9% 、光谱纯

相关主题
文本预览
相关文档 最新文档